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Introduction

Let X be an n-dimensional Fermat variety of degree d
xq+xt++ x4, =0 (dzn+2)

in P"*1 where x,, X;,..., X,+, are homogeneous coordinates. We are concerned
with the p-th power frobenius action F on the n-th cohomology group H"(X, Oy)
of X over an algebraic closure k of the field F, (p>0; ptd). The F-module
H"(X, 0y) is canonically isomorphic to the G,-module H"*(P"*!, Opn+:(—d)),
and we know that the vector space H"*!(P"*!, Op..:(—d)) has as basis #7

(cf. §1). We now consider the matrix (the so-called Hasse-Witt matrix) HW (X)
of G, with respect to #75,.

In this paper, we show mainly the following theorems:

THEOREM 1. For positive integers n, d and p (p; prime number with pYd
and d=n+2) given as above, we let p; be the number of all elements in W, of

type i defined in §1. We can arrange the p;’s by some integers fo>f;>-->f,>0
as follows:

pi=0  for i>fo, ps=pi<ps,., for fizi>fi
and s<r, p; =p;=po for f.=ziz=1.

We denote by HW (X),;,, the nilpotent part of HW (X) at p. Then the normal
form of HW (X),;;, becomes the matrix

A(1)
A(2)
" AGpy,)
0
0 Po— Py,
-

with A(p)=A; 4+ for p; _ <p=p;,, @=0,1,...,r, where p, =0, and each
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A, is the square matrix (4;) of size g given by A; =1 if j=i+1 and ;=0
otherwise (cf. §2).

THEOREM lI. Let positive integers n, d and p be as above.

1) We have the property: if p=—1 (mod d) then HW (X) at p is the zero
matrix.

2) In case of n=1i.e. X: x§+x4+x4=0, we have moreover the property:
if HW (X) at p is the zero matrix, then p= —1 (mod d).

3) Incaseof n=2i.e X:x§+x¢+x3+x4=0,

(i) when d is even, we have moreover the property: if HW (X) at p is the
zero matrix, then p= —1 (mod d),

(i) when d is odd, we have the property: HW (X) at p is the zero matrix if
and only if p=—1 (modd) or p=—2 (mod d) or p=(d—1)/2 (mod d) (cf. §3).

We should remark that the statement of Th. II, 3), (ii) is suggested by N. Suwa.
The first proof of Th. Il given by the author has been improved by R. Sasaki
later, and the author appreciates him for permitting to write his proof here.

Finally, we observe relations with Newton-polygons of X over the field
F,;, where f=ord. {p mod d) in (Z/dZ)* (cf. §4).

The author wish to express his hearty thanks to Prof. M. Nishi and Prof.
T. Sekiguchi for their hearty encouragement, and Prof. N. Suwa and Prof.
R. Sasaki for their useful conversations.

1. Hasse-Witt matrices HW (X)

Let n, d and p be the positive integers such that p is a prime number with
ptd and d=n+2. We now consider the Fermat variety X defined by

x§+ x¢ +--+ x84, =0.

We put h=x§+x¢+--+x¢,,, and k=F,. From a commutative diagram of
short exact sequences of structure-sheaves:

0—) 0Pn+1(—d) L} 0l)r|+l —_—> @x —}O

hv-'FJ Fl Fl
0 — Opnii(—d) P Opniv — 0 — 0,

we have a commutative diagram of cohomology groups:

0
H™(X, 0y) % H™ (P 0pusi(—d))

|, a|

H"(X, Ox) == H"" (P! Opn+i(—d)),
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where G, denotes h?~!'F and § denotes the connecting morphism in the long
exact sequence derived from the above short exact sequence (cf. Serre [2], Chap.
II1, 3, Prop. 8).

Now we put

Wo = {w=Wo, Wis..0, Wyi 1) €Z7"2|0<w, for all y=0,..., n+1, |w|=d},

where Z, is the set of all non-negative integers and |w|=3"t{w, We note

that $#,= ZI i) , where # denotes the cardinality. According to Serre [2], loc.

cit., we know that the k-vector space H*"*{(P"*1, @pn+i(—d)) is <Z; }) -dimen-

sional and has a basis consisting of the classes of sections
f(()l?:.‘..,n+1 = 1/(xgnx€1...x5141—1) with B = (ﬁO’ Bl""5 ﬁn+1)e W‘O’
on Ug . n+1(XoX1 "Xy 41 #0) Of Opn+i(—4d).

We denotes by [w] the class of f§*) ., and by HW (X) the matrix of the
action G, with respect to basis {{w]|we #5}.

Now we shall describe HW (X). For ve #7,, we have
Gy [v] = (x§+--- +x4,,)?"1x~P* mod coboundaries
=, ((p—1D!/A)x~(pPv=4d) mod coboundaries,

where ) is taken over all A=(4,,..., 4,4+,) € Z1*? with |A]=p—1. Here, x=
(Koseees Xns 1) PO=(PUoseees PUps 1)y X3=Xq 00Xyt (4= (doperes O 1))y Al=
Al A,e il and Ad=(Aod,..., 4,4 ,d).

When we put A, (v)={AeZ1*?||A|=p—1, pv,>A,d for all y} and B,(v)=
{AeZ1*?||Al=p—1, pv,<A,d for some y}, we have

Gy [v] = (Zicanw) + Zaepnw) (p—1DANx~ v,

since p is a prime number with ptd by assumption. If 4,(v)#4g, then it consists
of only one element A and w=pv—Ad e #,. In fact, |w|=d and each pair (4,, w,)
is uniquely determined via ‘“‘euclidean algorithm’’ dividing pv, by d. Let A€
B,(v). Then pv,,<A,.d for some y, and ((p—1)!A)x=P*=2D=p [(xg X yo:
X,4+ )" for m=max {pv,|0<y<n+1} and a homogeneous polynomial p, in
Xgses X4y Of degree —d+m(n+1). This is a section on Ugy Y ,i(xg-
Xyo' Xps170) Of Opnis(—d). Thus X, 5, is of the coboundary form of an
n-cochain with coefficients in Opn+:(—d).

Therefore, for each ve #7,, we have:

If A,v)#6, then G,-[v]=((p—1)YAN[w] (po=2d+w).
If A,v)=¢, then G,-[v]=0.
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Moreover we put
W = {w=Wose0, Wy 1) EL52|0<w,<d (0Sy=n+1), |w|=0 (mod d)} .
As in Koblitz [1], for a positive integer j, we consider the action j- on Z2*2,

Jw={jwolas-» {JWns1}a)

for w=(wy,..., w,.), where each {jw,}, denotes the remainder for the division of
jw, by d. Especially, suppose (j, d)=1. Then we have j-: # X#  as sets, and
j-=j'- (f j=j'(modd)), (jj')-=j-(j'-) for two positive integers j, j° coprime
to d. When, for each ve #,,, we write

Gy-[v] = Zwewo honlw] (h,,€k),
we have
HW (X) = (h, w)w. w and ve#,.
From the above (x), we have

((hyw#0 (ifw=p-v),
(*) .
hyw=0 (fw#p-v).

We note that the statement of this fact appears in Koblitz [1].
Let f be the order of pmodd as in the introduction. For we #7,, when
p*-we W, for allaeZ,, we say that w is of type infinity. We put
S(p) = {we #, | w; of type infinity},
S*(p) = #o~S(p).

For we #, and 0<i=<f—2, when p*-we #, for any o (0<a<i) and pitl-w¢
W ,, we say that w is of type i. We put

Sip) = {we #,|w; of type i}.
Then we have disjoint unions
S*(p) = UZ# S{p), #% = S(p) U Se(p) U -+ U S;_2(p)»

a bijection p-: S(p)=S(p), and injections p-: S*(p)~Sy(p)—S*(p), p-: So(p)—
W ~W, as sets.
Thus, as for HW (X) at p, we obtain

a) HW(X) is a square matrix of size <Z;D=#W‘o and consists of three

minors (i), (ii), (iii):
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( l ) (hv,w)(w,v)eVoXS(p) Of rank #S(P)’
(1) (y ) (w,0rew0x (5*(p) \So(pyy Of TANK #(S*(p)~S(P)),

(iil)  (hyw)(w,pyewoxso(py Of rank zero.

Each vth column of these minors is such a type of vectors with only non-zero
component at w=p-v.

b) rank HW (X) = #S(p) + #(S*(p)~So(p)).
c) HW (X) is the zero matrix iff #,=S(p).

When we put

HW (X)ss = (h,w)w,,; w and veS(p),
HW (X)nilp = (hv,w)w,u; w and ve S*(p) >

we see that HW (X)), is non-singular, and HW (X),;,, is of the form (x| 0), where 0
means $#, X #So(p)-matrix, with rank #(S*(p)~Sy(p)) and

HW (X),, 0 >

HW(X) =
w0 (0 HW (X),1,

In later sections, we let [#7,] stand for H"*Y(P"*! Op..i(—d)) and [S]
the subspace of [#7,] generated by a subset S of [#7].

2. The normal form of HW (X)

G, is a p-th power semilinear endomorphism of [#,]. And, by (x'), for every
ve ¥, and for any integer N >0, we have

(**) Gﬁ : [v] = (hv,p'v)pn_1(hp'v,p2~v)pN_2'"(hp""'v.P"'v) [pN 0],
where if p-w¢ # then h,, .., means the zero.

ProOPOSITION 2.1. G, acts bijectively on [S(p)], nilpotently on [S*(p)].
Moreover we have

i) [#o] = [S(p)]® [S*(p)] as Gy-modules;
ii) [S(p)] = Nnez, Gi - [#50],
[S*(P)] = Unez, Ker (G157 -

Proof. For any ve S(p), we have v=p-w for some w by p-: S(p)S(p).
Put c=(h,,.,)?'€k. Then [v]=G,-(c[w]) by (x*x). Hence [S(p)]<G,-
[S(p)]. On the other hand, since G,-[S(p)]<=[S(p)], we have G,-[S(p)]=
[S(p)]. And we also see that Ker (Gy(s(,)))=0 via p.: S(p)3S(p). By (*¥),
G, acts nilpotently on S*(p) and hence on [S*(p)]. From the disjoint union
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#o=3S(p) US*(p), Gy-[S(p)]=[S(p)] and G,-[S*(p)]=[S*(p)], the assertion i)
follows. Since G, acts bijectly on [S(p)] (resp. nilpotently on [S*(p)]), we have
[S(P) 1= Nyez, GY-[#5] (resp. [S*(p)]<= Unez, Ker (G 3-y). For an element
Ee(Nez, G -[#0D N (Unez, Ker (GYr5-,7), We write

é = ZveS(p) CU[U] + Zwes*(p) dw[w] (Cv’ dw € k) .

Then, since £ € \Uy.z, Ker (G}|5-,7), we have G - £ =0 for sufficiently large N and
hence

> vesip €OS[pV-v] =0 for some sek*.
Then
¢ = 2Xuesrp dwlWl € Nnez, G - [#5].
Therefore, by i), £ € [S(p)] and then £=0. Thus we have
[#0] = [S(P)] @ [S*(P)] = (Ninez, GY-[#0]) @ (Unez, Ker (G}15-))-

Since [S(p)1=Npez, GV - [#6] and [S*(p)] = \Unez, Ker (GY15-7), the assertion
ii) holds. Q.E.D.

On the other hand, we denote by [#7,]°" the subspace of [#7,] generated
by all G,-fixed vectors and denote by [ #7]1,—nu, the subspace of [#7] consisting
of all vectors which are killed by powers of G,. Then we have

[(#o]=[#01®[#o]l6,-nitp -

Since [S*(p)]=[#ola,-nitp a0d Nyez, G- [#o]o[#,]%, we have [#,]0=
[S(p)]. It is known that [#7,]¢ has as basis G,-fixed vectors: e,’s, v=1, 2,...,
#S(p). Then, with respect to the e,’s, the normal form of HW (X),, at p becomes
the unit matrix 1, of size o =#S(p).

Now, when S*(p) is non-empty, we shall choose a basis of [S*(p)] for the
sake of describing the normal form of HW (X),;,. At first we note that if So(p)=
@, then S*(p)=4; and if Sy(p)#@, then f=2. In fact, suppose S*(p)#@. Then
take w e S*(p). Since w is of type i for some i, we have p’-we Sy(p). Suppose
f=1. Then, since #,=S(p), we have S*(p)=g.

Therefore S*(p) has a unique non-negative integer f, < f— 2 such that S(p)=¢g
for every i>f, and g# S, (p) -5 S1(p)—5— So(p).

We put

pi = #S(p), and [S*(p)]® = Ker (G} 15, -
PROPOSITION 2.2.  We have the following properties:

1) piZ piv1for 0= i< foand p, =0 fora>f,.
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i) [S¥(p)]VerD = [S*(p)], [S*(P] = [So(p)]-
iii) G,: [Sip)] — [Si=1(p)] is injective for i = 1.
iv) [S*(p]® n [Sdp)] = {0} for i 2 0.

v) [S*P]ED = [S*(p)]® @ [Sdp)] for i 2 0.

And the Gy-action has a commutative diagram:

[S*(p)1U*Y = [S*(p)]® @ [S«p)]
Gy l Ghl
[S*(p)]1® = [S*(p]“~ @ [Si-1(p)].
PrOOF. The assertion i) is obvious. We prove the assertion ii). From the
definition of f,,, we have G/o*!.[v]=0 for all ve S*(p). Therefore [S*(p)]/o+D

S[S*(p)] and hence the equality holds. We have [S*(p)](V>[So(p)] by (**).
Let £ e [#7] be such an element that G,-£=0. Then we can write

6 = 2weS*(p) dw[W]’ dw € k

by Prop. 2.1, and also we can write

& = 20§i§fo (ZWGS,-(p) dw[w])'

Hence we have

Gy-E= 2@1 (ZweSg(p) dﬁrhw,p'w[p. w]) = 0.

Since the S/(p)’s are disjoint to each other, we have d,, =0 for w ¢ Sy(p) and hence
£e Sy(p). Thus the assertion ii) holds.

Since G- (Xyesi(p) AW =2 vesi(p) Al p-wlp-w] and the p-w’s are
distinct to each other in S;_,(p), if the right hand side is zero then we have d,,=0
for we S(p). Hence the assertion iii) holds.

Suppose Gj - (X yes,(p) dw[Ww])=0. By (**), the left hand side is equal to

ZWES,’(I]) d»pvi(hw,p-w)pi _1"'(hpi “-w,p“w) [Pl : W] .

Since w, p-w,..., p'-w (we Si(p)) are all contained in #7, and are distinct to each
other, we have d,=0 for we Si(p). Hence the assertion iv) holds. Obviously
[S*(p)]* D= [S*(p)]®D, and [S*(p)]“*V>[S(p)]. Conversely let {e[#5]
be in [S*(p)]¢*Y. When we write

é = zj ZUGSj(p) cgj)[v] ’

we have Git!'-[¥;5;+1]1=0. By iii) and (*x), we have c¢{’=0 for j=i+1.
Then, since the sum Y ;.; in ¢ is in [S*(p)]¥, we have &e[S*(p)]V+[S«(p)].
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The commutativity with the G,-action is obvious. Thus the assertion v) holds.
Q.E.D.

Now we have Th. I in the introduction.

THEOREM 2.3. For positive integers n, d and p (p: prime number with ptd
and d=n+2) given as above, we let p; be the number of all elements in #, of
type i defined in §1. We arrange the p;’s as in Theorem 1 in the introduction.
Then, with respect to the basis:

GY=-[v,] (=0, 1,...,r; N,=f,, f,—1,..., 0;
Vo € Sso(P), 0, €Sy (P)~p/=-17T=- S, _ (p) for az1),
[w] (we So(p)~p'~-Sy,(p)),
HW (X),, at p is of the form:
A(1) )
A(.2) 0
" Apy)
0
0 0 Po—Py,
. .

with A(p)=A;, .y for p, _ <p=ps, =0, 1,...,r, where p, =0, and each
Ag=(Aipizijzg 4ij=1 (j=i+1), A;;=0 (otherwise), for all g.

Proor. If p-ve#%, then G,-[v] is an non-zero constant multiplication of
[p-v] by (¥x). Moreover G, is injective on [S*(p)~So(p)] by Prop. 2.2. The
symbol [ ] is a “one-to-one’’ map from ¥, to [#5].

Now, when we omit constant multiplications and the symbol [ ] in the
above arrangement of vectors, we obtain the following list:

So(p)
= {p/o-v|veS,(P)} U (Uigigrsr 107 0IvES, (p)~pli-"T0.8,_(P)}),

where f,, , =0,

Sfm—um(P)
= {pfo_fm+am.vlvesfo(p)} U (Ulgigm{Pfi_f'"+am'U!

veS; (p)~pli-17i.S;_(p)})
(am=0’ l"'-’fm—fm+1_1; m=1, 2,--" r),
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Sfo—do(p)
= {p“ﬂ-vlveSfo(p)} (d0=0, 1’~-~’f0—f1—1)'

We note that
(fot+Dpys, + 21 (pri—ps )it D) + (po—py,)
= 22 pefi—fiv)) + pp S + Po = > i20 p. = #S*(p).

Through this list, we get the above basis of [S*(p)]. It is easily seen that, with
respect to these basis, the normal form of HW (X),;,, is as above. Q.E.D.

ExaMPLE 2.4 (n=1 or 2; d=13). Let p=41=2 (mod 13), and hence f=12.
In the following lists, ““..”" denotes other permutations of the first one.

i) (n=1case): $#,= Z;}>=66.

#o = S*(p)
=So(p) U Si(p) U Sy(p) U Si(p) U Sip) U Ss(p)
4,4,5.. 2,2,9.. (1, 1,1D).. (2,4,7.. (1,2,10).. (1,5,7)..
G5,53).. 3,3,7).. (1,4,8)..
6,6,1).. (1,3,9)..
2,56).. (2,3,8)..
(3,4,6)...
Hence
6=ps=ps=p3<9=p, <18=p; <21 =py;
fo=S5>fi=2>f,=1 (r=2).

Ss(p) S2(p)~p3-Ss(p) S1(p)~p-S2(p) So(p)~p-S:(p)
v:(1,57..@1,1,11).. (3,3,7).. w: (5,5, 3)..
(1,3,9)...

Hence HW (X)=HW (X),;,, and it has the normal form:

AgyooyAdgy Az, Az; Asy,.,4,; 0,...,0

ps=6  py—ps=3  pi—p=9 po—p;=3.

i) (n=2 case): §#%,= (d‘ 1>=2zo.
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Wo=S*p)=So(p) U Sip) U Sip)
4,4,4,1)..(2,2,2,7..(1, 1,1, 10)..
(3,3,3,4)..(1,1,2,9..(1,1,4,7)..
(2,2,4,5)..(1,1,3,8)..
(3,3,6,1)..(2,2,8,1)..
2,2,6,3)..(1,2,3,7)..
(5,5,2,1)..
4,4,3,2)..

(1,1,5,6)..
(3,3,2,5..
(2, 4,6, 1)..
(1,3, 4,5)...

Hence 16=p, <64=p; <140=p,; fo=2>f,=1 (r=1).

Sa(p) S1(p)~p-S2(p) So(p)~p-S:(p)
v:(1,1,1,10).. (1,1,2,9).. w:(3,3,3,4)..
1,1,4,7).. (1,1,3,8).. (3,3,6,1)..
1,2,3,7).. (5,52, 1)..

(1,1,5,6)..

(3,3,2,5)..
1, 3,4,5)...

Hence HW (X)=HW (X),,,, and the normal form is as follows:
A, A3 Ay, Ay 0,...,0

— N N

p2=16 p1—p2=48 po—p,=T76.

3. Nullity conditions for HW (X) in case of n=1 and 2

We start with the following lemma:

LemMA 3.1. Let X be the Fermat variety of dimension n defined by
xg+x¢+-4+x3,,=0 (d=n+2),

and let p be a prime number not dividing d. Then we have the following:
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i) Ifd—n<{p};<d—1, then HW (X) at p is zero.

i) Assume d is even. Ifd[2—(n—1—[n/2])<{p},=d/2—1, then HW (X)
at p is zero.

iii) Assume d is odd. If

d=D)2 = (n—1-[(n+1)/2]) = {p}a = (d—1)/2,

then HW (X) at p is zero.
Here, as usual, [r] is the largest integer <r.

ProOF. i) Let w=(wg,..., w,11)€#,. Thenfor 1<j<n, {ply=d—j:
(=)-w={=iwolar--os {=jWns1}a) -
Let o;, 0<i<n+1, be the positive integer such that
oud > jw; > (a;— 1)d.
Then we have
(=) w = (0gd —jWos...; Oy s 1 d =Wy 1)

and Y1l (yd—jw)=(n+2)d—j Y 12 w;=d(n+2—j)=2d. This means that
none of (—j)-w, 1<j<n, is contained in #7.

ii) Letw=(wg,..., w,41)€#,. Thenfor1<k=<n—1-[n/2],{p}s=d/2—k:
dr2—k)-w={(d]2—=kwo}g--., {(d[2— k)W, 1 1}s)- We may assume that

Wose.os Woy_y areodd (24—1=Zn+1,ie., £—1=Z[n/2]),
Wogseees Wy are even.
It follows that
d)2—kw; =d[2 — kw; (modd) (0=i<2¢-1),
d2—kw; = — kw; (modd) (24=j=n+1).
Let «;, a; be non-negative integers such that
d>ad+d2—kw;>0 (02ig2¢-1),
d>(aj+1)d —kw; >0 (245jSn+1).
Then we have
dr2=k)y-w= (.., (;+1/2)d—kw,,..., (a;+ 1)d —kwj,...)

and
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SHTN (o +1/2)d — kXS Wi+ X0, (o + Dd — kX, w;
= ((1/2246+n+1-244+1—k)d = (n+2—(k+¢£))d = 2d.

Thus we see that (d/2—k)-w is not in #7,.
iii) The similar proof to ii) works. So we omit it. Q.E.D.

THEOREM 3.2 (n=1 case). Let X be the Fermat curve defined by x§+x¢+
x4=0 (d=3), and pkd (p: prime number). Then we see that HW (X) at p is
the zero matrix if and only if p= —1 (mod d).

Proor. We shall prove the “only if”’ part, because the “if”’ part is already
proved.

Let j be the smallest positive integer satisfying j=p (modd). Assume
1<j<d/2. Since (d—2)j= —2j=d—-2j (modd), both w=(1,1,d—-2) and
j-w=(j,j, {(d=2)j})=(j, j, d—2j) are contained in #,,. Assumed/2<j<d—1.
Since d/2>[d/(d—j)], we get d—2[d/(d—j)]>0; hence

w = ([d/(d-))], [d/(d—j)], d—=2[d[(d—j)])eH#.
We shall show that
J-w={jld/(d=j)1}s {ild/(d =)} {i(d—2[d[(d—))]D})

is contained in #7. Since j[d/(d—j)]=d—(d—j)[d/(d—j)] (mod d) and d>d—
(d—j)[d/(d—j)]>0, we have

{ild/(d—j)T}a = d — (d—)) [d[(d—))].

Moreover we get

[d/(d—p] > d[(d—j) — 1 > d[2(d—j), 2d>2d—j)[d(d—)]>d
and

jd=2[d|(d=))]) = — 2j[d/(d—j)] = 2Ad—j)[d/(d—))] (modd).
Thus we have

{i(d=2[d/(d—=)D}a = Ad—j) [d/(d—))] — d;

hence we see j-we #,. Q.E.D.

THEOREM 3.3 (n=2 case). Let X be the Fermat surface defined by x§+
x¢+x4+x4=0(d=4), ptd (p: prime number). Then we see that HW (X) at p
is the zero matrix if and only if p=—1 or —2 or (d—1)/2 (mod d).

PrOOF. By the same reason as in the proof of Th. 3.2, we shall only prove
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the “only if*” part. It is sufficient to show that there exists w € #” such that both
of wand p-w are contained in #7,. As before, let j={p},.

The proof will be divided into 4 cases plus an exceptional case (5):

(1) 1£j<d/3. Letw=(1,1,1,d-3); then w and j-w=(}, j, j, d—3j) are
contained in %7,

() dj3<j<(d—1)2. Since j<(d—1)2—1=(d—3)2 and d—2j=3, we
get

Jjl(d—2j) = (d—3)[2(d—2j) = (d—-3)/6.

If d—2j divides j, we have j=(d—1)/2 by an easy calculation which contradicts
the condition on j; hence we get

Lil(d—2j)] < (d—3)/6.

Therefore we see that
w = (2[j/(d—-2)1+1, 2[j/(d—-2))]1+1, 2[j/(d—2))]+1, d—6[j/(d—2j)]-3)
is contained in #5,. Now we shall show j-we #,,. Since 2j>(2/3)d, i.e., d/3>
d—2j, we have
Jid=2j) — (j—d/3))/d—2j) = d/(3(d-2))) > 1;

hence
J—=@d3) < Lild=2)1d=2)).
If we put A=j(2[j/(d—2))1+1)—[j/(d—2j)]d, then we have
A = jQ[j[(d—2j)]+1) (modd) and 0< A <d/3.

Since j-w=(4, A4, 4, {j(d—6[j/(d—2j)]—3)},) and 3A<d, we see j-we #,.

(3) d/2<j<(2/3)d. In this case we assume d>6. The cases d<6 are
proved trivially. Put w=(2, 2, 2, d—6). Then we see j-we #,. For we have
d<2j<(4/3)d; hence

2j=2j —d(modd) and d>2j—d>0.

Since —3d> —6j> —4d, we get d> —6j+4d>0 and (d—6)j= —6j+4d (mod d).
4) (2/3)d<j<d—2 (assume d>6). Since d=(3d)/(d—j)>3[d/(d—}j)],
we have w=([d/(d—j)], [d/(d—j)], [d/(d—j)], d—3[d]/(d—j)]) is contained in
#,. Moreover we get
jldjd—-p]1 = d — (d—j)[d/(d—j)] (mod d),
d>d—(d—j)[d/(d—j)] >0 and
j(d=3[d[(d—))]) = 3(d—j)[d/(d—j)] — 2d (mod d).



108 Keisuke Tokr

Since 3(d—j)[d/(d—j)]>3(d—j)(d/(d—j)—1)=3d—3(d—j)=3j>2d, it follows
that j- w is contained in #7,.

(5) d:even,and j=(d/2)—1. In this case, put w=(1, 1, (d/2)—1, (d[2)—1).
Then we have j-w=((d[2)—1,(d/2)—1,1,1). Hence both w and j-w are
contained in #7,. Q.E.D.

4. Relations with Newton-polygons Nwt (X)

Let n, d, p, f, X be as previous. We put g=p/. In the rational expression
P(T)D" (1=T)---(1—q"T)
of the zeta-function Z(T; X/F,), we know that
T) =T11,(1-8,T),

where w runs over #7, and f,,€ Q({) ({=exp (2rn(—1)"/?/d)) and that the P-adic
value vy(B,,) of B, is given by the so-called Stickelberger’s formula

ve(By) = (1/d) I Ipi-wh) — f
for B, (cf. Shioda-Katsura [3]).

We now consider the “Newton-polygon’ Nwt(X) at p of X, namely, the
monotonously increasing sequence of non-negative rational numbers A(w)=(1/f)-
vg(B,). Let L(A) be the number of times for which the slope A occurs in this
sequence. Then Nwt (X) at p: A, <4;<4,<---, where each 1 has the multiplicity
L(%). Since |p-w|=(e(p’-w)+ 1)d, we obviously obtain a formula

Aw) =) Xt e(pi-w) for wew,

where g(v)=a if ve ¥,
Now we are concerned with the case of n=2.

PROPOSITION 4.1 (n=2 case: p¥d, d=4). As for slopes of Nwt (X) at p, we
have the following:

i) Mpi-w)y=AUw)for0=ZiZf— 1, for every we# .

ii) Aw) + AM(d—1)-w) = 2 for every we #5,.

iii) Assume that there exist distinct slopes in Nwt(X). Then there
exist wo€ Wy, wy €Wy and w, € W, such that A(wy) <1, Aw;)=1 and A(w,)>1
respectively.

iv) Min {(w)|we# } = Min {A(w)|we #,}.

v) If HW (X) is the zero matrix, then the first slope 1, of Nwt(X) is not
less than 1/2.

PROOF. Put v=p'.w for a fixed i, with 0<i,<f—1. Then
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S ptol = T pito-wl
= XI5 ptwl + Zidjemt pewl
= X128 1pi-wl.
Hence we have i). Next put w'=(d—1)-w. Then
w = (d—wg, d—w,, d—w,, d—wj3).
We can write
pd—w) = (p'—A;—1)d + (d—{p'w,}a),
where piw,=A,d+{p'w,}, (0<4;<p’)in Z,. Hence
{p'd-w)la=d - {p'w,}s (v=0,1,2,3).
Therefore
|p*-w'| = 4d — |p*-wl,
and hence

va(By) = ((1/d) TI= (4d—|pt-wl)) — f = 2f — vg(B.,).

So we have ii).
We now proceed to iii). Under our assumption, suppose A(w)=1 for all
we #,. When, by virtue of the above formula for A(w), we write

Aw) = /)04 (a+o'+o"+--+)) with a, o', a",...€{0, 1, 2},

we have some a=2. On the other hand, under our assumption, there exists w’' e
#, such that A(w')>1. In fact, suppose A(w)=1 for all we #5,. By the iso-
morphism (d—1): #,3#",, we obtain A(w)=1 for all we #7, by ii). Moreover,
as for we w7, if pi-we %7 for all i then Aw)=1; if pic.we #, or € #7, for
some i, then A(w)=1 by i). Thus A(w)=1 for all we#". This is contrary to
our .assumption. For w’, let w” be an element of #7, corresponding to a=2.
Then A(w")=A(w')>1. According to ii), Aw)<1 for all we#7,. This is a
contradiction. Therefore there exists we #,, such that A(w)<1 under our
assumption. Put w=(4, A, d— A, d—A) with 0<A<d. Obviously we #7.
Put j={p};. Then 1<j<d—1 and (j, d)=1. We have

p-w = ({jd}s {jA}s {J(d—AD}s {J(d—A)}a).

Since

j(d—A4) = (j—B—1)d + (d—{jA}),
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where jA=Bd+{jA}; (0=B<j)in Z,, we have {j(d— A)},=d—{jA}, and hence
p-we#,. Then we have successively p'-we #7 for 2<i< f—1, and moreover
Aw)y=(1/f)A+1+4+---+1)=1. We can take we #,, such that A(d—1)-w)>1
by virtue of ii). Thus the assertion iii) holds.

In the case of all slopes being equal, the assertion iv) trivially holds. In

the other case, we put

Ao = Min {A(w)|we#} and p, = Min {I(w)|we #,}.
Then we have uo <1 byiii). Letwe #7,. Ifan element of #7, occuresin {p-w,...,
p/~l.w}, then A(w)=p,. If it is not so, then A(w)=(1/)(1+(a+a +a"+:--))
(a, o', &”,...2 1) and hence A(w)=1>pu,. Letwe #,,. Similarly we see A(w)= uo-
Thus we have A,=p,. On the other hand, from their definitions, we have 4, < y,.

Thus 4o = u,.
Finally we prove v). Using iv), we can easily verify the equivalence of

do=1/2 and i |pi-wl = (3fd)2  forall weW,.

When we# is in #7,, we say that w has of index a. Assume that HW (X)=0.
Then p-w¢ #, for all we #7,, and hence w, p-w, p?-w,..., p/~1-w has the
sequence of indices

{0, exlsn', 0., (all 21); 0, &'215,...5 0, 0%,..., (all 21)}
or

{0,e=1;...;0,&'21;...;0,e"=1}.

When f is even, we have 1=<#{all (0, &)} <f/2. When f is odd, we have 1=
#{all (0, &)} =(f—1)/2. Therefore, if fis even then

SIS Pt wl 2 (d+2d)(f]2) = (3fd))2,
and if fis odd then

I ptwl 2 (d+2d)(f-1)/2 + 2d
= (3f+1)d[2 > (3fd)/2.

Thus we have A, =1/2. Therefore the assertion v) holds. Q.E.D.

When we consider the inverse of v) in the above proposition, it does not
hold in case of n=2. We have examples as follows.

EXAMPLE 4.2 (d=9 case). At p=2(mod?9), we have f=6, p//2=—1 (mod d)
and HW (X)=HW (X),;;,. Moreover,
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the indices: 0 0 1
(1,1,1,6)25(2,2,2,3)2,(4,4,4,6)
1,1,2,5)2(2,2,4,1) -2, (4,4,8,2).

So, rank HW (X)=16 and Nwt (X): ;=1 with L(4,)=457.

EXAMPLE 4.3 (d=11 case). At p=3 (mod 11), we have f=5 and HW (X)=
HW (X),;,. Moreover,

the indices: 0 0 1 2
1,1,1,8)25(3,3,3,2) -£,0,9,9,6)
4,4,1,2)2,(1,1,3,6)2,(3,3,9,7)
(1,1,4,52,3,3,1,49)-2509,9,3, 1).

So, rank HW (X)=28 and

Nwt(X): Ao =3/5<4/5<1<6/5<715
L(A): 60 200 391200 60.

EXAMPLE 4.4 (d=39 case). At p=34 (mod d), we have f=4, p//2% —1 (mod
d) and HW (X)=HW (X),;,. Moreover

#{WEW0|pi‘WEWO(i=O, ]a 2), ps'WGWZ} = 127
#{we W, | pi-we#, (i=0,1), p2-w¢ #,} = 572; rank HW (X) = 584
and

Nwt(X): Ao =1/2<3/4<1<5/4<3)2
L(A): 1,264 12,416 26,107 12,416 1,264.
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