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1. Introduction

This paper is concerned with the Dirichlet problem for second order

quasilinear elliptic equations of the type

(1.1) -divΛ(x, Fu) + B{x, u9 Fu) = 0 in Ω ,

(1.2) u = g on<3ί2,

where Ω is either a bounded domain or an exterior domain in RN, A is a given

N-vector function of the variables x and Fu = (du/dxl9..., du/dxN), B is a given

scalar function of the variables x, u and Fu, and g is a function given on the

boundary δΩ of Ω. We allow the domain Ω to be the entire space RN, in

which case the boundary condition (1.2) is void. Equation (1.1) is allowed to

be degenerate so that the nonlinear pseudo-Laplacian equation

(1.3) - d i \ ( \ F u \ p ~ 2 F u ) + B ( x , u, Fu) = 0 i n Ω , p > l ,

is included as a special case of it. Our objective here is to develop the method

of supersolutions and subsolutions for constructing weak solutions of the prob-

lem (1.1)—(1.2) and for analyzing the structure of the set of weak solutions thus

constructed.

A systematic study of nonlinear elliptic boundary problems by means of

the supersolution-subsolution method was initiated by Nagumo [21], who

considered the semilinear equation

(1.4) - Π , = 1 α , ( x ) ^ + B(x, ii, Fu) = 0

in a bounded domain Ω and established an existence theorem asserting that

the problem (1.4)—(1.2) has a classical solution if suitable classical quasi-

supersolutions and quasi-subsolutions are known to exist. (By a quasi-super-

solution (quasi-subsolution) we mean a function which is expressed locally as

the minimum (maximum) of a finite number of supersolutions (subsolutions) of

the problem.) Nagumo's existence theory has been generalized and extended in

various directions. Among other things Akό [1] (see also Hirai and Akό [14])
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proved the existence of classical minimal and maximal solutions to the Dirichlet

problem for general uniformly elliptic quasilinear equations of the form

(1-5) -Σlj=iaij(x,u,Fu)^^ + B(x,u,Fu) = O in Ω

and showed moreover that, in case all the αi7 are independent of u and B is

nondecreasing in w, a Peano type theorem holds for the problem (1.5)—(1.2), that

is, the interval between the minimal and maximal solutions is filled with the set

of solutions contained between these two extremal solutions. Akό and Kusano

[2] applied the supersolution-subsolution method to find classical entire solu-

tions of equation (1.5), i.e. those solutions of (1.5) which are guaranteed to exist

throughout RN.

It was only recently that the supersolution-subsolution approach was at-

tempted to the solvability of nonlinear elliptic problems in the framework of

weak or generalized solutions; see e.g. Boccardo, Murat and Puel [3], Cac [5],

Hess [12, 13], and Deuel and Hess [6]. The papers [3,6, 12] deal with the

Dirichlet problem for equations of the form

(1.6) -d iv A(x, w, Vu) + B(x, u, Vu) = 0

in a bounded domain Ω and give sufficient conditions for the existence of a

weak solution between a weak supersolution and a weak subsolution. In case

A is independent of u and B is independent of Vu, Diaz [7] has established, by

means of the monotone method, the existence of weak maximal and minimal

solutions between weak super- and subsolutions (see also [13]). The Dirichlet

problem for (1.6) in unbounded domains is studied in the papers [5, 13], in each

of which it is shown that the existence of a weak solution in Wlp(Ω) of the

problem is implied by the existence of suitable weak super- and subsolutions in

Wlp{Ω).

A survey of the previous results sketched above raises the following

questions.

(1) Is it possible to develop an analogue of the Nagumo-Akό existence

theory for weak solutions of the problem (1.6)—(1.2)? More precisely, is it

possible to establish an existence theorem for (1.6)—(1.2) in terms of weak

quasi-supersolutions and quasi-subsolutions?

(2) Is it possible to prove for the problem (1.6)—(1.2) weak versions of

Akό's theorem on the existence of maximal and minimal solutions and a

Peano-Akό type theorem on the structure of the set of solutions?

The purpose of this paper is to make an attempt to answer the above

questions. Partial answers to these questions will be given for the problem

(1.1)-(1.2). In the case of bounded domains 12, we introduce three kinds of

weak quasi-supersolutions and quasi-subsolutions, called super- and subsolu-
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tions of class W, L or C, depending on the structure of equation (1.1), and show

that the existence of a quasi-subsolution φί and a quasi-supersolution φ2 of any

kind satisfying φγ < φ2 a.e. in Ω and φγ < g < φ2 a.e. on dΩ implies the

existence of a weak solution u of (1.1)—(1.2) such that φx < u < φ2 a.e. in Ω;

furthermore we show that when φί9 φ2 are of class W or L, the maximal and

minimal weak solutions of (1.1)—(1.2) are guaranteed to exist between φx and

φ2, and that the interval between these extremal solutions is filled with the set

of solutions of (1.1)—(1.2). In the case of unbounded domains Ω, we intend to

solve the problem (1.1)—(1.2) in the framework of Wt^
p(Ω); it is shown that all

the results for bounded domains can be carried over to the case where Ω

is either an exterior domain in RN or coincides with the entire space RN.

Examples illustrating our main results will be presented; in particular, sufficient

conditions will be given under which the equation (1.3) possesses bounded

positive weak solutions defined in the entire space RN.

Finally we refer to Tolksdorf [23], DiBenedetto [8] and Reshetnjak [22]

for the regularity of bounded weak solutions of equation (1.6) or (1.1).

2. Preliminaries

T h r o u g h o u t t h i s p a p e r a l l f u n c t i o n s a r e r e a l - v a l u e d . W e d e f i n e x y a n d

| x | b y X'y = Σ?=ίxiyi for x = ( x l 9 . . . , x N ) , y = (yl9..., yN)e R N , a n d | x | =

(χ χ) 1 / 2. Let N be the set of positive natural numbers. We put R+ = (0, oo)

and R+ = [0, oo). We let t+ = max (ί, 0) for t e R. Let p and q be fixed

constants satisfying 1 < p < oo and q = p/(p — 1). Let Ω be a bounded domain

or an exterior domain in RN (N > 1); the possibility Ω = RN is not excluded.

Let dΩ be the boundary of ίλ We assume that dΩ belongs to the class C 1 if

dΩ is not empty. Let Wlp(Ω) be the Sobolev space and W^P{Ω) be the

closure of CQ (Ω) in WltP(Ω). In the trace sense we write u = ( < , > ) v a.e. on

dΩ for functions u and v in WUp(Ω). The norms in LP(Ω) and WUp{Ω) are

defined by

NILP(Q) = ( MP dxj P , \\U\\W1.P{O) = Σ\β\<l U^llLP(β)

We shall use ||M||P = | |«| |p.β = ||W||LP(Ω) and ||u|| = ||M||^i.p(β) when there is no

ambiguity. Let W^P(Ω) be the set of all functions belonging to WUp(Ω0) for

all bounded subdomains Ωo of Ω with Ωo c Ω.

We assume in the boundary condition (1.2) that g e WlfP(Ω) is a given

function. In the equation (1.1) we assume that the functions A: Ω x RN -• RN,

A(x, ξ) = (A^x, ξ)9..., AN(x, ξ)\ and B: Ω x R x RN -> R satisfy the Cara-

thέodory condition, that is, each A^x, ξ) is measurable in xe Ω for every fixed

ξ e RN and continuous in ξ e RN for almost every fixed x e Ω, and B{x, ί, ξ) is
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measurable in x e Ω for every fixed (ί, ξ) e R x RN and continuous in (ί, ξ) e
R x RN for almost every fixed x G Ω. Furthermore we assume that the func-
tion A satisfies the following conditions:

( H J \At(x9 ξ)\ < 1/oWI + k o W N ί r 1 , i = 1, ..., N ,

for a.e. x e Ω, v£ G 7?̂ , where /0 is a measurable function in ί2 and c0 e
L £ C ( / ? " ) ;

(H2) (Λ(x,£)-Λ(x, £'))•«-{')>()

for a.e. x e β / ^ ' e ^ with ξ Φ ξ';

(H3) A(x, ξ)-ξ> φ)\ξ\p - IΛWIIξΓ1 - |/2(x)|,

for a.e. x e Ώ, v ξ e RN, where α: i?N ->>/?+ is a continuous function and /i and
/2 are measurable functions in Ω.

For simplicity, it is assumed in (Hx) and (H3) that c0 and α are defined on
RN. Typical conditions to be imposed on the functions fθ9 fί9 f2 are as follows:

(H4) /o e U(Ω), Λ G L'(ί2), /2 G L1 (fl)

(H5) /0 G LL(/?N), h e LL(/?N), /2 6 L U * N )

(H6) f09fuf2eLroc(RN).

Here we state four lemmas which will be used in the later sections.

LEMMA 2.1. Let Ω be a bounded open set in RN. Suppose that (HJ, (H2),
(H3) and (H4) hold. Let {un}neN be a sequence in Wlp(Ω) and u e Wlp(Ω) such
that

un^u weakly in WίtP(Ω),

un^>u strongly in LP{Ω).

{A(x, Vun) - A(x, Vu)) (Fun -Fu)dx-+0 asn-+oo ,
Ω

then un converges strongly to u in Wlp(Ω).

LEMMA 2.2. Let Ω be a measurable set in RN and let me N and 1 < pt < oo

(i = 0 , . . . , m) be constants. Assume that a function f:Ωx Rm —• R satisfies the

Carathέodory condition and f(x, u^x),..., um(x)) e LPo(Ω) if u{ e LPi(Ω) (i =

1,. . . , m). Then F: LP*(Ω) x x LP-»(Ω) -+ LP°(Ω), F(uu . . . , ι ι j ( χ ) = /(x, ux(x)9

..., um(x)), is continuous in the strong topology.
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LEMMA 2.3. Let Ω be a bounded open set in RN (N > 2). Suppose that At

and B satisfy the conditions

\A{x9 ξ)\(l + \ξ\) + \B(x91, ξ)\ < μ(\t\)(l + \ξ\Y,

A(x9ξ)'ξ>v\ξ\'-μ(0),

for a.e. x e Ω, v (t, ξ) e R x RN, where μ: R+ -> R+ is a nondecreasing function

and v is a positive constant. If u is a bounded solution of (1.1) with WUW^.Q <

M then u e Cγ(Ω) and

\\u\\Cy(Ωo) < C

for any subdomain Ωo a a Ω, where 0 < γ < 1, γ = y(N, p, M, v, μ(M)) and C =

C(y, dist (ΩOi dΩ)) are positive constants.

Lemma 2.1 is proved in [4, p. 13, Lemma 3]. The proof of Lemma 2.2 is

given in [17, p. 22, Theorem 2.1]. Lemma 2.3 is due to Ladyzhenskaya and

Ural'tseva [19, p. 251, Theorem 1.1].

We shall employ the theory of monotone operators. Let V be a real

reflexive Banach space and V* be its dual space. A map F: V-+ V* is called

pseudo-monotone if F satisfies the following conditions:

(i) F is a bounded map;

(ii) if ui9 u e V, ut^u weakly in V and lim s u p ^ ^ <i7(ni), ut — u) < 0 then

lim inff-oo <F(Mf), ux — ι?> > <F(w), u — v} for all i; e V.

Let t? G ^^^(fl) be given. Let Λt(x9 ξ) = At{x, ξ + Vv(x)\ i = 1, . . ., AT, for

a.e. xeΩ, *ξeRN. Put Λ(x9 ξ) = (Λx(x9 ξ)9..., AN(x, ξ)). Then Λt (i = 1, . . . ,

JV) satisfy the Caratheodory condition (see [24, p. 152, Theorem 18.3]). It

follows from (Hx), (H2) and (H3) that for a.e. x e Ω, v ξ e RN

\Λi(x, ξ)\ < 1/oMI + \co(x)\\ξ + ^ ( x ) ! ' " 1

where /0(x) = |/0(x)| + 2^ |c 0 W||P W (x)r- 1 e L«(ί2), and that

Λ(x9 ξ) ξ = A{x,ξ + Vv{x))-(ξ + Vv{x)) - A(x, ξ) Vυ(x)

> 2-pφ)\ξ\p - iM Λ

where /x(x) = 2*(|/1(x)| + N | c o ( x ) | | F φ ) | ) G U{Ω) and /2(x) = α(x)|Fi?(x)|1'+

2 p | / 1 (x) | |F ι ; (x)r 1 + |/2(x)| + N|/ 0(x)| |Fι;(x)| e L 1 ^ ) . Consequently, we can

assume that ^"satisfies (Hx), (H2) and (H3).

Let B: Ω x R x RN -+ R satisfy the Caratheodory condition and the follow-

ing condition:
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B(x,u09ul9...9uN)eLr°{Ω) for all ut e LP(Ω), i = 0, 1, . . ., JV ,

where 1 < p0 < oo is a constant. For φh ψt e WltP(Ω) with φt < 0 < ^ f a.e. in

Ω, ί = 1, 2, we define 7J(x, ί) by

i f ί < φ i ( x )

J(x, t ) = i t if %(x) < ί <

for a.e. x e Ω, v ί e /?. We see that for ϋ e W l p (Ω)

^ in {v < ψi}

(2.1) rTi(Ό)= { Vv i n { φ ί < t ; < ^ }

^ in {φi< v}

where (7J(t;))(x) = 7J(x, i;(x)). We also define the maps Fί9 F29 G: Wlp(Ω)

LP°(Ω) by

Ft(u)(x) = B(x9 7ϊ(iι)(x), Γ7ϊ(ιι)(x)), i = 1, 2 ,

G(ιι)(x) = I ^ M M - F2(ιι)(x)| sgn u(x),

where (7](w))(x) = 7̂ (x, w(x)). The following lemma holds.

LEMMA 2.4. The maps Fί9 F29 G: WUp(Ω) -+LPo(Ω) are continuous in the

strong topology.

PROOF. Since Ί\(u) = φ{ + (u - φt)
+ - {u - φi)+ for u e ί/(Ω), i = 1, 2, it

follows from Lemmas 3.1 and 3.2 in [19, pp. 50-51] that 7]: ί/(Ω) -> LP(Ω) and

7J: W^liP(Ω)-> WlfJ>(Ω) are continuous in the strong topology. Lemma 2.2

implies that Ft: WUp(Ω) -+LPo(Ω) (i = 1,2) are continuous in the strong topol-

ogy. We shall show the continuity of G. Let wπ, ue WlfP(Ω) and un^u

strongly in Wlp{Ω). Put

β ^ = {x 6 Ω : wπ(x) > 0 and u(x) > 0},

Ωί,2) = {x e Ω: un(x) > 0 and M(X) < 0},

Ω<,3) = {x e Ω : un(x) < 0 and M(X) > 0} ,

Ω^4) = {x G Ω: wπ(x) < 0 and u(x) < 0} .

It follows from Lemma 3.1 in [19, p. 50] that i f N(Ω(

n

2) u Ω{

n

3)) -• 0 as n ^ o o ,

where $£N is the Lebesgue measure in RN. Since Ω = (Jf=1 Ωj,ι) for all n e N we

have

\\G(uH) - G(u)\ζ°o;Ω < \\G(un) - G(M) | |*° ; Ω,,, u Ω, 4, + 2"o\\Fl(un) - F 2 (u n ) 1 1 ^ , ^ , 3 ,



Weak supersolution-subsolution method

||Fi(Mn) - F2(un)\\PoiΩl2)uΩl3) < H F ^ M J - F^u) + F2{u) - F2(un)\\Po;Ωa^Ω^

+ IIF^M) - F2(w)||Po;β<2)uβ<3>.

Put

E{

n

1]
 = {XEΩ: un{x) > 0 and u(x) > 0} ,

E(

n

2)
 = {XEΩ: un(x) > 0 and κ(x) = 0},

E{

n

3) = {x E Ω : κn(x) = 0 and κ(x) > 0} .

From (2.1) we have F^u) = F2{u) in E(

n

2) and F ^ u J = F2(un) in F<,3). Hence

||G(Mn) - G(ιι)||Poϊflα, < HFiίiiJ - F^M) + F2(u) - F2{un)\\Po-^E^Eγ

< \\Fx(un) - Fx(u) + F2(u) - F 2 ( W J | | P o ; β .

Similarly, we obtain

\\G(uH) -

Consequently, \\G(un) - G(u)\\Po;Ω^>0 as n^> oo, which implies that G: W1>p(i2)

-> LPo(Ω) is continuous in the strong topology. This completes the proof of

Lemma 2.4.

3. Equations in bounded domains

Throughout this section we assume that Ω is bounded and that the

conditions (H 1 )-(H 4 ) are satisfied for (1.1). Let α 0 = inf {α(x): x e Ω) and d =

Ikolloo βj where oc(x) and co(x) are functions appearing in (H x) and (H3). Note

that α0 > 0 since α is a positive continuous function on RN.

DEFINITION 1. A function u is said to be a solution (subsolution, super-

solution) of equation (1.1) in Ω if u e Wlp(Ω), B(x, w, Vu) e L\0C{Ω) and

(3.1)
JΩ

for all φ e C£(Ω) with φ > 0 in Ω.

DEFINITION 2. A function u is said to be a VF-subsolution (L-subsolution,

C-subsolution) of equation (1.1) in Ω if u = max {ut: ί = 1,..., m} a.e. in Ω for

some meN, where each u x is a subsolution of (1.1) in Ω and uieW1'p(Ω)

(uieWUp(Ω)nLΰO(ΩluieC0Λ(Ω)). Here C0Λ{Ω) is the space of Lipschitz
continuous functions in Ω.

A function u is said to be a W-supersolution (L-supersolution, C-supersolu-

tion) of equation (1.1) in Ω if u = min {wf: i — l , . . . ,m} a.e. in Ω for some
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m e TV, where each u{ is a supersolution of (1.1) in Ω and u{ e Wlp(Ω) (ut e

^ • ' ( β ) n L°°(ί2), ut e C01(Ω)).

The notion of W, L, C-subsolutions (-supersolutions) is not a complete

weak version of Nagumo's quasi-subsolutions (-supersolutions). However, these

are sufficient for the existence of weak minimal and maximal solutions and for

the formulation of Peano-Akό type theorems. We shall use W, L, C-subsolu-

tions (-supersolutions) depending on the conditions of B(x, u, Vu\ which influ-

ence technically the restriction on test functions φ in (3.1).

It follows from the definition that if u1 and u2 are W-subsolutions (L-

subsolutions, C-subsolutions) of (1.1), then max(w1?w2) is a W-subsolution (L-

subsolution, C-subsolution) of (1.1), and that if uί and u2 are W-supersolutions

(L-supersolutions, C-supersolutions) of (1.1), then min (ul9u2) is a W-supersolu-

tion (L-supersolution, C-supersolution) of (1.1). It is not known in general

whether W, L, C-subsolutions (-supersolutions) of (1.1) are subsolutions (super-

solutions) of (1.1). However, in the following situation, we can prove that an

L-subsolution (-supersolution) of (1.1) is indeed a subsolution (supersolution) of

(1.1).

PROPOSITION 1. Let equation (1 A) be of the form

(3.2) -div A(x, Vu) + B(x, u) = 0 in Ω .

Assume that B(x, u) is nondecreasing with respect to u e R for almost every fixed

x G Ω and satisfies the following condition:

(3.3) \B(x,t)\<\f3(x)\ + h(\t\) fora.e.xeΩ, v t e R,

where f3 e Lq(Ω) and h: R+ -• R+ is a nondecreasing function. If u is an L-

subsolution (L-supersolution) of (3.2), then u is a subsolution (supersolution) of (3.2).

We give the proof of Proposition 1 in the last part of this section.

3.1. ίF-subsolutions and ^-supersolutions

THEOREM 3.1. Let φx and φ2 be respectively a W-subsolutίon and a W~

supersolution of (1.1) in Ω such that φ1 < φ2 a.e. in Ω and φλ < g < φ2 a.e. on

dΩ. Suppose that there exist a positive constant cx and a function / 3 e Lq(Ω)

such that

(3.4) \B{x, ί, ξ)\ < | / 3 W|

for a.e. x e Ω, v (ί, ξ) e R x RN, where h: R+ —> R+ is a nondecreasing function

such that h(\φ\) e Lq(Ω) for φ e W(Ω). Then the problem (1.1)—(1.2) has a solu-

tion u such that φx<u<φ2 a.e. in Ω.
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PROOF. The functions φί and φ2 are of the form

(3.5) φγ = max {i/̂  : i = 1,..., m}, φ2 = min {ι/̂  : ι = 1,..., n}

a.e. in Ω, where ^ and φ t are respectively subsolutions and supersolutions of

(1.1) in Ω. By adding the same functions to {ι/̂  } or {ι/fj, we can assume that

m = n. By taking φx + (g — φ j + — (g — φ 2 ) + instead of g, without loss of

generality, we can assume that φx < g < φ2 a.e. in Ω. Let A(x, ξ) = A(x,

ξ + Vg{x)) a n d B(x,t,ξ) = B(x,t + g(x\ξ + Fg(x)) for a.e. x e Ω, v {t,ξ)e

R x RN. Then we can assume that A satisfies (HJ, (H2), (H 3) and (H4). Let
ui = Φi~ 9 a n d vi = Φi "" ̂  0; =

 1J 5 m ) a n d l e t wo = m a x (wΐ: ι = 1> j m} a n d
y0 = min {ι;f: i = 1,..., m}. We note that u0 = φx — g < 0 < v0 = φ2 — g a.e. in
Ω and that u{ and vt (i = 1,..., m) are respectively subsolutions and supersolu-
tions of the equation

(3.6) -div A{x, Vu) + 5(x, u, Vu) = 0 in Ω

Therefore u0 and v0 are respectively a FF-subsolution and a W-supersolution of

(3.6) in Ω. For i e {0,..., m}, a.e. x e Ω, v ί e /? we define

i f ί < u ί ( x )

7J(x, ί) = J t if u,(x) < ί < υt(x),

[
and

h(x9 t) = \t- Γ0(x, ί ) ^ " 1 sgn (ί - T0(x, ί)).

The functions 7](x, ί) and h(x, t) satisfy the Caratheodory condition. Consider

the function 5(x, 7](w), VT^u)) where 7](M)(X) = 7](x, w(x)) (cf. (2.1)). Put w =

max {IMJI + 1̂ 1: ί = 1,...., m}. From (2.1) and (3.4) we have for u e Wlp(Ω)

\B(x, Tt(u\ rτt(u))\ < |/3(x)| + h(w + 1̂ 1) + cx |F7Ϊ(M) + F^r"1

<|/4(x)| + 2^ 1 |Pwr 1 ,

where

ΛW = 1/aWI + Λ(w(x) + |flf(x)|)

We also have for a.e. xe Ω9* te R

\h(x, t)\ < (\uo(x)\ + |i;0(x)l + l ί i r 1 < 1/sWI + 2 ' l t Γ 1

where f5(x) = 2p(\u0(x)\ + boWl)'1"1- Consequently, the following estimates

hold:
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(3.7) \B(x9 7J(iι), FT\(u))\ < |/4(x)| + I'c^VuΓ1 , i = 0, 1, . . ., m,

for v u e WUp(Ω\ a.e. x e β , where / 4 e L«(ί2),

(3.8) |Λ(x,ί)l^l/ 5WI

for a.e. x e Ω, v t e R, where f5eLq(Ω). For / e {0, 1,. . . , m} we define 5 ί 5

Bt: Wlp(Ω)^Lq(Ω)by

(BtiuHx) = B(x, 7J(iι)(x), P7J(iι)(x))
1 j U ( " ) M |5(«)(x) 5(«)WI sgn ιι(x).

We consider the following problem

' - d i v /ί(x, Ft;) + 50(ι;) + ̂ Γ=i B^v) + )8ft(x, Γ) = 0 in Ω

where β = 4pip+1)(2m + l)pcfαέ"p + 1. Theorem 3.1 is proved if the following

two lemmas are proved.

LEMMA 3.1. // VEWQIP(Ω) is a solution of (3.10) then u = υ + g is a

solution of (1.1)—(1.2) such that φι < u < φ2 a.e. in Ω.

LEMMA 3.2. There exists a solution v e W0

Up(Ω) of (3.10).

PROOF OF LEMMA 3.1. Since (v - vt)
+ e W0

Up(Ω) (i = 1,..., m) and Λ(x, v) =

\v — ι?olp~1 in {v > vt}9 we have from (2.1)

lA(x, Vυ)'V{v - vt) + (υ- Ot){B(x9 v0, Fv0)
Jv>Vi

On the other hand, since vt is a supersolution of (3.6), we obtain

I {A(x, Pυt)• P(v - υt) + B(x, v,, Vυt)(υ - ι>,)} dx > 0
J V>Vi

and hence, by (H2),

0 < (^(x, Vv) - A{x, Fvt))' F(v - vt) dx

< (v- Ot){B(x9 vh Fυt) - B(x9 v09 Fv0) - |5(x, υi9 Fυt) - B(x, υθ9 Fυo)\
J v>v,

Therefore we have
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0 = ί (v-Vi)\v- VoΓ1 dx > ί |(» - V i )
+ \ p dx ,

Jv>Vi JΩ

which shows that v < vt a.e. in Ω and hence v < v0 a.e. in Ω. Similarly, we

obtain u0 < v a.e. in Ω. Consequently, υ is a solution of (3.6), so that u = v + g

is a solution of (1.1)—(1.2). This proves the assertion of Lemma 3.1.

PROOF OF LEMMA 3.2. Let V = Wj'p(Ω) and V* be its dual space. For u,

v e V we define

{a^u), v) = A{x, Vu)-Fvdx,
JΩ

(a2(u), v) = f {B0(u) + Σ?=i Bι(») + βHx, u)}v dx .
J

It follows from (HJ, (H4), (3.7) and (3.8) that al9a2:V->V* are bounded maps.

We define F.V-+V* by F(u) = a^u) 4- a2(u). We shall show that F is pseudo-

monotone. Let uh ue V, Ui-+u weakly in V and lim s u p ^ ^ <F(wf), wf — u) < 0.

Then {Ui}ieN is bounded in K and wt -> w strongly in LP(Ω). By (3.7), (3.8) and

Holder's inequality we have

|<α2(Mί), ut - u}\ < \\ut - fi||p{||So(Ki)ll« + ΣΓ=i IIBι(«i)ll

+ ^(ll/5ll, + 2 p | | t / ί . | | ^ 1 )}->0 a s i - ^ o o .

From ( H 2 ) we obtain

so that

( i 7 ^ ) , «i - w> -> 0 as / -• oo ,

which implies

<α1(wI ), Ui — u) -> 0 as Ϊ -• oo .

Consequently we have

(aAui) — fli(w)» uf — M> -> 0 as i -* oo .

By Lemma 2.1 we have ux-+u strongly in V, so that, by Lemmas 2.2 and 2.4,

for all v e V

Ui) - ax{u\ u - υ) -> 0 , <α2(wI ) - α2(u), w - v} -• 0 ,

and thus

<F(iιί), «i - i?> = <F(u,), iii - w> + <F(Mί) - F(u\ u - v} + <F(ιι), u - P>

(M), U — VS) as ί -• oo ,
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which implies that F is pseudo-monotone. From (H 3) and (3.7) we have for

ue V

u), u> > α01|Fu||£ - ||Λ U P u ^ " 1 - WfJ,

- (2m + 1) | | W | | ,( | |/ 4 | | , + 2>cx \\Fu\\'-1) + 2^β\\uVp

and so, by the definition of /?,

u), u> > 2-p{α0 | |Pw||* - (2m + 1 ) 4 ^ HwllpllFwIIΓ1 + j8||ιι||5}

> 2-*- 1(α 0 | |FW | |£ + ||u||;) + o(| |W | |p) as ||u|| - , oo .

Hence

(3.11) ^ ^ ( ^ ^ ^ o o as | | u | | - . o o .

From Theorem 2.7 in [20, p. 180] there exists a solution v e V of

<F(ι?), φ> = 0 for all φ e V ,

implying that D is a solution of (3.10). This completes the proof of

Lemma 3.2.

An essential device in the above proof is to consider the equation (3.10).

By using Theorem 3.1 we prove the existence of minimal and maximal solutions

of (1.1)—(1.2) between W-subsolutions and W-supersolutions and establish a

Peano-Akό type theorem. We employ the techniques of Hirai and Akό [14]

and Akό [1].

LEMMA 3.3. Let the hypotheses of Theorem 3.1 hold. If u is a solution of

(1.1)—(1.2) such that φx < u < φ2 a.e. in Ω, then we have the estimate

Nlnri.P(fl) < C,

where C is a constant independent of u.

PROOF. We can assume that φί < g < φ2 a.e. in Ω. Since u — g e WQ'P(Ω)

we have

ί {A(x, Vu) - V{μ -g) + B(x, u, Vu){u - g)} dx = 0 .
Ω

From (HJ, (H3) and (H 4) we can estimate
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α0 \Fu\"dx<\ {lAWPu]"-1+ \f2\+N\Fg\(\f0\+d\Fu\"-1)
JΩ JΩ

+ I" - 0KI/3I + Λ(l<Pil + \ΨI\) + C J P M Γ " 1 ) } dx

[I/2I + N\Fg\\fo\ + ( | φ i | + |φ 2 | )( |/ 3 | + h(\Vl\ + \φ2\)} dx

+ {l/il
JΩ

We have for ε > 0

< β"p(l/il + Nd\Vg\ + Cl(\φi\

The conclusion of Lemma 3.3 follows by choosing ε such that εq = αo/2.

THEOREM 3.2. Lei the hypotheses of Theorem 3.1 hold. Suppose that / 0 ,

f3eU(Ω)nLZe(Ω)9 fx e IS(Ω) n L&iΩ) and f2e Lι{Ω)nL%c{Ω) in (H 4) and

(3.4). Moreover, suppose that φl9 φ2e Lfoc(Ω). Then the problem (1.1)—(1.2) has

a minimal solution u and a maximal solution ΰ such that φ1 <u<ΰ<φ2 a.e. in

Ω in the sense that if ue Wlp(Ω) is any solution of (1.1)—(1.2) with φγ < u < φ2

a.e. in Ω, then u<u<ΰ a.e. in Ω.

PROOF. Put

(3.12) y = {u: u is a solution of (1.1)—(1.2) with φί<u<φ2 a.e. in Ω) .

By Theorem 3.1 we see that Sf Φ 0. It follows from Lemma 2.3 that for any

subdomain Ωo a c Ω there exists β e (0, 1) such that the restriction of £f on Ωo

is bounded in Cβ(Ω0). We define the functions u and ΰ by

(3.13) u(x) = inf {u(x): u e ^} , ΰ{x) = sup {u(x): we^},

for x G Ω. Then we see that u, ue C(Ω). We shall show that w, ϋ e ^ . Let

{χί}ieN be the set of all rational points of Ω and for ieN let {ι^ι)}Meiv be a

sequence in £f such that l im^^ v^ix1) = w(x')- P u t ui = ̂ ί υ a n < l ^2 = m a x (Mi>

^i1^ y22)) Then λ2 is a PF-subsolution of (1.1) in Ω with φ1 < λ2 < φ2 a.e. in β

and λ2 = g a.e. on dΩ. From Theorem 3.1 we see that there exists u2 e 9* such

that λ2 <u2 < φ2 a.e. in Ω. Inductively we can choose a nondecreasing

sequence {«π}π e iv c^ ? s u c h that for n > 2, Aπ < MΠ < φ x a.e. in Ω, where 2Π =

max («„_!, ^ υ , . . . , ^ π ) ) . Let w(x) = lim,,^^ urt(x) for x e Ω. By virtue of Ascoli-

Arzela's Theorem, we see that un converges to u uniformly on any compact

subsets of Ω and hence u e C(Ω). Since y<°(xι) < K(xι) ^ un(χi) ^ "(^0 for

n > U we have u(xl) = ΰ(x() for all i e N. Therefore u = ΰ in Ω.

By Lemma 3.3 we see that un is bounded in Wίp(Ω) and hence we can

extract a subsequence, still denoted by wn, such that
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un-+u weakly in WUp{Ω) 9

un^>u strongly in LP(Ω).

Since u = g a.e. on dΩ, we obtain un — u e WQ%P(Ω) and hence

ί (A(x, Vun) - A(x, Vu))'V{un - u) dx = - f A(x, Vu)-V{un - u) dx
JΩ JΩ

- B(x, uH9 Vun){un - II) dx .
JΩ

The first term on the right hand side of the above equality tends to zero as

n -• oo since un converges to u weakly in WltP(Ω). From (3.4) we obtain

JΩ
\B(x9uH9run){uH-u)\dx

< \\un - u\\p{\\f3\\q + ||Λ(|Φil + IΦ2DH, + c J I P i i J i ; - 1 } - 0 as n^ oo .

Therefore we have

(A(x9 Vun) - A(x9 Vu)) - V(un -u)dx^>0 as n -• oo .
Ω

Hence, by Lemmas 2.1 and 2.2, we obtain

A(x9 Vun) -• A(x9 Vu), B(x9 un9 Vun) -> β(x, w, Pw) strongly in Lq(Ω),

which proves that u = ΰ e Sf. Similarly we have ue^. This completes the

proof of Theorem 3.2.

Under the assumptions of Theorem 3.2, we denote by £f the set defined by

(3.12). By virtue of Lemma 2.3, we see that £f a C(Ω). We can derive the

following Peano-Akό type theorem for the problem (1.1)—(1.2).

THEOREM 3.3. Let the hypotheses of Theorem 3.2 hold. Suppose that φί9

φ2 6 L°°(Ω). Moreover, suppose that B(x, ί, ξ) is nondecreasing with respect to

t 6 [<Pi(x), Φ 2( χ)] for almost every fixed xeΩ and every fixed ξ e RN. Then we

have for every x0 e Ω

{u(x0) \ueSf) = [u(xo)9 M(X 0)] ,

where u and ΰ are, respectively, the minimal solution and the maximal solution of

(1.1)—(1.2) between φγ and φ2.

PROOF. It follows from Theorem 3.2 that

&? = {ue<¥:u<u<ΰ a.e. in Ω}.
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Hence we have

{u(x0) \ue^} c [u(x0), ΰ(x0)] .

To prove Theorem 3.3 it suffices to derive a contradiction from the assumption

that there exists uoe R such that u(x0) < u0 < ΰ(x0) and u0 φ {u(x0): u e Sf}.

We denote by Γ(x, t) the truncated function

Γφ^x) i f ί < φ 1 ( x )

T(x,t)=γ if φ^x) < t < φ2(x)

{φ2(x) iϊφ2(x)<t

for a.e. x e Ω, v ί e R. We set £(x, ί, ξ) = B(x, Γ(x, ί), ξ). From (3.4) we have

\B(x, ί, ί ) | < |/3(x)| + h{\φi(x)\ + |φ2(x)|) + cx \ξΓx

for a.e. x e Ω, v (ί, £) e R x 7? .̂ We consider the equation

(3.14) -div A(x, Vu) + B(x, u, Vu) = 0 in Ω .

Let ut = u, Vx =ΰ and dx = Hî  — wx H .̂ Since 5(x, ί, ξ) is nondecreasing with

respect to t e /?, we have for all non-negative functions φ e CQ(Ω)

{A(x, F(Ul 4- dJ2))'Vφ + 5(x, M l + dJX V{ux +

Jβ

Hence ux -\- dxβ is 3. supersolution of (3.14). It is easy to see that any u e £f is

a solution of (3.14) in Ω and hence I x = min (u1 + dι/2, vx) is a py-supersolution

of (3.14) in Ω. Similarly, v1 — dί/2 is a subsolution of (3.14) in Ω and λγ =

max (w1? i?! — d1/2) is a VF-subsolution of (3.14) in Ω. Since λx < 1^ in ί2 and

Xχ = g = JX a.e. on 5ί2, it follows from Theorem 3.1 that there exists a solution

u of the problem (3.14)—(1.2) such that λλ < u < λx in ί2. Hence, we have

ux < u < u1 + ^i/2 , υγ — di/2 < w < υγ in β .

Therefore, w e £f. By our assumption we see that u(x0) Φ u0. Let u2 = uί9

v2 = u if w(x0) > ^0 a n d let w2 = u, v2 = fi if w(x0) < w0. Then we have ux <

u2<v2<v1 in ί2, w2(xo)<Wo<^2(^oX 11̂2 — W2H00 ^ l A Put d2 = | |ϋ2 - i ^ L

Proceeding as above, there exist w3, D 3 6 ^ such that u2 < u3 < v3 < u2 in Ω,

u3(x0) < u0 < v3(x0\ \\v3 — u3\\o0 < d2β < 2~2 dx. By an inductive process we

can construct sequences {un}neN and {vn}neN of Sf such that for n e N9 un<

un+1 < vn+1 < vn in Ω, un(x0) < u0 < vn(x0\ \\υn - wJU < 2 1 "" d x. Let M*(X) =

lim,,^^ un{x) for xeΩ. Then, w*(x0) = w0. From Lemma 2.3 it follows that un
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converges to w* uniformly on any compact subsets of Ω. By an argument

similar to that of Theorem 3.2, we obtain w* e y , which contradicts w*(x0) = wo

This completes the proof of Theorem 3.3.

3.2. L-subsolutions and L-supersolutions

THEOREM 3.4. Let φ1 and φ2 be respectively an L-subsolution and an L-

supersolution of (1.1) in Ω such that φt < φ2 a.e. in Ω and φλ < g < φ2 a.e. on

dΩ. Suppose that there exist a constant ε e (0, 1] and a function / 3 e Lι(Ω) such

that

(3.15) \B(x,t,ξ)\<h(\t\)(\f3(x)\ + \ξΓε)

for a.e. x e Ω9

 v (ί, ξ) e R x RN, where h: R+ -• R+ is a nondecreasing function.

Then the problem (1.1)—(1.2) has a solution u such that φt < u < φ2 a.e. in Ω.

PROOF. This result follows from an argument similar to that of [12]. We

give a proof for the sake of completeness. Without loss of generality we can

assume that φγ < g < φ2 a.e. in Ω and that φx and φ2 are of the form (3.5) with

n = m. Let Afc, ξ) (i = 1,..., N), 7](x, t\ uh υt (I = 0, 1,..., m), B(x, t, ξ) and

h(x, t) be as in the proof of Theorem 3.1. To prove Theorem 3.4 it suffices to

solve the problem

f-div A(x, Vu) + B{x, w, Vu) = 0 in Ω , u0 < u < v0 in Ω ,(316) 1
Since ux and vιeU°(Ω) (I = 1, ...,m) are respectively subsolutions and super-

solutions of (3.16) in ί2, u0 and v0 are respectively an L-subsolution and an

L-supersolution of (3.16) in Ω. Put

M = 1 + WφAoo + IIΦ2IIoo + ΣΓ=i (llwilloo + Halloo)

By a calculation similar to that of (3.7) and (3.8), we have

(3.17) |5(x, 7 M F7Ϊ(M))| < |/4(x)| + 2ph(M)\FuΓ>,

/ = 0, 1, ..., m, for v u e Wlp(Ω\ a.e. x e Ω, where / 4 e L x(β),

(3.18) \h(x, t)\ < 2p{Mp-1 + {tl"'1) for a.e. x e Ω, v t e R .

We define M# by w* = min {w,: / = 1,..., m} and υ* = max {^ / = 1,..., m}.

Put

X = {φ G K: u^ - 1 < φ < v* + 1 a.e. in Ω)

where K = W^lp(ί2). Then K is a closed convex subset of V. Let Bh B{. V->

Lι(Ω) (/ = 0, 1,..., m) be the maps defined by (3.9). For w, t? e K we define α l 9
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α2 and a3 by

<fl1(u), v} = λ(x9 8M) -rvdx, (a2{u\ v) = h(x9 u)v dx ,
JΩ JΩ

<α3(u), v) = ί {B0(u) + ΣΓ=i Bι(u)}v dx .

We note that al9 a2:V-+ V*. We also define F: V-* V* by F(u) = ax(u) +

a2(u). We consider the variational inequality

(3.19) <F(κ), φ - w> + <α3(w), φ - u) > 0 for v φ e K .

Theorem 3.4 is proved if the following two lemmas are proved.

LEMMA 3.4. If u e K is a solution of (3.19) then u is a solution of (3.16).

LEMMA 3.5. There exists a solution ue K of (3.19).

PROOF OF LEMMA 3.4. We note that u — min (u, ft) = {u — Vι)+ and

max (w, Uι) — u = (uι — u)+ for 1 <i <m. Since min (u, vt)9 max (u, uf) G X we

have from (3.19)

), (II - I7f)
+> + <fl3(«), (« ~ Vt)

+> < 0 ,

(iι), (ut -u)+} + <α3(ιι), (Mί - w)+ > > 0 .

By an argument similar to that of Lemma 3.1, we have u0 < u < v0 a.e. in

Ω. Therefore,

iax(u\ φ - u> + B(x, u9 Vu){φ - u) dx > 0 for v φ e K.
JΩ

For arbitrary non-negative function \jjeCξ{Ω\ we can choose a positive con-

stant δ such that u ± δφ e K. From the above inequality with φ = u ± δφ we

have

ί {A(x, Fu)'B{x, u9 V\x)φ) dx = 0.
Ω

PROOF OF LEMMA 3.5.

Step 1. For arbitrary z e Lx(ί2) there exists a unique w e iC such that

<F(M), φ - u} + z(φ - u) dx > 0 for v φ e X .
JΩ

In fact, let {zn}neN a Lq(Ω) be a sequence such that

zn-+v strongly in L1 (Ω),

zM -> z a.e. in ί2 .
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It follows from the proof of Lemma 3.2 that F: V -> V* is pseudo-monotone

and that (3.11) holds. From Theorem 8.2 in [20, p. 247] there exists a uneK

such that

(3.20) <F(!θ, φ - un} + I zn(φ -un)dx>0 for v φ e K .
JΩ

By (3.18) we have

* i u n , u n _ a2un9un ^ z n u n

and hence, from (H3), {un}neN is bounded in V. We can extract a subsequence

of {un}, still denoted by {un}, such that for some ue K

un-*u weakly in V,

un-+u a.e. in Ω .

Putφ = u in (3.20). Then we obtain

<«!(«„), wπ — M> < — (a2(un\ un — u) — zn(un — u) dx-+0 as n -> oo ,
Jβ

and hence

iax(un) - ax(u), un-u}-+0 as n -* oo .

We have from Lemma 2.1 un^u strongly in V. Therefore, letting n-^ oo in

(3.20), we see that

(F(u\ φ - u) + z(φ-u)dx>0 for v φ e K .

Let t*! and u2e K satisfy the above inequality then we obtain

0 < <α1(w1) - ΛI(M 2), " I - "2> ^ - < ^ 2 ( w i ) - α2("2)> "i - w2> < 0

since h(x, t) is nondecreasing with respect to t e R. By (H2) and Poincare's

inequality, we have ux = u2.

Step 2. It follows from Step 1 that for arbitrary ue K there exists a

unique v e K such that

<F(ι?), φ - t>> + <α3(fi), φ - ι;> > 0 for v φ 6 X .

We define S: K -> K by letting v = S(u) be the unique solution of the above

problem for ue K. The following assertion holds:
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S: KR -> KR for some R > 0 ,

where KR = Kn{φeK: \\φ\\ < R} .
In fact, set v = S(u) for ueK. From (3.17) and (3.18) we have

<tfx(ι;), v} < —{a2(v)9 v} — <α3(w), v}

< {2p+ίMp + 2(m + l)M{\f4\ + 2pf(M)\Fu\p-£)} dx

and hence from (H3)

where C is a constant independent of u. Taking R > 0 such thai C(l + Kp~ε) <
Rp, we see that S:KR-^KR.

Step 3. The map S: KR -> KR is compact the continuous in the strong
topology.

In fact, let {un}neNa KR. Since KR is a bounded closed convex subset
of V, we can extract a subsequence, still denoted by un, such that for some
uεKR

un^>u weakly in V,

un^>u a.e. in Ω .

Since {S(un)} a KRi we can assume that for some w e KR

S(un) -• w weakly in V,

S(un) -> w a.e. in Ώ .

We see that for ne N

iadSM), S(un) - w> < -<α2(S(un)), S(un) - w> - <α3(uπ), S(un) - w> .

It is easy to see that (a2(S(un)), S(un) — w> -• 0 as n -> oo. By (3.17) we have

ί (|/4||<α3(wj, S(un) - w>| < 2(m + 1) | (|/4| + 2ph(M)\FunΓ*)\S(un) -w\dx.

We observe that

| / 4 | | 5 ( M J - w\dx^> co asn-^oo,

and

i - wl dx < IIFWJIΓΊI5(MJ - w|L/P -^ 0
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Thus

<α3(κB), S(un) - w> -• 0 as n -• oo .

Consequently, we have

By Lemma 2.1 we obtain that S(un) -> w strongly in 7, which shows the

compactness of S: KR-+ KR. Let MΠ, ue KR, un->u strongly in V. Since 5:

KR -> K κ is compact we can extract a subsequence {u'n}neN a {un}neN such that

for some w e KR

S(u'n) -» w strongly in K,

5(w )̂ -• w a.e. in Ω .

On the other hand, we have for all φ e X

<F(S(iO), φ - S(n;)> + <a3(u'Λ), <P ~ S(u'H)> > 0 .

Letting n -> oo, we see that from Lemma 2.4 with p 0 = 1

<F(S(iO), φ - SK)> = <F(S(ιι;)), φ - w> + <F(S(iO), w - 5K)>

-> <F(w), φ - w> ,

and

<fl3W), <P - SW)> = <α3(W;), w - S(u'n)) + <α3(iι;), φ - w>

-> <fl3(M), φ - w> .

Hence we have

, φ - w> + <έi3(iι), φ - w> > 0 .

It follows from the definition of S that w = S(w) and hence S(u'n) -+ S(u) strongly

in V, which proves that S: KR -> KR is continuous in the strong topology.

Applying the Schauder fix point theorem we can find a ue KR such that

u = S(u). This completes the proof of Lemma 3.5.

LEMMA 3.6. Let the hypotheses of Theorem 3.4 hold. If u is a solution of

(1.1)—(1.2) such that φι < u < φ2 a.e. in Ω, then we have the estimate

\\u\\wuP(Ω) < C ,

where C is a constant independent of u.

Lemma 3.6 follows from an argument similar to that of Lemma 3.3. By

applying an argument similar to the proof of Theorems 3.2 and 3.3, we can

conclude from Lemma 3.6 the following theorems
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THEOREM 3.5. Let the hypotheses of Theorem 3.4 hold. Suppose that f0 e

L"(Ω)nLroc(Ω), fίeLp(Ω)nLT0C(Ω) and f2, f3eO{Ω)^Lΐoc{Ω) in ( H 4 ) and

(3.15). Then the problem (1.1)—(1.2) has a minimal solution u and a maximal

solution ΰ such that φ1<u<ΰ<φ2 a.e. in Ω in the sense that if ue Wlp(Ω) is

any solution of (1.1)—(1.2) with φx < u < φ2 a.e. in Ω, then u<u<ΰ a.e. in Ω.

THEOREM 3.6. Let the hypotheses of Theorem 3.5 hold. Suppose that B(x,

t, ξ) is nondecreasing with respect to t e [<Pi(x), Φ 2 W ] for almost every fixed

x e Ω and every fixed ξ e RN. Then we have for every xoe Ω

where ίf is the set defined by (3.12) and w, u are respectively the minimal solution

and the maximal solution of (1.1)—(1.2) between φγ and φ2.

3.3. C-subsolutions and C-supersolutions

THEOREM 3.7. Let φλ and φ2 be respectively a C-subsolution and a C-

supersolution of (1.1) in Ω such that φ1 < φ2 a.e. in Ω and φί < g < φ2 a.e. on

dΩ. Suppose that f0 e Lq+ε{Ω\ fγ e Lp+ε{Ω) and f2 e L1+ε(Ω) for some positive

constant ε in (H x) and (H3). Moreover, suppose that there exists a function

/ 3 6 Lq(Ω) such that

(3.21) \B{x, t, ξ)\ < | / 3 (x) | + Λ(|ί |)(l + \ξ\p)

for a.e. x e Ω, v (ί, ξ) e R x RN, where h: R+ -> R+ is a nondecreasing function.

Then the problem (1.1)—(1.2) has a solution u such that φγ < u < φ2 a.e. in Ω.

PROOF. Without loss of generality we can assume that φ1 < g < φ2 a.e. in

E C0Λ(Ω) andΩ and
n = m.

Let for

where

that φί

Put

Λ

neN

D ί•
Jj 1

and φ2 are

_ \B(x,

\B(X,

T(t) =

of t h e

oo "ί" II Φi

Άt\ ξ)

T{t\ (n

[-M
<

form (3.5)

Hoc

+.

if

if

if

+ l l ^ ll

M)ξ/\ξ\)

t< -M

-M <t

M <t.

where

00+ II F

i f l ί l
i f l ί l

< M

\

7Φ

<
>

Jl

n

n

We see that Bn: Ω x R x RN -* R satisfies the Caratheodory condition and that

φx and φ2 are respectively a VF-subsolution and a W-supersolution of the

equation
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(3.22)π -div A(x9 Vu) + £„(*, K, Vu) = 0 in ί2.

From (3.21) we have

|£π(x, ί, ξ)\ < |/3(x)| + ft(M)(l + \n + M\>)

for a.e. x e ί 2 , v (t,ξ)eRxRN

9 and hence by Theorem 3.1 there exists a

solution MΠ of the problem (3.22)π—(1.2) such that φx <un< φ2 a.e. in Ώ. From

the proof of Theorem 2.1 in [3, pp. 225-233] we can extract a subsequence of

{un}neN which converges to a solution of (1.1)—(1.2) strongly in W^P(Ω).

3.4. Examples and remark

EXAMPLE 3.1. We consider the problem (1.3)—(1.2). Let B(x, ί, ξ) be non-

decreasing with respect to teR for almost every fixed xeΩ and every fixed

ξ G RN. Suppose that B satisfies the condition

|B(x, t, ί ) | ^ Λ(|t|)(l + l ί l ' " 1 )

for a.e. x e Ω, v (ί, ξ) e R x RN, where ft: R+ -*> R+ is a nondecreasing function.

Moreover, suppose that ge WUp(Ω)nLco(dΩ). By following Remark 2 in [1],

we can construct an L-subsolution φx and an L-supersolution φ2 of (1.3) such

that φx < φ2 a.e. in Ω and φx < g < φ2 a.e. on dΩ. In fact, because of the

boundedness of Ω, there exists a positive constant M such that

Ωa{χeRN: -M <x1 < M}.

We choose positive constants y and C such that

7 = (ft(0) + l)/(p - 1), C > 7 - V

We define the functions φ x and φ2 by

Since C < φ2(x) < 2C in Ω, we see that φx < φ2 in Ω and φ1 < g < φ2 a.e. on

δί2. We have for all non-negative functions φ e CQ(Ω)

ί {\Vφ2\
p-2Vφ2 Vφ + B(x, φ2, Fφ2)φ} dx

a

> I
> ί
= I

JΩ

- h(0)}φ dx >0,
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which implies that φ2 is a supersolution of (1.3). Similarly we see that φx is a

subsolution of (1.3). Since the pseudo-Laplacian operator satisfies the condi-

tions (H 1 )-(H 3 ) (see, for example, [7, p. 264, Lemma 4.10]), by virtue of

Theorems 3.2 and 3.3 (or Theorems 3.5 and 3.6), there exist a minimal solution

u and a maximal solution ΰ of (1.3)—(1.2) between φx and φ2 and the interval

between u and ΰ is filled with the set of solutions of (1.3)—(1.2).

EXAMPLE 3.2. In Theorem 3.6 we assumed that B(x, t, ξ) is nondecreasing

with respect to t e [<Pi(x), φ 2 M ] If ^(x> U ξ) is strictly decreasing with respect

to t ε [<Pi(x), <P2(χ)]> Theorem 3.6 is not true in general. For example, we

consider the problem

{Au + λuβ = 0 in Ω = Bγ , N > 3 ,
( ' ' \ u = 0 on δΩ,

where A and /? are positive constants. The problem (3.23) has a trivial solution

u ΞΞ 0. If w G HΌ 1 > 2 (β) n L ° ° ( β ) i s a solution of (3.23), then we see that u ε C2(Ω)

by the regularity of elliptic equations (see e.g. [19, p. 115, Theorem 1.3; and

p. 251, Theorem 2.1]). Gidas, Ni and Nirenberg [11] showed that there exists

a unique positive solution ΰ of (3.23) if 1 < β < (N + 2)/(N — 2). We can regard

u and ΰ as an L-subsolution and an L-supersolution of (3.23) respectively. By

virtue of the maximum principle, bounded non-trivial and non-negative solu-

tions of (3.23) are positive. Therefore we have

£f = {u: u is a solution of (3.23) with u < u < u) = {w, ΰ} .

Thus a Peano-Akό type theorem does not hold for (3.23) with 1 < β < (N + 2)/

(N - 2). On the other hand, let β = 1 in (3.23) and let λ be the first eigenvalue

of A under the Dirichlet condition. Then (3.23) has a positive eigenfunction w,

and we have

Sf — {cΰ: c is a constant with 0 < c < 1} .

This shows that a Peano-Akό type theorem holds for (3.23) with β = 1.

REMARK 3.1. Theorems 3.1, 3.4 and 3.7 are related to [6, Theorem], [12,

Theorem] and [3, Theorem 2.1]. We cannot prove the existence of minimal

and maximal solutions and the Peano-Akό type theorem under the generalized

Nagumo condition (3.21).

PROOF OF PROPOSITION 1. It suffices to prove that if uί9 u2e W1'p(Ω)n

U°{Ω) are supersolutions (subsolutions) of (3.2), then min(w1,w2) (max (1^,1*2))

is a supersolution (subsolution) of (3.2). We use the method of [16, p. 42,

Theorem 6.6]. We set w = min (uί9 u2\ uγ = uγ — w and u2 = u2 — w. Let

A(x, ξ) = A{x, ξ + Vw{x)) and B(x, t) = B(x, t + w(x)). Without loss of general-
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ity we can assume that A satisfy (HJ, (H2), (H3) and (H4). Let T(t) be the

truncated function

{0 if t < 0

t if 0 < t < M

M if M < Γ ,

where M = \\u1 W^ + ||w2lloo The functions ύί and u2 are supersolutions of the

equation

(3.24) -div A(x, Vu) + S(x, T(u)) = 0 in Ω .

We set K = Wo

lp(Ω)anά

K = {φeV:0<φ<M+l a.e. in β} .

Let for u, v e V

Γ - f ~
<ΛI(M), f> = /4(x, Pw) Ft; rfx , <«2(WX y ) = ^(x> 7"(w))ι̂  dx ,

Jβ JΩ

where T(u)(x) = T(u(x)). It follows from the proof of Theorem 3.1 that aί9

a2:V^>V*, where V* is the dual space of V, and that F : F - > K * , F(u) =

at(w) 4- «2(w), is pseudo-monotone and (3.11) holds. From Theorem 8.2 in [20,

p. 247] there exists a ue K such that <F(w), φ — u} > 0 for all φ e K, i.e.

(3.25) {A(x, Vu) - V{φ - u) + 5(x, T(u))(φ -u)}dx>0 for all φ e K .
JΩ

Since min (w, ύγ) e K and w — min (w, wx) = (M — ύ^Ϋ, we have

{^(x, Fw) V(u - wj -f 5(x, T(M))(M - wx)} rfx < 0 .

On the other hand, since ύί is a supersolution of (3.24) and (u — ux)
+ e WQ'P(Ω),

we obtain

I {A(x, FuJ Fiu - ux) + 5(x, TίδJXii - ux)} dx>0
Ju>uι

Consequently we have from (H2)

0 < (I(x, Vu) - A(x, FQί))- V(u -ύjdx
ju>aί

< f (« - ΰ^Bix, Tίfi,)) - B(x, T(u))} dx<0,
Ju>uί
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which implies that V(u — ύxY = 0 a.e. in Ω. From Poincare's inequality we

have u < u1 a.e. in Ω. Similarly we have u < u2 a.e. in Ω and hence 0 < u <

min (fil5 ύ2) = 0 a.e. in Ω, i.e. u = 0 a.e. in Ω. For any non-negative function

φ e CQ(Ω\ we can choose a positive constant δ such that <5ι/f e K. By (3.25)

with φ = δφ we obtain

Jβ
(x, H # } dx > 0 ,

which shows that w = min (M15 W2) is a supersolution of (3.2). Similarly we see

that max (uu u2) is a subsolution of (3.2) if ul9 u2 e WUp{Ω)n L°°(ί2) are sub-

solutions of (3.2). This completes the proof of Proposition 1.

4. Equations in unbounded domains

Throughout this section we assume that Ω is either an exterior domain in

RN or Ω = RN and that the conditions (HJ-ίHa) and (H5) hold for (1.1). We

set ΩR = Ω n BR for R > 0, where BR denotes the open ball of radius R centered

at the origin. In case Ω is an exterior domain we assume that there exists a

positive constant a such that dΩ a Ba. In case Ω = RN the boundary condi-

tion (1.2) is void, and the problem is to find a solution of (1.1) defined

throughout RN.

DEFINITION 3. A function u is said to be a solution (subsolution, super-

solution) of (1.1) in Ω if u is a solution (subsolution, supersolution) of (1.1) in ΩR

for all R > a.

A function u is said to be a W-subsolution (VF-supersolution) of (1.1) in Ω if

u is a W-subsolution (W-supersolution) of (1.1) in ΩR for all R> a. L-

subsolutions, L-supersolutions, C-subsolutions and C-supersolutions are defined

analogously.

THEOREM 4.1. Let φ1 and φ2 be a W-subsolution and a W-supersolutίon of

(1.1) in Ω, respectively, such that φ1 < φ2 a.e. in Ω and φx < g < φ2 a.e. on dΩ (if

dΩ is non-empty). Suppose that for all R > a there exist a positive constant cR,

a function fR e Lq(ΩR) and a nondecreasing function hR: R+ -• R+ such that

M M ) e Lβ{ΩR) for φ e U{ΩR) and

(4.1) \B(x9 U ξ)\ < \fR(x)\ + hR(\t\) + cR\ξΓ'

for a.e. x e ΩR, v (ί, ξ) e R x RN. Then the problem (1.1)—(1.2) has a solution u

such that φx < u < φ2 a.e. in Ω.

LEMMA 4.1. Let the hypotheses of Theorem 4.1 hold. Let R be a constant

with R> a. If u is a solution of (1.1) in Ω2R such that φ1 < u < φ2 a.e. in Ω2R
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and u = g a.e. on dΩ (if dΩ is non-empty), then we have the estimate

\\U\\wi P(ΩR) ^ CR J

where CR is a constant independent of u.

PROOF OF LEMMA 4.1. It suffices to prove the lemma for the case that dΩ

is non-empty. We choose the function φ E CQ(B2R) SO that φ = 1 in BR, 0 <

φ < 1 in B2R and \Vφ\ < 4R'1 in B2R. Since φp(u - g) e W0

Up(Ω2R) we have

I {φpA(x, Vu) V(u -g) + pφp~ι(u - g)A(x, Vu) Vφ

+ φp(u - g)B(x9 u9 Vu)} dx = 0 .

Put α0 = inf {α(x): x e Ω2R} and d = \\C0\\00;Ω2R' N o t e t n a t αo > 0. We obtain
from (HJ, (H3) and (4.1)

oc0φ
p\Vu\pdx< ίφp{\f2\ + ifiWVuf'1 + iV|Fgf|(|/0| + d\Vu\p~1)}

JΩ2R JΩ2R

+ 4Λ" 1Npφp- 1 |w - gfld/ol + dlPMl^1)

+ <PP\u - g\(\f2R\ + Λ2 Λ(|n|) + c2R\VuΓ') ] dx .

Let v = \φί\ + \φ2\ + |^|. Since \u — g\ < v and \u\ < v a.e. in Ω2R, we have

Jβ 2 Λ Jβ

+ 4R~xNp dvφp~ι \Vu\p~ι] dx .

By virtue of Holder's inequality, we have for ε > 0

W ' d / i l + Nd\Vg\ + C2Rz;) < ε«|Pwr + ε~p{\h\ + N d | P ^ | + C2Rυ)p

and

4^-^/7 di φ^- 1 IPw^"1 < εqφp\Pu\p + ε~p(4R-1Np dv)p .

Lemma 4.1 then follows by choosing ε so that α 0 > 4εq.

PROOF OF THEOREM 4.1. It suffices to prove the theorem for the case dΩ is

non-empty. From Theorem 3.1 it follows that for n e N the problem

-div A(x, Vu) + B(x, w, Vu) = 0 in Ωn+a ,

u = g on dΩ , u = φ1 on δ5 π + f l

has a solution wn e WlfP(Ωn+a) such that φί <un< φ2 a.e. in β π + α . By Lemma

4.1 we see that {un}n>Aa is bounded in W1'p(Ω2a) and hence we can extract a
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subsequence {wί1*},,^ °f {un}n>4a s u c h ^ a t for some w(1) e W1'p(Ω2a)

Mα> _> W(D weakly in W1>p(Ω2a),

w*1* -• w(1) strongly in Lp(Ω2a).

We choose the function φ e Cl(B2a) so that φ = 1 in J5α, 0 < φ < 1 in β 2 α and

|P> | < 4a" 1 in B2a. Since w(1) = gr a.e. on dΩ and φ(u<1} - w(1)) e W0

Up(Ω2a),

we have

I φA(x9 Vu™)-V{u™ - w(1)) dx = - |

By virtue of ( H J and (4.1), we have

ί
JΩ2

where d= I k o l U ^ , and

- u(1))B(x, ufK Vu^)\ dx
Ω2«

£ K u - n(1)\\P;aJ\\f2ah,a2a + IIMIΦil + l%l)ll«Oϊ. + ^IIFw*1'!!

-» 0 as n -» oo .

Since t ί i υ converges to w(1) weakly in WlfP(Ω2a% we obtain

φA(x, Pw(1)) F(w^1) — w(1)) dx -> 0 as π -> oo .

Consequently we have from (H 2)

{A(x9 Vu™) - A(x, P M ( 1 ) ) ) V{u{

n

X) - u{1)) dx^O as n -> oo
j Ωa

By Lemmas 2.1 and 2.2 we see that u{

n

l) converges to w(1) strongly in WitP(Ωa)

and hence w(1) is a solution of (1.1) in Ωa such that φ1 < u{1) < φ2 a.e. in Ωa and

w(1) = g a.e. on δίλ By an inductive process, we can construct sequences

MHiM-eW a n d iuii)}ieN such that {wί°}πeyv is a subsequence of { t t f-^J^iα and

converges strongly in WltP(Ωia) to u(i\ which is a solution of (1.1) in Ωia such

that φx < u(i) < φ2 a.e. in Ωia and u ( 0 = gf a.e. on dΩ. Since w(i+1) = M (0 a.e. in

Ωia, we can define u e Wt^
p(Ω) by u = u(i) in ί2 ία. The function u is a solution

of (1.1)—(1.2) such that φ1<u<φ2 a.e. in Ω. This completes the proof of

Theorem 4.1.
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THEOREM 4.2. Let the hypotheses of Theorem 4.1 hold except that ( H 5 ) is

replaced by ( H 6 ) . Suppose that φl9 φ2e L™0C(Ω) and fwe L™(ΩR) in (4.1) for all

R > a. Then the problem (1.1)—(1.2) has a minimal solution u and a maximal

solution ΰ such that φί < u < ΰ < φ2 a.e. in Ω in the sense that if u is any

solution of (1.1)—(1.2) with φγ < u < φ2 a.e. in Ω, then u<u<ΰ a.e. in Ω.

PROOF. It suffices to prove the theorem for the case dΩ is non-empty.

We denote by if the set defined by (3.12). Let u and ΰ be the functions defined

by (3.13). It suffices to prove that u, ΰ e if. We can construct, similarly to the

proof of Theorem 3.2, a nondecreasing sequence {un} of if such that un

converges to ΰ uniformly on compact subsets of Ω. Let R be an arbitrary

constant with R > a. From Lemma 4.1 we can extract a subsequence of {un},

still denoted by {un}, such that

un -• ΰ weakly in Wlp(Ω2R),

un^ΰ strongly in LP(Ω2R).

Similarly to the proof of Theorem 4.1, since ΰ = g a.e. on dΩ, we see that un

converges to ΰ strongly in Wlp(ΩR), which shows that ΰ is a solution of (1.1) in

Ω. Thus, ΰ e if. Similarly we have u e if.

THEOREM 4.3. Let the hypotheses of Theorem 4.2 hold. Suppose that φl9

φ2 e Lco(Ωa). Moreover, suppose that B(x, t, ξ) is nondecreasing with respect to

t e [φi(x), Φ2M] for almost every fixed x e Ω and every fixed ξ e RN. Then we

have for every xoe Ω

where if is the set defined by (3.12) and u, ΰ are, respectively, the minimal

solution and the maximal solution of (1.1)—(1.2) between φx and φ2.

To prove Theorem 4.3 it suffices to consider the case that dΩ is non-empty.

We set for R > a

u: u is a solution of (1.1) in ΩR with u<u<ΰ

a.e. in ΩR and u = g a.e. on dΩ

We note that ifR Φ 0 because u, ΰeifR and that ifR c C(ΩR) by virtue of

Lemma 2.3.

LEMMA 4.2. Let the hypotheses of Theorem 4.3 hold. Then we have for all

R > a and x0 e ΩR

ίuίx V u p y> \ — \U(Ύ \ u(γ ΪΊ
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PROOF OF LEMMA 4.2. Suppose that w(x0) < ΰ(x0). It suffices to derive

a contradiction from the assumption that there exists a u0 e R such that

u(x0) < u0 < ΰ(x0) and u0 φ {w(x0): u e ^R). Let uγ = u, V1 = ΰ and dx =

\\vi — ui lloo;Ω4R Similarly to the proof of Theorem 3.3, the functions λ1 =

max (uί9 VX — dι/2) and Jx =min (u1 +dί/2, vx) are respectively a VF-subsolution

and a W-supersolution of (3.14) in Ω4R such that Ax < λ1 in f24Λ and Λ̂  = g = J1

a.e. on dΩ. Since (^ < λx < J1 < φ2 a.e. in Ω4R, it follows from Theorem 3.1

that the problem

-div A(x, Vu) + B(x, u, Fw) = 0 in ί2 4 Λ ,

u = g on dΩ , u = λ± on dl?4κ

has a solution w e W1'P(Ω4R) such that λx < u < ~λί a.e. in Ω4R. Therefore we

have u e ^ R . By an argument similar to that of Theorem 3.3, we can con-

struct a nondecreasing sequence {un} of ^ R such that ύ(x0) = u 0, where ύ(x) =

limπ^00 un(x) for x G ί2 4 K . From Lemma 4.1 we can assume that

un^ύ weakly in Wlp(Ω2R),

un^u strongly in U(Ω2R).

Similarly to the proof of Theorem 4.1, we have ύe^R. This contradicts

u(x0) = u0.

PROOF OF THEOREM 4.3. It follows from Theorem 4.2 that

y = {ue#?:u<u<ΰ a.e. in Ω) .

We can assume that u(x0) < ΰ(x0). Let R be an arbitrary constant satisfying

|x o | < R. Let u0 be an arbitrary fixed constant with w(x0) < u0 < ΰ(x0). It

suffices to prove that there exists a n e ^ such that w(x0) = u0. From Lemma

4.2, for n e TV, we can choose a un e £fnR such that un(x0) = u0. By Lemma 4.1

we see that {wM}π>4 is bounded in Wlp(Ω2R) and hence we can extract a

subsequence {u(

n

1)}neI^ of {wn}M>4 such that for some u{1) G Wlp(Ω2R)

u{

n

l) -• w(1) weakly in Wlp(Ω2R),

u{

n

X) -> u{1) strongly in LP(Ω2R).

Since \un\ < |ςpx | 4- |<p2l
 e ^°{^IR\ w e c a n assume, from Lemma 2.3, that w^1}

converges to u{1) uniformly on some neighborhood of x 0 . Therefore we see

M ( 1 ) (X 0 ) = u0. Theorem 4.3 follows from the concluding argument in Theorem

4.1.

THEOREM 4.4. Let φλ and φ2 be an L-subsolution and an L-supersolution of

(1.1) in Ω, respectively, such that φγ < φ2 a.e. in Ω and φγ < g < φ2 a.e. on dΩ (if

dΩ is non-empty). Suppose that for all R> a there exist a positive constant
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εR e (0, 1], a function fReL1(ΩR) and a nondecreasing function hR: R+ —• R+

such that

(4.2) \B(x, t, ξ)\ < hR(\t\)(\fR(x)\ + \ξΓε«)

for a.e. xeΩR,y (t, ξ) e R x RN. Then the problem (1.1)—(1.2) has a solution u

such that φx < u < φ2 a.e. in Ω.

THEOREM 4.5. Let the hypotheses of Theorem 4.4 hold except that (H5) is

replaced by (H6). Suppose that fR e Lfoc{ΩR) in (4.2) for all R>a. Then the

problem (1.1)—(1.2) has a minimal solution u and a maximal solution ΰ such that

Ψι < u < ΰ < φ2 a.e. in Ω in the sense that if u is any solution of (1.1)—(1.2) with

Ψι < u < φ2 a.e. in Ω, then u<u<ΰ a.e. in Ω.

THEOREM 4.6. Let the hypotheses of Theorem 4.5 hold. Suppose that

B(x, ί, ξ) is nondecreasing with respect to t e [(Pi(x), φ2(
χΏ for almost every fixed

x e Ω and every fixed ξ e RN. Then we have for every xoe Ω

{u(x0): ue¥} = [u{xo\ M(X 0)] ,

where Sf is the set defined by (3.12) and w, ΰ are, respectively, the minimal

solution and the maximal solution of (1.1)—(1.2) between φ^ and ψ2.

Theorems 4.4, 4.5 and 4.6 are counterparts of Theorems 3.4, 3.5 and 3.6.
Their proofs are omitted, since they are similar to the proofs of Theorems 4.1,
4.2 and 4.3.

THEOREM 4.7. Let Ω = RN and let φx and φ2 be a C-subsolution and a

C-supersolution of (1.1) in RN, respectively, such that φx < φ2 in RN. Suppose

that f0 e LΊ+ε(RNl fγ e Lp^c

ε(RN) and f2 e L\+c

ε(RN) for some positive constant ε in

(H x) and (H3). Moreover, suppose that for all R > 0 there exist a function

fR G Lq(BR) and a nondecreasing function hR: R+ -> R+ such that

(4.3) \B(x, t, ξ)\ < \fR(x)\ + M l ί | ) ( l + \ξ\p)

for a.e. x e Ω, v (t, ζ)e R x RN. Then equation (1.1) has a solution u such that

Ψi < u < φ2 a.e. in RN.

LEMMA 4.3. Let the hypotheses of Theorem 4.7 hold. Let R be a positive

constant. Then there exists a constant pR> p such that if u is a solution of (1.1)

in B2R with H M L . ^ < M, then

\\U\\XR<CR,

where CR is a constant independent of u. and XR = WltPR(BR).

Lemma 4.3 is due to [3, Proposition 3.8].
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PROOF OF THEOREM4.7. It follows from Theorem 3.7 that for ne N the

problem
-div A(x9 Vu) + B(x, W, VU) = 0 in Bn,

w = Φi on d£n

has a solution un e Wlp(Bn) such that φx < un < φ2 a.e. in Bn. Let R be an

arbitrary positive constant. By Lemma 4.3 there exists a pR> p such that

{un}n>4R *s bounded in W1 I P J I(2*2Λ) Thus we can extract a subsequence

{u^eN of K}M>4R such that for some w(1) e Wlp{B2R)

wα) _> M(i) weakly in Wlp(B2R),

Mίυ -• w(1) a.e. in β 2 Λ .

Put M = llφJloo.B^H- Hφ2lloo;β2Λ Let φ e C ^ ( β 2 R ) be the function satisfy-

ing 0 < φ < 1, | F φ | < 4R" 1 in £ 2 Λ and φ = 1 in 5 Λ . Since φ(w<υ - w(1)) e

W0

Up(B2R)nL«>(B2R)9 we have

I φ/<(x, Pwί^)- P7(wi1) - w(1)) dx = - I

+ B(x, u 1',

By Lemma 4.3, we obtain

\u^ - u^\Vu^ dx <\\Vu^VPκ;BJ\u^ - UW\\C
B1R

where CR = pR/(pR — p). Therefore we have from (4.3)

I
I + h2R(M)) dxί

JB

)B2R

0 as n -» oo .

Consequently we have by (H2)

— A(x, Vu(1))- V{u^ — w (1)) dx —• 0 as n -> oo .I
By virtue of Lemmas 2.1 and 2.2 we see that u{

n

l) converges to w(1) strongly in

WUp{BR) and hence w(1) is a solution of (1.1) in BR such that φ1 < u{1) < φ2 a.e.

in BR. Theorem 4.7 follows from the concluding argument in Theorem 4.1.
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REMARK 4.1. In Theorems 4.3 and 4.6 we assumed that B(x, ί, ξ) is non-

decreasing with respect to t e [(^(x), φ2(xΏ The following example shows that

Theorems 4.3 and 4.6 are not true in general when B(x, ί, ξ) is strictly decreas-

ing with respect to t e Iφ^x), φ 2 ( χ ) ] We consider the equation

(4.4) Λu + c(x)uβ = 0 in RN,

where c e C1(/?N) is positive, 0 < /? < 1 is constant and N > 3. Equation (4.4)

has a trivial solution M Ξ O . Fukagai [9] showed that (4.4) has a unique

positive solution ΰ such that ΰ(x) -• 0 as |x| -> oo if

Γ 0

Jo
s 5 r C ( χ ) ) d X < 00

Therefore we see that under the above condition

{u: u is a solution of (4.4) with u < u < ΰ in RN} = {w, ΰ} .

5. Application

In this section we shall establish the existence of positive solutions of the

equation

(5.1) -div {\Vu\p~2Vu) + B(x, u, Vύ) = 0 in RN ,

where 1 < p < 2, N > 3 and B(x, ί, 0 is as in Theorem 4.7.

THEOREM 5.1. Suppose that there exist a continuous function φ: R+ -> R+

and a continuous nondecreasing function F: R+ x R+ -• R+ such that

(5.2) \B(x,t,ξ)\<φ(\x\)F(t,\ξ\)

for a.e. x e RN, v (ί, ξ)e R+ x Z?^. Moreover, suppose that

f
Jo

(5.3)
Jo

and that one of the following conditions is satisfied:

(Fx) lim^o t'^FiU 5) 1 / ( p " υ = 0 for each fixed s > 0

(F2) l im^^ r x F ( i , t)mp~l) = 0 .

equation (5.1) possesses infinitely many positive solutions in Wιl^
p{RN) which

are bounded and bounded away from zero in RN.

PROOF. The proof is similar to that of Theorem 1 in [18]. From Jensen's

inequality we have for s > 0
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α \i/(p-D

{t/s)N-lφ{t)dt)
P.4) °

s< Γ t(2
Jo

and hence for r > 0

1/(P-D

(ί/s)N-VWΛ
θ V J °(5.5)

< [(P — "1)/(JV - 2)] ( [ 1 - (t/ry"-2^-1^11*-1^)11*-1* dt.- 2)] Γ [1 - i
Jo

Let C1(R+) denote the locally convex space of continuously differentiable func-
tions on R+ with the topology of uniform convergence on compact subsets of
R+.

We first consider the case (¥1) holds. Let α > 0 be small so that

[(p - 1)/(ΛΓ - 2)]F(α, l)1/(/7"1) ί°° ί1/(p-1V(01/(p"1) dt < α/2
J

and

- i ) f β

Jo

fao

J o 'F(a, I)1'

Consider the set

Y={ye C 1 ^ ) : α/2 < y(r) < α, |/(r) | < 1 for r > 0} ,

where " " ' = d/dr. Define the operator & in O(R+) by

vl/(p-D

(5.6)

If y e y, we see, from (5.4) and (5.5) that for r > 0

f 1/(P-D

α > ^y(r) > α - F(α, l)1^"1) (t/sf-ιφ(t) dt ds
JoVJo

Γ ^/(P-D

Jo
>oc-l(p- 1)/(ΛΓ - 2)]F(α, l)1^-!) Γ ^/(P-D^^IΛP-D Λ > α / 2

J

and

{tlrf-ιφ{t)F{y{t\\y'{t)\)dt

F(α, 1
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which shows that ^\ Y-• Y. Let {yn} be a sequence in Y converging to y e Y

as n -* oo in the topology of C *(/?+). We have for r > 0

<(P- l Π Ή α , 1) Γ M) dί] ( 2-p ) / ( p-υ Γ
Jo Jo

Φ(t)\F(yM M

which implies that J^: y-> Y is continuous. We have for y e Y and r > 0

I Γr \i/(p-D
(p -

)(2-p)/(p-DΊ

Γr

Therefore we see that J^Y is relatively compact in C1(R+). Thus we are able

to apply the Schauder-Tychonoff fixed point theorem and conclude that §* has

a fixed point y eY. The function v(x) = y(\x\) is a solution of the equation

-div (\Pv\p-2Fv) + ̂ (|x|)F(t?, |Fι?|) = 0 in /?N ,

so that it is a C-supersolution of (5.1). Similarly we can show that the

operator ^ defined by

ί
r / fs \1/(P-D

M (ί/s)N"V(ί)^(ίλ \z'(t)\) dtj ds

has a fixed point z in the set

Z={ze CHR+): jS < z(r) < 2β, \zf(r)\ < 1 for r > 0} ,

provided /? > 0 is chosen small enough so that

Γ 0 0

[(/? - 1)/(ΛΓ - 2)]F(2jS, l)1^-!) ίi/Cp-i^^i/ίP-i) dt < β
Jo

and

F(2β,
Jo

The function w(x) = z(|x|) is a C-subsolution of (5.1). If 4β < α, then w < v in

Z?̂  and hence it follows from Theorem 4.7 that (5.1) has a solution u such that

w < u < v a.e. in RN.

Next, we consider the case (F2) holds. We take positive constants α and β

so large that
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- 2)]F(α, α)1

Jo

f °°
Jo

dt<,
2

α ,
Jo

and

[(p - 1)/(ΛΓ - 2)]F(2ft 2jS)1/(p-1) ί°° i 1 ^" 1 V(i) 1 / ( p " 1 ) A < β

J
dt<2β.

f 0

Jo

Arguing as in the case of (FJ, we can verify that the operators & and ^
defined by (5.6) and (5.7) have fixed points y and z in the sets

{y e CX(R+)' α/2 < y(r) < α, |/(r) | < α for r > 0}

and

{z 6 C 1 ^ ) : β < z(r) < 2β, \z'(r)\ < 2β for r > 0} ,

respectively. The functions v(x) = y(\x\) and w(x) = z(|x|) then give respec-
tively a C-supersolution and a C-subsolution of (5.1), which ensure the existence
of the desired solution of (5.1) provided 4β < oc. The proof of Theorem 5.1 is
thus complete.

The particular case (p = 2) of the above problem has been considered by
numerous authors including Kawano [15], Kusano and Oharu [18], and
Furusho [10]. The condition (5.3) generalizes the one given by Kawano [15]
for the case p = 2.
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