Closure relations for orbits on affine symmetric spaces under the action of parabolic subgroups. Intersections of associated orbits

Toshihiko MATSUKI (Received May, 7, 1987)

§ 1. Introduction

Let G be a connected Lie group, σ an involution of G and H an open subgroup of $G^{\sigma} = \{x \in G \mid \sigma x = x\}$. Then the G-homogeneous manifold $H \setminus G$ is called an affine symmetric space. Suppose that G is a real semisimple Lie group. Let P be a minimal parabolic subgroup of G and P' a parabolic subgroup of G containing P. Then the double coset decomposition $H \setminus G/P$ is studied in [2], and [5], the relation between $H \setminus G/P'$ and $H \setminus G/P$ is studied in [3], and the closure relation for $H \setminus G/P$ is studied in [4].

Let θ be a Cartan involution of G such that $\sigma\theta = \theta\sigma$. Put $K = G^{\theta}$ and let H^a be the open subgroup of $G^{\sigma\theta}$ such that $K \cap H = K \cap H^a$. Then $H^a \setminus G$ is called the affine symmetric space associated to $H \setminus G$. Let A be a θ -stable split component of P and put $U = \{x \in K \mid xAx^{-1} \text{ is } \sigma\text{-stable}\}$.

There exists a natural one-to-one correspondence between the double coset decompositions $H\backslash G/P'$ and $H^a\backslash G/P'$ given by $D\to D^a=H^a(D\cap U)P'$ for H-P' double cosets D in G ([2], [3]). Moreover it follows easily from Corollary of Theorem in [4] that this correspondence reverses the closure relations for the double coset decompositions. In this paper we prove the following theorem.

THEOREM. Let D_1 and D_2 be arbitrary H-P' double cosets in G. Then we have the following.

- (i) $D_1^{c1} \supset D_2 \Leftrightarrow D_1 \cap D_2^a \neq \emptyset$.
- (ii) Let $I(D_1, D_2)$ be the set of all the H-P' double cosets D in G such that $D_1^{c1} \supset D^{c1} \supset D_2$. Then

$$(D_1 \cap D_2^a)^{c1} \cap D_2^a = \bigcup_{D \in I(D_1,D_2)} D \cap D_2^a$$

- (iii) Let x be an element of U. Then $HxP' \cap H^axP' = (K \cap H)xP'$.
- (iv) $D_1 \cap D_2^a$ is nonempty and closed in $G \Leftrightarrow D_1 = D_2$.

Example. Let G_1 be a connected semisimple Lie group, θ_1 a Cartan involution of G_1 , $K_1 = \{x \in G_1 \mid \theta_1 x = x\}$, and P_1 a minimal parabolic subgroup of G_1 with a θ_1 -stable split component A_1 . Let P'_1 and P''_1 be parabolic subgroups of

 G_1 containing P_1 . Put $G = G_1 \times G_1$, $H = \{(x, x) \in G \mid x \in G_1\}$, $H^a = \{(\theta_1 x, x) \in G \mid x \in G_1\}$ and $P' = P'_1 \times P''_1$. Then we have natural bijections

$$H\backslash G/P' \longrightarrow P'_1\backslash G_1/P''_1$$

and

$$H^{a}\backslash G/P' \longrightarrow \theta_{1}(P'_{1})\backslash G_{1}/P''_{1}$$

by the maps $(x, y) \rightarrow x^{-1}y$ and $(x, y) \rightarrow \theta_1(x^{-1})y$, respectively. Hence by the Bruhat decomposition of G_1 , every H - P' double coset and $H^a - P'$ double coset have representatives in $W(A_1) \times 1$.

Consider the intersection $I = H(w, 1)P' \cap H^a(w', 1)P'$ for $w, w' \in W(A_1)$. Since $H \cap H^a = \{(x, x) \mid x \in K_1\}$ and since $G_1 = K_1P_1$ by the Iwasawa decomposition of G_1 , I contains elements of the form (x, 1) with $x \in G_1$ if I is nonempty. We have easily

$$(x, 1) \in I \iff x \in P'_1 w P''_1 \cap \theta_1(P'_1) w' P''_1$$
.

Thus we have as a corollary of Theorem (i),

$$(1.1) (P_1'wP_1'')^{c1} \supset P_1'w'P_1'' \iff P_1'wP_1'' \cap \theta_1(P_1')w'P_1'' \neq \emptyset.$$

Especially we have

$$(1.2) (P_1 w P_1)^{c1} \supset P_1 w' P_1 \Longleftrightarrow P_1 w P_1 \cap \theta_1(P_1) w' P_1 \neq \emptyset.$$

Remark. In [1], V. V. Deodhar studied explicitly the above type of intesection $P_1wP_1 \cap \overline{P}_1w'P_1$ when G_1 is a semisimple algebraic group over an algebraically closed field. Here $\overline{P}_1 = w_0P_1w_0^{-1}$ with the longest element w_0 of the Weyl group. He gave (1.2) as a corollary of his results in this case (replace $\theta_1(P_1)$ by \overline{P}_1).

The author is grateful to J. A. Wolf who suggested him the importance of the intersections of H-orbits and H^a-orbits on G/P. In fact, Theorem (iv) was conjectured by him.

§ 2. Notations and elementary lemmas

Let g be the Lie algebra of G. Let σ and θ be the involutions of g induced from the involutions σ and θ of G, respectively. Let g = f + p, g = f + q and $g = f^a + q^a$ be the decompositions of g into the +1 and -1 eigenspaces for σ , θ and $\sigma\theta$, respectively.

Let a be the Lie algebra of A. Then a is a maximal abelian subspace of p. Let Σ denote the root system of the pair (g, a). Then P can be written as

$$P = P(\mathfrak{a}, \Sigma^+) = Z_G(\mathfrak{a}) \exp \mathfrak{n}$$

with a positive system Σ^+ of Σ . Here $Z_G(\mathfrak{a})$ is the centralizer of \mathfrak{a} in G and $\mathfrak{n} = \sum_{\alpha \in \Sigma^+} g(\mathfrak{a}; \alpha) (g(\mathfrak{a}; \alpha) = \{X \in \mathfrak{g} \mid [Y, X] = \alpha(Y)X \text{ for all } Y \in \mathfrak{a}\}).$

LEMMA 1. Let \mathfrak{P}' be a parabolic subalgebra of \mathfrak{g} . Then $\mathfrak{h} + \mathfrak{h}^a + \mathfrak{P}' = \mathfrak{g}$.

PROOF. Let X be an element of \mathfrak{V}' . Then

$$\theta X = X - (X + \sigma X) + (\sigma X + \theta X) \in \mathfrak{P}' + \mathfrak{h} + \mathfrak{h}^{a}.$$

Hence $\theta \mathfrak{P}' \subset \mathfrak{h} + \mathfrak{h}^a + \mathfrak{P}'$. Since $\mathfrak{P}' + \theta \mathfrak{P}' = \mathfrak{g}$, we have $\mathfrak{h} + \mathfrak{h}^a + \mathfrak{P}' \supset \mathfrak{g}$. Q. E. D.

LEMMA 2. Let D_1 and D_2 be arbitrary H-P' double cosets in G. Then we have the following.

- (i) $(D_1 \cap D_2^a)^{c1} \cap D_2^a = D_1^{c1} \cap D_2^a$.
- (ii) $D_1^{c_1} \supset D_2 \Rightarrow D_1 \cap D_2^a \neq \emptyset$.

PROOF. (i) It is clear that $(D_1 \cap D_2^a)^{c_1} \cap D_2^a \subset D_1^{c_1} \cap D_2^a$. Let x be an element of $D_1^{c_1} \cap D_2^a$. Then we have only to show that $x \in (D_1 \cap D_2^a)^{c_1}$. For any neighborhood V of the identity in H^a , the set HVxP' contains a neighborhood of x in G by Lemma 1. Hence $D_1 \cap HVxP' \neq \emptyset$. Since $HD_1P' = D_1$, we have

$$D_1 \cap Vx \neq \emptyset$$
.

On the other hand, $Vx \subset D_2^a$. Hence $(D_1 \cap D_2^a) \cap Vx \neq \emptyset$ and we have proved that $x \in (D_1 \cap D_2^a)^{c_1}$.

(ii) is clear from (i) since
$$D_2 \cap D_2^a \neq \emptyset$$
.

Q. E. D.

§ 3. Proof of Theorem (i) and (ii)

By Lemma 2 (i), Theorem (ii) follows from Theorem (i).

PROOF OF THEOREM (i). By Theorem 1 in [2], we can write $D_1 = HxP' \supset HxP$ with $x \in U$. Considering xPx^{-1} and $xP'x^{-1}$ as P and P', respectively, we may assume that $D_1 = HP'$ and that α is σ -stable. By Lemma 2 (ii), we have only to prove the following.

$$D_1 \cap D_2^a \neq \emptyset \Longrightarrow D_1^{cl} \supset D_2$$
.

Suppose that $D_1 \cap D_2^a \neq \emptyset$. Then $HP \cap D_2^a \neq \emptyset$ since $D_2^a P' = D_2^a$. Hence there exists an element y of $D_2^a \cap U = D_2 \cap U$ such that $HP \cap HyP^a \neq \emptyset$. On the other hand, if $(HP)^{c_1} \supset HyP$ for some $y \in D_2$, then it is clear that $D_1^{c_1} \supset D_2$. Thus we have only to prove the following.

(3.1) If
$$HP \cap H^a yP \neq \emptyset$$
 for $y \in U$, then $(HP)^{c1} \supset HyP$.

We will prove (3.1) by induction on the real rank of G (=dim a). Suppose that a = q and that Ad(y)a = h. Then by [2] Proposition 1 and Proposition 2, HP is open in G and HyP is closed in G. By [4] Proposition, we have always $(HP)^{c_1} \supset HyP$. Hence we may assume that

$$\mathfrak{a} \cap \mathfrak{h} \neq \{0\}$$

or that

(3.3)
$$\operatorname{Ad}(y)\mathfrak{a} \cap \mathfrak{q} \neq \{0\}.$$

We first show that the case (3.3) is reduced to the case (3.2). Assume the condition (3.3). Then Ad $(y)a \cap h^a \neq \{0\}$ since Ad $(y)a \subset p$. Consider Ad (y)a, h^a and yPy^{-1} as a, b and b in the case (3.2), respectively. Then we have in the proof of the case (3.2) that

$$H^a y P y^{-1} \cap H P y^{-1} \neq \emptyset \Longrightarrow (H^a y P y^{-1})^{c1} \supset H^a P y^{-1}.$$

Hence

$$HP \cap H^a yP \neq \emptyset \Longrightarrow (H^a yP)^{cl} \supset H^a P.$$

On the other hand, we have

$$(HP)^{c1} \supset HyP \iff (H^ayP)^{c1} \supset H^aP$$

for $y \in U$ by Corollary of [4] Theorem. Thus the case (3.3) is reduced to the case (3.2) and so we may assume (3.2) in the following.

By [4] Theorem (iv), there exists a sequence $\alpha_1, ..., \alpha_n$ of simple roots in Σ^+ such that

$$(3.4) (HP)^{c1} = H((L \cap H)P_L)^{c1}wPL_{\alpha_n}\cdots L_{\alpha_1}.$$

Here $w = w_{\alpha_1} \cdots w_{\alpha_n}$, L is the analytic subgroup of G for $I = [\mathfrak{z}_{\mathfrak{g}}(\mathfrak{a} \cap \mathfrak{h}), \mathfrak{z}_{\mathfrak{g}}(\mathfrak{a} \cap \mathfrak{h})]$, $P_L = L \cap P$ $(= L \cap wPw^{-1})$ and $L_{\alpha} = Z_G(\mathfrak{a}^{\alpha}), \mathfrak{a}^{\alpha} = \{Y \in \mathfrak{a} \mid \alpha(Y) = 0\}$ for $\alpha \in \Sigma$.

LEMMA 3. $HwP = (K \cap H)(L \cap H)_0 wP$. $((L \cap H)_0$ is the connected component of $L \cap H$ containing the identity.)

PROOF. Put $L_1 = Z_G(\mathfrak{a} \cap \mathfrak{h})$ and define a parabolic subgroup P_1 of G by $P_1 = L_1 w P w^{-1}$ as in [4] §1. Then $P_1 \cap H_0$ is a parabolic subgroup of H_0 and we have $H_0 = (K \cap H)_0 (P_1 \cap H)_0$ by the Iwasawa decomposition of H_0 . On the other hand, $K \cap H$ intersects with every connected component of H since $H = (K \cap H) \cdot \exp(\mathfrak{p} \cap \mathfrak{h})$. Hence

$$(3.5) H = (K \cap H)(P_1 \cap H)_0.$$

Let n_1 be the nilpotent radical of the Lie algebra of P_1 . Then $P_1 = L_1 \exp n_1$ is a Langlands decomposition of P_1 . Since L_1 and n_1 are σ -stable, we have

$$(3.6) (P_1 \cap H)_0 = (L_1 \cap H)_0 \exp(\mathfrak{n}_1 \cap \mathfrak{h}).$$

Let 3 be the center of the Lie algebra l_1 of L_1 . Then $l_1 = 3 + 1$. Since 3 and I are σ -stable, we have $l_1 \cap h = 3 \cap h + 1 \cap h$ and therefore

(3.7)
$$(L_1 \cap H)_0 = (L \cap H)_0 \exp(\mathfrak{z} \cap \mathfrak{h}).$$

We get the desired formula from (3.5), (3.6) and (3.7) since $\exp \mathfrak{n}_1 \subset wPw^{-1}$ and $\exp \mathfrak{z} \subset wPw^{-1}$. Q. E. D.

Now we will continue the proof of Theorem (i). Suppose that $HP \cap H^a yP \neq \emptyset$. Since $HP \subset HwPL_{\alpha_n} \cdots L_{\alpha_1}$, we have

$$HwP \cap H^a yPL_{\alpha_1} \cdots L_{\alpha_n} \neq \emptyset.$$

By Lemma 3, we have

$$(1.8) (L \cap H)_0 \cap H^a y P L_{\alpha_1} \cdots L_{\alpha_n} w^{-1} \neq \emptyset.$$

Let y' be an element of the left hand side of (3.8) and y'' an element of $(L \cap H^a)_0 y' P_L \cap U$. Then

$$(3.9) H^a y'' w P \subset H^a y P L_{\alpha} \cdots L_{\alpha}$$

and

$$(3.10) (L \cap H)_0 P_L \cap (L \cap H^a)_0 y'' P_L \neq \emptyset.$$

Since $\sigma L = \theta L = L$ and dim $(1 \cap \alpha) < \dim \alpha$, we have

$$((L \cap H)_0 P_L)^{c1} \supset (L \cap H)_0 y'' P_L$$

by the assumption of induction. By (3.4), we have

$$(3.11) (HP)^{c1} \supset H(L \cap H)_0 y'' P_L w P L_{\alpha_n} \cdots L_{\alpha_1}$$
$$\supset H y'' w P L_{\alpha_n} \cdots L_{\alpha_1}.$$

Now consider the formula (3.9) which can be rewritten as

$$y \in H^a y'' w P L_{\alpha_n} \cdots L_{\alpha_1}$$
.

As in the proof of [4] Theorem (vi), we can choose a $y_1 \in y''wPL_{\alpha_n}\cdots L_{\alpha_1} \cap U$ so that $y \in H^ay_1P$. Since $y \in U$, it follows from [2] Theorem 1 that $y \in (K \cap H)y_1P$. Hence

$$(3.12) y \in (K \cap H)y''wPL_{\alpha_n}\cdots L_{\alpha_1}.$$

From (3.11) and (3.12), we have $(HP)^{c1} \supset HyP$ as desired.

Q. E. D.

§ 4 Proof of Theorem (iii) and (iv)

Theorem (iv) follows from (ii) and (iii). So we have only to prove (iii) in this section. Recall the definition of $P=P(\mathfrak{a}, \Sigma^+)$ in §2 and let Ψ denote the set of all the simple roots in Σ^+ .

LEMMA 4. Suppose that H^aP is not open in G. Then there exists an $\alpha \in \Psi$ such that dim $H^aP_\alpha > \dim H^aP$ (here P_α is the parabolic subgroup of G defined by $P_\alpha = PL_\alpha$).

PROOF. By [2] Theorem 1, we may assume that $\sigma \alpha = \alpha$. By [2] Proposition 1, Σ^+ is not σ -compatible or $\alpha \cap \mathfrak{h}$ is not maximal abelian in $\mathfrak{p} \cap \mathfrak{h}$. First suppose that Σ^+ is not σ -compatible. Then by [4] Lemma 4 and Lemma 5, there exists an $\alpha \in \Psi$ such that $H^a P_\alpha = H^a P \cup H^a w_\alpha P$ and that dim $H^a w_\alpha P > \dim H^a P$. Hence we may assume that Σ^+ is σ -compatible and that $\alpha \cap \mathfrak{h}$ is not maximal abelian in $\mathfrak{p} \cap \mathfrak{h}$.

Put $I_1 = \mathfrak{Z}_{\mathfrak{g}}(\mathfrak{a} \cap \mathfrak{h})$. Suppose that there exists an $\alpha \in \Psi \cap \Sigma(I_1; \mathfrak{a})$ such that $\mathfrak{g}(\mathfrak{a}; \alpha) \cap \mathfrak{q}^a \neq \{0\}$. Here $\Sigma(I_1; \mathfrak{a})$ is the root system of the pair (I_1, \mathfrak{a}) , and it is clear that $\alpha \in \Sigma(I_1; \mathfrak{a})$ if and only if $\alpha \in \Sigma$, $\sigma \alpha = -\alpha$. Then by [4] Lemma 3 (F), dim $H^a P_{\alpha} > \dim H^a P$. Hence we may assume that

(4.1)
$$g(\alpha; \alpha) \cap q^{\alpha} = \{0\} \text{ for all } \alpha \in \Psi \cap \Sigma(l_1; \alpha).$$

Let β be a root in $\Sigma(\mathfrak{l}_1; \mathfrak{a}) \cap \Sigma^+$ and write $\beta = \sum_{\alpha \in \Psi} n_{\alpha} \alpha$. Choose an element $Y \in \mathfrak{a} \cap \mathfrak{h}$ such that $\alpha(Y) > 0$ for all $\alpha \in \Sigma^+ - \Sigma(\mathfrak{l}_1; \mathfrak{a})$ by [4] Lemma 4. If $n_{\alpha} > 0$ for some $\alpha \in \Psi - \Sigma(\mathfrak{l}_1; \mathfrak{a})$, then $\beta(Y) > 0$. But since $\beta(Y) = 0$, we have proved that β is written as a linear combination of roots in $\Psi \cap \Sigma(\mathfrak{l}_1; \mathfrak{a})$. By (4.1) and Lemma 6 in §5, we have $g(\mathfrak{a}; \beta) \subset \mathfrak{h}^a$. Hence

$$\mathfrak{a} \cap \mathfrak{q} + \sum_{\beta \in \Sigma(1, \mathfrak{q})} \mathfrak{g}(\mathfrak{a}; \beta) \subset \mathfrak{h}^{a}$$
.

Since $\mathfrak{z}_{\mathfrak{g}}(\mathfrak{a} \cap \mathfrak{h}) = \mathfrak{l}_1 = \mathfrak{z}_{\mathfrak{l}}(\mathfrak{a}) + \mathfrak{a} + \sum_{\beta \in \Sigma(\mathfrak{l}_1;\mathfrak{a})} \mathfrak{g}(\mathfrak{a};\beta)$, $\mathfrak{a} \cap \mathfrak{h}$ is a maximal abelian subspace of $\mathfrak{p} \cap \mathfrak{h} = \mathfrak{p} \cap \mathfrak{q}^a$. But this is a contradiction to the assumption on $\mathfrak{a} \cap \mathfrak{h}$.

Q. E. D.

LEMMA 5. If HP is closed in G, then $HP = (K \cap H)P$.

PROOF. If $HP = (K \cap H)xP$ for some $x \in HP$, then $HP = (K \cap H)P$. So taking a conjugate of P, we may assume that $\sigma \alpha = \alpha$. Since Σ^+ is σ -compatible, we can apply Lemma 3 for w = 1 to get

$$HP = (K \cap H)(L \cap H)_0 P.$$

Since $\mathfrak{a} \cap \mathfrak{h}$ is maximal abelian in $\mathfrak{p} \cap \mathfrak{h}$, we have $L \subset H^a$ by [4] Lemma 6 (i). Since $H \cap H^a = K \cap H$, we have $HP = (K \cap H)(L \cap H^a \cap H)_0 P = (K \cap H)P$ as desired.

Q. E. D.

PROOF OF THEOREM (iii). Choose $x' \in xP' \cap U$ so that Hx'P has the minimum dimension among the H-P double cosets contained in HxP'. Clearly $HxP' \cap H^axP' = (Hx'P \cap H^axP')P'$. Since $(Hx'P)^{c1} \cap HxP' = Hx'P$, it follows from Theorem (i) that $Hx'P \cap H^axP' = Hx'P \cap H^ax'P$. So we have only to prove that

$$(4.2) Hx'P \cap H^ax'P = (K \cap H)x'P \text{for } x' \in U.$$

We will prove (4.2) by induction on the codimension of $H^a x' P$. Rewriting $x' P x'^{-1}$ by P, we may assume that x' = 1 and that $\sigma \alpha = \alpha$.

Suppose that H^aP is open in G. Then HP is closed in G by [2] §3 Corollary and $HP = (K \cap H)P \subset H^aP$ by Lemma 5. Hence we may assume that H^aP is not open in G.

By Lemma 4, there exists an $\alpha \in \Psi$ such that $\dim H^a P_\alpha > \dim H^a P$. Then by [4] Lemma 3, there are two cases (B^a): $\sigma\theta\alpha \neq \pm \alpha$, $\sigma\theta\alpha \in \Sigma^+$ and (D^a): $\sigma\theta\alpha = \alpha$, $g(\alpha; \alpha) \cap q^a \neq \{0\}$. Put $z = w_\alpha$ in the case (B^a) and put $z = c_\alpha$ in the case (D^a). Then we have $(HzP)^{c1} \cap HP_\alpha = HzP$ by [4] Lemma 3 (A) and (F) (since $\theta \mid_\alpha = -1$, we have (B^a)=(A): $\sigma\alpha \neq \pm \alpha$, $\sigma\alpha \notin \Sigma^+$ and (D^a)=(F): $\sigma\alpha = -\alpha$, $g(\alpha; \alpha) \cap q^a \neq \{0\}$. Applying Theorem (i), we have

$$(4.3) HzP \cap H^aP_a = HzP \cap H^azP.$$

Let y be an element of $HP \cap H^aP$. Then we have only to show that $y \in (K \cap H)P$ since it is clear that $(K \cap H)P \subset HP \cap H^aP$. Let y' be an element of $HzP \cap yP_\alpha$. Then by (4.3) and the assumption of induction, we have

 $y'\in HzP\ \cap\ H^aP_\alpha\ \cap\ yP_\alpha=HzP\ \cap\ H^azP\ \cap\ yP_\alpha=(K\cap H)zP\ \cap\ yP_\alpha$ and therefore

$$y \in (K \cap H)zP_{\alpha} = (K \cap H)P_{\alpha}.$$

Since $y \in H^aP$, we have

$$y \in (K \cap H)P_{\alpha} \cap H^{a}P = (K \cap H)(P_{\alpha} \cap H^{a})P = (K \cap H)JP.$$

Here J is the image of $P_{\alpha} \cap H^{a}$ under the projection $P_{\alpha} \rightarrow L_{\alpha}$ with respect to the Langlands decomposition $P_{\alpha} = L_{\alpha} \exp n_{\alpha}$. We consider the two cases (B^a) and (D^a) separately.

First consider the case (B^a). We have only to show that $J \subset L_{\alpha} \cap P$. Let L_{α}^{s} denote the analytic subgroup of G for the Lie subalgebra of g generated by $g(\alpha; \alpha) + g(\alpha; -\alpha)$ as in [4] §3. Since $L_{\alpha}^{s} \cap J \supset \exp(g(\alpha; \alpha) + g(\alpha; 2\alpha))$, we have $L_{\alpha}^{s} - g(\alpha; \alpha) = 0$.

 $(L^s_{\alpha} \cap J)w_{\alpha}(L^s_{\alpha} \cap P) \subset L^s_{\alpha} \cap P$ by the Bruhat decomposition of L^s_{α} . Since $L_{\alpha}/L_{\alpha} \cap P \simeq L^s_{\alpha}/L^s_{\alpha} \cap P$, we have $L_{\alpha}-Jw_{\alpha}(L_{\alpha} \cap P) \subset L_{\alpha} \cap P$. On the other hand, we have $J(L_{\alpha} \cap P) \cap Jw_{\alpha}(L_{\alpha} \cap P) = \emptyset$ since $H^aP \cap H^aw_{\alpha}P \neq \emptyset$. Hence $J \subset L_{\alpha} \cap P$.

Next consider the case (D^a). We have only to show that $J \subset (K \cap H)(L_{\alpha} \cap P)$. In this case, $J \supset L_{\alpha}^{s} \cap H^{a}$ and it follows easily from the proof of [4] Lemma 3 (D) that

$$L_{\alpha} = D(1) \cup D(w_{\alpha}) \cup D(c_{\alpha}) \cup D(c_{\alpha}^{-1}).$$

Here $D(x) = (L_{\alpha}^{s} \cap H^{a})x(L_{\alpha} \cap P)$ for $x \in L_{\alpha}$. We also have

(4.4)
$$J(L_{\alpha} \cap P) = \begin{cases} D(1) & \text{if } w_{\alpha} \notin N_{K \cap H}(\mathfrak{a}) Z_{K}(\mathfrak{a}) \\ D(1) \cup D(w_{\alpha}) & \text{if } w_{\alpha} \in N_{K \cap H}(\mathfrak{a}) Z_{K}(\mathfrak{a}) \end{cases}$$

since $(H^aP \cup H^aw_{\alpha}P) \cap (H^ac_{\alpha}P \cup H^ac_{\alpha}^{-1}P) = \emptyset$. Since D(1) and $D(w_{\alpha})$ are closed in L_{α} , we have

(4.5)
$$D(x) = (L_{\alpha}^{s} \cap K \cap H)x(L_{\alpha} \cap P) \quad \text{for } x = 1 \quad \text{and} \quad w_{\alpha}$$

by Lemma 5 (Note that $L_{\alpha}/L_{\alpha} \cap P \simeq L_{\alpha}^{s}/L_{\alpha}^{s} \cap P$). From (4.4) and (4.5), we get

$$J(L_{\alpha} \cap P) \subset (K \cap H)(L_{\alpha} \cap P)$$

as desired. Q. E. D.

§ 5. Appendix

Let g be a semisimple Lie algebra with a Cartan involution θ and the corresponding Cartan decomposition g = f + p. Let a be a maximal abelian subspace of p and Σ the root system of the pair (g, a). Let Ψ be a fundemental system (the set of simple roots in a positive system of Σ) of Σ .

LEMMA 6. Let \mathfrak{s} be a θ -stable subalgebra of \mathfrak{g} such that $\mathfrak{g}(\mathfrak{a}; \beta) \subset \mathfrak{s}$ for all $\beta \in \Psi$. Then $\mathfrak{g}(\mathfrak{a}; \beta) \subset \mathfrak{s}$ for all $\beta \in \Sigma$.

PROOF. Since $g(\alpha; 2\beta) = [g(\alpha; \beta), g(\alpha; \beta)]$, we have only to prove $g(\alpha; \beta) = \beta$ for all $\beta \in \Sigma_0 = \{\beta \in \Sigma \mid 1/2 \beta \notin \Sigma\}$ (the set of reduced roots in Σ). Let γ be a root in Ψ and X a nonzero element of $g(\alpha; \gamma)$. Then $w_{\gamma} = \exp c(X + \theta X) \in \exp \mathfrak{s}$ represents the reflection in α with respect to γ for some $c \in \mathbb{R}$. Since $g(\alpha; w_{\gamma}\beta) = \operatorname{Ad}(w_{\gamma})g(\alpha; \beta)$ for $\beta \in \Sigma$, we have

(5.1)
$$g(\alpha; w, \beta) \subset \mathfrak{s} \text{ if and only if } g(\alpha; \beta) \subset \mathfrak{s}.$$

Since the Weyl group W of Σ is generated by $\{w_{\beta}Z_{K}(\mathfrak{a}) \mid \beta \in \Psi\}$ and since $\Sigma_{0} = W\Psi$, we get the desired assertion from (5.1). Q. E. D.

References

- [1] V. V. Deodhar, On some geometric aspects of Bruhat orderings I. A finer decomposition of Bruhat cells, Invent. Math. 79 (1985), 499-511.
- [2] T. Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan 31 (1979), 331-357.
- [3] T. Matsuki, Orbits on affine symmetric spaces under the action of parabolic subgroups, Hiroshima Math. J. 12 (1983), 307–320.
- [4] T. Matsuki, Closure relations for orbits on affine symmetric spaces under the action of minimal parabolic subgroups, to appear.
- [5] W. Rossmann, The structure of semisimple symmetric spaces, Canad. J. Math. 31 (1979), 157-180.

Faculty of General Education, Tottori University