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1. Introduction

It is observed frequently in nature that a physical system develops in such
an inhomogeneous way that in different spatial regions, the system is in
distinctive states or it behaves in distinctive manners. Under certain
circumstances, these spatial regions may be well-distinguished, and be clearly
separated by certain boundaries, which are so-called interfaces. Such interfaces
form a variety of geometrical patterns, and exhibit significant changes in size,
shape and location as time passes.

The interfacial phenomena attract a lot of attention and stimulate
continuing activity in natural science. From various points of view, people
attempt to understand the underlying mechanism of generation of the interfaces,
their internal structure and their dynamical behavior. For example, the
classical Stefan problem treats the liquid freezing and the solid melting. The
front of shock waves in Riemann problem for fluid flow is another type of
interfaces ([16, 26]). Friedrichs [14] presented a fantastic description of many
interesting interfacial phenomena arising in physics. More recently, chemists
observed rotating spiral waves and expanding target patterns in the well-known
Belousov-Zhabotinski reagent ([41, 40]), which leads to extensive mathematical
studies of reaction diffusion systems ([10, 36] and references therein). The
pigmentation patterns of the shells and the animal coats are also viewed as a
kind of interfaces in a theory of biological pattern formation ([27, 30]).

In this paper we are concerned with an interfacial phenomenon in a class
of reaction diffusion systems. Mathematically, we study a nonlinear partial
differential equation of parabolic type:

du 1
(l.la)ε — = εAu + -f(u, v) xeR", t > 0,

ot ε

g(u, v) xeR", t > 0,
ot

with initial condition

(1.2a) u(x,0) =
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(1.2b) Ό(x,Q) = ψ(x) xeR".

The nonlinear terms / and g in equation (1) are as follows:

(1.3a) f(u, v) = F(u) -v = u(l- u)(u -a)-υ,

(1.3b) g(u, v) = u- γv.

In the above, Δ stands for the Laplacian £?=i 32/dx?, D > 0, αe(0, 1) and γ > 0

are constants, and ε > 0 serves as a small paramater.
Problem (l.l)e-(1.2) is a diffusing and reacting system with two

components, which is a prototype of modelling the propagation of chemical

waves in excitable media. The unknowns in (l.l)ε-(1.2) are real-valued

functions u(x, ί) and v(x, ί), that represent — as termed by Paul Fife — the

propagator and the controller in the system respectively, while φ(x) and ψ(x)
are given initial data.

Of essential importance in the problem are the assumption that 0 < ε « 1,

and the bistable property — as explained below — of the term / describing the
kinetics of chemicai reaction of the propagator component u. The former

implies that u diffuses quite slowly while its reaction takes place much
faster. Under this situation, the development of interfaces in this system
consists of two consecutive stages. The first one is a short time -period of the

birth of interfaces, and next an evolutionary process of interfaces follows.

Before discussing these two stages in detail, let us look at a simple typical

example of interfacial dynamical patterns, namely, the traveling wave solution

of constant speed. Notice that the nullcline {(u, v);f(u9 v) = 0} of the function
/ consists of three branches

(1.4a) ιι = Λ + (ι;) v < F(a+),

(1.4b) ιι = MI?) Ό>F(a.)9

(1.4c) u = h0(v) ι*6[F(α_),

where the relation h_(v) < h0(v) < h + (v) holds for t;e(F(α_), F(α+)), and α + and
α_ are two solutions of the algebraic equation F'(u) = 0 with 0+ > 0_. Fix
arbitrarily 6e(α_, α+). It is well-known that the nonlinear eigenvalue problem

(1.5a) lΓ(z) + cU'(z) +f(U(z), b) = 0 zeR,

(l 5b) limz^.α o£/(z) = A + (i),

(l 5c) lim^GO£/(z) = Λ_(fc),

(l 5d) 17(0) = Λ0(6)
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has a unique solution (ί/, c). Here U = 17 (z; b) is a smooth function of z given
by

U = U(z; b) = h.(b) + (h + (b) - Λ_(6))
(1.6)

where z 0eR is a constant ensuring the condition (1.5d), and c = W(b) is a real
number given by

(1.7) c = W(b) = [h + (b) + h_(b) - 2Λ0(&)]/>/2.

For a discussion of this problem in its more general setting, see

[2, 3]. Moreover, for the Cauchy problem of the equation du/dt = d2u/dx2

+ /(M, b) (xeR, t > 0), Fife and McLeod [13] proved that the traveling wave

solution U is stable subject to a fairly large class of perturbations of initial
data. To relate these waves to equation (l.l)ε, consider the following scalar

equation:

du 1
(1.8)ε — = εAu + -/(ιι, b) xeR", t > 0,

ot ε

where ε > 0 is a small parameter. Given any point x0 e R" and any vector
1, define

(1.9) t/ε(x, t) = U( v u'" xeR", ίeR,

where ( , •) denotes the usual scalar product in R". Then Uε satisfies (1.8)ε and

h + (b) (x - x0, ξ) < ct,
(1.10) Iimεi0 h.(b) ( X - X G , ξ)>ct.

The transition layer of C/ε( , t) is flat and has thickness of order 0(ε). In fact, it

locates at a narrow strip along the hyperplane {xeR"; (x — x0, ξ) = ct], which

moves at a constant speed c in the direction ξ. The geometry and dynamics of

layers of this special solution U ε are so notably simple. The importance of
traveling waves lies in that they describe the local internal structure of generic

layers (see Appendix 2, especially equation (2 A. 12)). The macroscopic

behavior of layers in general cases, however, is far more complicated. More

often than not, transition layers may be curved rather than flat, and the velocity

of their propagation may vary with time and place. In order to surmount the

difficulties in analyzing the exact solutions of problem (l.l)ε-(1.2) for ε > 0, it is
useful to take formal limits of equation (l.l)ε as ε JO, respectively, in the first



50 Xu-Yan CHEN

and second stages of interfacial dynamics, and then to study such reduced

limiting equations.

To discuss the first stage of the interfacial dynamics for problem (l.l)ε-
(1.2), we observe that for smooth initial data φ and ψ without sharp jumps, the
diffusion term εΔu in (l.la)ε may be negligible for a time, in other words, the

ordinary differential equation

(1.11) ιr = -/(w, t>) xeR", ί>0
Ot £

approximates equation (l.la)ε and governs the behavior of w, for t « 1. Since 0
< ε « 1, the change of v is much smaller as compared with that of u in the early

stage, that is, υ(x, t) & ψ(x) for t « 1. Replacing υ by φ in (1.11), we obtain

(1.12) = !/(ll̂ ) X6R", ί>0.

For simplicity, assume that F(α_) + σ < ι/^(x) < F(a+) — σ (xeRn) for some σ
> 0, and that zero is a regular value of the function φ(x) — h0(ψ(x)). Then by
virtue of the quadrature of equation (1.12) under the initial condition (1.2a), one

observes that w(x, t) approaches two stable branches h+(ψ(x)) or h_(ψ(x))

during a short time-period, depending on whether φ(x) > hQ(\l/(x)) or φ(x)

< h0(ψ(x)) respectively, apart from the region where φ(x) « /ι0(ι/f(x)). Thus the
whole space Rπ is decomposed into two different domains, namely, "the excited
region" Ω + (t) in which u & h + (υ\ and "the rest region" ί2_(ί) in which

u&h_(v). What splits them is a quite thin "interfacial layer region" ΩQ(t\

across which the system undergoes a sharp transition from the rest state u

= h_(v) to the excited state u = h + (v\ or vise versa. The thickness of Ω0(t)
becomes to be of order O(ε) after a time-period of order 0(ε| log ε|), as seen by a
formal calculation using equation (1.12).

The above formal discussion concerning the first stage of emergence of

interfaces will be further justified by mathematical proofs in Section 2 of this
paper. We shall present there explicit estimates of the thickness of layer region

and the length of time interval for formation of such sharp transition
layers. The analysis relies on a scaling transformation and a probabilistic

argument and is based on the study of a much simpler case, namely, that of
scalar equations du/dt = εΛu + ε~1F(x, u). Our results are related to those of

Fife and Hsiao [12], who investigated one-dimensional scalar equations. The
methods we used are however quite different from theirs and are effective
enough to permit us to deal with the higher dimensional case and the systems
case.

In the second evolutionary stage, the interfacial region Ω0(t) may move and
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deform as t evolves. It is worth stressing that the diffusion term εAu can no
longer be neglected near a sharp transition layer, and thus equation (1.11) is not
suited to be an approximation of (l.la)ε at the second stage. To derive a
limiting equation, we rely on matched asymptotic expansion methods.

We may accept several hypotheses below on the limiting behavior of
solutions as ε j O :

(a) the transition layer region Ω0(t) tends to a hypersurface Γ(t) in Rw,
which is called interface;

(b) the component w( , ί) has jump discontinuity across Γ(ί); the relations
u = h + (v) and u = h_(v) hold, respectively, in two disjoint regions
Ω + (t) and Ω_(t) with

(1.13) Rn\Γ(t) = Ω + (t)θΩ_(t);

(c) Γ(t) changes smoothly as time t varies (at least in a certain, possibly
short, time interval).

For simplicity we assume further that
(d) Γ(f) is a compact hypersurface for each t > 0
(e) there exists σ > 0 such that

(1.14) α_ + σ< υ(x, t) < a+ - σ xeR", ί > 0.

Under these hypotheses and by matched asymptotic methods, the following
free-boundary problem can be deduced as the singular limit of equation (l.l)ε

when ε j O :

dv
— = D Λ υ + 0 + (t?), ί>0,
ot

~\ j-i

— = {W(v} - ε(n - l)κ}N ηεM, t > 0,

v( ,t)eCl(Rn) t > 0,

with the initial condition

(l.lόa) v(x,Q) = ψ(x) xeR",

(U6b) Γ(η,t) =

Here Γ( , f): M ->R" is an imbedding of an (n - l)-dimensional compact
manifold M into R". Denote by Γ(t) the imbedded hypersurface
{Γ(η,t);η€M}. In (1.1 5a), the functions g+ and g_ are defined by g±(υ)
= g(h±(v\ v) with h± as in (1.4), and Ω + (t) and Ω,(t) are two disjoint regions
satisfying (1.13). In the interface equation (1.15b), the function W is as in
(1.7), κ(η, t) is the mean curvature of the hypersurface at the point x = Γ(η, ί),
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and N(η, t) is the unit normal vector of Γ(t) pointing from Ω + (t) to

ί2_(ί). This equation reveals that the motion of interface Γ(t) is affected by an
interplay between the mean curvature of the interface and the value of v on

it. Physically speaking, the interfacial dynamics is under the influence of the

interfacial tension, together with the driving force due to the difference between

the depth of two potential wells h+(v) and h.(v). Derivation of (1.15a) and

(1.15c) involves the outer part of the layers and is concerned with a regularity

analysis of solutions, while derivation of (1.15b) requires a careful analysis of the
inner part of the layers, for which it is convenient to choose a new coordinate

system. The reader is referred to Appendices 1 and 2 for more details.

REMARK 1.1. The unknowns in our limiting problem (1.15)-(1.16) are the
variable v and the interface Γ. The component u is not involved directly in
(1.15)-(1.16), but is determined by the equations u = h + (v) in Ω±(t\ after the
problem (1.15)-(1.16) is solved.

REMARK 1.2. One may wonder why the term ε(n — l)κ in equation (1.15b)

is retained in the limit as ε J, 0. The reason is that in certain circumstances the

terms ε(n — \)κ and W(v) may be of same order. For instance, in the case of
the spiral wave solutions in Belousov-Zhabotinski reactions, the curvature K is

so large near the center of the spiral (see [24, 37]) that the above mentioned

two terms are both of order O(^/ε). Another situation in which ε(n — l)κ

cannot be omitted, is found in a study of equilibria of reaction diffusion

systems. Ohta, Mimura and Kobayashi [31] have shown that under suitable

conditions, equation (1.15)-(1.16) has redially symmetric equilibrium solutions,
with the radii of interfaces being of order 0(1). Since the relation

(1.17) W(v) = ε(n - l)κ on the interface Γ

holds for equilibria, VF(ι;)|Γin this case has the same order 0(ε), as ε(n — l)κ
has. As a matter of fact, the interfacial tension term ε(n — \)κ plays a primary

role in the stability and instability analysis of interfaces (see [31]).

There arise naturally two problems about the limiting equation (1.15):

(PI) Prove rigorously that (1.15) holds in the limit as ε j ,0 for solutions

of the original problem (l.l)ε-(1.2).

(P2) Study the free-boundary problem (1.15)-(1.16) and then compare the
results with the properties of solutions of (l.l)ε-(1.2).

Problem (PI) is not yet understood satisfactorily, as far as this author is
aware. Although there are many results strongly supporting the validity of

(1.15) as the singular limiting equation (l.l)e when εj,0, most of those are

limited to scalar equations and treat only equilibrium solutions or one-
dimensional case, rather than the nonstationary solutions of higher dimensional
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systems, in which we are chiefly interested here. For instance, Modica [29]
studied a variational problem with a small parameter in the Van der Waals-

Cahn-Hilliard theory of phase transitions in a fluid confined to a bounded
container, and proved that the interfaces arising from the singular limits of the

global minimizers satisfy an equation similar to (1.15b) (see also

[19]). Mimura [28] discussed problem (PI) in detail for special solutions of
one-dimensional systems (that is, n = 1 in problem (l.l)ε-(1.2)), such as
traveling waves and standing pulses. In one dimensional scalar equations,
there is an interesting phenomenon — the "very slow dynamics" of

interfaces — which is beyond the scope of our interface equation (1.15b) (see [5])
mainly due to the fact that the curvature term or the interfacial tension makes
no sense when n = 1. More recently, it seems that de Mottoni and Schatzman
[7] made some progress in (PI) for non-equilibrium solutions of scalar
equations in higher dimensions.

Hilhorst, Nishiura and Mimura [21] considered (P2) and investigated the
global interfacial dynamics for problem (1.15)-(1.16) in one-dimensional

case. As for two-dimensional systems, recently Ikeda [22] has numerically
studied the free-boundary problem (1.15)-(1.16). In the present paper we shall

focus our attention on problem (P2) for higher dimensional systems. Existence

(locally in time) and regularity of classical solutions to problem (1.15)-(1.16) will

established in section 3. We may regard such a solvability not only as a proof

of mathematical consistence of (1.15) but also as partial evidence for the validity
of the limiting equation (1.15). In general one cannot expect the existence of
global classical solutions to problem (1.15)-(1.16), since the interface may
develop singularities or self-intersections at some moment.

A striking difference between the one-dimensional case and the higher

dimensional case, is that in the former case the interface equation is an ordinary
differential equation, while in the latter which we study in this paper, the
interface evolves according to a partial differential equation (1.15b), therefore

the curvature effects must be taken into account. It should be mentioned here
that our interface equation (1.15b) is closely related to the following equation:

Λ Γ-T

(1.18) — - - ε(n - \)κN,
ot

which can be viewed as the singular limiting equation of du/dt = &Δu + ε~1F(u)

where F(u) = u(\ — u)(u — 1/2). This equation has been extensively studied

(see [1, 4, 17, 18, 20, 33]). Equation (1.15b) differs from (1.18) in that the
former involves also the component v in addition to the curvature K. This
feature causes certain marked contrasts between the behavior of solutions of

(1.15) and that of solutions of (1.18). For example, when starting from a
convex hypersurface, the solution of (1.18) remains convex, while the interface of
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the solution of (1.15) may become nonconvex in some cases (see [31, 28]). In
spite of such differences, the nonexistence of global classical solutions is a
common difficulty in analyzing (1.15) and (1.18). For equation (1.18), quite
recently Sethian [32, 34] came up with a new idea of applying the Crandall-
Lions theory of viscosity solutions to overcome this difficulty and has shown its
usefulness in the numerical studies. Evans and Spruck [8] furthered his idea
and proved the global existence and uniqueness along with many interesting
properties of viscosity solution to the initial-value problem for equation
(1.18) (see also [6] for a generalization). We hope that their approach may be
possibly extended to the study of equation (1.15), at least may provide us a
method to resolve (1.15)-(1.16) globally in time. Tracing the qualitative
behavior of solutions to (1.15) is a far more hard task. These remain to be
attractive problems for further attacks.

ACKNOWLEDGMENTS. The author expresses his sincere gratitude to
Professor Masayasu Mimura for his valuable advice and insightful suggestions
stimulating this work. He is also greatly indebted to Professor Hiroshi
Matano for helpful discussions and continuous encouragement, and to
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Department of Mathematics, Hiroshima University, especially to Professors
Takao Matumoto, Mieo Nishi, Kiyosato Okamoto and Masahiro Sugawara for
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2. The first stage : the emergene of transition layers

In this section we study the emergence of transition layers in problem
(1.1)£-(1.2).

Let/, g and F be as in (1.3), and denote by a+ and α _ , respectively, the
local maximum and the local minimum points of the function F (see
(1.4)). Define F * : R - > R by

{
F(u) a- < u < a+ ,
F(a+) u>a+,

For given initial data φ and ψ, define

(2.2) Ω+ = {xeR"; F*(φ(x)) > ψ(x)}9

(2.3) Ω_ = {xeR"; F*(φ(x)) < ψ(x)},

and
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(2.4) Γ={xeR ;F*(φ(x)) = ψ(x)},

and define a function I/*: R"\Γ^R by

(25) l7*(x) = ίM*(x)) for

1 j W ίMΆM) for

where h± are functions as in (1.4). Note that if φ and ψ are continuous, the

function (7* defined by (2.5) has jumping discountinuity at the set Γ.

THEOREM 2.1. Assume that φ and ψ: Rn -> R are bounded and continuous,
and let (uε(x, t\ vε(x, t)) be the solution to problem (l.l)ε-(1.2). Then

(2.6) lim^ Iimεi0 u
ε(x, εs) = U*(x) xeR"\Γ.

Roughly speaking, the above theorem means that there appears a jumping
discontinuity of the component uε near the set Γ in a short period of time. The
following theorem provides a more precise estimate on the width of transition
layer and the length of time for the layer generation.

THEOREM 2.2. Let φ and φ: R"->R be functions with bounded C2 norms,

and assume that there exist positive constants β2, σ2

 ana Pi such that

(2.7a) F(α.) + β2 < ψ(x) < F(a+) - β2

for all x e Rn and such that

(2.7b) I φ(x) - h0(\l/(x))\ > σ2 min {p2, dist(x, Γ)}

for any xeR". Then for any δ > 0, there exist positive constants ε2, C2 and K2,

independent of ε, such that

(2.8) |ι/(x, ί)-l/*(x) |<5

for 0 < ε < ε 2 , K 2ε|logε| < t < 3K2ε|logε|, and xeRn\Γ with dist(x,Γ)>

C 2ε|logε|.

Theorem 2.1 is proved by a simple scaling transformation. In proving

Theorem 2.2, it is important to study the behavior of the set

(2.9) {xeRπ; F*(wε(x, t)) = vε(x, t)}

in a small time interval. This will be achieved by employing a large deviation

result in the probability theory for the Brownian motion (see Lemma 2.8).

LEMMA 2.3. Assume the conditions of Theorem 2.1. Then there exists a

constant C3 = C3(</>, φ) > 0 such that
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for any ε > 0, x E R" and s > 0.

PROOF. Apply the standard invariant regions argument (see [35]).

PROOF OF THEOREM 2.1. Fix arbitrarily x 0ERw . Define

Uε(y, s) = uε(x0 + εy, εs) yeRn, s > 0,

Vε(y, s) = vε(x0 + εy, εs) yeR", s > 0.

Then Uε satisfies the following parabolic equation:

dUε

D

(2.11)

(2.12) ds

Uε(y, 0) = φ(x0 +

- Vε
0,

Recall that \f satisfies equation (l.lb)ε and the term g(uε, vε) in (l.lb)ε is
uniformly bounded (see Lemma 2.3). Using standard parabolic estimates, we
see that for any δ > 0 there exists t^ = t1(δ)> 0 such that

(2.13) \vε(x,t)-ψ(x)\<δ

for all ε > 0, xER" and 0 < ί < ίt. It follows that

I Vε(y, s) — Ψ(XQ)\ < \vε(x0 + εy, εs) — ψ(x0 + εy)\
(2.14)

for all ε > 0, yeR" and 0 < 5 < t1/ε. Thus Vε(y, s) converges as εj,0 to ψ(x0)
uniformly on any compact subset of R" x [0, oo). Since the solution to the
parabolic equation (2.12) depends continuously on the inhomogeneous term and
the initial data, such a convergence implies that Uε(y, s) -» U(y, s) as ε|0,
uniformly on any compact subset of Rn x [0, oo), where U is the solution of

(2.15)
= A U + F(U) - φ(x0) yεRn, s > 0,

V ( y , 0 ) = φ ( x 0 ) yεR".

Since U(y, 0) is independent of y, U(y9 s) = U(s) satisfies an ordinary differential
equation:

(2.16)

Therefore,

( U'(s) = F(U) -

I 17(0) = φ(x0).

s > 0 ,
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(2.17) lim,^ Iimεi0 w
ε(x0, εs) = lim^ limε|0 l/

ε(0, s) = lim,^ U(s).

By looking at (2.16), one can easily find that

(2.18) ]im^aoU(s) = h + (ψ(xΌ)) or A_ftK*o)),

which depends on whether x0eί2 + or x 0eί2_. D

LEMMA 2.4. Assume that conditions of Theorem 2.2. TTze/7
(i) there exists a constant C4 > 0 such that

(2.19) | t ; ε (x,ί)-ιAMI<C 4 ί

for all ε > 0, xeR" am/ ί > 0;
(ii) ί/zere exists t4 > 0 swc/z that

(2.20) F(α_) + £4 < ι;ε(x, ί) < F(α+) - /?4

/or a// ε > 0, xeR" αwd 0 < ί < ί4, where β4 = β2/2 with β2 being as in (2.1 a).

PROOF, (i) By Lemma 2.3, there exists a constant K4 > 0 such that

(2.21) \g(*f(x,t), vε(x,t))\<K4

for any ε, x and ί. If C4 was chosen sufficiently large, then the function £(x, ί)

= ψ(x) + C4ί satisfies

dv
(2.22) —-DΔv- g(u\ υε) > C4 -

for any ε, x and ί (recall that we assumed H^Hcz^n) < °°) From the maximum
principle it follows that #(x, ί) > ι;ε(x, ί) for any ε, x and ί. The lower bound
can be derived similarly.

Statement (ii) follows from (i). D

LEMMA 2.5. Fix arbitrarily positive constants K5, σ5 and p5. Suppose that
two functions J : R" x [0, oo) -> R and Φ: Rn -> R and a subset G of Rn satisfy

ί223) |y(X' Ol + |ΦWI - ̂ 5

[ Φ(x) > σ5 min{p5, dist(x, G)} xφG.

Let wε(x, t) be the solution to the Cauchy problem

(2.24)
^— = εzfw ε + ε'1 J(x, t)wε xeR", t > 0,
ot

ε(x? 0) = Φ(x) xeR π .

Then there exist positive constants ε5, £5 and C5, depending only on K5, σ5 and
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p5, such that

(2.25) wε(x, ί) > 0

for any 0 < ε < ε5, 0 < t < t5 and xeR" with dist(x, G) > C5(t + ε|logε|).

PROOF. We shall use a probabilistic argument similiar to that found in
[15].

For a point xeR", denote by £x the space of all continuous curves
AΓ:[0, oo)->R" with X(0) = x. For each δ > 0, let φ£ be the probability
measure on 3EX induced by the diffusion process corresponding to the equation
dp/dt = δAp.

By equation (2.24) and the Feynman-Kac formula, we obtain

(2.26) wε(x, ί) = <%|~Φ(*(f)) exp{ ίV1 J(X(s), t - s)ds}~]9

L Uo JJ

where Sε is the mathematical expectation with respect to tyε

x.
For each (x, ί), we decompose the space of sample paths Xx into two parts

X'x and £x as follows:

; max0<s<t\X(s) - x\ < L(t + ε|logε|)},
(2.27)

where L> 0 is a large constant to be chosen later (see (2.34)). This induces a
decomposition of the right hand side of equation (2.26):

(2.28) W(x, ί) = «?,[] I Ϊ3e + <%[]!*».

The first term is easily controlled. In fact, we have

(2.29) Φ(X(s)) > σ5min{p5, dist(x, G) - Lt - Lε|logε|}

for any xeR"\G, 0 < s < t and XeX'x. From this it follows that

f tK 1
(2.30) (% []| > exp --^U5L(ί + ε|logε|),

provided that xeR" and t > 0 satisfy t + ε|logε| < p5/Land dist(x, G) > 2L(t
+ ε|logε|). To estimate the second term on the right hand side of (2.28), we
recall the following result (see [39] or [38]):

For any L> 0, there exists a constant δ5 = δ5(L) > 0 such that

(2.31) Φx[XeXx , supoMl \X(s) - x| > L] < exp{ - L2βδ}

for any δe(Q, (55] and xeR M .

According to this and in view of
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(2.32) εt(t + ε|logε|Γ2 < (4|logε|)-1 for all ί > 0,

we find that

9£[*3 = ̂ [*eϊx; supθ£ssr \X(s) -x\>Ut + ε|logε|)]

= ̂ '""^-'[XeS,; sup0<s<1 \X(s) - x| > L]
(2.33)

(by a change of variables)

J L2(ί + ε|logε|)2

< exp<
8εί

for any x and ί, provided (4|logε)-1 < δ5. This implies that

\tK5\ f L2(ί + ε|logε|)2

8εί
(2.34)

for any x and ί, provided L2 = 16(X5 + 1) and 0 < ε < exp(— <55/4).
Combining inequalities (2.30) and (2.34) completes the proof of Lemma
2.5. D

LEMMA 2.6. Assume the conditions of Theorem 2.2. Then for any M > 0,
there exist positive constants ε6, t6 and C6 such that

(2.35) uε(x, t) > h0(φ(x)) + M(τ + ε | logε|)

for any 0 < ε < ε6, 0 < ί < τ < t6 and xεΩ+ with dist(x, Γ) > C6(τ + β| logε|).

PROOF. Take two small numbers β6 > 0 and y6 > 0 such that

'(n) > jS6 for all we[α_ + y6, α+ - y6];
(2'36) ] <a+- 2y6 for all

Fix an arbitrarily large M > 0. Without loss of generality, we suppose that

(2.37) jS 6M>C 4

where C4 is as in Lemma 2.4.
For each τ > 0, consider a function

(2.38) w(x, ί) = w(x, ί; τ, ε) = wε(x, ί) - MΆM) ~ Λf(τ + ε|logε|).

It is easy to check that

(2.39) — - = εAw + ε'1 J(x, ί)w + ft(x, ί),
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where J and b: R" x [0, oo)->R are defined, respectively, as follows:

J(x, ί) = J(x,ί;τ, ε)

(2.40) = w-Hx, ί){F(fi (x, 0) - Wx, ί) - w(x, ί))},

b(x, ί) = 6(x, ί τ, ε)

(2.41) = ε~ * {F(ft0 ° ψ(x) + Mτ + Mε| logε|) - vε(x, t)}

-1./(x, ί)w xeR", t > 0,

Let w(x, t τ, ε) be the solution to the problem

dw

(2.42) & "

w(x, 0; τ, ε) = w(x, 0; τ, ε)

First we show that if ε6 and ί6 are sufficiently small constants, then

(2.43) w(x, ί τ, ε) > w(x, ί τ, ε)

for any 0 < ε < ε 6 , 0 < ί < τ < ί 6 and xeR". To this end, let ε6e(0, )̂ and ί6

> 0 be so small that

(2.44) M(ί6 + ε 6 | logε 6 | )< 7 6

where γ6 is as in (2.36). Then for any 0 < ε < ε6, 0< t < τ < t6 and xeR", we
have

(2.45) α_ + y6 < h0(ψ(x)) + Mτ + Mε|logε| < α+ - y6,

and hence.

b(x, ί; τ, ε) > εzί(/ι0o^)(χ) + ε-^Fίfco^M)

β6M(τ + ε | logε |) - ^W - C4t} (by (2.36))

(2.46) > {^Mllogεl -ε|μ(/ι0o^)||LOO(Rn)}

> 0. (by (2.37))

Combining this with (2.39) and (2.42) and using the comparison theorem, we
obtain (2.43).

Next we claim that there exist positive constants ε6, f6 and C6 such that

(2.47) w(x, ί τ, ε) > 0
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for any 0 < ε < ε6, 0 < f < τ < f 6 and xeΩ+ with dist(x, Γ) > C6(τ

+ ε|logε|). For this, we put

Φ(x) = w(x, 0, τ, ε) = φ(x) - h0WM) - M(τ + ε| logε|),
(2.48)

G = ί2_ U { x e R π ; rfwί(x, Γ) < 2σ^1 M(τ + ε|logε|)},

where σ2 is an in (2.7b). If we can choose positive constants K5, ρ5 and σ5

such that J, Φ and G satisfy the conditions of Lemma 2.5, then (2.47) follows
immediately from Lemma 2.5 (note that in Lemma 2.5 the constants ε5, ί5 and

C5 depend on J, G and Φ only through the constants K5, p5 and σ5). Since J

and Φ here are uniformly bounded, K5 is easily found. Now we seek p5 and
σ5. Observe that any xφG is contained in Ω+ and satisfies that

(2.49) dist(x, Γ) > 2σ2~
1 M(τ + ε| logε|),

which along with the assumption (2.7b) implies that

Φ(x) > σ2min{p2 5 dist(x, Γ)} — M(τ + ε | logε|)

> σ2min{p2, \dist(x, G) + σ2 ̂ (τ + ε|logε|)}

(2.50) -Af(τ + ε|logε|)

> σ2min{p2 - σ2

 1M(τ + ε|logε|), %dist(x, G)}

2, dist(x, G)},

for any τ + ε | logε | < (2M)-1p2σ2 and x^G. Therefore it suffices to take σ5

= <72/2 and p5 = p2 for applying Lemma 2.5. The inequality (2.47) is proved.

Lemma 2.6 follows from (2.43) and (2.47). D

LEMMA 2.7. Let A and B be positive numbers. Consider an ordinary
differential equation for R(t)

f Λ'(ί) = A[B-R(ί)]R(ί) ί>0,

( '
Then,

(2.52) B > R(t) > B - RQ 1 B2 exp( - ABt) t > 0.

PROOF. A simple quadrature gives

LEMMA 2.8. For constants ε > 0, p > 0 and ηε(F(a_\ F(a+)\ consider an

initial-boundary value problem of parabolic equation:
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(2.54)

dt

u=h0(η)

\x\<P, ί>0,

Denote the solution by u(x, t ε, 77, p). Then for any δ > 0 //zere ex/sί positive ε8,

σ8, X8, L8

(2.55)
t> X 8ε|logε|,

Me
w(0, ί ε, >/, p) > h + (η) -δ- * exp( - σβί/ε) ί > 0,

fi(0, ί; ε, ?/, p) > h + (η) -2δ

for all 0 < ε < ε8, p > L8ε ««ί/ ^(^-) + β±<η < F(a+) - β4.

PROOF. For any δ > 0 there are σ8 > 0 and M8 > 0 such that

(2.56) F(ξ) - F(fc0fo)) > 2σs [_ξ - Λ0(ι/)]

for all ξ and η with h0(η) <ξ< h + (η) - δ and F(α_) + β4 < η < F(a+) - j?4,

where β4 is as in Lemma 2.4.

Let R(t) be the solution to problem (2.51) with A = ε~ 1M^" 1 / 2σ 8, £

= ft + (f/) — h0(η) — δ and R0 = ε|logε|. Let φ^(x) be the positive eigenfunction

of the principal eigenvalue λ± of the Laplacian in the unit disk, that is,

'Φi + Λ ιΦι =° l x l < !>

<Pι(x) = 0
(2.57)

We further assume that

(2.58)

Note that 0 < φ^x) < 1 for all |χ| < 1.

Define

(2.59)

x =

<l, ί>0,

and denote ύ(x, t) = ύ(x, t; ε, η, p) for brevity. Then it is easy to see

u8(x, 0) < u(x, 0) | x | < l ,

ιι8(x, ί) = fi(x, t) = h0(η) |x| = l.

Moreover,

(2.60)
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t-FfaW + RφJ + FM))

(2.61) li - 2σ8 J

provided p > εN/λ1/σ8. Thus w8 is a subsolution to problem (2.54) if p is as

above, and therefore, by the comparison theorem and Lemma 2.8, we obtain

that

(2.62)

δ(0, t) > ιιβ(0, t)

= h0(η) +

> Λ + (»y) - δ - M8{ε|log el} ' 1 exp(- σ8ί/ε)

for any t > 0. D

LEMMA 2.8'. For αwy F(α_) < η < F(a+\ ΛeRn and p > 0, consider an

initial-boundary value problem

(2.63)

<p, t >0,

=p, ί>0,

Denote the solution by w(x, ί; ε, f/, p, Λ). ΓΛ^« /or α«j δ > 0 am/ y leR there

exist positive constants ε8, K8 such that

(2.64) ΰ(0, t ' 9 ε , η 9 p 9

for all 0 < ε < ε'8, t > X 8 ε | logε | , p > L'8ε and F(α_) + β4 < η < F(a+) — β4.

PROOF. Take constants Λ' 8eR and σ8 > 0 such that

Λ'8 > maxίyi, h + (η)},
(2.65)

for all ξ and r/ with h + (η) < ξ < Λ's and F(α_) + β4<η < F(a+) - β4.

Let K(ί) be the solution to problem (2.51) with R0 = 1, A and B defined by
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X = e-1(^'8 + lΓ1α/

8,
(2.66)

B = Λ's + l-h+(η)-δ,

and let φl satisfy (2.57)-(2.58). Define

(2.67) ΰs(x, ί) = Λ'β + 1 - R(t) φ, (x/p) Όx\ < p, t > 0.

The rest of the proof goes quite analogously to that of Lemma 2.8. In fact, if

α'8 is sufficiently small and L8 is sufficiently large, then M8(x, ί) defined as above

is a supersolution to problem (2.63) for p > εL8. Hence, ΰ < ΰs. However, by

Lemma 2.7,

(2.68)
< h + (η) + δ + (Λ'8 + l)2exp(- α'8ί/ε),

which is smaller than /* + (>/) + 2(5, if ί > εK8 with K's being sufficiently

large. D

LEMMA 2.9. Assume the condiions of Theorem 2.2. 77ze« for any δ > 0

e dsf positive constants ε9, ί9, C9 α«ί/ X9 ^wc/z that

(2.69) |wε(x, ί)-/

forO<ε< ε99 X 9ε| logε| <t<t9 and xeΩ+ with dist(x, Γ) > C9(t + ε|logε|).

PROOF. For any ε > 0, p > 0, y e R" and τ > 0, define

(2.70) u9(x, 0 = fi(x - y, ί; ε, >y, p) |x - y| < p, ί > 0,

where w is as in Lemma 2.8 and η is as follows:

(2.71) η = η(y, p, τ) = ψ(y) + τC4 + P \\ V φ \\ Lαo(Rn) .

By Lemma 2.4, we find that

«, ί) - F(uε(x, ί)) = - vε(x, t)
Ul

(2.72)

> — η = —^- — 82Au9(x, t) — F(u9(x, ί)),

for all xeR" with \x - y\ < p and ίe(0, τ]. By the assumption (2.7b), Lemma

2.6 and the Lipschitz continuity of the function h0(η) on the interval τ/e[F(α_)

+ /?4, F(a+) — )54], we find that if ε9, ί9 and Cg1 are sufficiently small positive

numbers, then for 0 < ε < ε9, 0 < p < ε | l o g ε | , 0 < τ < ί9 and yεΩ+ with
dist(y, Γ) > C9(τ + ε|logε|), it holds that



Dynamics of interfaces in reaction diffusion systems 55

uε(x, t) > u9(x, t) \x - y\ = /?, 0 < t < τ,
(2.73)

φ(x)>u9(x, 0) \x-y\<p.

From this, (2.72) and the comparison theorem, it follows that

(2.74) uε(x9 t) > u9(x, 0 |x - y\ < p, 0 < t < τ,

for all ε, p, τ and y as above; in particular, for τe[K9ε|logε|, ί9] we have

uε(y, τ) > u9(y, τ)

= w(0, τ ε, η, p)
(2.75)

>h + (η)-2δ

2δ- M9(τC4

where M9 stands for

(2.76) M9 = max{|fc'+(iί)|; F(a.) + β4<η< F(a+) - jβ4}.

Therefore

(2.77) ι f ( y , τ ) Z h + (ψ(y))-3δ9

provided ε9 and ί9 were chosen sufficiently small. Similarly one can prove

(2.78) *(y,τ)£h + (ιlι(y)) + 3δ,

by using Lemma 2.8'. Since δ > 0 is arbitrary, the lemma is established. D

PROOF OF THEOREM 2.2. By Lemma 2.9, when ίe[K9ε|logε|, 3X9ε|logε|],

inequality (2.8) holds for 0 < ε < ε9 and xeΩ+ with

(2.79) dist(x, Γ) > C9(3>K9 + l)ε|logε|.

The part of (2.8) involving x e f 2 _ follows from an analogue of Lemma
2.9. D

REMARK 2.10. (i) Assuming the conditions of Theorem 2.2, one can give

estimates of other types. The following is an example:
for any δ > 0 and αe(0, 1), there exist positive constants ε10 and C10 such

that

\uε(x,t)-U*(x)\<δ

for 0 < ε < ε10, εα < t < 3εα, and xeR" with dist(x, Γ) > C10ε
α.

Note also that the number 3 is unimportant here and in Theorem 2.2 in fact it

can be replaced by an arbitrary number.
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(ii) The arguments in this section are applicable to the Cauchy problem for

scalar equations and to the Neumann boundary value problems for scalar
equations and systems in smooth bounded domains of Rπ. In the Dirichlet
boundary value problems our method can still be directly employed in the

analysis of internal layers and the treatment of boundary layers needs little

modifications. One can also consider nonlinearities more general than those

given by (1.3). We shall not get involved further in these details here.

3. The second stage: the interfacial motion

In this section we are concerned with a free-boundary problem which

describes the interfacial dynamics for the reaction diffusion system (l.l)ε. As

discussed intuitively in section 1, the singular limiting problem of (l.l)ε reduces
to equation (1.15). This equation involves the component v and the interface Γ
which interact each other in a highly nonlinear way. Here the interface, or the

free-boundary, is an imbedded hypersurface Γ(t) separating the whole space Rπ

into two regions Ω + (t) and Ω_(t) and propagating as time evolves. We shall
show in this section that the initial-value problem for (1.15)-(1.16) is solvable at
least in a short interval of time.

To be more precise, fix a smooth compact hypersurface M of R", which is

the boundary of a bounded domain ί2 + (0). Let S:M->R" denote the

inclusion map and let ί2_(0) = R"\(fl + (0)uM). υ Given a C1 function ψ:Rn

-»R and the hypersurface M, our problem is to find a function v: R" x [0, T]
-»R and a mapping Γ: M x [0, Γ] ->R" satisfying the following equations:

dv
(3.1a) — = DΛv + g + (v) xeΩ + (t), 0 < t < T,

ot

dv
(3.1b) — = DΔv + g-(v) xeΩ.(t)9 0 < t < T,

ot

(
Λ J-, \

ΛM = W(v)-ε(n- l)κ ηeM, 0 < ί < T ,
dt )

(3.3) v( ,t)eC1(R") 0 < f < Γ,

(3.4) υ(x,Q) = \l/(x) xeR",

(3.5) Γ(η,0) = S(η) ηεM,

where g+ and #_ : R-> R are smooth functions, The equation of motion for

υ A topological remark: any connected compact hypersurface separates R" into two connected

components.
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the interface is (3.2), in which W: R -> R is a smooth function, K = κ(η, t) is the
mean curvature of the hypersurface Γ(t) = {Γ(η, t) η e M} at the point x
= Γ(η, ί), N = N(η9 t) is the unit normal vector field of Γ(t) pointing from Ω + (t)
to Ω_(t\ and ( , •) is the Euclidean inner product of R". The free-boundary
condition (3.3) requires that v(-> t) and its derivatives du/dxt(l < i < n) are
continuous across the interface Γ(t\ for each t > 0.

DEFINITION 3.1. We call a pair (v9 Γ) a classical solution to problem (3.1)-

(3.5) in the time interval [0, T] if

(i) Γ: M x [0, T] -»R" is of class C2 in ηεM and of class C1 in te

[0, T];

(ii) there exists a C1 function Ξ: R" x [0, Γ] -> R satifying

e[0, Γ]}
(3.6)

= {(x, ί)eR"x[0, T];S(x,f) = 0},

(3.7) F,S(x, f) * 0 for any (x, t)eΓ(t),

(3.8) 0 + (ί) = {xeR"; S(x, t) > 0} ίe[0, T],

(3.9) Ω.(t)={xeRn Ξ(x9 t) < 0} ίe[0, Γ],

(iii) t; : R" x [0, Γ] -> R is a bounded continuous function moreover, v

is of class C1 in t and C2 in x in the set

(3.10) fl:=

(iv) each of equations (3.1)-(3.5) are satisfied in the usual sense.

The main result in this section is the local (in time) solvability of problem (3.1)-
(3.5):

THEOREM 3.2. Assume that g + 9 g- and W\ R -> R are of class C1. Let M
be a compact hypersurface in R" of class C2+Λ with αe(0, 1) and let S: M -> R"

be the inclusion map. Suppose that ^:R"-»R is of class C1 + α and that

||^||cι+α(Rn) < oo. Then there exists a classical solution (v, Γ) to problem (3.1)-
(3.5) in a time interval [0, Γ] with T= T(ψ, M) > 0.

Now we describe the outline of the proof of the above theorem.

Firstly it is appropriate to translate equation (3.2) into an evolution

equation for scalar functions on M. To this end we take a C°° imbedding

IQ : M ->• R" and denote by N0(η) the unit outward normal vector of the

hypersurface ι0(M) at the point /0(^y). If L> 0 is small, then the geodesic map

(3.11) i: M x (-L, L)— >R"
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which is defined by

(3.12) ι(η, ζ) = ι0(η) + ζN0(η) ηεM,

maps M x ( — L, L) diffeomorphically onto an open tubular neighborhood ι(M

x (— L, L)) of IQ(M). For ι0 sufficiently close to the inclusion map S in C2

topology, S can be represented by a function z0 : M -* ( — L/4, L/4) with

(3.13) ι(η, z0(η)) = S(η) ηeM.

Since S is of class C2+α, so is z0. Moreover, if Γ( , t):M^Rn is a

C f c +^(fe > 1, j5e[0, 1)) imbedding sufficiently close to S in C1 topology, then it

also corresponds to a C f c + /* function z( , ί): M->(-L/2, L/2) such that

(3.14) 1(1,, zfo, 0) = Γ(η, t) ηeM.

Thus, for finding the (local in time) solution Γ( , t) of equation (3.2) starting

from S, it suffices to find a family of functions z( , t): M->R which satisfies a
certain evolution equation.

For C e ( — L, L), let gζ be the Riemannian metric on M induced by the
imbedding

(3.15) M-+R", ιy-*ϊ(ιy,0.

Then the outward unit normal vector field is given by

(3 16)

where gradζ is the gradient operator with respect to the metric gζ. The normal

velocity of Γ(t) is

. & ' / v/1 + l l d z l β '

and the mean curature K can be written as follows:

grad^z
(3.18) S *

where divz and trz are, respectively, the divergence operator and the trace
operator with respect to the metric gz, and Jz is a symmetric bilinear form on

the tangent boundle TM defined by:

(3.19) J,(X, Y) = ̂ (X,Y)K X,YeTηM,
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with ( , )gζ being the inner product associated with the metric gζ. Therefore, at
least for a short period of time, in terms of z, equation (3.2) is :

dz- v/ι i UMiMi , f
at v "•• '

(3.20)
— ^trz Jz — W(v(ι(η, z),

or, equivalently,

(3.21) | = ΛzZ-_L__((Fz)grad

- itrz7z - W(v(τ(η, z),

It is more convenient to consider a C°° Riemannian metric <? on M x R
and a C°° imbedding ?: M x R-»R" such that

(3.22) g = 0tm + dζ2

(3.23) ϊ(η, ζ) = ι(η, ξ(ζ)) ηeM, ζeR,

where ξ : R - > R is a C°° increasing function satisfying

ξ(ζ) = ζ \ ξ \ < L / 2 ,

(3.24) ί(0 = 3L/4 { > 4,

ξ(ζ) = - 3L/4 ξ < - 3L/4.

Assume that

(3.25) {(z0(»ί), dz0(»/)); »?eM} c {(C, ω)eR x T*M; |ζ| + ||ω||9o < C0},

where g0 is 0ζ|ζ=0 and C0 > 0 is a constant. Let J: M x R-»R be a C°
function such that

J(η,z) = tτzJM ηeM,\z\<L/2,
(3.26)

f, |z|>3L/4.

Consider further a function S1: R x T*M->R such that

1 > Ξ(ζ, ω) > 0 for all (C, ω)eR x Γ*M;

(3.27) Ξ(ζ, ω) = 1 for (C, ω)eR x Γ*M with |ζ| + ||ω||9o < 2C:

Ξ(ζ, ω) = 0 for (f, ω)eR x Γ*M with |ζ| + ||ω||,,0 > 4C ι ;

and define A: R x Γ*M -»R and B: R x Γ*M -» TM by
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(3.28a) A(ζ, ω) = S ,

(3.28b) (B(ζ, ω), X)ffζ = Ξ(ζ, ω) ω(X)

for all C e R, ω e T* M and XeTηM with */ e M . Given a function ι;(x, ί), ζ e R,

77 eM and ωeT*M, we define a differential operator s/ by

1 ^ ____

s/(η, v, C, ω, £)!>] = ZζZ - — — rj ((Fζ)j,(ζ,ω) gradζz, B(ζ, ω))ffς
A(L,, (D)

(3.29)
-J(η,ζ)-W(v(ϊ(η9z)9 t))A(ζ,ω).

Since we are concerned only with the local solution, equation (3.17) can be

replaced by the following equation:

(3.30) ^ = s/(η9υ9z9dz9t)lz ].

In fact, because of the construction, equation (3.30) coincides with (3.20) if
\z\ < L/2 and |z| + \\dz\\go < 2C1? which is satisfied by any solution to (3.30) in
a sufficiently small period of time.

In terms of z, we should understand that the domains Ω + (t) and ί2_(f) in

equation (3.1) are determined by

(3.31a)
= [Q + (0)\f(M x R)] U {ilfo, 0; C < z(η, 0},

_ -
(3.3 Ib)

= [fl.(0)\ϊΊ(Af x R)] U {% 0; C <

and that the interface Γ(ί) is given by

(3.3 Ic) Γ(t) = Γz(i) = {% z(ι/, ί)); i / e A f }.

In conclusion, problem (3.1)-(3.5) is reduced to the following:

(3.32a) - = DAv + g + (v) xeΩ + (t), t > 0,
ct

(3.32b) - = DJt; + ^_(t?) xeβ_(ί), ί > 0,
oί

(3.33) ~ = s/(η9 V' Z> dz> t} [z] nzM,t> 0,
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(3.34) v( ,t)eC1(Rn) t > 0,

(3.35) υ(x9Q) = ψ(x) xeR",

(3.36) zfo, 0) = z0fo) i/εM.

In what follows we shall assume that

(3.37) g + ι 9- and W: R->R are of compact support.

This can hardly be a restriction, as far as only the local solutions are concerned.
By the above observation, we find that Theorem 3.2 follows from the

following:

THEOREM 3.2'. Let z0: M->R be a function of class C 2 + α wiίh αe(0, 1)

and let ^:R"-»R be of class C 1 + α such that \\ψ\\cι+«(Rn} < oo. Then there
exists a classical solution pair (v9 z) of problem (3.32)-(3.36).

For βe(0, 1), let

(3.38a) Xβ(R) = Cβ>β/2(B(R) x [0, T]) x C1+' (1+»'2(M x [0, T]).

and let

(3.38b) || (v, z)\\χβ(R} = \\v\\

For /le[0, 1], R > 0 and (τT9 ^)e^(R) consider the following problm (3.39)-
(3.44):

(3.39a) = DAv + λg + (i^) xeQ%(t)nB(R)9 ίe(0, Γ],
ot

(3.39b) - = DΛv + λg-(r) x e Ω * ( t ) f } B ( R ) , ίe(0, T],
ot

(3.40) ^ = λ^(η, TT, ar, dίΓ, ί)z + (1 - J,)Λ0* i/eM, ίe(0, Γ],
oί

(3.41) v( ,t)eCl(B(R)) t > 0,

(3.42) o(x,t) = ^(x) |x| = R, te(0, T],

(3.43) v(x,0) = φ(x) \x\<R.

(3.44) zfo, 0) = z0fo) »/εM.

In (3.39) the sets Ωf (ί) are as in (3.31). We begin with the solving of the
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problem (3.39)-(3.44). For each pair (-)T, 2!)eXp(R\ denote by (v, z)

= Φλ,κ(^> ^0 t*16 solution of equations (3.39)-(3.44). This determines a map

Φλ,κ '- &β(R) -> &β(R) We shall next seek a fixed point (vR9 ZR) of the map ΦίtR

for each fixed R > 0, by applying the continuation method to the one-

parameter family of maps {Φλ,jJλ6[o,i] Then we shall show that (a
subsequence of) (VR, ZR) converges as R -> oo and the limit is a solution of

problem (3.32)-(3.36).

Problem (3.39)-(3.44) is resolved in the lemma below for given

) and R > 0.

LEMMA 3.3. Let z0: M->R be a function of class C2+β with βe(0, 1) and

let R > 0 be so large that ι(M x R) c β(R). Fzx constants λε [0, 1] αwrf Γ> 0.

/or fl«j ι//eC1(B(R)) and any pair (f, 3f) e S£ β(R), there exists a unique

solution pair (v, z) of problem (3.39)-(3.44). Moreover,

(3-45)

ye(0, 1) and C2 > 0 depend only on

β, T, ||z0||c2^(M), \\Ψ\\c"β(δ(Rn> and

re independent of λ and R.

PROOF. A unique solution z to equations (3.40), (3.44) is easily found by

the classical theory for parabolic equations.

To find the solution v to equations (3.39), (3.41)-(3.43), we define a function
G : R π x [0, Γ]->R by

(3.47) G(x, ί, υ) =

and let Gδ(δ > 0) be approximations of G satisfying

(3.48) \Gδ(x, t)\ < C3 for all xeR", ίe[0, Γ], and δ > 0;

(3.49) G*: R" x [0, T] ->R is a class C1 for each δ > 0;

(3.50) G* = G for xeR", f e[0, T] and veR with dist(x, Γ*(t)) > δ.

Consider the following equation appoximating (3.39):

dvδ

(339)δ — = DAvδ + λGδ(x, t) x e R", ί e (0, T].

By the existence theorem for parabolic equations possessing smooth coefficients
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and smooth nonlinear terms, we obtain the classical solution vδ of equations
(3.39)*, (3.42), (3.43).

(3.48) implies that {vδ} are uniformly bounded:

(3.51) \vd(x, ί ) l< ll"/Ίlz.oo(β(J?)) + C3ί | x |<R, 0 < f < Γ , δ > 0.

Clearly, the solution vδ can be decomposed into two terms:

(3.52) vd = Vl + vl

where v^ and v\ satisfy

(3.53)

.
ot

\x\<R, te(0, Γ],

\x\ = R, ί >0,

(3.54)

MX, 0) =

dvδ

- = DΔvδ

2 + λG\x, t) |x| < /?, f e(0, Γ],

|x| = R, t >0,

ι4(x, 0) = 0

Since the inhomogeneous term Gδ in (3.54) is uniformly bounded, the standard

estimate provides the following (see [25, Chapter V, §4]):

(3.55) ||l?2 He 1 +α>(1+«>/2(BCR)x[0,Γ]) ̂  ^4»

where αe(0, 1) and C4 > 0 are independent of δ. For d > 0 let

(3.56) ί2^'d = {(x, ί)e ~B(R) x [0, T]; dίsί(x, Γ^(ί) > d}.

From (3.50) it follows that

(3.57) || Gδ ||c«,α/2(β^) < C5(d) for 0 < δ < d,

where C5(d) > 0 is a constant. Combining Schauder's interior and boundary

estimates we obtain

(3.58)

if 0 < δ < d. By virtue of the estimates (3.55), (3.58), one can find a

subsequence <5fc|0 and a function v2 : B(R) x [0, T] -> R such that
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it — >»2 in C1 + i'(i+»l2(B(R) x [0, Γ])

(3.59)

in

for any d > 0 and ye(0, α). Therefore

it — > »ι + »2 in C 1 + *(1 + y)/2 (B(R) x [0, T] )

(3.60) _ _

in C2+U2^I2(Ω^ Π B(R) x [τ, Γ])),

for any d > 0, ye(0, α) and τe(0, T). In view of (3.50), we conclude that v2

satisfies the equations

(3.61)

= DΔv2 + λg + (r) xeΩ*(t)f)B(R), te(0, T],
ct

v2(x, t) = 0 |x| = R, ίe(0, Γ],

ι?2(x,0) = 0 | x | < Λ .

From this it follows that the function v:= υ± + v2 is the required solution to
problem (3.39), (3.41)-(3.43). The existence of the solution is established.

The uniqueness of the solution v of (3.39), (3.41)-(3.43) follows readily from
the maximun principle.

It remains to show the inequality (3.45). The C1 + y'(1 + y)/2 norm of v has
been already estimated in the above proof of the existence. As for z, we note
first that the structure of $#(η, iΓ, Jf, d^, t) ensures a uniform L°°
estimate. Then one can use the interior estimates (see [25, Chapter V. §5]) to
derive the bound of c2 + 7'(2 + 7)/2 norm of z. D

By the above lemma, one can define a map ΦλίR: & β(R) -+ & β(R) by

ΦA,K(^> &)-= (v, z) with (v, z) being the solution of (3.39)-(3.44).

LEMMA 3.4. Let z0: R
n-»R be a function of class C2 + α with αe(0, 1) and

let R>Q be so large that Ί(M x R) c= B(R/2). Assume that

\l/eCl +Λ(B(R)). Then there exists a fixed point (VR, ZR) e Xβ(K) of the map Φλ,R

z//?e(0, 1) is chosen sufficiently smalll. Moreover,

(3.62) ll l ;l?llc1 + ')',(i+y)/2(BCR)x[o,r]) + l l z l? l lc 2 + V '( 2 + v)/2(Mx[0,r]) ^ ^Ί >

where ye(0, 1) and C7 > 0 are independent of R (and depend only on
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α, T, ||z0||c2 + «(M) and

PROOF. We use Leray-Schauder's fixed point theorem. It suffices to
prove the following a priori estmates (i)-(iv) when /?e(0, 1) is sufficiently small:

( i ) for each Λe[0, 1] the map ΦλjR maps any bounded set of £β(R) into
a relatively compact set of 3Cβ(R)'9

(ii) for any bounded set B c Xβ(R\ the family of maps {Φλ,R\B}λe(o,ΐ] ™
equicontinuous in λ;

(iii) sup { || υ, z) \\ ̂ β(R} ΦλtR(υ, z) = (v, z), λ e [0, 1] } < oc

(iv) there exists a unique (v, z)e&β(R) such that Φ0tR(v9 z) = (v, z).

The property (i) follows from (3.45) in Lemma 3.3 and Ascoli-Arzela's
theorem. The property (iv) can be easily obtained, since the equations (3.39)
and (3.40) are linear ones when λ = 0.

PROOF OF (ii): Let λ, λ'e[0, 1] and (f, &)eB. Put

(3.63) (iv z,) = ΦλtR(r, X) - Φλ..R(r9 &).

It suffices to show that v+ and z^ are small if |λ — λ'| is small. The part
involving z^ can be directly proved by a standard estimate for the quasilinear
parabolic equations (see [25, Chapter V, §6]). To estimate the term v+, we
look at the equation satisfied by t;^:

(3.64) - = DAυ* + (λ- λ')g±(r(x, t)) x6Of(i)nB(K), ίe(0, T],

(3.65) t>*(x,ί) = 0 \x\ = R, ίe(0, T],

(3.66) ^(x, ί) = 0 \x\<R.

Since |gf±(ι^)| are uniformly bounded by a constant C8(B) for i^eB, by the LP
estimate and the Sobolev imbedding theorem we obtain:

(3.67) l l ί ; * l l c ι + /' < l + 0>/2<ΐ^)x[o,r]) ^ 1^ — λ'\C9(B).

This establishes the property (ii).

PROOF OF (iii): Suppose that ΦλtR(v, z) = (t?, z)eXβ(R\ By the condition
(3.37), \g±(v(x, t))\ are bounded. Using a priori estimates we have

(3.68)
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where the constant C10 is independent of R. Then a standard argument found
in [25, Chapter V, § 6] yields that when β is sufficiently small, there exists

ye(0, 1) and Cn > 0, independent of R, such that

(3-69) l | z | l c 2 + v,(2 + y)/2(Mx[o,i']) ^ Ql

The above inequalities (3.68) and (3.69) imply the property (iii) along with

(3.62). D

PROOF OF THEOREM 3.2'. For each R > 0 sufficiently large and βe(0, 1)
sufficiently small, we obtain in the preceeding lemma a fixed point (VR, ZR) of the

map Φλ,R: %β(R)-+%β(R) satisfying (3.62). Let

(3.70) Ωz«>d(R) = {(x, ί); |x| < Λ, 0 < ί < T, dίst(x9 Γz«(ή) > a},

Then applying Schauder's interior estimate to equation (3.39) gives

,:Γ]) ^ Cί2(d9 T),

where de(0, R/4) and τe(0, T). Combining this with (3.56) and (3.62), one can
find a subsequence Rk -» oo and functions v : R" x [0, T] -» R and z : M
x [0, T] -> R such that

(3.72) t?Λ k— ̂ i; in C^* ( 1 + ί ) / 2(R"x [0, T]) and in Cϊ+δ>(2+δ)/2(Ω),

and

(3.73) zΛk — > z in c2+δ'(2+δ)/2 (M x [0, T]),

where δe(0, y) is a constant and ί2:= {(x, ί)eRπ x [0, T]; x£Γ(ί)}. Clearly,

(v, z) is a classical solution to problem (3.32)-(3.36). D

Appendix 1. Derivations of (l.lSa) and (l.ISc)

In this appendix we shall derive equations (1.15a) and (l.ISc) as the limit of

the original equation (l.l)ε when ε JO. In what follows we denote by B(Rn) the
space of all bounded continuous functions w : R" -> R with the norm

and by β^R") the space of all C1 -functions w : R " - > R such that w and

δw/δx. ίl < i < n) are both in B(Rn), with the norm
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all continuous functions w: [0, T] -> B(Rn) (resp. β^R")) with the norm

(1A.3) ||w||[0fΓ];j, = max0^Γ||w(ί)||j, (resp. || w||[0>Γ];βl = max0sί<Γ||w(ί)||βι).

The following proposition gives (1.15a) and (1.15c). The estimates used in the
proof are similar to that used in the proof of Lemma 3.3.

PROPOSITION 1A.1. Let (u\ vε)(ε > 0) be a family of solutions σ/(l.l)e in Rn

x [0, T] with initial data (φε, ψε). Suppose the condition (e) in section 1 along
with that there exist a constant Cl>0 and a function ψeBl(Rn) such that

I I 0Ί* +11^11*1^ ε>0,

ψε — >\l/ in Bl(Rn) as ε|0,

and that there exists a smooth family of compact hypersurfaces Γ(t)(Q < t < T) in
Rn such that uε — h±(vε)-+Q uniformly in the sets

(1A.6) {(x, 0; *eί2±(ί), 0 < t < T, dist(x, Γ(t)) > δ}

for each δ > 0, where Ω + (t) and Ω_(t) are two disjoint regions as in

(1.13). Then,
( i ) vε converges to a function v uniformly in Rn x [0, T]
(ii) moreover, v( , ήεB^R") and vε^v in C([0, T]; Bl(Rn)) as ε|0;

(iii) the limit v satisfies equation (1.15a) for xeΩ + (t) and ίe(0, T].

PROOF. We shall prove the statements (i), (ii) and (iii) with T replaced by a
constant 7\e(0, T], which depends only on the Lipschitz constants of the
nonlinear terms v\-^g±(v). Using this repeatedly, we obtain the original

statements.

First we recall some well-known properties of the heat kernel

) H(x, t) = (4πDtΓn/2Qxp(-\x\2/4Dt).

For any bounded function w: R" x [0, T] ->R, define a function w**(x, ί) by

(x, t) = Γ f .
JO JR"

(1A.8) w**(x, ί) = H(x - y, t - s)w(y, s)dyds xeR\ tε [0, T].
Jo JR"

Then w** is in B^R") for each ίe[0, T], and w** satisfies

l|w**||[0,ί];βι < C 2 v ί l

moreover if ίh-»w( , ί) is a continuous function [0, T] into the space LP(R"),

where p > n is a constant, then there exist constants C3 > 0 and θ > 0 with 20

+ (n/p) < 1 such that
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By the "variation of constants" formula,

(1A.11) ι;ε(x, ί) = f H(x- y, t)φε(y)dy + (g(u\ ι;ε)}**(x, ί)
•/ K

for (x, ί)eR" x [0, T].
Let us prove that {vε}ε>0 is a Cauchy net in the space C([0, TJ β1),

where the constant 7\ will be specified later. For each δ > 0, let Rδ+, R1: R"

x [0, T] -> R be two smooth functions satisfying

(1A.12) 0 < Rδ

±(x, f) < 1 xeRM, ίe[0, Γ],

0 if xφΩ±(t) or έ/wr(x, Γ(ί)) < (5,

and write

(1A.14) Rδ

0(x9 ί):= 1 - # + (*, 0 - Λa-(x, 0-

We decompose vε into

(1A.15) if = {ψε}* + /ε'5 -f Jε>δ + Xε'^,

where

(1A.16) {ιAε}*(x, ί) = H(x - y,*(x, ί) = ί
JR"

-/ '

By the maximum principle,

Moreover, in view of (1A.9) and (1A.10) one finds that

(1A.21) ll/M l l[o f t];jM ^ C2^t supyesuppRό (.ιS) |wε(y, s) - /ι + (ι;ε(y, s))|
0<s<ί +

0<s<

ΠA22) II ϊε'δ\\ < Γ tθ \\uεPδ II <: Γ tθA\Lt\.Δ£) \\J ||[θ,ί];βi S ^3Γ I I " ^0\\[0,t];LP ^ ^4Γ ^

In the last inequality, we used the fact that wε(x, ί) is uniformly bounded as ε

> 0, X E R " and ίε[0, T] vary (see Lemma 2.3). The above estimates implies
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the following convergences in the topology of C([0, T]; B1):

{ιAε}—nA* as ε j O ;

(1A.23) I*-* —>0 as ε JO, uniformly in <5e(0, 1];

J^—>0 as (5 JO, uniformly in εe(0, 1].

The last term Kε'δ in equation (1A.15) satisfies

(1A.24) \\Kε>δ - Kε''*||[0,ί];*ι < C5(σ, γ)Jt \\vε - vε'\\[0,t];B,

where the constant C5 depends on the Lipschitz constants of the functions

v\-+g±(υ). Choose T1 = min{Γ, (2C5)~2}. Then,

(1A.25)

II vε - *' l l to.T.i Bt < 2|| {<Aε}* - {<Aε'}* + P>δ - Γ'*δ + Jε'* - J^δ ||[0,Tl];Bl.

Note that the constants Cf do not depend on ε and δ. From the above

observations it follows that {vε} is a Cauchy net and therefore converges in the

space C([0, 7\]; B1). The statements (i) and (ii) are proved.

It remains to prove statement (iii). Denote the limit function of υε by

v: Rn x [0, 7\] -> R. Taking the limit as ε 10 in equation (1 A.15), one observes

that v(x9 t) satisfies the integral equation

(1A.26) v = ψ* + {h + (v)χ+ + /ι_(ι?)χ_ — γv}**

for (x, ί)eR" x [0, 7\], where the functions χ + are defined by

(1A.27) χ±(x,0 =

Thus t; is a weak solution of the parabolic equation

(1A.28) υt = DΔv + h + (υ)χ+ + h-(υ)χ. - γv

in R" x [0, 7\]. Since the nonlinear term of this equation

(1A.29) (x, ί, f)h^/z + (ι;)χ + (x, ί) + /z_(f)χ_(x, ί) — yi?

is smooth for xeί2±(ί), 0 < t < Tl and M_ + σ < υ < M+ - σ, using the

standard Schauder estimate we find that v(x9 t) is smooth for xeί2±(ί) and 0

< t < T! and satisfies equation (1.15a) classically for xeί2+(f), 0

<t<T1. D

Appendix 2. Derivation of (l.lSb)

In this appendix we shall derive the interface equation (1.15b) from the
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original equation (l.l)ε by passing to the limit as ε J 0. The heuristic arguments

we used below are essentially due to [11, 23, 24, 37, 42].

Fix a point (x*, t*)eΩ0(t*) with

(2A.1) M(X*, ί*) = A0(φc*, ί*))

and consider a moving local coordinate system (77 1 5 . . . , ηn-ί9 ξ, τ) in a

neighborhood of (x*, ί*):

(2A.2) ^ = ηi(x, t) (i = 1,..., n - 1), ξ = £(x, f), τ = ί,

satisfying the following:
(Cl) the sets {x ξ(x, t) = constant} are level surfaces of the function

κ( , f ) ;
(C2) the location of interface is Γ(t) = {x ξ(x, t) = 0} = (x u(x, t) =

MΦ*,0)};
(C3) ξ(x, t) < 0 for xeΩ+(t) and ξ(x, t) > 0 for xeί2_(ί);
(C4) (η, ξ, τ) = (η*, 0, τ*) corresponds to the given point (x*, ί*);

(C5) ty = (f7ι , . . . ,*/n-ι) is an orthogonal coordinate system on the lovel
surface of w( , ί);

(C6) the normal vector Vxζ is of unit length at point (η*9 ξ, τ), or

equivalently,

(2A.3)

(C7) the orientation of (ηl9 ...,^π_1, ξ) agrees with that of (x l 5..., xn).

Moreover we define

(2A.4) p = ε " 1 ξ .

As pointed out in Introduction, the component u develops very quickly a

transition layer Ω0(t) with thickness of order 0(ε), while the variable v varies

rather smoothly. This indicates that in analyzing the internal structure of the

layer of u the coordinate system (η, p, τ) is more suitable, while in describing the

behavior of v9 (η, ξ, τ) is convenient. Write for brevity that

(2A.5) u(x, t) = u(η, p, τ), υ(x, t) = υ(η, ξ, τ).

We first compute

f * A £\ du du dξdu
(2A.6) ε— - ε— -f — — for (η*, p, τ)

ct oτ ot op

and
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(2A.7) ε2Au = — + B(n - l)κ— for (η*9 p, τ),
dp2 dp

where k is the mean curvature of the level surface of w( , ί) at the point
(η*, ξ, τ). Then equation (l.la)ε becomes

Because of the assumptions (a)-(d) in Introduction, we tend to impose that du/dτ

is uniformly bounded with respct to ε. Passing to the limit of the above

equation, we see that u(η*9 p, τ*) satisfies

(2A.9)
dp

+ \ε(n - l)κ + βf, N] } ^+f(u, υ(η*9 0, τ*)) = 0,
I \<3f )} dp

where K, Γ and N are as in equation (1.15). To match this to the condition
that u = h + (v) in Ω + (t\ we further require that

(2A.10) limp^_«,!!(!/*, p, τ*) - h + (υ(η*9 0, τ*)),

(2A.11) limp^ + 00 u(η*9 p, τ*) = Λ_(φ*, 0, τ*)),

In view of these along with (C2), comparing equations (2A.9)-(2A.ll) with

equation (1.5) and recalling the stability result of Fife and McLeod, we are led

to the identities

(2A.12) u(η*9p9τ*)=U(p 9υ(η*909τ*))

and

( Λ I-r \

—(η*9τ*)9N]=W(υ(η*909τ*))9dt J

where U and Ware as in (1.6) and (1.7) respectively. Eqution (2A.12) gives a
local description of the internal structure of transition layers, and equation

(2A. 13) relates the normal velocity of interface with its curvature and the value
of v on it. Since the velocities in the tangential directions of interface do not

contribute the deformation of the shape of interface but only to the change of

its parametrization, equation (2A. 13) is geometrically equivalent to (1.15b). As

pointed out in Remark 1.2, one should not ignore the term ε(n — l)κ.
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