Scaled one-step methods with one interpolation point

Hisayoshi Shintani

(Received January 20, 1988)

1. Introduction

Consider the initial value problem

$$
\begin{equation*}
y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}, \tag{1.1}
\end{equation*}
$$

where the function $f(x, y)$ is assumed to be sufficiently smooth. Let $y(t)$ be the solution of (1.1), let

$$
\begin{equation*}
x_{t}=x_{0}+t h \quad(h>0, t>0), \tag{1.2}
\end{equation*}
$$

and denote by y_{t} an approximation of $y\left(x_{t}\right)$, where h is a stepsize. We are concerned with the case where the problem (1.1) is solved by one-step methods. Let

$$
\begin{equation*}
y_{1}=y_{0}+h \sum_{i=1}^{q} p_{i} k_{i} \tag{1.3}
\end{equation*}
$$

be a one-step method of order p for approximating $y\left(x_{1}\right)$, where

$$
\begin{align*}
& k_{1}=f\left(x_{0}, y_{0}\right), \tag{1.4}\\
& k_{i}=f\left(x_{0}+a_{i} h, y_{0}+h \sum_{j=1}^{i-1} b_{i j} k_{j}\right) \quad(i=2,3, \cdots, q), \tag{1.5}\\
& a_{i}=\sum_{j=1}^{i-1} b_{i j}, \quad a_{i} \neq 0 \quad(i=2,3, \cdots, q), \tag{1.6}
\end{align*}
$$

$p_{i}(i=1,2, \cdots, q), a_{i}$ and $b_{i j}(j=1,2, \cdots, i-1 ; i=2,3, \cdots, q)$ are constants. It is well known that the minimum of q is 4,6 for $p=4,5$ respectively.

Consider a method of the form

$$
\begin{equation*}
y_{t}=y_{0}+h \sum_{i=1}^{q+r} p_{i t} k_{i} \tag{1.7}
\end{equation*}
$$

that provides an approximation of $y\left(x_{t}\right)$ with r additional evaluations of f, where $p_{i t}$ $(i=1,2, \cdots, q+r)$ are functions of t, k_{i} and $b_{i j}(j=1,2, \cdots, i-1 ; i=2,3, \cdots, q+r)$ satisfy (1.5) and (1.6) with q replaced by $q+r$, but a_{i} and $b_{i j}(j=1,2, \cdots, i-1 ; i=q+1$, $q+2, \cdots, q+r$) may be functions of t. On the basis of Fehlberg's (4) 5 method with q $=6$, Horn [1] has shown that for $r=1$ there exists a method (1.7) which is of order 4 for any number of values of t and that for $r=2$ there exists a method (1.7) of order 5 for any specified value of $t(t \neq 1)$. We require that the methods (1.6) and (1.7) are of the same order p. In our previous paper [2] it has been shown that for $q=2,3,4,6$ and $r=0,1,2,3$ there exists a method (1.7) which is of order $2,3,4,5$ respectively for
any number of values of t.
Let

$$
\begin{equation*}
e=h \sum_{i=1}^{q} s_{i} k_{i}+h s_{q+1} \hat{k} \tag{1.8}
\end{equation*}
$$

where $\hat{k}=f\left(x_{1}, y_{1}\right)$. Then in this paper it is shown that for $q=4,6$ and for any specified value of $t(t \neq 1)$ there exist a method (1.7) with $r=1$ for which $p=4,5$ respectively and a method (1.8) such that $e=O\left(h^{p}\right)$. The method $y_{1}+e$ is of order p -1 , so that the quantity e can be used to control the stepsize. Finally numerical examples are presented.

2. Preliminaries

Let $m=q+r$ and

$$
\begin{array}{ll}
c_{i}=\sum_{j=2}^{i-1} a_{j} b_{i j}, d_{i}=\sum_{j=2}^{i-1} a_{j}^{2} b_{i j}, e_{i}=\sum_{j=2}^{i-1} a_{j}^{3} b_{i j} \quad(i=3,4, \ldots), \\
l_{i}=\sum_{j=3}^{i-1} c_{j} b_{i j}, m_{i}=\sum_{j=3}^{i-1} d_{j} b_{i j}, q_{i}=\sum_{j=3}^{i=1} a_{j} c_{j} b_{i j} \quad(i=4,5, \ldots) . \tag{2.2}
\end{array}
$$

Let D be the differential operator defined by

$$
\begin{equation*}
D=\frac{\partial}{\partial x}+k_{1} \frac{\partial}{\partial y} \tag{2.3}
\end{equation*}
$$

and put

$$
\begin{align*}
& D^{j} f\left(x_{0}, y_{0}\right)=T^{j}, \quad D^{j} f_{y}\left(x_{0}, y_{0}\right)=S^{j} \quad(j=1,2, \ldots), \tag{2.4}\\
& (D f)^{2}\left(x_{0}, y_{0}\right)=P, \quad\left(D f_{y}\right)^{2}\left(x_{0}, y_{0}\right)=Q, \quad D f_{y y}\left(x_{0}, y_{0}\right)=R, \\
& f_{y}\left(x_{0}, y_{0}\right)=f_{y}, \quad f_{y y}\left(x_{0}, y_{0}\right)=f_{y y}
\end{align*}
$$

Then y_{t} can be expanded into power series in h as follows:

$$
\begin{align*}
y_{t}= & y_{0}+h A_{1} k_{1}+h^{2} A_{2} T+\left(h^{3} / 2!\right)\left(A_{3} T^{2}+2 A_{4} f_{y} T\right)+\left(h^{4} / 3!\right)\left(B_{1} T^{3}\right. \tag{2.5}\\
& \left.+6 B_{2} T S+3 B_{3} f_{y} T^{2}+6 B_{4} f_{y}^{2} T\right)+\left(h^{5} / 4!\right)\left(C_{1} T^{4}+12 C_{2} T S^{2}\right. \\
& +12 C_{3} T^{2} S+12 C_{4} f_{y y} P+4 C_{5} f_{y} T^{3}+12 C_{6} f_{y}^{2} T^{2}+24 C_{7} f_{y}^{3} T \\
& \left.+24 C_{8} f_{y} T S\right)+O\left(h^{6}\right),
\end{align*}
$$

where

$$
\begin{align*}
& A_{1}=\sum_{i=1}^{m} p_{i t}, A_{2}=\sum_{i=2}^{m} a_{i} p_{i t} \tag{2.6}\\
& A_{3}=\sum_{i=2}^{m} a_{i}^{2} p_{i t}, B_{1}=\sum_{i=2}^{m} a_{i}^{3} p_{i t}, C_{1}=\sum_{i=2}^{m} a_{i}^{4} p_{i t} \\
& A_{4}=\sum_{i=3}^{m} c_{i} p_{i t}, B_{1}=\sum_{i=3}^{m} a_{i} c_{i} p_{i t}, B_{3}=\sum_{i=3}^{m} d_{i} p_{i t}, C_{2}=\sum_{i=3}^{m} a_{i}^{2} c_{i} p_{i t}
\end{align*}
$$

$$
\begin{align*}
& C_{3}=\sum_{i=3}^{m} a_{i} d_{i} p_{i t}, C_{4}=\sum_{i=3}^{m} c_{i}^{2} p_{i t}, C_{5}=\sum_{i=3}^{m} e_{i} p_{i t}, \\
& B_{4}=\sum_{i=4}^{m} l_{i} p_{i t}, C_{6}=\sum_{i=4}^{m} m_{i} p_{i t}, C_{7}=\sum_{i=5}^{m}\left(\sum_{j=4}^{i=1} l_{j} b_{i j}\right) p_{i t}, \tag{2.9}\\
& C_{8}=\sum_{i=4}^{m}\left(a_{i} l_{i}+g_{i}\right) p_{i t} .
\end{align*}
$$

Put

$$
\begin{align*}
& A_{1 t}=A_{1}-t, A_{2 t}=A_{2}-t^{2} / 2, A_{3 t}=A_{3}-t^{3} / 3, A_{4 t}=A_{4}-t^{3} / 6 \tag{2.10}\\
& B_{i t}=B_{i}-t^{4} /\left(4 u_{i}\right)(i=1,2,3,4), C_{j t}=C_{j}-t^{5} /\left(5 v_{j}\right)(j=1,2, \ldots, 8), \tag{2.11}
\end{align*}
$$

where

$$
\begin{align*}
& u_{1}=1, u_{2}=2, u_{3}=3, u_{4}=6, v_{i}=i(i=1,2,3,4) \tag{2.12}\\
& v_{5}=4, v_{6}=12, v_{7}=24, v_{8}=24 / 7
\end{align*}
$$

Then we have

$$
\begin{equation*}
y_{t}-y\left(x_{t}\right)=h A_{1 t} k_{1}+h^{2} A_{2 t} T+\left(h^{3} / 2\right)\left(A_{3 t} T^{2}+2 A_{4 t} f_{y} T\right)+\cdots \tag{2.13}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
e=h \tilde{A}_{1} k_{1}+h^{2} \tilde{A}_{2} T+\left(h^{3} / 2\right)\left(\tilde{A}_{3} T^{2}+2 \tilde{A}_{4} f_{y} T\right)+\cdots \tag{2.14}
\end{equation*}
$$

Put

$$
\begin{equation*}
L_{i j}=a_{i} \prod_{k=2}^{j}\left(a_{i}-a_{k}\right), M_{i j}=a_{i} \prod_{k=3}^{j}\left(a_{i}-a_{k}\right)(i>j) . \tag{2.15}
\end{equation*}
$$

If we impose the condition

$$
\begin{equation*}
p_{2 t}=0, c_{i}=a_{i}^{2} / 2, d_{i}=a_{i}^{3} / 3(i=3,4, \ldots, m) \tag{2.16}
\end{equation*}
$$

then we have

$$
\begin{align*}
& 2 A_{4 t}=A_{3 t}, 2 B_{2 t}=3 B_{3 t}=B_{1 t}, 2 C_{2 t}=3 C_{3 t}=4 C_{4 t}=C_{1 t} \tag{2.17}\\
& 3 \mathrm{a}_{2}=2 \mathrm{a}_{3},
\end{align*}
$$

$$
\begin{equation*}
a_{3}^{2} b_{i 3}+3 \sum_{j=4}^{i-1} a_{j}\left(a_{j}-a_{2}\right) b_{i j}=a_{i}^{2}\left(a_{i}-a_{3}\right)(i=4,5, \ldots, m) \tag{2.19}
\end{equation*}
$$

Put

$$
\begin{align*}
& X_{1}=a_{2}+a_{3}, Y_{1}=a_{2} a_{3}, X=a_{3}+a_{4}, Y=a_{3} a_{4}, U=a_{5}+X, \tag{2.20}\\
& V=a_{5} X+Y, W=a_{5} Y, \\
& P_{i k}=\sum_{j=k+1}^{i-1} M_{j k} b_{i j}(i \geqq k+2), Q_{i k}=\sum_{j=k+2}^{i-1} P_{j k} b_{i j}(i \geqq k+3), \tag{2.21}\\
& P_{i 3}=\sum_{j=4}^{i=1} M_{i j} E_{j}(i \geqq 5), P_{i 4}=\sum_{j=5}^{i-1} M_{i j} F_{j}(i \geqq 6), \tag{2.22}\\
& P_{i 5}=\sum_{j=6}^{i-1} M_{i j} G_{j}(i \geqq 7) .
\end{align*}
$$

3. Construction of the methods

We shall show the following
Theorem. For $q=4,6$ and any $t>0(t \neq 1)$ there exist a method (1.7) with $r=1$ for which $p=4,5$ respectively and a formula (1.8) such that $e=O\left(h^{p}\right)$.

3.1. Case $\boldsymbol{q}=\mathbf{4}$

The condition $A_{i t}=B_{i t}=0(i=1,2,3,4)$ yields

$$
\begin{align*}
& \sum_{i=1}^{5} p_{i t}=t, 2 \sum_{i=2}^{5} a_{i} p_{i t}=t^{2}, 6 \sum_{i=3}^{5} c_{i} p_{i t}=t^{3}, \tag{3.1}\\
& 24 \sum_{i=4}^{5} l_{i} p_{i t}=t^{4}
\end{align*}
$$

$$
\begin{align*}
& \sum_{i=3}^{5} L_{i 2} p_{i t}=r_{1}(t), \sum_{i=4}^{5} L_{i 3} p_{i t}=r_{2}(t), \sum_{i=4}^{5}\left(a_{i}-a_{3}\right) c_{i} p_{i t}=r_{3}(t), \tag{3.2}\\
& \sum_{i=4}^{5}\left(\sum_{j=3}^{i=1} L_{j 2} b_{i j}\right) p_{i t}=r_{4}(t)
\end{align*}
$$

where

$$
\begin{align*}
& 6 r_{1}(t)=t^{2}\left(2 t-3 a_{2}\right), 12 r_{2}(t)=t^{2}\left(3 t^{2}-4 X_{1} t+6 Y_{1}\right) \tag{3.3}\\
& 24 r_{3}(t)=t^{3}\left(3 t-4 a_{3}\right), 12 r_{4}(t)=t^{3}\left(t-2 a_{2}\right)
\end{align*}
$$

The choice $t=1$ and $p_{51}=0$ leads to

$$
\begin{align*}
& c_{3} b_{43} \neq 0, a_{4}=1, a_{3} \neq 1, L_{32}=2\left(1-2 a_{3}\right) c_{3}, \tag{3.4}\\
& \left(1-a_{3}\right) c_{4}=\left(3-4 a_{3}\right) c_{3} b_{43}, L_{43}=2\left(3-4 X_{1}+6 Y_{1}\right) c_{3} b_{43}
\end{align*}
$$

Using (3.4) and (3.1), we have from (3.2)
(3.5) $\quad 24 c_{3} b_{43} b_{54} p_{5 t}=t^{3}(t-1)$,

$$
\begin{align*}
& 6 K_{1} p_{5 t}=a_{2} t^{2}(t-1)(3-t), 6 K_{2} p_{5 t}=a_{3} t^{3}(t-1), \tag{3.6}\\
& 3 K_{3} p_{5 t}=t^{3}(t-1)\left(X_{1}-2 Y_{1}\right)
\end{align*}
$$

where

$$
\begin{align*}
& K_{1}=L_{52}-2\left(1-2 a_{2}\right) c_{5}-4 a_{2} l_{5}, K_{2}=\left(a_{5}-a_{3}\right) c_{5}-\left(3-4 a_{3}\right) l_{5}, \tag{3.7}\\
& K_{3}=a_{5} L_{52}-2 a_{3}\left(1-2 a_{2}\right) c_{5}-2\left(3-4 X_{1}+8 Y_{1}\right) l_{5} .
\end{align*}
$$

Elimination of $p_{5 t}$ from (3.6) yields

$$
\begin{equation*}
a_{3} K_{3}=2\left(X_{1}-2 Y_{1}\right) K_{2}, t a_{3} K_{1}=(3-t) a_{2} K_{2}, K_{2}=4 a_{3} c_{3} b_{43} b_{54} . \tag{3.8}
\end{equation*}
$$

Put

$$
\begin{equation*}
d=a_{5}\left(3-4 X_{1}+8 Y_{1}\right)-2 Y_{1}-t\left(a_{5}+2-4 X_{1}+6 Y_{1}\right) \tag{3.9}
\end{equation*}
$$

Then from (3.8) we have

$$
\begin{align*}
& 6 d c_{3} b_{43} b_{54}=-t L_{54}, 6 d l_{5}=L_{53}\left[(3-t) a_{5}-2 t\right] \tag{3.10}\\
& 2 d c_{5}=L_{52}\left[a_{5}\left(3-t-4 a_{3}\right)-2 t\left(1-2 a_{3}\right)\right] .
\end{align*}
$$

Hence for a_{2}, a_{3} and a_{5} that satisfy (3.4) and the condition

$$
\begin{equation*}
L_{54} \neq 0, d \neq 0 \quad \text { for all } \quad t \geqq 0, \tag{3.11}
\end{equation*}
$$

the quantities l_{5}, c_{5}, b_{54} and $p_{5 j}$ are determined as functions of $t ; p_{i t}(i=1,2,3,4)$ are obtained from (3.1); $b_{5 j}(j=1,2,3,4)$ are determined from l_{5}, c_{5} and (1.6).

The choice $\tilde{A}_{i}=0(i=1,2,3,4)$ yields

$$
\begin{align*}
& \sum_{i=1}^{5} s_{i}=0,2 \sum_{i=3}^{4} c_{i} s_{i}+s_{5}=0,2 L_{43} s_{4}+\left(3-4 X_{1}+6 Y_{1}\right) s_{5}=0, \tag{3.12}\\
& e=\left(h^{4} / 4!\right)\left[B_{1}^{*} T^{3}+3 B_{2}^{*} T S+B_{3}^{*} f_{y} T^{2}+B_{4}^{*} f_{y}^{2} T\right]+O\left(h^{5}\right), \tag{3.13}
\end{align*}
$$

where

$$
\begin{align*}
& B_{1}^{*}=2\left(1-2 a_{2}\right)\left(2 a_{3}-1\right) s_{5}, B_{2}^{*}=2\left(2 a_{3}-1\right) s_{5}, \tag{3.14}\\
& B_{3}^{*}=2\left(3 a_{2}-1\right) s_{5}, B_{4}^{*}=-2 s_{5} .
\end{align*}
$$

Example 1. For the choice $a_{2}=1 / 3, a_{3}=2 / 3, a_{5}=7 / 12$ and $s_{5}=1 / 6$ we have

$$
\begin{align*}
& b_{21}=1 / 3, b_{31}=-1 / 3, b_{32}=1, b_{41}=-b_{42}=b_{43}=1 \tag{3.15}\\
& b_{51}=(444 t-409) b(t) / 3, b_{52}=5(42-29 t) b(t), b_{53}=7(14 t-9) b(t), \tag{3.16}\\
& b_{54}=-5 t b(t), \\
& 8 p_{1 t}=-9 t^{4}+24 t^{3}-22 t^{2}+8 t+p(t) / 7,8 p_{2 t}=27 t^{4}-60 t^{3}+36 t^{2}-p(t), \tag{3.17}\\
& 8 p_{3 t}=-27 t^{4}+48 t^{3}-18 t^{2}-3 p(t), 8 p_{4 t}=9 t^{4}-12 t^{3}+4 t^{2}+p(t) / 5 \\
& 35 p_{5 t}=16 p(t) \\
& y_{1}=y_{0}+h\left(k_{1}+3 k_{2}+3 k_{3}+4 k_{4}\right) / 8 \tag{3.18}\\
& e=h\left(-k_{1}+3 k_{2}-3 k_{3}-3 k_{4}+4 \tilde{k}\right) / 24
\end{align*}
$$

where

$$
\begin{equation*}
128(1+9 t) b(t)=7, p(t)=t^{2}(1-t)(1+9 t) \tag{3.19}
\end{equation*}
$$

Example 2. For the choice $a_{2}=2 / 5, a_{3}=3 / 5, a_{5}=14 / 25$ and $s_{5}=1 / 6$ we have

$$
\begin{align*}
& b_{21}=2 / 5, b_{31}=-3 / 20, b_{32}=3 / 4, b_{41}=19 / 44, b_{42}=-15 / 44, b_{43}=10 / 11, \tag{3.20}\\
& b_{51}=14(2471 t-2460) / 61875, b_{52}=14(1071-631 t) / 12375, \tag{3.21}\\
& b_{53}=98(23 t-12) / 12375, b_{54}=-154 t / 5625, \\
& 72 p_{1 t}=-75 t^{4}+200 t^{3}-186 t^{2}+72 t+33 p(t) / 7,72 p_{2 t}=375 t^{4}-800 t^{3} \tag{3.22}
\end{align*}
$$

$$
\begin{aligned}
& +450 t^{2}-165 p(t) / 2,72 p_{3 t}=-375 t^{4}+700 t^{3}-300 t^{2}-330 p(t) \\
& 72 p_{4 t}=75 t^{4}-100 t^{3}+36 t^{2}+6 p(t), \quad 112 p_{5 t}=625 p(t)
\end{aligned}
$$

$$
\begin{align*}
& y_{1}=y_{0}+h\left(11 k_{1}+25 k_{2}+25 k_{3}+11 k_{4}\right) / 72, \tag{3.23}\\
& e=h\left(-k_{1}+5 k_{2}-5 k_{3}-11 k_{4}+12 \widehat{k}\right) / 72,
\end{align*}
$$

$$
\begin{equation*}
B_{1}^{*}=1 / 75, B_{2}^{*}=B_{3}^{*}=1 / 15, B_{4}^{*}=-1 / 3 \tag{3.24}
\end{equation*}
$$

where

$$
p(t)=t^{2}(1-t)
$$

3.2. Case $\boldsymbol{q}=\mathbf{6}$

We impose the condition (2.16) and assume that $a_{i}(i=3,4,5,6,7)$ are all distinct. The condition $A_{i t}=B_{i t}=0(i=1,2,3,4)$ and $C_{j t}=0(j=1,2, \cdots, 8)$ yields

$$
\begin{align*}
& \sum_{i=1}^{7} p_{i t}=t, 2 \sum_{i=3}^{7} a_{i} p_{i t}=t^{2}, \sum_{i=4}^{7} M_{i 3} p_{i t}=r_{1}(t), \tag{3.25}\\
& \sum_{i=5}^{7} M_{i 4} p_{i t}=r_{2}(t), \sum_{i=6}^{7} M_{i 5} p_{i t}=r_{3}(t), \\
& M_{76} E_{6} p_{7 t}=r_{4}(t), M_{76} F_{6} p_{7 t}=r_{5}(t),\left(E_{5} P_{75}+E_{6} P_{76}\right) p_{7 t}=r_{6}(t), \tag{3.26}\\
& {\left[E_{5}+\left(a_{7}-a_{5}\right) E_{6}\right] M_{76} p_{7 t}=r_{9}(t),}
\end{align*}
$$

where

$$
\begin{align*}
& 6 r_{1}(t)=t^{2}\left(2 t-3 a_{3}\right), 12 r_{2}(t)=t^{2}\left(3 t^{2}-4 X t+6 Y\right), \tag{3.27}\\
& 60 r_{3}(t)=t^{2}\left(12 t^{3}-15 U t^{2}+20 V t-30 W\right), \\
& r_{4}(t)=t^{3}\left(t-2 a_{3}\right) / 12-E_{4} r_{2}(t)-E_{5} r_{3}(t), r_{5}(t)=r_{8}(t)-F_{5} r_{3}(t), \\
& r_{6}(t)=t^{4}\left(2 t-5 a_{3}\right) / 120-E_{4} r_{8}(t), 60 r_{8}(t)=t^{3}\left(3 t^{2}-5 X t+10 Y\right), \\
& r_{7}(t)=t^{3}\left[8 t^{2}-5\left(3 a_{3}+2 a_{5}\right) t+20 a_{3} a_{5}\right] / 120-\left[E_{4}+\left(a_{6}-a_{5}\right) E_{5}\right] r_{3}(t) .
\end{align*}
$$

The choice $t=1$ and $p_{71}=0$ leads to the condition

$$
\begin{align*}
& r_{8}(1)=F_{5} r_{3}(1), 2-5 a_{3}=120 E_{4} r_{8}(1), 1-2 a_{3}=12 E_{4} r_{2}(1)-12 E_{5} r_{3}(1) \tag{3.28}\\
& \left(a_{6}-1\right)\left[2 a_{4}\left(5 a_{3}^{2}-4 a_{3}+1\right)-a_{3}\right]=0 \tag{3.29}
\end{align*}
$$

Hence we choose $a_{6}=1$ and $a_{i}(i=3,4,5)$ so that $r_{3}(1) \neq 0$ and $r_{8}(1) \neq 0$. Then E_{4}, E_{5} and F_{5} are determined from (3.28).

Using (3.28), we have from (3.26)

$$
\begin{align*}
& E_{5} M_{76} p_{7 t}=p(t) q_{1}(t), G_{6} E_{5} M_{76} p_{7 t}=p(t) q_{2}(t), F_{6} M_{76} p_{7 t}=p(t) q_{3}(t) \tag{3.30}\\
& E_{6} M_{76} p_{7 t}=p(t) q_{4}(t)
\end{align*}
$$

where

$$
\begin{align*}
p(t)= & t^{2}(t-1), q_{i}(t)=P_{i} t^{2}+Q_{i} t+R_{i} \quad(i=1,2,3,4), \tag{3.31}\\
15 P_{1}= & 1-3 E_{4}+3\left(a_{7}-a_{6}\right) E_{5}, 24 Q_{1}=24 P_{1}-3 a_{3}-2 a_{7}+6 E_{4}\left(X+a_{7}\right) \\
& \quad-6\left(a_{7}-a_{6}\right) E_{5} U, \\
6 R_{1}= & 6 Q_{1}+a_{3} a_{7}-2 E_{4}\left(a_{7} X+Y\right)+2\left(a_{7}-a_{6}\right) E_{5} V, P_{2}=0, \\
60 Q_{2}= & 1-3 E_{4}, 24 R_{2}=24 Q_{2}-a_{3}+2 E_{4} X, 20 P_{3}=1-4 F_{5}, \\
12 Q_{3}= & 12 P_{3}-X+3 F_{5} U, 5 P_{4}=-E_{5}, 12 Q_{4}=12 P_{4}+1-3 E_{4}+3 E_{5} U, \\
6 R_{4}= & 6 Q_{4}-a_{3}+2 E_{4} X-2 E_{5} V, 6 R_{3}=6 Q_{3}+Y-2 F_{5} V .
\end{align*}
$$

Hence if we choose a_{3}, a_{4}, a_{5} and a_{7} so that

$$
\begin{equation*}
r_{3}(1) \neq 0, r_{8}(1) \neq 0, E_{5} \neq 0, q_{1}(t) \neq 0 \quad \text { for all } \quad t \geqq 0 \tag{3.32}
\end{equation*}
$$

then $p_{7 t}, G_{6}, F_{6}$ and E_{6} are determined from (3.30); $p_{i t}(i=1,3,4,5,6)$ are obtained from (3.25); $b_{i j}(j=4,5, \ldots, i-1 ; i=5,6,7)$ are determined from (2.21) and (2.22); $b_{i 3}(i$ $=4,5, \ldots, 7)$ are obtained from (2.19); $b_{j 2}(j=3,4, \ldots, 7)$ are determined from (2.16); $b_{k 1}(k=2,3, \ldots, 7)$ are obtained from (1.6).

Choosing $\tilde{A}_{i}=\widetilde{B}_{i}=0(i=1,2,3,4)$ and $s_{2}=0$, we have

$$
\begin{align*}
& 6 M_{65} E_{5} s_{6}=\left(6 M_{64} E_{4}+3 a_{3}-2\right) s_{7}, \sum_{i=5}^{6} M_{i 4} s_{i}+M_{64} s_{7}=0, \tag{3.33}\\
& \sum_{i=4}^{6} M_{i 3} s_{i}+\left(1-a_{3}\right) s_{7}=0, \sum_{i=3}^{6} a_{i} s_{i}+s_{7}=0, s_{1}+\sum_{i=3}^{7} s_{i}=0, \\
& \widetilde{C}_{1}=M_{65}\left(s_{6}+s_{7}\right), \widetilde{C}_{5}=3 \widetilde{C}_{6}=F_{5} M_{65} s_{6}+(3-4 X+6 Y) s_{7} / 12, \tag{3.34}\\
& 2 \widetilde{C}_{7}=\left(F_{5} M_{65}-2 M_{54} E_{4} b_{65}\right) s_{6}+\left(1-2 a_{4}+3 a_{3} a_{4}\right) s_{7} / 12, \\
& 24 \widetilde{C}_{8}= \\
& \quad 12\left[q-2 E_{4}-\left(a_{6}-a_{5}\right) E_{5}\right] M_{65} s_{6}+\left[7-12 X\left(1-a_{3}\right)-\right. \\
& \left.\quad 12 a_{5}\left(1-a_{3}\right)\left(1-a_{4}\right)-2\left(a_{4}-2 a_{3}-2 a_{5}\right)\left(2-3 a_{3}\right)\right] s_{7}, \tag{3.35}\\
& e=\left(h^{5} / 5!\right)\left[C_{1}^{*}\left(T^{4}+6 T S^{2}+4 T^{2} S+3 f_{y y} P\right)+C_{5}^{*}\left(f_{y} T^{3}+f_{y}^{2} T^{2}\right)\right. \\
& \left.\quad+C_{7}^{*} f_{y}^{3} T+C_{8}^{*} f_{y} T S\right]+O\left(h^{6}\right),
\end{align*}
$$

where

$$
\begin{equation*}
C_{1}^{*}=5 \tilde{C}_{1}, C_{5}^{*}=20 \tilde{C}_{5}, C_{7}^{*}=120 \tilde{C}_{7}, C_{8}^{*}=120 \tilde{C}_{8} \tag{3.36}
\end{equation*}
$$

Example 3. For the choice $a_{3}=1 / 4, a_{4}=1 / 2, a_{5}=3 / 4, a_{6}=1, a_{7}=19 / 44$ and $s_{7}=1 / 6$ we have

$$
\begin{align*}
& a_{2}=b_{21}=1 / 6, b_{31}=1 / 16, b_{32}=3 / 16, b_{41}=1 / 4, b_{42}=-3 / 4 \tag{3.37}\\
& b_{43}=1, b_{51}=3 / 16, b_{52}=b_{53}=0, b_{54}=9 / 16, b_{61}=-4 / 7, b_{62}=3 / 7, \\
& b_{63}=-b_{64}=12 / 7, b_{65}=8 / 7
\end{align*}
$$

$$
\begin{align*}
& 2 b_{71}=(231-623 t) b(t)+76893 / 117128,4 b_{72}=10395 t b(t) \tag{3.38}\\
&-917301 / 58564, \\
& b_{73}=\left(228 t^{2}-3059 t-255\right) b(t)+76456 / 14641, \\
& 4 b_{74}=-3\left(1088 t^{2}-1253 t+3\right) b(t)-37449 / 14641, \\
& b_{75}=\left(300 t^{2}-119 t-57\right) b(t)+304 / 14641, \\
& 4 b_{76}= 49(3-4 t) b(t), \\
& 90 p_{1 t}= 192 t^{5}-600 t^{4}+700 t^{3}-375 t^{2}+90 t-24 p(t) / 19, p_{2 t}=0, \tag{3.39}\\
& 45 p_{3 t}= 8 t^{2}\left(-48 t^{3}+135 t^{2}-130 t+45\right)+6 p(t), \\
& 15 p_{4 t}= 192 t^{5}-480 t^{4}+380 t^{3}-90 t^{2}+8 p(t), \\
& 45 p_{5 t}= 8 t^{2}\left(-48 t^{3}+105 t^{2}-70 t+15\right)-24 p(t) / 7, \\
& 90 p_{6 t}= 192 t^{5}-360 t^{4}+220 t^{3}-45 t^{2}+24 p(t) / 25, \\
& p_{7 t}=--29282 p(t) / 49875, \\
& y_{1}=y_{0}+h\left(7 k_{1}+32 k_{3}+12 k_{4}+32 k_{5}+7 k_{6}\right) / 90, \tag{3.40}\\
& e=h\left(-4 k_{1}+16 k_{3}-24 k_{4}+16 k_{5}-49 k_{6}+45 k\right) / 270, \\
& C_{1}^{*}=-1 / 144, C_{5}^{*}=-13 / 72, C_{7}^{*}=43 / 48, C_{8}^{*}=2 / 3, \tag{3.41}
\end{align*}
$$

where

$$
\begin{equation*}
14641\left(9+16 t^{2}\right) b(t)=475, p(t)=t^{2}(t-1)\left(9+16 t^{2}\right) . \tag{3.42}
\end{equation*}
$$

4. Numerical examples

The following six problems are solved by the methods in Examples 1, 2 and 3 with $h=1 / 2$.

Problem 1. $y^{\prime}=y, y(0)=1$.
Problem 2. $y^{\prime}=2 x y, y(0)=1$.
Problem 3. $y^{\prime}=-y^{2}, y(0)=1$.
Problem 4. $y^{\prime}=1-y^{2}, y(0)=0$.
Problem 5. $y^{\prime}=-5 y, y(0)=1$.
Problem 6. $y^{\prime}=y-2 x / y, y(0)=1$.
The errors $e_{t}=y_{t}-y\left(x_{t}\right)(t=1 / 2,1)$ are listed in Table 1.

Table 1.

Ex 	1		2		3	
	$e_{1 / 2}$	e_{1}	$e_{1 / 2}$	e_{1}	$e_{1 / 2}$	e_{1}
1	$-8.06 \mathrm{E}-4$	$-2.84 \mathrm{E}-4$	$-8.92 \mathrm{E}-5$	$-2.84 \mathrm{E}-4$	$5.08 \mathrm{E}-5$	$1.06 \mathrm{E}-6$
2	$-3.09 \mathrm{E}-4$	$6.97 \mathrm{E}-4$	$1.46 \mathrm{E}-4$	$3.49 \mathrm{E}-4$	$8.57 \mathrm{E}-6$	$4.88 \mathrm{E}-5$
3	$-5.21 \mathrm{E}-3$	$-1.63 \mathrm{E}-3$	$-1.09 \mathrm{E}-3$	$-5.80 \mathrm{E}-4$	$-3.53 \mathrm{E}-4$	$1.70 \mathrm{E}-5$
4	$-1.23 \mathrm{E}-4$	$1.51 \mathrm{E}-4$	$1.47 \mathrm{E}-5$	$-3.01 \mathrm{E}-5$	$8.07 \mathrm{E}-6$	$-1.52 \mathrm{E}-5$
5	$-1.72 \mathrm{E}-1$	$5.66 \mathrm{E}-1$	$2.75 \mathrm{E}-1$	$5.66 \mathrm{E}-1$	$-7.17 \mathrm{E}-1$	$1.34 \mathrm{E}-1$
6	$2.86 \mathrm{E}-4$	$2.83 \mathrm{E}-4$	$2.68 \mathrm{E}-4$	$7.88 \mathrm{E}-4$	$-3.80 \mathrm{E}-5$	$2.05 \mathrm{E}-5$

References

[1] M. K. Horn, Fourth- and fifth-order, scaled Runge-Kutta algorithms for treating dense output, SIAM J. Numer. Anal., 20 (1983), 558-568.
[2] H. Shintani, On scaled one-step methods, Hiroshima Math. J., 18 (1988), 113-126.

Department of Mathematics, Faculty of School Education,

Hiroshima University

