Discrete initial value problems and discrete parabolic potential theory

Fumi-Yuki MAEDA, Atsushi MURAKAMI and Maretsugu YAMASAKI (Received March 12, 1990)

§1. Introduction

In this paper, we shall study a discrete analogue of the initial value problems and the potential theory for the heat equation $\Delta u = \partial u/\partial t$, the potential theory established e.g. in Doob [1; 1.XV & XVII], Watson [4] and, in a more abstract form, in Maeda [3]. We choose an infinite network N and consider a "discrete cylinder" with base space N.

More precisely, let X be a countable infinite set of nodes, Y be a countable infinite set of arcs and K be the node-arc incidence function. We assume that the graph $\{X, Y, K\}$ is connected and locally finite and has no self-loop. Let r be a strictly positive real function on Y. We call the quartet $N = \{X, Y, K, r\}$ an infinite network (cf. [5], [6]). Next, let T be the set of all integers which will be regarded as the time space. For $s \in T$, put $T_s = \{t \in T; t \ge s\}$. We call $\{N, T\}$ (resp. $\{N, T_s\}$) the discrete cylinder (resp. discrete half-cylinder) with base N.

We set $\Xi = X \times T$ and denote by $L(\Xi)$ the set of all real functions on Ξ . For $u \in L(\Xi)$, we shall define the discrete (partial) derivatives du and ∂u and the Laplacian Δu . The operators d and Δ act on the variable $x \in X$ and ∂ on $t \in T$. The parabolic operator Π acting on $u \in L(\Xi)$ is defined by

$$\Pi u(\xi) = \Delta u(\xi) - \partial u(\xi), \ \xi = (x, t) \in \Xi.$$

Our initial value problems and potential theory will be discussed with respect to this operator Π .

For our study, we first recall in §2 some properties of the 1-Green function of N relative to the equation $\Delta u = u$, and give some results on iterations of the 1-Green operators. In §3, we consider superparabolic functions on a set in Ξ and give minimum principles. We study in §4 an initial value problem on $\{N, T_s\}$. The existence and uniqueness of the parabolic Green function G_{α} of $\{N, T\}$ with pole at $\alpha \in \Xi$ will be studied in §5. Solutions of an initial boundary value problem as well as the parabolic Green function of $\{N, T\}$ will be constructed by means of the iterations of the 1-Green operator of N. In case N has the harmonic Green function g_{α} with pole at $\alpha \in X$, we have the following formula:

$$\sum_{a=s}^{\infty} G_{\alpha}(x, t) = g_{a}(x)$$
 with $\alpha = (a, s)$,

which has a continuous counterpart (cf. [1; 1.XVII.18]).

Discrete analogue of the Riesz decomposition theorem for nonnegative superparabolic functions will be proved in §6. We shall introduce the coparabolic operator Π^* in §7 and discuss the coparabolic Green function of $\{N, T\}$, and the duality between parabolic and coparabolic potentials.

§ 2. 1-Green function of N

First, we recall some results on the q-Green function of N discussed in [7], in case q = 1.

For notation and terminologies concerning the infinite network $N = \{X, Y, K, r\}$, we mainly follow [5], [6] and [7]: Denote by L(X) (resp. $L^+(X)$) the set of all real (resp. nonnegative) functions on X and by $L_0(X)$ (resp. $L_0^+(X)$) the set of all real (resp. nonnegative) functions u on X with finite support $Su = \{x \in X; u(x) \neq 0\}$. For $u \in L(X)$, we define

$$du(y) = -r(y)^{-1} \sum_{x \in X} K(x, y)u(x),$$

$$D(u) = \sum_{y \in Y} r(y) [du(y)]^{2},$$

$$\Delta_{1}u(x) = \sum_{y \in Y} K(x, y) [du(y)] - u(x),$$

$$E_{1}(u) = D(u) + \sum_{x \in X} u(x)^{2}.$$

Let

$$\mathscr{E}(N; 1) = \{ u \in L(X); E_1(u) < \infty \}$$

and for $u, v \in \mathscr{E}(N; 1)$,

$$E_1(u, v) = \sum_{y \in Y} r(y) [du(y)] [dv(y)] + \sum_{x \in X} u(x) v(x).$$

Then $\mathscr{E}(N; 1)$ is a Hilbert space with respect to the inner product $E_1(u, v)$. For each $a \in X$, there exists a unique $\tilde{g}_a \in \mathscr{E}(N; 1)$ such that

$$u(a) = E_1(u, \tilde{g}_a)$$
 for every $u \in \mathscr{E}(N; 1)$.

We call \tilde{g}_a the 1-Green function of N with pole at a. The following properties of \tilde{g}_a are known ([7; Theorems 4.2, 4.3 and 4.5]):

(2.1) $\tilde{g}_a(b) = \tilde{g}_b(a)$ for every $a, b \in X$;

(2.2)
$$\Delta_1 \tilde{g}_a(x) = -\varepsilon_a(x) \quad \text{on } X,$$

where ε_a is the characteristic function of the set $\{a\}$;

(2.3)
$$0 < \tilde{g}_a(x) \le \tilde{g}_a(a) \quad \text{on } X;$$

(2.4)
$$\sum_{x \in X} \tilde{g}_a(x) \le 1.$$

For $\mu \in L^+(X)$, the 1-Green potential $\tilde{G}\mu$ and 1-Green potential energy $\tilde{G}(\mu, \mu)$ of μ are defined by

$$\widetilde{G}\mu(x) = \sum_{a \in X} \widetilde{g}_a(x)\mu(a), \ \widetilde{G}(\mu, \mu) = \sum_{x \in X} \left[\widetilde{G}\mu(x)\right]\mu(x).$$

LEMMA 2.1. ([7; Lemma 7.2 and Theorem 7.2]). For $\mu \in L^+(X)$, $\tilde{G}\mu \in \mathscr{E}(N; 1)$ if and only if $\tilde{G}(\mu, \mu) < \infty$; and $\tilde{G}(\mu, \mu) = E_1(\tilde{G}\mu)$ in this case.

For $u \in L(X)$ and p > 0, we put

$$||u||_p = (\sum_{x \in X} |u(x)|^p)^{1/p}$$
 and $||u||_{\infty} = \sup\{|u(x)|; x \in X\}.$

Note that $||u||_{p_2} \le ||u||_{p_1}$ if $p_1 \le p_2 \le \infty$.

LEMMA 2.2. Let $\mu \in L^+(X)$.

(i) If $\tilde{G}\mu(x) \in L(X)$, then $\Delta_1 \tilde{G}\mu(x) = -\mu(x)$.

(ii) If
$$\|\mu\|_{p} < \infty$$
 with $1 \le p \le \infty$, then $\tilde{G}\mu \in L(X)$ and $\|\tilde{G}\mu\|_{p} \le \|\mu\|_{p}$.

(iii) If $\|\mu\|_2 < \infty$, then $\tilde{G}\mu \in \mathscr{E}(N; 1)$ and

(2.5)
$$2D(\tilde{G}\mu) + \|\tilde{G}\mu\|_2^2 \le \|\mu\|_2^2.$$

PROOF. (i) readily follows from (2.2). By (2.1) and (2.4), it is easy to see that (ii) holds. If $\mu \in L_0^+(X)$, then $\tilde{G}\mu \in \mathscr{E}(N; 1)$ by Lemma 2.1 and we have

$$D(\tilde{G}\mu) + \|\tilde{G}\mu\|_2^2 = E_1(\tilde{G}\mu) = \tilde{G}(\mu, \mu) \le \frac{1}{2} (\|\tilde{G}\mu\|_2^2 + \|\mu\|_2^2),$$

which implies (2.5) for $\mu \in L_0^+(X)$. If $\|\mu\|_2 < \infty$, then choose $\mu_n \in L_0^+(X)$, n = 1, 2, ..., such that $\mu_n \uparrow \mu$. Then, $\tilde{G}\mu_n \uparrow \tilde{G}\mu$ and $D(\tilde{G}\mu) \leq \liminf_{n \to \infty} D(\tilde{G}\mu_n)$. Since each μ_n satisfies (2.5), it follows that $\tilde{G}\mu \in \mathscr{E}(N; 1)$ and (2.5) holds if $\|\mu\|_2 < \infty$. This completes the proof.

For $\mu \in L^+(X)$, we inductively define $\tilde{G}^{(n)}\mu$, n = 0, 1, ..., by $\tilde{G}^{(0)}\mu = \mu$ and $\tilde{G}^{(n+1)}\mu = \tilde{G}(\tilde{G}^{(n)}\mu)$. Then by the above lemma we have

COROLLARY 2.3. Let $\mu \in L^+(X)$. (i) If $\|\mu\|_p < \infty$ with $1 \le p \le \infty$, then $\tilde{G}^{(n)}\mu \in L(X)$ and $\|\tilde{G}^{(n)}\mu\|_p \le \|\mu\|_p$ for all $n = 0, 1, \ldots$. (ii) If $\|\mu\|_2 < \infty$, then $\tilde{G}^{(n)}\mu \in \mathscr{E}(N; 1)$ and Fumi-Yuki MAEDA, Atsushi MURAKAMI and Maretsugu YAMASAKI

(2.6)
$$2\{D(\tilde{G}\mu) + D(\tilde{G}^{(2)}\mu) + \dots + D(\tilde{G}^{(n)}\mu)\} + \|\tilde{G}^{(n)}\mu\|_2^2 \le \|\mu\|_2^2$$

for all n = 1, 2, ...

We establish

PROPOSITION 2.4. Let $\mu \in L^+(X)$ and $\|\mu\|_2 < \infty$. Then $D(\tilde{G}^{(n)}\mu) \to 0$ and $\|\tilde{G}^{(n)}\mu\|_2 \to 0$ as $n \to \infty$.

PROOF. By (2.6), we immediately deduce that $D(\tilde{G}^{(n)}\mu) \to 0$. By (ii) of Lemma 2.2, we see that $\{\|\tilde{G}^{(n)}\mu\|_2\}_n$ is nonincreasing. Let $A \equiv \lim_{n \to \infty} \|\tilde{G}^{(n)}\mu\|_2$.

For $u, v \in L^+(X)$, let $\langle u, v \rangle = \sum_{x \in X} u(x)v(x)$. Then, by (2.1), we see that $\langle \tilde{G}\mu, v \rangle = \langle \mu, \tilde{G}v \rangle$ for any $\mu, v \in L^+(X)$.

Let $\mu_n = \tilde{G}^{(n)}\mu$ for simplicity. Then, for any positive integers *n* and *m*, $\langle \mu_{n+2m}, \mu_n \rangle = \|\mu_{n+m}\|_2^2$ and

$$\langle \mu_{n+2m-1}, \mu_n \rangle = \langle \mu_{n+m}, \mu_{n+m-1} \rangle = \tilde{G}(\mu_{n+m-1}, \mu_{n+m-1})$$

= $E_1(\mu_{n+m}) \ge \|\mu_{n+m}\|_2^2$

by Lemma 2.1. Hence, we have

$$\|\mu_{n+2m} - \mu_n\|_2^2 = \|\mu_{n+2m}\|_2^2 + \|\mu_n\|_2^2 - 2 \langle \mu_{n+2m}, \mu_n \rangle$$
$$= \|\mu_{n+2m}\|_2^2 + \|\mu_n\|_2^2 - 2 \|\mu_{n+m}\|_2^2$$
$$\to A^2 + A^2 - 2A^2 = 0 \quad (n \to \infty)$$

and

$$\|\mu_{n+2m-1} - \mu_n\|_2^2 = \|\mu_{n+2m-1}\|_2^2 + \|\mu_n\|_2^2 - 2 \langle \mu_{n+2m-1}, \mu_n \rangle$$

$$\leq \|\mu_{n+2m-1}\|_2^2 + \|\mu_n\|_2^2 - 2 \|\mu_{n+m}\|_2^2$$

$$\rightarrow A^2 + A^2 - 2A^2 = 0 \quad (n \to \infty).$$

Therefore, $\{\mu_n\}$ is a Cauchy sequence in the norm $\|\cdot\|_2$, so that there is $\mu_0 \in L^+(X)$ with $\|\mu_0\|_2 < \infty$ such that $\|\mu_0 - \mu_n\|_2 \to 0$ $(n \to \infty)$. It then follows that $\mu_n(x) \to \mu_0(x)$ for every $x \in X$, so that $D(\mu_0) \leq \liminf_{n \to \infty} D(\mu_n) = 0$. Hence, $\mu_0 \equiv \text{const.}$, and since X is an infinite set and $\|\mu_0\|_2 < \infty$, it follows that $\mu_0 = 0$. Thus, $\|\mu_n\|_2 \to \|\mu_0\|_2 = 0$ $(n \to \infty)$.

PROPOSITION 2.5. If 1 , then

(2.7) $\lim_{n \to \infty} \|\tilde{G}^{(n)}\mu\|_{p} = 0 \text{ for any } \mu \in L^{+}(X) \text{ with } \|\mu\|_{p} < \infty.$

PROOF. Let $\mu \in L^+(X)$ and $\|\mu\|_p < \infty$. For $\varepsilon > 0$, choose $\mu' \in L_0^+(X)$ such that $\mu' \le \mu$ and $\|\mu - \mu'\|_p < \varepsilon$. Then, $\|\tilde{G}^{(n)}\mu'\|_2 \to 0$ $(n \to \infty)$ by the above

proposition. If 2 , then

$$\|\widetilde{G}^{(n)}\mu'\|_{p} \leq \|\widetilde{G}^{(n)}\mu'\|_{2} \longrightarrow 0 \ (n \longrightarrow \infty).$$

If 1 , then using Hölder's inequality and Corollary 2.3 (i), we have

$$\|\tilde{G}^{(n)}\mu'\|_{p}^{p} \leq \|\tilde{G}^{(n)}\mu'\|_{1}^{2-p} \cdot \|\tilde{G}^{(n)}\mu'\|_{2}^{2(p-1)} \leq \|\mu'\|_{1}^{2-p} \cdot \|\tilde{G}^{(n)}\mu'\|_{2}^{2(p-1)}$$

$$\longrightarrow 0 \quad (n \to \infty).$$

Hence, again by Corollary 2.3 (i),

$$\operatorname{limsup}_{n \to \infty} \| \widetilde{G}^{(n)} \mu \|_{p} \leq \operatorname{limsup}_{n \to \infty} \| \widetilde{G}^{(n)} (\mu - \mu') \|_{p} \leq \| \mu - \mu' \|_{p} < \varepsilon$$

if 1 , which completes the proof.

REMARK 2.6. In case p = 1 or $p = \infty$, (2.7) does not hold in general; in fact if $\tilde{G}1(x) = \sum_{a \in X} \tilde{g}_a(x) = 1$ for all $x \in X$ (see [7; §5] as to when this occurs), then $\|\tilde{G}^{(n)}\mu\|_1 = \|\mu\|_1$ for any $\mu \in L^+(X)$ and n, and $\|\tilde{G}^{(n)}1\|_{\infty} = 1$ for all n.

For $f \in L(X)$ and n = 0, 1, ..., we define $\tilde{G}^{(n)}f = \tilde{G}^{(n)}f^+ - \tilde{G}^{(n)}f^-$ whenever $\tilde{G}^{(n)}f^+$, $\tilde{G}^{(n)}f^- \in L(X)$. By Corollary 2.3, $\tilde{G}^{(n)}f$ is defined for each *n* if *f* is bounded.

§3. Superparabolic functions and minimum principle

Now let T be the set of all integers. Given $s \in T$, let

$$T_s = \{t \in T; t \ge s\}, \ T_s^\circ = \{t \in T; t > s\} \text{ and } T_s^* = \{t \in T; t \le s\}.$$

We write

$$\Xi = X \times T$$
, $\Xi_s = X \times T_s$, $\Xi_s^\circ = X \times T_s^\circ$ and $\Xi_s^* = X \times T_s^*$.

We call $\{N, T\}$ (resp. $\{N, T_s\}$) the discrete cylinder (resp. discrete half-cylinder) with base N. For the set Ξ , we define $L(\Xi)$, $L^+(\Xi)$, $L_0(\Xi)$ and $L_0^+(\Xi)$ in the same manner as L(X), $L^+(X)$, $L_0(X)$ and $L_0^+(X)$.

For $u \in L(\Xi)$, we set

$$du(y, t) = -r(y)^{-1} \sum_{x \in X} K(x, y)u(x, t),$$

$$\partial u(x, t) = u(x, t) - u(x, t - 1),$$

$$\Delta u(x, t) = \sum_{y \in Y} K(x, y)[du(y, t)],$$

$$\Pi u(\xi) = \Delta u(\xi) - \partial u(\xi).$$

Note that

(3.1)
$$\Pi u(\cdot, t) = \Delta_1 u(\cdot, t) + u(\cdot, t-1).$$

Thus, $\Pi u(\xi)$ can be also defined for $u \in L(\Xi_s)$ and $\xi \in \Xi_s^{\circ}$.

We say that a function $u \in L(\Xi)$ is superparabolic (resp. parabolic) on a set Ω if $\Pi u(\xi) \leq 0$ (resp. $\Pi u(\xi) = 0$) on Ω . Denote by SPR(N, T) (resp. PR(N, T)) the set of all superparabolic (resp. parabolic) functions on Ξ . If u_1 and u_2 are superparabolic on $\Omega \subset \Xi$ and if c is a positive number, then $u_1 + u_2$ and cu_1 are superparabolic on Ω . A function u is said to be subparabolic on Ω if -u is superparabolic on Ω .

In order to rewrite the parabolic operator in a more geometric form, let us define $\rho(\alpha)$ and $\rho(\xi, \alpha)$ for $\alpha = (a, s)$ and $\xi = (x, t)$ by

$$\rho(\alpha) = 1 + \sum_{y \in Y} r(y)^{-1} |K(a, y)|,$$

$$\rho(\xi, \alpha) = \sum_{y \in Y} r(y)^{-1} |K(x, y)K(a, y)| \quad \text{if } t = s \text{ and } \xi \neq \alpha,$$

$$\rho(\alpha^{-}, \alpha) = 1, \text{ where } \alpha^{-} = (a, s - 1),$$

$$\rho(\xi, \alpha) = 0 \text{ for any other pair } (\xi, \alpha).$$

Then $\sum_{\xi \in \Xi} \rho(\xi, \alpha) = \rho(\alpha)$ and

(3.2)
$$\Pi u(\alpha) = -\rho(\alpha)u(\alpha) + \sum_{\xi \in \Xi} \rho(\xi, \alpha)u(\xi).$$

For each $u \in L(\Xi)$ and $\alpha \in \Xi$, define a discrete analogue of the Poisson integral of u by

$$P_{u}(\alpha) = \rho(\alpha)^{-1} \sum_{\xi \in \Xi} \rho(\xi, \alpha) u(\xi).$$

Then, by (3.2), $\Pi u(\alpha) \leq 0$ (resp. $\Pi u(\alpha) = 0$) if and only if $P_u(\alpha) \leq u(\alpha)$ (resp. $P_u(\alpha) = u(\alpha)$). From this, we see that if u_1 and u_2 are superparabolic on $\Omega \subset \Xi$, then so is min (u_1, u_2) . For $\alpha \in \Xi$, put $\Xi(\alpha) = \{\alpha\} \cup \{\xi \in \Xi; \rho(\xi, \alpha) \neq 0\}$.

We prepare

LEMMA 3.1. Assume that $\Pi u(\alpha) \leq 0$ and $u(\alpha) = \min\{u(\xi); \xi \in \Xi(\alpha)\}$. Then $u(\xi) = u(\alpha)$ on $\Xi(\alpha)$.

PROOF. Since $u(\xi) \ge u(\alpha)$ on $\Xi(\alpha)$ and $\Pi u(\alpha) \le 0$, by (3.2) we have

$$\rho(\alpha)u(\alpha) \geq \sum_{\xi \in \Xi(\alpha)} \rho(\xi, \alpha)u(\xi) \geq u(\alpha) \sum_{\xi \in \Xi} \rho(\xi, \alpha) = u(\alpha)\rho(\alpha),$$

and hence $u(\xi) = u(\alpha)$ on $\Xi(\alpha)$.

By this lemma, we obtain the followng minimum principle:

THEOREM 3.2. Let s < s' $(s, s' \in T)$ and let $\Omega = \Xi_s \cap \Xi_{s'}^*$ and $\Omega^\circ = \Xi_s^\circ \cap \Xi_{s'}^*$. (i) If u is superparabolic on Ω° and if u attains its minimum on Ω at $\alpha = (a, s')$, then $u(\xi) = u(\alpha)$ for every $\xi \in \Omega$.

(ii) Let Ω' be a finite subset of Ω° . If u is superparabolic on Ω' and $u(\xi) \ge 0$ on

 $\Omega - \Omega'$, then $u(\xi) \ge 0$ on Ω .

COROLLARY 3.3. Let $s \in T$ and suppose u is superparabolic on Ξ_s° . If u satisfies the following two conditions, then $u \ge 0$ on Ξ_s :

(a) $u(x, s) \ge 0$ for all $x \in X$;

(b) there are $f \in L^+(\Xi)$ and $p < \infty$ such that $||f(\cdot, t)||_p < \infty$ for all $t \in T_s^{\circ}$ and $u \ge -f$ on Ξ_s° .

PROOF. Let s' > s be arbitrarily fixed and let Ω be as in the above theorem. Since $||f(\cdot, t)||_p < \infty$ for $s < t \le s'$, given $\varepsilon > 0$, there is a finite set $\Omega' \subset \Omega^\circ$ such that $f(\xi) < \varepsilon$ for $\xi \in \Omega^\circ - \Omega'$. Then, $u + \varepsilon > 0$ on $\Omega - \Omega'$. Since $u + \varepsilon$ is superparabolic on Ω° , (ii) of the above theorem implies that $u + \varepsilon \ge 0$ on $\Omega = \Xi_s \cap \Xi_{s'}^*$. By the arbitrariness of $\varepsilon > 0$ and s' > s, we see that $u \ge 0$ on $\Xi_{s'}$.

§4. Initial value problem for the discrete half-cylinder

The initial value problem on Ξ_s may be formulated as follows: [IP: f]_s: Given $f \in L(X)$, find $u \in L(\Xi_s)$ satisfying

 $\begin{cases} u(x, s) = f(x) \text{ for all } x \in X, \\ \Pi u(\xi) = 0 \text{ for all } \xi \in \Xi_s^\circ, \text{ namely } u \text{ is parabolic on } \Xi_s^\circ. \end{cases}$

By translation, it suffices to consider the case s = 0. We simply write [IP: f] for the problem [IP: f]₀.

Given a bounded $f \in L(X)$ and $m \in T$, we set

(4.1)
$$U_{f}^{(m)}(x, t) = \begin{cases} 0, & \text{if } t < m \\ [\tilde{G}^{(t-m)}f](x), & \text{if } t \ge m \end{cases}$$

By Corollary 2.3, Lemma 2.2 (i) and (3.1), we immediately obtain

LEMMA 4.1. If $f \in L(X)$ is bounded, then $U_f^{(m)}(\cdot, m) = f$, $|U_f^{(m)}(\xi)| \le ||f||_{\infty}$ for any $m \in T$ and $\xi \in \Xi$, and

$$\Pi U_f^{(m)}(x, t) = \begin{cases} 0, & \text{if } t \neq m, \\ \Delta_1 f(x), & \text{if } t = m. \end{cases}$$

Thus, together with Corollary 3.3 and Proposition 2.5, we obtain

THEOREM 4.2. If $f \in L(X)$ is bounded, then $u = U_f^{(0)}$ (restricted to Ξ_0) is a bounded solution of the problem [IP: f]. Furthermore, it has the following properties:

(i) $|u(\xi)| \leq ||f||_{\infty}$ for all $\xi \in \Xi_0$.

(ii) If $||f||_p < \infty$ with $1 \le p < \infty$, then u is the unique solution of [IP: f] satisfying $||u(\cdot, t)||_p < \infty$ for all $t \in T_0^{\circ}$.

Fumi-Yuki MAEDA, Atsushi MURAKAMI and Maretsugu YAMASAKI

(iii) If $||f||_p < \infty$ with $1 , then <math>\lim_{t \to \infty} ||u(\cdot, t)||_p = 0$.

Next, we consider the class

 $HB(N; 1) = \{h \in L(X); h \text{ is bounded and } \Delta_1 h = 0 \text{ on } X\}.$

A function u on Ξ_0 will be called *time-locally bounded* if $u(\cdot, t)$ is bounded for every $t \in T_0$. The following theorem determines the set of all time-locally bounded solutions of [IP: f]:

THEOREM 4.3. Let $f \in L(X)$ be bounded. (i) If $\{h_m\}_{m=1}^{\infty}$ is a sequence of functions in HB(N; 1), then

(4.2)
$$u = U_f^{(0)} + \sum_{m=1}^{\infty} U_{h_m}^{(m)}$$

gives a time-locally bounded solution of [IP: f]. If, in addition, $\sum_{m=1}^{\infty} \|h_m\|_{\infty} < \infty$, then it is a bounded solution.

(ii) Conversely, any time-locally bounded solution of [IP: f] can be expressed in the form (4.2) on Ξ_0 with $h_m \in HB(N; 1)$, m = 1, 2, ...

PROOF. (i) For each $t \in T_0$, $U_{h_m}^{(m)}(\cdot, t) = 0$ for m > t, so that the right hand side of (4.2) is in fact a finite sum at each point of Ξ_0 and $u(\cdot, t)$ is bounded, i.e., u is time-locally bounded. By Lemma 4.1, $\Pi U_{h_m}^{(m)} = 0$ on Ξ_0° for each $m \ge 1$. Hence u is a solution of [IP; f]. If $\sum_{m=1}^{\infty} ||h_m||_{\infty} < \infty$, then

$$|u(\xi)| \le \|f\|_{\infty} + \sum_{m=1}^{\infty} \|h_m\|_{\infty} < \infty \quad \text{for any } \xi \in \Xi_0.$$

(ii) Let u be any time-locally bounded solution of [IP: f]. We inductively define $h_m \in L(X)$, m = 1, 2, ..., by

(4.3)
$$\begin{cases} h_1(x) = u(x, 1) - U_f^{(0)}(x, 1), \\ h_m(x) = u(x, m) - U_f^0(x, m) - \sum_{j=1}^{m-1} U_{h_j}^{(j)}(x, m), m = 2, 3, \dots \end{cases}$$

Then, each h_m is bounded on X, and by (3.1) and Lemma 4.1, we have

$$\begin{split} \mathcal{A}_{1}h_{m} &= \mathcal{A}_{1}\left\{u(\cdot, m) - U_{f}^{(0)}(\cdot, m) - \sum_{j=1}^{m-1} U_{h_{j}}^{(j)}(\cdot, m)\right\} \\ &= \left\{\Pi u(\cdot, m) - \Pi U_{f}^{(0)}(\cdot, m) - \sum_{j=1}^{m-1} \Pi U_{h_{j}}^{(j)}(\cdot, m)\right\} \\ &- \left\{u(\cdot, m-1) - U_{f}^{(0)}(\cdot, m-1) - \sum_{j=1}^{m-1} U_{h_{j}}^{(j)}(\cdot, m-1)\right\} \\ &= \left\{\begin{array}{l} -u(\cdot, 0) + U_{f}^{(0)}(\cdot, 0) = -f + f = 0, & \text{if } m = 1, \\ -h_{m-1} + U_{h_{m-1}}^{(m-1)}(\cdot, m-1) = -h_{m-1} + h_{m-1} = 0, & \text{if } m \ge 2. \end{array}\right. \end{split}$$

Hence, $h_m \in HB(N; 1)$ for all m = 1, 2, ... Since $U_{h_m}^{(m)}(\cdot, t) = 0$ for m > t and $U_{h_m}^{(m)}(\cdot, m) = h_m$, (4.3) implies (4.2).

THEOREM 4.4. (i) If $\tilde{G}1 = 1$ (i.e., $\sum_{a \in X} \tilde{g}_a(x) = 1$ for all $x \in X$), then u

= $U_f^{(0)}$ gives the unique bounded solution of [IP: f] for any bounded $f \in L(X)$. (ii) If $\tilde{G} \ 1 \neq 1$, then the linear space of bounded solutions of [IP: 0] is infinite dimensional.

PROOF. (i) We know ([7; Theorem 5.3]) that $\tilde{G}1 = 1$ if and only if $HB(N; 1) = \{0\}$. Therefore, (ii) of the above theorem implies that $U_f^{(0)}$ gives the unique (time-locally) bounded solution of [IP: f]. (ii) If $\tilde{G}1 \neq 1$, then $\tilde{h} = 1 - \tilde{G}1 \in HB(N; 1)$ and $\tilde{h} \neq 0$. Then $\{U_{\tilde{h}}^{(m)}\}_{m=1}^{\infty}$ provides a linearly independent infinite set of bounded solutions of [IP: 0].

REMARK 4.5. The condition $\sum_{m=1}^{\infty} \|h_m\|_{\infty} < \infty$ in Theorem 4.3 (i) is by no means a necessary condition for (4.2) to be bounded, even if $h_m \ge 0$ for all m. For example, we see that $u = \sum_{m=1}^{\infty} U_{\tilde{h}}^{(m)}$ gives a bounded solution of [IP:0] (in fact, $u(\cdot, t) = 1 - \tilde{G}^{(t)}$ 1 for $t \in T_0$).

§5. Parabolic Green function of the discrete cylinder

Given $\alpha \in \Xi$, a function $G_{\alpha} \in L(\Xi)$ is called the *parabolic Green function* of $\{N, T\}$ with pole at α if it satisfies the following three conditions:

(G.1)
$$G_{\alpha}(\xi) \ge 0$$
 for all $\xi \in \Xi$;

(G.2)
$$\Pi G_{\alpha}(\xi) = -\varepsilon_{\alpha}(\xi)$$
 on Ξ ;

(G.3) If
$$u \in L(\Xi)$$
 satisfies conditions

(i) $u(\xi) \ge 0$ for all $\xi \in \Xi$, and

(ii) $\Pi u(\xi) \leq -\varepsilon_{\alpha}(\xi)$ on Ξ , then $u(\xi) \geq G_{\alpha}(\xi)$ on Ξ .

The uniqueness of the parabolic Green function G_{α} is assured by condition (G.3).

THEOREM 5.1. The parabolic Green function of $\{N, T\}$ with pole at $\alpha = (a, s) \in \Xi$ always exists; in fact it is given by $G_{\alpha} = U_{\alpha}^{(s)}$, namely

$$G_{\alpha}(x, t) = 0 \quad if \ t < s,$$

$$G_{\alpha}(x, t) = \left[\widetilde{G}^{(t-s)}\widetilde{g}_{\alpha}\right](x) \quad if \ t \ge s$$

PROOF. Condition (G.1) is clear. We see that (G.2) holds by Lemma 4.1 and (2.2). To show (G.3), let $u \in L(\Xi)$ satisfy conditions (i) and (ii) in (G.3). Let $v(\xi) = u(\xi) - G_{\alpha}(\xi)$. Then $v(\xi) \ge 0$ for $\xi = (x, t)$ with t < s, $v(\xi) \ge - G_{\alpha}(\xi)$ and $\Pi v(\xi) \le 0$ on Ξ . Since $\|\tilde{g}_{\alpha}\|_{1} < \infty$, $\|G_{\alpha}(\cdot, t)\|_{1} < \infty$ for all $t \ge s$ by Corollary 2.3. Thus, by Corollary 3.3, we see that $v \ge 0$ on Ξ .

By (2.3), (2,4), Corollary 2.3 and Propositions 2.4 and 2.5, we obtain

THEOREM 5.2. The parabolic Green function $G_{\alpha}(\xi)$, $\alpha = (a, s)$, has the following properties:

(G.4) $G_{\alpha}(x, t) > 0$ if $t \ge s$.

(G.5) $||G_{\alpha}(\cdot, t)||_{p} \leq 1$ for any $t \in T$ $(1 \leq p \leq \infty)$, in particular $G_{\alpha}(\xi) \leq 1$ for every $\xi \in \Xi$.

(G.6) $G_{\alpha}(\cdot, t) \in \mathscr{E}(N:1)$ for any $t \in T$ and $\lim_{t \to \infty} E_1(G_{\alpha}(\cdot, t)) = 0$.

(G.7) $\lim_{t\to\infty} \|G_{\alpha}(\cdot, t)\|_p = 0 \text{ for } p > 1.$

REMARK 5.3. (G.7) does not hold for p = 1 in general; see Remark 2.6.

We say that a function $g_a \in L(X)$ is the harmonic Green function of N with pole at $a \in X$ if

$$\Delta g_a(x) = -\varepsilon_a(x)$$
 on X and $g_a \in D_0(N)$.

Here $D_0(N)$ is the closure of $L_0(X)$ in $D(N) = \{u \in L(X); D(u) < \infty\}$ with respect to the norm $[D(u) + u(x_0)^2]^{1/2}$ $(x_0 \in X)$. The harmonic Green function exists if and only if N is of hyperbolic type, i.e., $D_0(N) \neq D(N)$, or equivalently $1 \notin D(N)$ (cf. [5], [6]).

Now we show a fundamental formula expressing the harmonic Green function of N with pole at $a \in X$ by the parabolic Green function of $\{N, T\}$ with pole at $\alpha = (a, s) \in \Xi$.

THEOREM 5.4. Assume that N is of hyperbolic type. Then

$$g_a(x) = \sum_{t=s}^{\infty} G_{\alpha}(x, t)$$
 for $\alpha = (a, s)$.

PROOF. For $m \in T$ with m > s, put $v_m(x) = \sum_{t=s}^m G_{\alpha}(x, t)$ and $h_m = g_a - v_m$. Then

$$\begin{split} \Delta v_m &= \Delta_1 v_m + v_m = \sum_{t=s}^m \Delta_1 [\tilde{G}^{(t-s)} \tilde{g}_a] + v_m \\ &= -\sum_{t=s+1}^m [\tilde{G}^{(t-s-1)} \tilde{g}_a] - \varepsilon_a + v_m = [\tilde{G}^{(m-s)} \tilde{g}_a] - \varepsilon_a, \end{split}$$

so that

$$\Delta h_m = \Delta g_a - \Delta v_m = - \left[\tilde{G}^{(m-s)} \tilde{g}_a \right] \le 0$$

on X. Hence h_m is superharmonic on X and $h_m \ge -v_m$. By Corollary 2.3, $\|v_m\|_1 < \infty$. Hence, by an argument similar to the proof of Corollary 3.3, together with the minimum principle ([6; Lemma 2.1]), we conclude that $h_m \ge 0$ on X, i.e., $v_m \le g_a$ on X. It follows that v_m converges to $v = \sum_{t=s}^{\infty} G_a(\cdot, t)$, $v \le g_a$ on X, v is a nonnegative superharmonic function and $\Delta v = -\varepsilon_a$ on X. By the Riesz decomposition theorem ([6; Theorem 5.1]), we conclude that $v = g_a$.

§6. Riesz decomposition theorem

For $u \in L(\Xi)$ and $\alpha \in \Xi$, let us define $\tau_{\alpha} u \in L(\Xi)$ by

 $\tau_{\alpha}u(\xi) = u(\xi)$ for $\xi \neq \alpha$ and $\tau_{\alpha}u(\alpha) = P_u(\alpha)$.

By (3.2), $\Pi(\tau_{\alpha}u)(\alpha) = 0$. If $u \in SPR(N, T)$, then $\tau_{\alpha}u \in SPR(N, T)$ and $\tau_{\alpha}u \leq u$ on Ξ .

As in the continuous case, we obtain the following lemma and its corollaries:

LEMMA 6.1. If \mathcal{P} is a Perron's family, namely if \mathcal{P} is a nonempty subset of SPR(N, T) satisfying the following three conditions:

(P.1) If $u_1, u_2 \in \mathcal{P}$, then $\min\{u_1, u_2\} \in \mathcal{P}$;

(P.2) $\tau_{\alpha} u \in \mathscr{P}$ for every $u \in \mathscr{P}$ and $\alpha \in \Xi$;

(P.3) $\{u(\xi); u \in \mathcal{P}\}$ is bounded below at each point $\xi \in \Xi$,

then its lower envelope: $(\inf \mathcal{P})(\xi) = \inf\{u(\xi); u \in \mathcal{P}\}\$ is parabolic on Ξ .

PROOF. Let $\tilde{u} = \inf \mathscr{P}$. Then $\tilde{u} \in L(\Xi)$ by (P.3) and $\tilde{u} \leq u$ on Ξ for every $u \in \mathscr{P}$. We show that $\Pi \tilde{u}(\alpha) = 0$ for any $\alpha \in \Xi$. By (P.1) and (P.2), we can choose a sequence $\{u_n\}$ in \mathscr{P} such that $u_n(\xi) \to \tilde{u}(\xi)$ as $n \to \infty$ for all $\xi \in \Xi(\alpha)$ and $P_{u_n}(\alpha) = u_n(\alpha)$ for all n. Then $P_g(\alpha) = \tilde{u}(\alpha)$, i.e., $\Pi \tilde{u}(\alpha) = 0$.

COROLLARY 6.2. If $u \in SPR(N, T)$ has a subparabolic minorant, then u has the greatest parabolic minorant GPM(u), which is equal to the greatest subparabolic minorant of u.

COROLLARY 6.3. Let $f \in L^+(\Xi)$. If there exists $v \in SPR(N, T)$ such that $v \ge f$ on Ξ , then the reduction function

$$Rf(\xi) = \inf\{u(\xi); u \in SPR(N, T) \text{ and } u \ge f \text{ on } \Xi\}$$

is superparabolic on Ξ and parabolic on the set $\{\xi \in \Xi; \Pi f(\xi) \ge 0\}$; in particular, it is parabolic on the set $\{\xi \in \Xi; f(\xi) = 0\}$.

In order to obtain a discrete analogue of the Riesz decomposition theorem, we introduce parabolic Green potentials.

For $v \in L^+(\Xi)$, its parabolic Green potential Gv is defined by

$$Gv(\xi) = \sum_{\alpha \in \Xi} G_{\alpha}(\xi)v(\alpha).$$

Let

$$M(G) = \{ v \in L^+(\Xi); Gv \in L(\Xi) \}.$$

It follows from (G.5) that

Fumi-Yuki MAEDA, Atsushi MURAKAMI and Maretsugu YAMASAKI

$$L_0^+(\varXi) \subset \{ v \in L^+(\varXi); v(\varXi) < \infty \} \subset M(G),$$

where $v(\Xi) = \sum_{\xi \in \Xi} v(\xi)$. If $v \in M(G)$, then $Gv \in SPR(N, T)$ and $\Pi(Gv) = -v$ on Ξ by (G.2).

LEMMA 6.4. If $v \in L_0^+(\Xi)$, then GPM(Gv) = 0.

PROOF. Put u = GPM(Gv). There is $s \in T$ such that v = 0 on Ξ_s^* . Clearly, $u \ge 0$ on Ξ and u = 0 on Ξ_s^* . By (G.5), $||Gv(\cdot, t)||_p < \infty$ for any $t \in T_s^{\circ}(p < \infty)$. Since $-u \ge -Gv$, Corollary 3.3 implies that $-u \ge 0$.

Now we prove the Riesz decomposition theorem:

THEOREM 6.5. Let $u \in SPR(N, T)$ and assume u has a subparabolic minorant. Let $v = -\Pi u \ge 0$. Then $v \in M(G)$ and u can be decomposed in the form: u = Gv + GPM(u).

PROOF. Let $\{\Xi_n\}$ be an exhaustion of Ξ by finite sets. Define v_n by $v_n = v$ on Ξ_n and $v_n = 0$ on $\Xi - \Xi_n$. For each n, $h_n = u - Gv_n$ is superparabolic on Ξ and parabolic on Ξ_n . Let h = GPM(u). Since $h - h_n \le u - h_n = Gv_n$ and $h - h_n$ is subparabolic, we have $h \le h_n$ by Lemma 6.4, namely $Gv_n \le u - h$. Since $Gv_n \uparrow Gv$ $(n \to \infty)$, it follows that $v \in M(G)$ and h_n decreases to a parabolic function $h_0 \ge h$. Then $h_0 = u - Gv \le u$, and hence $h_0 = h = \text{GPM}(u)$ and u = Gv + GPM(u).

COROLLARY 6.6. Let $v \in SPR(N, T) \cap L^+(\Xi)$. Then v is a parabolic Green potential if and only if GPM(v) = 0.

THEOREM 6.7. If $u \in L_0(\Xi)$, then $u(\xi) = -\sum_{\alpha \in \Xi} G_{\alpha}(\xi) [\Pi u(\alpha)]$.

PROOF. Let $\mu = \max \{\Pi u, 0\}$ and $v = \max \{-\Pi u, 0\}$. Then $\mu, v \in L_0^+(\Xi)$ and $\Pi u = \mu - v$. Put $h = u - Gv + G\mu$ and $\Xi' = \{\xi \in \Xi; u(\xi) \neq 0\}$. Then h is parabolic on Ξ and $-Gv \leq h \leq G\mu$ on $\Xi - \Xi'$. By Theorem 3.2 (ii), $-Gv \leq h \leq G\mu$ on Ξ . It follows from Lemma 6.4 that h = 0, i.e., $u = Gv - G\mu$.

COROLLARY 6.8. If $f \in L_0^+(X)$, then the reduction function Rf is a parabolic Green potential.

PROOF. By the above theorem, $f \le Gv$ with $v = \max\{-\Pi f, 0\}$. Hence, $0 \le Rf \le Gv$. By Corollaries 6.3 and 6.6, we see that Rf is a prarabolic Green potential.

As another application of the Riesz decomposition theorem, we shall prove the following domination principle by the same argument as in [2; Proposition 2.5]:

THEOREM 6.9. Let $\mu \in M(G)$ and $v \in SPR(N, T) \cap L^+(\Xi)$. If $G\mu(\xi) \le v(\xi)$ on the support $S\mu$ of μ , then the same inequality holds on Ξ .

PROOF. Let $f(\xi) = \min\{0, v(\xi) - G\mu(\xi)\}$ and $\Xi' = \Xi - S\mu$. Then $v(\xi) - G\mu(\xi) \ge 0$ on $\Xi - \Xi'$ and $v - G\mu$ is superparabolic on Ξ' . Using (3.2), we easily see that f is superparabolic on Ξ . Obviously $f(\xi) \ge - G\mu(\xi)$ on Ξ . It follows from Corollary 6.6 that $f(\xi) \ge 0$ on Ξ , namely $G\mu(\xi) \le v(\xi)$ on Ξ .

§7. Coparabolic operator and duality

As in the continuous case, we define the coparabolic operator Π^* on $L(\Xi)$ by

$$\Pi^* u(x, t) = \Delta u(x, t) + \partial u(x, t+1).$$

Similarly to (3.1), we have

$$\Pi^* u(\cdot, t) = \Delta_1 u(\cdot, t) + u(\cdot, t+1).$$

We say that a function $u \in L(\Xi)$ is cosuperparabolic (resp. coparabolic) on a set Ω if $\Pi^* u(\xi) \leq 0$ (resp. $\Pi^* u(\xi) = 0$) on Ω . Denote by $SPR^*(N, T)$ (resp. $PR^*(N, T)$) the set of all cosuperparabolic (resp. coparabolic) functions on Ξ .

By the interchange of the order of summation, we easily obtain the following discrete analogue of [3; Proposition 1.1]:

THEOREM 7.1. Let $u, v \in L(\Xi)$. If u or v belongs to $L_0(\Xi)$, then the following equality holds:

$$\sum_{\xi \in \Xi} u(\xi) \Pi^* v(\xi) = \sum_{\xi \in \Xi} v(\xi) \Pi u(\xi).$$

COROLLARY 7.2. A function $u \in L(\Xi)$ is parabolic (resp. superparabolic) on Ξ if and only if

$$\sum_{\xi \in \Xi} u(\xi) \Pi^* v(\xi) = 0 \quad (resp. \le 0) \quad for \ all \ v \in L_0^+(\Xi).$$

A function $v \in L(\Xi)$ is coparabolic (resp. cosuperparabolic) on Ξ if and only if

$$\sum_{\xi \in \Xi} v(\xi) \Pi u(\xi) = 0 \quad (resp. \leq 0) \quad for \ all \ u \in L_0^+(\Xi).$$

COROLLARY 7.3. For any $u \in L_0(\Xi)$,

$$\sum_{\xi \in \Xi} \Pi u(\xi) = 0 \quad and \quad \sum_{\xi \in \Xi} \Pi^* u(\xi) = 0.$$

We obtain the dual statements of the results in §§ 3–6 with respect to the operator Π^* or cosuperparabolic functions. As to the Green function with respect to Π^* , we have

THEOREM 7.4. Let $u^*(\xi) = G_{\xi}(\alpha)$. Then u^* has the following properties:

(G*.1)
$$u^*(\xi) \ge 0$$
 for all $\xi \in \Xi$;

(G*.2) $\Pi^* u^*(\xi) = -\varepsilon_{\alpha}(\xi)$ on Ξ ;

(G*.3) If $v \in L(\Xi)$ satisfies conditions (i) $v(\xi) \ge 0$ on Ξ , (ii) $\Pi^* v(\xi) \le -\varepsilon(\xi)$ on Ξ

(ii)
$$\Pi^* v(\zeta) \leq -\varepsilon_{\alpha}(\zeta)$$
 on Ξ

then $v(\xi) \ge u^*(\xi)$ on Ξ .

In view of this theorem, we call $G^*_{\alpha}(\xi) = G_{\xi}(\alpha)$ the coparabolic Green function of $\{N, T\}$ with pole at α . For $v \in L^+(\Xi)$, the coparabolic Green potential G^*v is defined by

$$G^* v(\xi) = \sum_{\alpha \in \Xi} G^*_{\alpha}(\xi) v(\alpha) = \sum_{\alpha \in \Xi} G_{\xi}(\alpha) v(\alpha).$$

Let $M(G^*) = \{ v \in L^+(\Xi); G^*v \in L(\Xi) \}$. If $\mu \in M(G)$ and $v \in M(G^*)$, then

(7.1)
$$\sum_{\xi \in \Xi} G\mu(\xi) v(\xi) = \sum_{\alpha \in \Xi} \mu(\alpha) G^* v(\alpha).$$

The reduction operator R^*f for $f \in L^+(\Xi)$ is defined by

$$R^*f(\xi) = \inf\{u(\xi); u \in SPR^*(N, T) \text{ and } u \ge f \text{ on } \Xi\}.$$

If $f \in L_0^+(\Xi)$, then R^*f is a coparabolic Green potential by the dual statement of Corollary 6.8, namely, $R^*f = G^*\lambda_f^*$ with $\lambda_f^* \in L_0^+(\Xi)$.

LEMMA 7.5. Let $v \in SPR^*(N, T) \cap L^*(\Xi)$ and $\mu \in M(G)$. If $\{f_n\}$ is a sequence of functions in $L_0^+(\Xi)$ which increases to v, then

$$\sum_{\alpha \in \mathcal{Z}} v(\alpha) \mu(\alpha) = \lim_{n \to \infty} \sum_{\xi \in \mathcal{Z}} G \mu(\xi) \lambda_{f_n}^*(\xi).$$

PROOF. Since $f_n \leq R^* f_n \leq v$, we see that $R^* f_n \uparrow v$ on Ξ . Hence, using (7.1) we have

$$\sum_{\alpha \in \Xi} v(\alpha)\mu(\alpha) = \lim_{n \to \infty} \sum_{\alpha \in \Xi} R^* f_n(\alpha)\mu(\alpha)$$
$$= \lim_{n \to \infty} \sum_{\alpha \in \Xi} G^* \lambda_{f_n}^*(\alpha)\mu(\alpha) = \lim_{n \to \infty} \sum_{\xi \in \Xi} G\mu(\xi)\lambda_{f_n}^*(\xi).$$

From this lemma, we immediately obtain

THEOREM 7.6. (cf. [3; Lemma 1.3]). Let μ_1 , $\mu_2 \in M(G)$. If $G\mu_1 \leq G\mu_2$ on Ξ , then

$$\sum_{\alpha \in \Xi} v(\alpha) \mu_1(\alpha) \leq \sum_{\alpha \in \Xi} v(\alpha) \mu_2(\alpha)$$

for any $v \in SPR^*(N, T) \cap L^+(\Xi)$; in particular

Discrete initial value problems

 $\mu_1(\Xi) \le \mu_2(\Xi).$

References

- J. L. Doob, Classical potential theory and its probabilistic counterpart, Springer-Verlag, New York etc., 1983.
- [2] F-Y. Maeda, Dirichlet integrals on harmonic spaces, Lecture Notes Math. 803, Springer-Verlag, Berlin etc., 1980.
- [3] F-Y. Maeda, Dirichlet integral and energy of potentials on harmonic spaces with adjoint structure, Hiroshima Math. J. 18 (1988), 1-14.
- [4] N. A. Watson, Green functions, potentials, and the Dirichlet problem for the heat equation, Porc. London Math. Soc. 33 (1976), 251-298.
- [5] M. Yamasaki, Parabolic and hyperbolic infinite networks, Hiroshima Math. J. 7 (1977), 135-146.
- [6] M. Yamasaki, Discrete potentials on an infinite network, Mem. Fac. Sci. Shimane Univ. 13 (1979), 31-44.
- [7] M. Yamasaki, The equation $\Delta u = qu$ on an infinite network, Mem. Fac. Sci. Shimane Univ. **21** (1987), 31-46.

Department of Mathematics, Faculty of Science, Hiroshima University

Department of Mathematics, Hiroshima Institute of Technology

and

Department of Mathematics. Faculty of Science, Shimane University