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Removability of polar sets for energy finite harmonic
functions on harmonic spaces with adjoint structure
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It is well known that, in the classical potential theory, a polar set is
removable for Dirichlet finite harmonic functions (see, e.g., [1]). This result
was extended by the author to the case of self-adjoint harmonic spaces in [5].
But, as remarked in Remark 3 in [5], there seems to be no known results of
this type in the non-elliptic case, even for solutions of the heat equation.

In the present note, we prove that, on harmonic spaces with adjoint
structure, polar sets are removable for energy finite harmonic functions.
In case the constant functions are harmonic, the energy coincides with the
Dirichlet integral, so that our result implies the removability of heat polar sets
for Dirichlet-finite solutions of the heat equation. Also, our proof provides a
new proof to the classical result, which is quite different from the known proofs
(cf. e.g., [1] and [5]).

A preliminary abridged version of the present paper is given in the
APPENDIX of [7].

§ 1. Preliminaries

We consider a φ-harmonic space (X, J f) with an adjoint harmonic space
(X, jtf*) as defined in [6]. By definition, there exists a Green function G(x, y)
associated with the structures 3^f and ^f *, which satisfies conditions (G.0),
(G.I), (G*.l), (G.2) and (G*.2) given in [6]. For a non-negative measure μ on
X, we write

•=\G(',y)dμ(y) and G*μ = fGμ = I G(-,y) dμ (y) and G*μ = G(x, ) dμ (x).

Gμ (resp. G*μ) is an Jf-potential (resp. ^*-potential) on X if it is finite on a
dense set. We can easily show that this is the case if 1 is Jf *-superharmonic
(resp. Jf-superharmonic) and μ(X) < +oo.

By standard arguments (cf. e.g., [4; §4], [3; l.VII and l.XVII, §4 and §5]),
we obtain

PROPOSITION 1. For any open set U in X, the harmonic spaces (U,3tf\υ)
and (17, J^*\u) are mutually adjoint with a Green function Gu(x, y) such that
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G(x,y) = Gu(x,y) + hu(x9y) for all x, y e U ,

where hu is a function on X x X such that hu( ,y) (resp. hu(x, •)) is &-harmonic

(resp. 3tf*-harmonic) on U for any y e U (resp. x e U).

As in [6], we assume that the constant function 1 is superharmonic for

both JP and Jif*.

Let σ: $ -+ Jί (resp. σ*: <M* -• Jt) be the measure representation associated

with G(x, y) (see [6]), where 0t (resp. 0t*) is the sheaf of functions which are

locally expressible as differences of continuous ^-superharmonic (resp. tf *-

superharmonic) functions, and M is the sheaf of signed measures on X. The

gradient measure δf of fe 0HJJ) (U: open cz X) is defined by

which is a non-negative measure on U (see [4]). The Dirichlet integral

o f / e 0t{U) is the total mass of δf9 namely

and the energy Eυ\_f~\ of fe 0t{\J) is given by

2 Jl/

Thus, £ϋ[/] = Dϋ[/] if σ(l) = 0 on U. The mapping / - > £ ι / [ / ] 1 / 2 is a

semi-norm on the linear space @E(U) = {/e ^(l/) | £[/[/] < +oo}.

We consider the linear space of energy-finite (Dirichlet-finite, in case

σ(l) = 0) harmonic functions; namely, for an open set U in X, let

I Eυ[u] < +00} =

We first establish the following

PROPOSITION 2. For any u e 3fE{U\ the least 3tf'-harmonic major ant v of\u\

exists and v e

PROOF. Since σ(u) = 0, 2δu + u2σ{\) = —σ(u2). Hence, μ=—σ(u2) is

a non-negative measure on U and μ(U) < +00. It follows that G^μ =

j G ^ jjOdμOO i s a continuous Jf-potential on t/ and h = u2 + Guμ is en-

harmonic on U. Since h>u2 and ft1/2 is J f -superharmonic (cf. [4; the proof of

Lemma 6.2]), it follows that |w| has the least ^-harmonic majorant v such that

|w| < v < h1/2. Since h — v2 is ^-superharmonic and majorized by h — u2 =

G^/i, we have h-v2 = Guv with v = - φ 2 ) . Since G^v < Guμ, [6; Lemma

1.3] implies that v(U) < μ(U) < +00. This means that v e JfE(U)9 since v =

2δv + t;2σ(l).
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C O R O L L A R Y 1. If ue J^E(U\ then u = uλ - u2 with ul9 u2e J^E(U\ u1>0

and u2 > 0 on U.

§ 2. Polar sets

Let 9 (resp. 0>*) be the set of all Jf-potentials (resp. ^-potent ia l s) on

X and let &c (resp. &£) be the subset consisting of all continuous ones in 9

(resp. ̂ * ) .

A compact set K in X is said to be polar (with respect to 3tf) if there is

peg? such that p(x) = +00 for all xe K.

We denote by %>(X) the set of continuous functions on X and by % (X) the

set of functions in ^(X) with compact support.

LEMMA 1. Let K be a compact polar set in X and let {Vn} be a sequence of

open sets such that Vn =) Vn+1 and P)S=i K = ^ Then there is a sequence {pn}

in έ?c such that pn= 1 on a neighborhood of X, Supp σ(pn) c= Vn for each n and

PnlO locally uniformly on X\K.

PROOF. By definition, there is p e 0> such that p(x) = +00 for all xe K.

For each n, let Un = {xe X\ p(x) > n}, which is an open set containing K.

Choose φn e %(X) such that 0 < φn < 1 on X, φn = 1 on a neighborhood of K

and Supp φna Unn Vn. Since p/n > φn on X, Rφn < p/n, where R denotes the

reduction operator for tf (cf. [2; pp. 39-40] or [4; §2-3]). pn = Rφn belongs

to 0>c and Supp σ(pn) a Unn Vn. Obviously, pn = 1 on a neighborhood of K.

We may assume that φn > φ π + 1 , so that pn > pn+1. Let p0 = limπ_00 pπ. Since

pn is Jf-harmonic on X\Vn, p0 is Jf-harmonic on I \ K . Since p0 < p/m for all

m, it follows that p0 = 0 on X\K. By Dini's lemma, the convergence is locally

uniform on I \ X .

LEMMA 2. // K is a compact polar set in X and U is an open set containing

X, then there is a non-negative measure μ0 on X such that Supp μ0 c: U, Gμ0 is

finite continuous on X\K and Gμo(x) = +00 for x e K.

PROOF. Choose {pn} as in the above lemma with {Vn} such that Vx a U

and let μn = σ(pn). Then, pn = Gμn and Supp μn a Vn c= U. We can choose a

subsequence {pn.} such that Yj=\Pnj converges locally uniformly on X\K.

Then, Po = Σf=ιPn. is finite continuous on X\K and po(x) = +00 for x e K.

Let vm = Yj=ίμnj. Vor each yeK9 there is zyeX\K such that G(zy,y)>0; for,

otherwise G(x,y) = 0 for all xeX\K, and since K has no interior point it would

follow that G(x, y) = 0 for all xe X, which is absurd. By continuity, there is

an open neighborhood Wy of y such that ocy = infweίΓ G(zy9 w) > 0. Then

< — G(zy9 w) dvm(w) < —Po(zy) < +00 .
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Since K is compact, there are yu . . ., yt e K such that W = Wyι U U ^ D K .

Then {vm(W)} is bounded. Since Supp μna W for sufficiently large n, it follows

that {vm} is vaguely convergent, so that μ0 = Σf=1 μn. is a non-negative measure

on X with Supp μ0 c U. Obviously, Gμ0 = p0.

LEMMA 3. // K is a compact polar set and if G*v (v > 0) is bounded in a

neighborhood of K, then v(K) = 0.

PROOF. Suppose G*v is bounded on U => K and let M = sup^ G*v. Let

μ0 be the measure given in the above lemma for K and U. Since Gμo(x) =

+ oo for x e K, for any ε > 0 we have

Gμ0 dv = εv(K) <ε \Gμ0 dv = ε G*v dμ0 < εMμo(X).

Since μ 0 W < + 0 0 ' i ι follows that v(K) = 0.

PROPOSITION 3. // K is a compact polar set in X and U is an open set

containing K, then there exists a sequence {pn} in 0>c such that pn = 1 on a

neighborhood of K, Supp σ(pn) c= U for each n, p n | 0 locally uniformly on X\K

and σ(p π )p0->0(n->oo).

PROOF. It suffices to show that σ{pn)(X)-+0 {n^co) for {pn} given in

Lemma 1 with {Vn} such that V1 c U. We may assume that U is relatively

compact. Choose ψ e %(X) such that 0 < φ < 1 on X and φ = 1 on U. Let

R* denote the reduction operator for jf* and let q = R*φ. Then q e 0 £ , so

that g = G*/ί with A = σ*(g). Since q is bounded, A(X) = 0 by the above

lemma. Hence

σ(pn)(X) = σ(pn)(U) = \q dσ(pn) = \pn dλ = [ pndλ.

Since p π | 0 on X\K and Supp/I is compact, Lebesgue's convergence theorem

implies §x\κPn dλ -> 0 (n -> oo). Thus σ(pπ)(ΛΓ) ^ 0.

REMARK 1. Proposition 3 means that if K is a compact polar set, then

co(K) = 0 for the capacity c0 defined in [7], Conversely, using the arguments

as in the proof of Lemma 2 (taking a subsequence such that vn{X) < 2~j, say),

we can show that co(K) = 0 implies that K is polar.

In [7], we have shown that co(K) = cg(X). Hence we have

COROLLARY 2. // K is a compact polar set in X and U is an open set

containing K, then there is a sequence {qn} in £?£ such that qn = 1 on a

neighborhood of K, Supp σ*(qn) a U for each n, qn[0 locally uniformly on X\K
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LEMMA 4. Let K be a compact polar set in X and suppose p e £P is

2tf-harmonic on X\K. Then there exists a non-negative measure μ on X such

that Supp μ c X and p = Gμ.

PROOF. AS in the proof of Lemma 2, for each y e K there is xye X\K
such that G(xy9 y) > 0. Choose a relatively compact open neighborhood Wy

of xy such that WynK = 0 , and choose φy e <&{X) such that φy = 0 on
a neighborhood of xy9 φy=l on X\Wy and 0 < φy < 1 in X. Put qy =
R*(G(xy, >)φy). Then, qye&ί9 Supp σ*(qy)czWy and qy(y) = G(xy9y)>0. By
continuity, there is an open neighborhood Vy of y such that qy> 0 on Ĵ ,.
Choose yί9 ..., yk e K such that F y i u u ^ D X, and let <?x = qyι + 4- qyk.
Then, ^ e ^ c * , Supp σ*(gκ) n X = 0 and gκ(z) > 0 for all z e K. Put α =
inf^K and V = {y e X\qκ(y) > α/2}. Then V is an open set containing K.
Choose a sequence {Un} of relatively compact open sets such that K D [ / B D
LUi => X and f ) ^ l/π = K, and then choose φn e *(X) such that ^n = 1 on
X\C/Π, φn = 0 on !/„+! and 0 < ιAn < 1 on X. Put pn = R(ψnp). Then pπ e ^ c

and pn = p on X\Un. Since /? is Jf-harmonic on X\Un9 we see that
Supp σ(/7π) c Ϊ7n c K Put μn = σ(pn) and vκ = σ*{qκ). Then

2 Γ 2 Γ 2 Γ
<-\qκdμn = -\pndvκ<-\pdvκ.

Since Supp vκ is compact and disjoint from K, p is bounded on Supp vκ.
Hence, {μn(X)} is bounded, so that there exists a non-negative measure μ on
X such that a subsequence {μn.} of {μn} converges vaguely to μ. Then
Supp μ c K and pn.(x) -• Gμ(x) (j -• oo) for any x e Jf\K. Hence p — Gμ on
X\X. Since K is polar, it follows that p = Gμ on X.

§ 3. Removability theorem

THEOREM. Let K be a compact polar set in X. Then K is removable with
respect to JίfE; namely, for any u e JfE(X\K) there exists ύ e Jίf(X) such that
u\Λκ = u.

PROOF. By Corollary 1, we may assume that u > 0. By [2; Theorem
6.2.1], there exists an ^-superharmonic function ύ on X such that ύ\x\κ = u.
Then u = h + p with h e 3^{X) and p e ^ . It suffices to show that p = 0.

Since p is Jf-harmonic on X\K9 Lemma 4 implies that p — Gμ with
a non-negative measure μ such that Supp μa K. Let V be any relatively
compact open set containing K. Since EV[K] < oo, we see that Ev\κ[p~\ <
+ oo. Choose (p e <V(X) such that φ = 0 on a neighborhood of X, φ = 1 on a
neighborhood W of X \ 7 and 0 < φ < 1 on X. Put p' = R{pφ). Then /?' e
^ o p' = p on VF and Supp σ(p') is compact (in fact, contained in V\K). Thus,
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•]SJV.EwίP] = EwlpΊ < £ x [p ' ] < I p' dσ{p') < +00

by [6; Theorem 3.1]. Hence Ex\κ[p] < +00.

Put v = 2δp + p2σ{\) on X\K. Since v{X\K) = Exχκ[p] < + 00, v can be

regarded as a non-negative measure on X and we see that Gv e έ?. Since p is

Jf-harmonic on X\K, v = -σ(p2) on X\K. Thus, (Gv + p2)\x\κ e J f (AΛK).

Again by [2; Theorem 6.2.1] and Lemma 4, there exists a non-negative measure

v0 such that Supp v0 c K and Gv + p 2 = Λ' + Gv0 on X\K with fo' e Jf (X).

Since /? is bounded outside a compact set (cf. e.g., [4; Proposition 2.5]), we see

that V = 0. By Corollary 2, there is a sequence {Aπ} of non-negative measures

on X such that G*λn e ^ £ , G*ΛΠ = 1 on a neighborhood of X, Supp /ln is

compact for each n and λn(X)->0 (n-+oo). Since p 2 < Gvo on X\K and

^(X) = 0 (by Lemma 3), we have

p2 dλn < Gv0 dλn = G*λn dv0 = vo(K) < +00 .

G*λn dμ = h
J J

Hence
/ r \i/2

μ ( J Q = μ ( K ) = I G*λn dμ=\pdλn<(\p2 dλn A n ( X ) 1 / 2

χy/2 ^ 0 ( π -• 00) .

Thus, μ = 0, and hence p = 0, q.e.d.
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