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§ 1. Introduction

Let G be a connected Lie group, σ an involution of G and H an open sub-

group of Gσ = {xeG\σx = x}. Then the G-homogeneous manifold H\G is

called an affine symmetric space. Suppose that G is a real semisimple Lie group.

Let P be a minimal parabolic subgroup of G and P' a parabolic subgroup of G

containing P. Then the double coset decomposition H\GjP is studied in [2],

and [5], the relation between H\GIP' and H\G/P is studied in [3], and the

closure relation for H\G/P is studied in [4].

Let θ be a Cartan involution of G such that σθ = θσ. Put K = GΘ and let

Ha be the open subgroup of Gσθ such that K(]H = Kf]Ha. Then Ha\G is

called the affine symmetric space associated to H\G. Let A be a 0-stable split

component of P and put U = {xeK\ xAx~ι is σ-stable}.

There exists a natural one-to-one correspondence between the double coset

decompositions H\G/Pf and Ha\G/P' given by D^Da = Ha(Dn U)P' for H-Pr

double cosets D in G ([2], [3]). Moreover it follows easily from Corollary of

Theorem in [4] that this correspondence reverses the closure relations for the

double coset decompositions. In this paper we prove the following theorem.

THEOREM. Let D± and D2 be arbitrary H — Pr double cosets in G. Then

we have the following.

( i ) DγnD2oDί ΠDa

2Φ0.

(ii) Let I(DU D2) be the set of all the H-P' double cosets D in G such

that D\ι^Dcl^D2. Then

(Dί Π D | ) c l n D\ = \JDeI(DuD2)D Π D\.

(iii) Let x be an element of U. Then HxP' Π HaxP' = (K n H)xPf.

(iv) Dx Π D\ is nonempty and closed in G oDγ =D2.

Example. Let G1 be a connected semisimple Lie group, θt a Cartan invo-

lution of G1 ? K± — {x e Gt I θίx = x}, and P x a minimal parabolic subgroup of Gx

with a θi-stable split component At. Let Pi and P'[ be parabolic subgroups of
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G1 containing Pv Put G = G1 x Gl9 H = {(x, x)eG\xeGί}, Ha = {(0xx, x)e G \ x e

Gx} and P' = P[ x Pf[. Then we have natural bijections

and

H*\G/P' ^θ^P'^GJP'ί

by the maps (x, y)^>x~1y and (x, JO-^IC*"" 1 )} '* respectively. Hence by the

Bruhat decomposition of Gί9 every H — P' double coset and Ha — Pf double

coset have representatives in W{AX) x 1.

Consider the intersection I = H(w, 1)P' Π Ha(w', 1)P' for w, w' eW{Ax).

Since H n Ha = {(x, x)\xeKί} and since G1=K1Pί by the Iwasawa decom-

position of Gί91 contains elements of the form (x, 1) with xeGί if / is nonempty.

We have easily

(x, l ) e / < = > x e P ; w P ΐ Π θ^P'^WP'[.

Thus we have as a corollary of Theorem (i),

(1.1) (P[wP'0cl =3 P ; W ' P Ϊ < ^ = Φ P ; > V P Ϊ n Θ^POW'PI Φ 0.

Especially we have

(1.2) (PiwPi) c l 3 P1w'Pί^>P1wP1 ΓΊ θί(P1)w'Pί Φ 0.

Remark. In [1], V. V. Deodhar studied explicitly the above type of

intesection P ^ P i Π P ^ T ! when G t is a semisimple algebraic group over an

algebraically closed field. Here P1 = W0P1WQ1 with the longest element w0 of the

Weyl group. He gave (1.2) as a corollary of his results in this case (replace

#i(Λ) by P x )

The author is grateful to J. A. Wolf who suggested him the importance of

the intersections of iί-orbits and i/a-orbits on G/P. In fact, Theorem (iv) was

conjectured by him.

§ 2. Notations and elementary lemmas

Let g be the Lie algebra of G. Let σ and θ be the involutions of g induced

from the involutions σ and θ of G, respectively. Let g = ϊ + p, g = f) + q and

g = ί)a + qa be the decompositions of g into the + 1 and —1 eigenspaces for σ, θ

and σθ, respectively.

Let α be the Lie algebra of A. Then α is a maximal abelian subspace of p.

Let Σ denote the root system of the pair (g, α). Then P can be written as
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P = P(α,Σ + ) = ZG(α) expn

with a positive system Σ+ of I . Here ZG(α) is the centralizer of α in G and n =

Σ« ei+ 9(α; α) (g(α; α) = { X e g | [7, * ] = α(7)X for all Yea}).

LEMMA 1. Lei ψ be a parabolic subalgebra o/g. Then

PROOF. Let X be an element of ψ. Then

0X = X - (X + σX) + (σX + 0 X ) e φ ' + f) + ί)a.

Hence θ φ ' cz ί) + ί)a + ψ. Since φ ' + 0φ' = g, we have ί) + ψ + ^ ' 3 g. Q. E. D.

LEMMA 2. Let Dγ and D2 be arbitrary H-P' double cosets in G. Then

we have the following.

(i) ( D 1 n D i ) c l n / > 5 = / ) c

1

I n D j .

(ii) Dγ=>D2=>Dί Π/>|#0.

PROOF, (i) It is clear that (Dί n D%)cX n D2czDγ n D| . Let x be an ele-

ment of Dj1 Π Ό\. Then we have only to show that x e ^ ί l Da

2)
cl. For any

neighborhood V of the identity in f/a, the set HVxP' contains a neighborhood

of x in G by Lemma 1. Hence Dγ n HVxPrΦ0. Since HD1P' = D1, we have

Dj n Fx # 0.

On the other hand, VχczD\. Hence (Dt f] Da

2) ΓiVxΦ0 and we have proved

that xe(Dί nD a

2 ) c l .

(ii) is clear from (i) since D2 nD2Φ0. Q.E. D.

§ 3. Proof of Theorem (i) and (ii)

By Lemma 2 (i), Theorem (ii) follows from Theorem (i).

PROOF OF THEOREM (i). By Theorem 1 in [2], we can write Dγ=HxP''ZD

HxP with xeU. Considering xPx" 1 and xP'x~ι as P and P', respectively, we

may assume that Dί=HP' and that α is σ-stable. By Lemma 2 (ii), we have

only to prove the following.

£>! n D\ Φ 0 = > D C

1

1 ID D2.

Suppose that Dx{\D\Φ0. Then HP{\D2Φ0 since D\P' = D2. Hence there

exists an element y of D\ Π U = D2 Π U such that HP n HyPaΦ0. On the other

hand, if (HP)cl=>HyP for some j>el>2, then it is clear that D\ι=>D2. Thus we

have only to prove the following.

(3.1) If HP Π HayP Φ 0 for y e U, then (HP)cl 3
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We will prove (3.1) by induction on the real rank of G ( = dimα). Suppose

that αc=q and that Ad(y)act). Then by [2] Proposition 1 and Proposition 2,

HP is open in G and HyP is closed in G. By [4] Proposition, we have always

(HP)cl=>HyP. Hence we may assume that

(3.2) α n ί) Φ {0}

or that

(3.3) Aά(y)a(]qΦ{0}.

We first show that the case (3.3) is reduced to the case (3.2). Assume the

condition (3.3). Then Ad (y)a Π ί)aφ{0} since Ad (y)aczp. Consider Ad(χ)α,

ί)a and yPy~ι as α, f) and P in the case (3.2), respectively. Then we have in

the proof of the case (3.2) that

HayPy~ι Π HPy-1 Φ 0=$(HayPy~1)cl => H*Py~l.

Hence

HP Π HayP Φ 0=Φ(H*yP)cl=> H*P.

On the other hand, we have

(HP)cl => HyP<=ϊ(H*yP)cl ID // a P

for y e (7 by Corollary of [4] Theorem. Thus the case (3.3) is reduced to the

case (3.2) and so we may assume (3.2) in the following.

By [4] Theorem (iv), there exists a sequence α 1 ?..., ccn of simple roots in Σ+

such that

(3.4) (HP)'* = H((L n H)PLytwPLαn Lαι.

Here w = wαi wαn, L is the analytic subgroup of G for I = [3g(α Π ί)), 3g(α Π I))],

P L = L n P ( = LΠwPw- 1 )and Lα = ZG(α*), αα = {7eα|α(Y) = 0} for α e l .

LEMMA 3. HwP = (Kn H)(L(] H)owP. ((Lf]H)0 is the connected com-

ponent ofLnH containing the identity.)

PROOF. Put Lx =ZG(a n ί)) and define a parabolic subgroup Pt of Gby Px —

L^Pw'1 as in [4] §1. Then P x Π H0 is a parabolic subgroup of Ho and we

have H0 = (K n H)0(Pί Π //) 0 by the Iwasawa decomposition of //0. On the other

hand, K Γ\ H intersects with every connected component of H since H = (KC\ H)-

exp (p Π ί)). Hence

(3.5) H = (Kf)H)(P1nH)0.
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Let n t be the nilpotent radical of the Lie algebra of Pv Then Pί=L1 exp nί

is a Langlands decomposition of Pί. Since Lx and n^ are σ-stable, we have

(3.6) (Pi Π fl)o = (Lx n H) o exp (r^ n ί)).

Let 3 be the center of the Lie algebra Ix of L1# Then I 1 = 3 + I. Since 3

and I are σ-stable, we have ϊ 1 n ί ) = 3Πί) + Inί) and therefore

(3.7) ( L 1 n i f ) o = (LnH) o exp(3Πί)) .

We get the desired formula from (3.5), (3.6) and (3.7) since expn ίa\vPw~1

and exp 3 c wPw"1. Q.E. D.

Now we will continue the proof of Theorem (i). Suppose that HP Π HayPΦ

0. Since HPcHwPLan—LΛί, we have

HwP IΊ HayPLaι Lan φ 0.

By Lemma 3, we have

(3.8) (L n H)o Π H^yPL^L.w-1 Φ 0.

Let y' be an element of the left hand side of (3.8) and y" an element of

(L0H%y'PLnU. Then

(3.9) H*y"wP c H*yPLaι-LΛn

and

(3.10) (L n H)OPL n (L n H%y-pL Φ 0.

Since σL = ΘL = L and dim (I n α)<dimα, we have

((L n H)opLy* ID (L n H ) 0 / T L

by the assumption of induction. By (3.4), we have

(3.11) (HP)** ID H(L fl H)oy"PLwPLan.Lai

Now consider the formula (3.9) which can be rewritten as

yeH*y"wPLan Lai.

As in the proof of [4] Theorem (vi), we can choose a yt e y"wPLan-'Lai Π U so

that y e H*yγP. Since y e (7, it follows from [2] Theorem 1 that ye(Kϊ) H)ytP.

Hence
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(3.12) ye(K

From (3.11) and (3.12), we have (HP)cl=>HyP as desired. Q. E. D.

§ 4 Proof of Theorem (iii) and (iv)

Theorem (iv) follows from (ii) and (iii). So we have only to prove (iii) in this

section. Recall the definition of P = P(a, Σ+) in §2 and let Ψ denote the set of

all the simple roots in Σ+.

LEMMA 4. Suppose that HaP is not open in G. Then there exists an αeΨ

such that dim / / a P α > d i m HaP (here P α is the parabolic subgroup of G defined

byPa = PLa).

PROOF.. By [2] Theorem 1, we may assume that σa = a. By [2] Proposition

1, Σ+ is not σ-compatible or α Π ί) is not maximal abelian in p n ϊ). First suppose

that Σ+ is not σ-compatible. Then by [4] Lemma 4 and Lemma 5, there exists

an α e f such that HaPa = HaP u HawαP and that dim HawαP>dim HaP. Hence

we may assume that Σ+ is σ-compatible and that α Π I) is not maximal abelian

in p Π ί).

Put Ii=3 g (α Π ϊ)). Suppose that there exists an α e Ψ Π Σ(Iχ; α) such that

g(α; α) Π q a #{0}. Here Σ(\ί; α) is the root system of the pair (I l 5 o), and it is

clear that α e l Ό j ; α) if and only if α e Γ , σα= — α. Then by [4] Lemma 3 (F),

dim HaPα > dim H a P. Hence we may assume that

(4.1) g(α; α) n qa = {0} for all oteΨ f) Σ^; α).

Let β be a root in Σ(lt α) Π Σ+ and write β = Σ<xeψ rtαα Choose an element

F e α n ί ) such that α(7)>0 for all oceΣ+-Σ(l1; α) by [4] Lemma 4. If nα>0

for some α e Ψ — Σ(\1; α), then /?(y)>0. But since β(Y) = 0, we have proved

that β is written as a linear combination of roots in Ψ Π £(Iχ; a). By (4.1) and

Lemma 6 in §5, we have g(α; β)c:ϊ)a. Hence

α Π q 4- Σ^eiαi α) 9( α ; β) ^Ψ -

Since 3g(αnί)) = I1=3 ((α) + Q + Σ / j 6 l ( ( i ; α ) g ( α ; J?), α n I) is a maximal abelian

subspace of pΠί) = pΠq a . But this is a contradiction to the assumption on

αnί). Q.E.D.

LEMMA 5. / / # P is closed in G, ί/ien HP = (K D //)P.

PROOF. If HP = (KnH)xP for some x e # P , then HP = (K(]H)P. So

taking a conjugate of P, we may assume that σα = α. Since Γ + is σ-compatible,

we can apply Lemma 3 for w = 1 to get
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HP = (Kf]H)(L[)H)0P.

Since α Γ) ϊ) is maximal abelian in p Π ί), we have Lcz//a by [4] Lemma 6 (i). Since

H Π H a = K n H, we have HP = (Kΐ) H){L n # a Π H)0P = (K n H)P as desired.

Q.E.D.

PROOF OF THEOREM (iii). Choose x' G XP' Π 1/ SO that Hx'P has the minimum

dimension among the H — P double cosets contained in HxP'. Clearly HxPr Π

HaxP' = (Hx'PnHaxP')P'. Since (Hx'P)cl n HxP' = Hx'P, it follows from

Theorem (i) that Hx'P n H*xP' = Hx'P n # a x ' P . So we have only to prove that

(4.2) tfx'P Π # a x ' P = (Kn H)x'P for x' e U.

We will prove (4.2) by induction on the codimension of Hax'P. Rewriting x'Px'~1

by P, we may assume that x' = l and that σα = α.

Suppose that // aP is open in G. Then HP is closed in G by [2] §3 Corollary

and HP = (KnH)PczHaP by Lemma 5. Hence we may assume that HaP is

not open in G.

By Lemma 4, there exists an cceΨ such that dim// aPα>dim HaP. Then

by [4] Lemma 3, there are two cases (Ba): σθoiΦ ±α, σ0αeΣ + and (D a): σ0α = α,

g(α; a)nq a ^{0}. Put z = wOi in the case (Ba) and put z = cα in the case (Da).

Then we have (HzP)cl n HPα = HzP by [4] Lemma 3 (A) and (F) (since θ | β = - 1 ,

we have (Ba) = (A): σ α # ± α , σ α ^ i ; + and (Da) = (F): σ α = - α , g(α; α)nq a^{0}).

Applying Theorem (i), we have

(4.3) HzP Π H*Pa = HzP Π H azP.

Let y be an element of HP Π H a P. Then we have only to show that y e

(K Π H)P since it is clear that (K Π H)PαHP n # a P . Let y' be an element of

HzP n )>Pα. Then by (4.3) and the assumption of induction, we have

y' e HzP n H*Pα n yPα = HzP n H*zP n ^P α = (Xn H)zP n ^Pα

and therefore

Since y e HaP, we have

y e (K n //)Pα n // a P = (KπH) (pβ n //a)P = (/c n

Here J is the image of Pα n //a under the projection Pα-+Lα with respect to the

Langlands decomposition Pα = Lαexpnα. We consider the two cases (Ba) and

(Da) separately.

First consider the case (Ba). We have only to show that Jc:L α Π P. Let L%

denote the analytic subgroup of G for the Lie subalgebra of g generated by g(α α) +

g(α; - α ) as in [4] §3. Since L% n J=>exp (g(α; α) + g(α; 2α)), we have Ls

α-
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(L* Π c/)wα(L
s

α Π P)c=L| Π P by the Bruhat decomposition of L%. Since LJLa n

P^LsJLs

a Π P, we have LΛ-Jwa(La Π P)c:Lα Π P. On the other hand, we have

/(Lα n P) Π Jwα(Lα Π P) = 0 since H a P n # a w α P ^ 0. Hence J c Lα n P.

Next consider the case (Da). We have only to show that Ja(K n #)(L« Π P).

In this case, «/=> L* Π Ha and it follows easily from the proof of [4] Lemma 3 (D)

that

U D(wα) U D(cα) U D(c^).

Here D(x) = (LJ Π H*)x(Lα Π P) for x e Lα. We also have

if wα ί NκnH(α)Zκ(α)
(4.4) J ( L α n P ) = ,

( ) U D(wα) if wαeNκnH(α)Zκ(α)

since (H a P U HawαP) Π (H acαP U // ac" 1P) = 0. Since D(l) and D(wα) are closed

in Lα, we have

(4.5) D(x) = (LI n K n #)x(Lα n P) for x = 1 and wα

by Lemma 5 (Note that LJLα n P^LsJLs

α n P). From (4.4) and (4.5), we get

as desired. Q. E. D.

§ 5. Appendix

Let g be a semisimple Lie algebra with a Cartan involution θ and the corre-

sponding Car tan decomposition g = ϊ + p. Let o be a maximal abelian subspace

of p and Σ the root system of the pair (g, o). Let Ψ be a fundemental system

(the set of simple roots in a positive system of Σ) of Σ.

LEMMA 6. Let 5 be α θ-stαble subαlgebrα of Q such that g(α; β)<^s for all

βeΨ. Then g(α; β)azfor all βeΣ.

PROOF. Since g(α; 2/0 = [g(α; β), g(α; /?)], we have only to prove g(α; β ) c s

for all β e Σo = {β e Σ11/2 β £ Σ} (the set of reduced roots in Σ). Let γ be a root

in Ψ and X a nonzero element of g(α; y). Then wy = exp c(X + ΘX) e exp s

represents the reflection in α with respect to γ for some ce R. Since g(α; wγβ) =

Ad (wy)g(α jS) for β e Σ, we have

(5.1) g(α; vvŷ ) cz $ if and only if g(α; j5) cz s.

Since the Weyl group Wof Σ is generated by {w^Z^α) | β e Ψ} and since Σ0 = WΨ,

we get the desired assertion from (5.1). Q. E. D.
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