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§ 1. Introduction

In this paper, we shall study a discrete analogue of the initial value
problems and the potential theory for the heat equation Δu = du/dt, the
potential theory established e.g. in Doob [1 1. XV & XVII], Watson [4] and, in
a more abstract form, in Maeda [3]. We choose an infinite network N and
consider a "discrete cylinder" with base space N.

More precisely, let X be a countable infinite set of nodes, Y be a countable
infinite set of arcs and K be the node-arc incidence function. We assume that
the graph {X, Y, K} is connected and locally finite and has no self-loop. Let r
be a strictly positive real function on Y. We call the quartet N = [X, Y, K, r}
an infinite network (cf. [5], [6]). Next, let Tbe the set of all integers which will
be regarded as the time space. For seT^ put 7^ = (ίeT; t > s}. We call
{ΛΓ, T} (resp. {N, Ts}) the discrete cylinder (resp. discrete half-cylinder) with
base N.

We set Ξ = X x T and denote by L(Ξ) the set of all real functions on
Ξ. For u E L(Ξ), we shall define the discrete (partial) derivatives du and du and
the Laplacian Δu. The operators d and A act on the variable xeX and d on
t e T. The parabolic operator Π acting on u e L(Ξ) is defined by

Our initial value problems and potential theory will be discussed with respect to
this operator 77.

For our study, we first recall in §2 some properties of the 1 -Green function
of N relative to the equation Δu = u, and give some results on iterations of the
1 -Green operators. In §3, we consider superparabolic functions on a set in Ξ
and give minimum principles. We study in §4 an initial value problem on
{N, Ts}. The existence and uniqueness of the parabolic Green function Gα of
{N, T} with pole at aeΞ will be studied in §5. Solutions of an initial
boundary value problem as well as the parabolic Green function of {N, T} will
be constructed by means of the iterations of the 1 -Green operator of N. In
case N has the harmonic Green function ga with pole at aεX, we have the
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following formula:

Σ;°=sGα(x,ί) = </α(x) with α = (*, 5),

which has a continuous counterpart (cf. [1; 1. XVII. 18]).
Discrete analogue of the Riesz decomposition theorem for nonnegative

superparabolic functions will be proved in §6. We shall introduce the
coparabolic operator 77* in §7 and discuss the coparabolic Green function of
{N, T}, and the duality between parabolic and coparabolic potentials.

§2. 1- Green function of TV

First, we recall some results on the g-Green function of N discussed in [7],
in case q = 1.

For notation and terminologies concerning the infinite network N
= {X, Y, K, r}, we mainly follow [5], [6] and [7] : Denote by L(X) (resp.
L+(X)) the set of all real (resp. nonnegative) functions on X and by LQ(X) (resp.
LO (X)) the set of all real (resp. nonnegative) functions u on X with finite
support Su = {xeX; u(x) =έ 0}. For uεL(X\ we define

*ιu(x) = Σyeγ K(x, y){.du(y}} - u(x)9

El(u) = D(u) + ^jX€Xu(x)2.

Let

g(N 9 l) = {ueL(X)',E1(u)<ao}

and for u, veS>(N; 1),

Then $(N; 1) is a Hubert space with respect to the inner product E^u, v). For
each aeX9 there exists a unique gae&(N 9 1) such that

u(a) = El(u, ga) for every ue£(N\ 1).

We call ga the 1 -Green function of N with pole at a. The following properties
of ga are known ([7; Theorems 4.2, 4.3 and 4.5]):

(2.1) ga(b) = gb(a) for every α, beX;

(2.2) ΔrfJίx) = - eβ(x) on X,
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where εα is the characteristic function of the set {α}

(2.3) 0 < Sa(x) £ Sa(<>) on X;

(2.4) Σ*e*£αM<l.

For μeL+(X\ the 1-Green potential Gμ and 1-Green potential energy

G(μ, μ) of μ are defined by

Gμ(x) = Σαβx &(*)μ(4 Gfe /<) = Σxeχ [Gμ(x)]μ(x)

LEMMA 2.1. ([7; Lemma 7.2 and Theorem 7.2]). For μeL+(X), Gμe
rf(N; 1) if and only if G(μ, μ) < oo and G(μ, μ) = £ι(Gμ) in this case.

For u e L(X) and p > 0, we put

Mp = <Σa*x\u(x)\f)llp and Nlco = sup{|ιι(x)|;x6X}.

Note that ||W | |P2 < ||ιι||pl if p, < p2 < oo.

LEMMA 2.2. Let μeL+(X).

(i) If Gμ(x)εL(X\ then ^G/φc) = - μ(x).

(ii) // ||μ||p < oo with 1 < p < oo, then GμeL(X) and \\Gμ\\p < \\μ\\p.

(iii) If\\μ\\2«x>, then Gμeδ(N\ 1) and

(2.5)

PROOF, (i) readily follows from (2.2). By (2.1) and (2.4), it is easy to see
that (ii) holds. If μeL^ (X\ then Gμe£(N\ 1) by Lemma 2.1 and we have

D(Gμ) + || Gμ HI = E^Gμ) = G(μ, μ) < - 2 _

z,

which implies (2.5) for μεL^X). If | |μ | | 2 <oo, then choose μπeLo(AΓ), n
= 1,2,..., such that μB|μ. Then, Gμπt Gμ and D(Gμ) < liminf^^ D(Gμn).
Since each μn satisfies (2.5), it follows that Gμeδ(N\ 1) and (2.5) holds if ||μ||2
< oo. This completes the proof.

For μeL+(X), we inductively define G(π)μ5 n = 0, 1,..., by G(0)μ = μ and
G(w+1)μ = G(G(n)μ) Then by the above lemma we have

COROLLARY 2.3. Let μεL+(X).
(i) // ||μ||p < oo with 1 < p < oo, then G(r»μeL(X) and \\ G(n)μ\\p < \\μ\\pfor all
n = 0, 1,....
(ii) If || μ || 2 < oo, then G^μe^N; 1) and
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(2.6) 2{D(Gμ) + D(G<2)μ) + - + D(G^μ)} + \\G^μ\\2 < \ \ μ \ \ 2

for all n= 1,2,....

We establish

PROPOSITION 2.4. Let μeL+(X) and \\μ\\2 < oo. Then D(G(n}μ)^Q and

| |G ( π )μ|l2-»0 as n-»oo.

PROOF. By (2.6), we immediately deduce that D(G(n)μ)-*Q. By (ii) of
Lemma 2.2, we see that { | |G ( π )μll2}« is nonincreasing. Let A = \\mn^^

\\G(n)μ\\2.
For u, veL+(X), let <tι, u> = ΣxeΛ: w(x)φc). Then, by (2.1), we see that

<Gμ, v> = <μ, Gv> for any μ, vεL+(X).
Let μπ = G(/l)μ for simplicity. Then, for any positive integers n and m,

(μn+2m, μn> = l l μ n + m l l i and

= E^n+m)> \\μn + m\\l

by Lemma 2.1. Hence, we have

-> yl2 + A2 - 2A2 = 0 (n -> oo)

and

l lμ« + 2m-l - A ^ π l l i = Il^ii + 2 m - l l l 2 + \ \ H n \ \ 2 ~ 2 <t*n + 2m- 1

->A2 + A2 -2A2 = 0 (n^oo).

Therefore, {μπ} is a Cauchy sequence in the norm || ||2, so that there is
μ0eL+(X) with ||μ0||2 < °o such that ||μ0 - μn\\2 ->0 (n -> oo). It then follows
that μn(x) -+ μ0(x) for every xe X, so that D(μ0) < liminf^^^DίμJ = 0. Hence,
μ0 Ξ const., and since X is an infinite set and ||μ0||2 < oo, it follows that μ0

= 0. Thus, | |μJ2-H|μ0ll2 = 0(n->oo).

PROPOSITION 2.5. //" 1 < p < oo,

(2.7) lim^ ||G(M)μ||p = 0/or ̂  μeL+W wiYA | |μ||p< oo .

PROOF. Let μeL+(X) and \\μ\\p<co. For ε > 0, choose μ'eL^X) such
that μ' < μ and || μ - μ' \\p < ε. Then, || G(n)μr ||2 -> 0 (π -> oo) by the above
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proposition. If 2 < p < oo, then

| |G ( VHp<l |δ ( VH2^0(π-^oo) .

If 1 < p < 2, then using Holder's inequality and Corollary 2.3 (i), we have

ιιc(vιι;^ιiG(vιιr^
— >0 (rc-»oo).

Hence, again by Corollary 2.3 (i),

limsup^ \\G™μ\\p < limsup^^ ||G<">(μ - μ'}\\P < \\μ - μ'\\P < ε

if 1 < p < oo, which completes the proof.

REMARK 2.6. In case p = 1 or p = oo, (2.7) does not hold in general; in
fact if Gl(x) = Σaeχ9a(χ) — 1 f°Γ aU xεX (see [7; §5] as to when this occurs),
then | |G ( π )μllι = l l μ l l i for any μeL+(X) and n, and H G ^ I I L = 1 for all n.

¥oτfeL(X) and n = 0, 1,..., we define G(π)/= G(w)/+ - G(n)/- whenever
G(w)/ + , G(n)f~eL(X). By Corollary 2.3, G(π)/ is defined for each n if / is
bounded.

§3. Superparabolic functions and minimum principle

Now let T be the set of all integers. Given s e T9 let

Γs = {ίe T; ί > s}, Ts° = [t e Γ; t > s} and Tf = {teT; t < s}.

We write

Ξ=X x T, ΞS = X x Ts, Ξ°S=X x T°s and Ξ* = X x Tf .

We call {N, T} (resp. {ΛΓ, Ts}) the discrete cylinder (resp. discrete half -cylinder)
with base N. For the set Ξ9 we define L(Ξ), L+(Ξ)9 L0(Ξ) and Lj(S) in the
same manner as L )̂, L+(X\ L0(X) and LQ (X).

For ueL(Ξ)9 we set

du(y, ί) = - rW-1 Xχeχ X(x, y)φ, ί),

5w(x, ί) = w(x, ί) — w(x, ί — 1),

Note that

(3.1)
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Thus, Πu(ξ) can be also defined for uεL(Ξs) and ξeΞ°.

We say that a function u e L(Ξ) is superparabolic (resp. parabolic) on a set Ω

if Πu(ξ) < 0 (resp. 77w(ξ) = 0) on Ω. Denote by SPR(N, T) (resp. Ptf(N, T))

the set of all superparabolic (resp. parabolic) functions on Ξ. If ui and M2 are

superparabolic on Ω c= E and if c is a positive number, then t^ -f w2 and cu± are

superparabolic on Ω. A function u is said to be subparabolic on Ω if — u is

superparabolic on Ω.

In order to rewrite the parabolic operator in a more geometric form, let us

define p(α) and p(ξ, α) for α = (α, s) and £ = (x, t) by

)\ if * = s and

p(α~, α) = 1, where α" = (a, s — 1),

p(£, α) = 0 for any other pair (ξ, α).

τhen ΣξeΞ P(ξ, α) = p(α) and

(3.2) Πu(a) = - p(φ(α) + ΣξeSp(ξ, α)ιι

For each u e L(Ξ) and α e £, define a discrete analogue of the Poisson integral of

u by

Then, by (3.2), 77w(α) < 0 (resp. 77w(α) = 0) if and only if PB(α) < ιι(α) (resp. Pu(α)

= w(α)). From this, we see that if u1 and w2 are superparabolic on Ω c £, then

so is min(M1? w2). For αeΞ, put (̂α) = {a}(j{ξεΞ; p(ξ, α) / 0}.

We prepare

LEMMA 3.1. Assume that Πu(oί) < 0 and w(α) = mm{u(ξ); ξ e Ξ f a ) } . Then

u(ξ) = w(α) 6>« Ξ(&)

PROOF. Since w(ί) > w(α) on (̂α) and 77w(α) < 0, by (3.2) we have

p(α)φ) > Σ^ .̂) p(ξ, φ(£) > «(α)ΣξeSp(ξ, α) = ιι(α)p(α),

and hence w(ξ) = w(α) on (̂α).

By this lemma, we obtain the followng minimum principle:

THEOREM 3.2. Let s < s' (s, s' e T) and let Ω = Ξs n Ξ*, and Ω° = Ξ°s n Ξ*, .

( i) Ifuis superparabolic on Ω° and if u attains its minimum on Ω at α = (a, s'\
then u(ξ) = w(α) for every ξeΩ.

(ii) Let Ω' be a finite subset ofΩ°. If u is superparabolic on Ωf and u(ξ) > 0 on
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Ω - Ω', then u(ξ) > 0 on Ω.

COROLLARY 3.3. Let seT and suppose u is super parabolic on Ξ°s. If u
satisfies the following two conditions, then u > 0 on Ξs:

(a) u(x, s)>0 for all xeX;
(b) there are feL+(Ξ) and p < oo such that ||/( , t)\\p < oo for all teT°s

and u > -f on Ξ°s.

PROOF. Let s' > s be arbitrarily fixed and let Ω be as in the above
theorem. Since ||/( , t)\\p < oo for s < t < s', given ε > 0, there is a finite set
Ω' c Ω° such that/(ξ) < ε for ξ eΩ° - Ω'. Then, u + ε > 0 on Ω - Ω'. Since
u + ε is superparabolic on Ω°, (ii) of the above theorem implies that u + ε > 0
on Ω = ΞSΓ\Ξ$. By the arbitrariness of ε > 0 and s' > s, we see that u > 0 on

§4. Initial value problem for the discrete half-cylinder

The initial value problem on Ξs may be formulated as follows:

[IP:/],: Given feL(X), find ueL(Ξs) satisfying

ί tφc, s ) = f ( x ) for all xeX,

\ Πu(ξ) = 0 for all ξeΞ°s, namely u is parabolic on Ξ°s.

By translation, it suffices to consider the case 5 = 0. We simply write

[IP:/] for the problem [IP:/]0.
Given a bounded / 6 L ( X ) and me T, we set

(4.1)

By Corollary 2.3, Lemma 2.2 (i) and (3.1), we immediately obtain

LEMMA 4.1. IffεL(X) is bounded, then Uf\ , m) =/, \Uf(ξ)\ < \\f\\^for
any meT and ζεΞ, and

0,

/M, if t =

Thus, together with Corollary 3.3 and Proposition 2.5, we obtain

THEOREM 4.2. IffeL(X) is bounded, then u = U(f} (restricted to Ξ0) is a

bounded solution of the problem [IP:/]. Furthermore, it has the following
properties:
( i ) \u(ξ)\<\\f\\^forallt;εΞQ.
(ii) If | | f \ \ p < oo with 1 < p < oo, then u is the unique solution of [IP:/]
satisfying \\u(-, t)\\p < oo for all teT°0.
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(iϋ) If \\f\\p < oo with 1 < p < oo, then lim^ \\u( , t)\\p = 0.

Next, we consider the class

HB(N; 1) = {heL(X)\ h is bounded and ΔJi = 0 on AT}.

A function u on SO will be called time-locally bounded if w( , ί) is bounded for
every teT0. The following theorem determines the set of all time-locally
bounded solutions of [IP : /] :

THEOREM 4.3. Let fεL(X) be bounded.

(i) If {λm}m=ι is a sequence of functions in HB(N\ 1), then

gives a time-locally bounded solution of [IP:/]. If> in addition, £^=1 H/iJL
< oo, then it is a bounded solution.

(ii) Conversely, any time-locally bounded solution of [IP : /] can be expressed in
the form (4.2) on ΞQ with hmeHB(N\ 1), m = 1, 2, ....

PROOF, (i) For each ίe T0, £/£>(•, ί) = 0 for w > ί, so that the right hand
side of (4.2) is in fact a finite sum at each point of ΞQ and u( , ί) is bounded, i.e.,
u is time-locally bounded. By Lemma 4.1, ΠU(£ = 0 on Ξ°0 for each

m > 1. Hence w is a solution of [IP;/]. If Σm=ι I I Moo < °°> then

\u(ξ)\ < l l / l l o o +Σ.= ι I I *» I I co < oo for any {e20.

(ii) Let u be any time-locally bounded solution of [IP:/]. We inductively

define hmeL(X\ m = 1, 2, ..., by

(γ\ _ ,.fγ 1\ _

(43) <! "*
LmW = "(*> m) - tf/(*> m) - ΣJ=Ί ^(x* m), m = 2, 3,....

Then, each hm is bounded on X, and by (3.1) and Lemma 4.1, we have

Δ^hm = ΛI{M( , m) - ί/^0)( , m) - ^JΓ/ l/^( , m)}

= {Πu(-9 m) - ΠUf( , m) - XJΓ/ ΠU%(-9 m)}

- {ιι( , m - 1) - l/y0)( , m - 1) - ΣJΓ,1 l/j^( , m - 1)}

~~ \ — /ιm_! + U(ίZΓ-l}('> m - 1) = - /ιm_! + /ιm_! =0, if m > 2.

Hence, hmeHB(N 1) for all m = 1, 2,.... Since l/^ , ί) = 0 for m > t and
L/^(-, m) = /ιm, (4.3) implies (4.2).

THEOREM 4.4. (i) If Gl = 1 (/>., Y Λr^
ί

α(x)= 1 for all xεX), then u
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gives the unique bounded solution of [IP: /] for any bounded /e L(X).

(ii) If G 1 φ 1, then the linear space of bounded solutions of [IP: 0] is infinite

dimensional.

PROOF, (i) We know ([7; Theorem 5.3]) that Gl = 1 if and only if

HB(N; 1) = {0}. Therefore, (ii) of the above theorem implies that L^0) gives

the unique (time-locally) bounded solution of [IP:/].

(ii) If Gl Φ 1, then n = 1 - GlεHB(N; 1) and n Φ 0. Then {^m)}^=1

provides a linearly independent infinite set of bounded solutions of [IP: 0].

REMARK 4.5. The condition £*= t || hm \\ „ < oo in Theorem 4.3 (i) is by no

means a necessary condition for (4.2) to be bounded, even if hm > 0 for all

m. For example, we see that u = £^= 1 U^ gives a bounded solution of

[IP: 0] (in fact, u( , t) = 1 - G(ί)l for ίeT0).

§5. Parabolic Green function of the discrete cylinder

Given α e Ξ9 a function Gα e L(£) is called the parabolic Green function of

{N, T} with pole at α if it satisfies the following three conditions:

(G.I) G α (£)>0for all ξεΞ;

(G.2) ΠGΛ(ζ) = - εΛ(ξ) on Ξ;

(G.3) If ueL(Ξ) satisfies conditions

(i) u(ξ)>0 for all ξeΞ, and
(ii) Πu(ξ) < - εΛ(ξ) on Ξ,

then u(ζ) > GΛ(ξ) on Λ.

The uniqueness of the parabolic Green function Gα is assured by condition

(G.3).

THEOREM 5.1. The parabolic Green function of {N, T} with pole at α

= (a, s)εΞ always exists; in fact it is given by Gα = l/^j, namely

Gα(x, t) = Qift<s9

GΛ(x, t) = [G<f-->gJ(x) ι/ ί > s.

PROOF. Condition (G.I) is clear. We see that (G.2) holds by Lemma 4.1

and (2.2). To show (G.3), let ueL(Ξ) satisfy conditions (i) and (ii) in (G.3). Let

v(ξ] = u(ξ) - GΛ(ξ). Then v(ξ) > 0 for ξ = (x, ί) with t < 5, v(ξ) > - GΛ(ξ) and

Πv(ξ) < 0 on Ξ. Since H^ld < oo, ||Gα( , t)\\1<co for all t > s by Corollary

2.3. Thus, by Corollary 3.3, we see that υ > 0 on Ξ.

By (2.3), (2,4), Corollary 2.3 and Propositions 2.4 and 2.5, we obtain
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THEOREM 5.2. The parabolic Green function GJ(ξ\ α = (a, s\ has the

following properties:

(G.4) Gα(x, ί) > 0 if t > s.

(G.5) ||Gα( , t)||p < 1 for any teT (1 < p < oo), in particular GΛ(ξ) < 1 for
every ξeΞ.

(G.6) GΛ( ,t)e*(N: I) for any tεT and lim,^ E^G.O, t)) = 0.

(G.7) lim ί.Q O | |Gα(.,ί)llp = O f o r p > l .

REMARK 5.3. (G.7) does not hold for p = 1 in general; see Remark 2.6.

We say that a function ga e L(X) is the harmonic Green function of N with
pole at aeX if

Λga(x) = ~ βfl(x) on X and gaeD0(N).

Here £0(ΛO is the closure of L0(JQ in D(ΛΓ) = {weLpQ; D(w) < 00} with respect

to the norm [D(w) + w(x0)
2]1/2 (xo^^). The harmonic Green function exists if

and only if N is of hyperbolic type, i.e., D0(N) φ D(N)9 or equivalently 1 φD(N)

(cf. [5], [6]).
Now we show a fundamental formula expressing the harmonic Green

function of N with pole at ae X by the parabolic Green function of {N, T} with
pole at α = (α, s) e Ξ.

THEOREM 5.4. Assume that N is of hyperbolic type. Then

0-M = L*,Gβ(x,ί) for α = (α,s).

PROOF. For me T with m > s, put vm(x) = Σΐ=s Gα(x, ί) and hm = ga

- vm. Then

Aυm = A,vm + υm = Σ?=s ̂ ilG^g,] + t;m

-^J - εfl + ι;m = [δ<-- >flfj - *.,
so that

JΛm = Aga -Aυm=- \G«*-*§A < 0

on X. Hence Am is superharmonic on X and hm> - vm. By Corollary 2.3,

II 0m H i < °° Hence, by an argument similar to the proof of Corollary 3.3,
together with the minimum principle ([6; Lemma 2.1]), we conclude that hm > 0
on X, i.e., vm<ga on X. It follows that υm converges to v = ̂ LsGa(-9 t\
v < ga on X, v is a nonnegative superharmonic function and Aυ = — εa on
X. By the Riesz decomposition theorem ([6; Theorem 5.1]), we conclude that
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§6. Riesz decomposition theorem

For uεL(Ξ) and aeΞ, let us define ταueL(5) by

τau(ξ) = u(ξ) for ξ Φ α and ταu(α) = Ptt(α).

By (3.2), 77(ταw)(α) = 0. If uεSPR(N, Γ), then τΛuεSPR(N, T) and τΛu < u on

As in the continuous case, we obtain the following lemma and its
corollaries :

LEMMA 6.1. If ίP is a Perron's family, namely if 0* is a nonempty subset of
SPR(N, T) satisfying the following three conditions :

(P.I) If ul9 w2e^, then min{w1? M
(P.2) ταu6^ for every ue& and αeE;
(P.3) [u(ζ}\ ueέP} is bounded below at each point ξeΞ,

then its lower envelope: (inf &)(ζ) = inf{w({); ue^} is parabolic on Ξ.

PROOF. Let ύ = inf 9. Then weL(S) by (P.3) and u < u on Ξ for every
u€0>. We show that 77ίϊ(α) = 0 for any αeS. By (P.I) and (P.2), we can
choose a sequence {un} in 9 such that un(ξ) -> ύ(ξ) as n -> oo for all ξ e £(α) and
pMn(α) = M|l(α) for all n. Then P^α) = tϊ(α), i.e., 77fι(α) = 0.

COROLLARY 6.2. T/" u e SPR(N, T) has a subparabolic minor ant, then u has
the greatest parabolic minorant GPM(u), which is equal to the greatest
subparabolic minorant of u.

COROLLARY 6.3. Let feL+(Ξ). If there exists veSPR(N, T) such that
v > / on Ξ, then the reduction function

Rf(ξ) = inf{w(ξ); ueSPR(N, T) and u >/ on Ξ}

is super parabolic on Ξ and parabolic on the set [ξeΞ; Πf(ξ) > 0} in particular,
it is parabolic on the set {ζεΞ\ f(ξ) = 0}.

In order to obtain a discrete analogue of the Riesz decomposition theorem,

we introduce parabolic Green potentials.
For veL+(5), its parabolic Green potential Gv is defined by

Let

M(G) = {veL+(£); GveL(Ξ)}.

It follows from (G.5) that
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L+(Ξ) cz {veL+(Ξ); v(Ξ) < 00} cz M(G),

where v(Ξ) = ^ξeΞv(ξ). If veAf(G), then GveSPR(N, T) and 77(Gv) = - v on

Ξ by (G.2).

LEMMA 6.4. #* veLj (S), fλe/i GPM(Gv) = 0.

PROOF. Put u = GPM(Gv). There is seT such that v = 0 on Ξ*.

Clearly, u>0 on Ξ and u = 0 on Ξf. By (G.5), | |Gv( , t)\\p < oo for any

teT°s(p< oo). Since - w > - Gv, Corollary 3.3 implies that - u > 0.

Now we prove the Riesz decomposition theorem:

THEOREM 6.5. Let ueSPR(N, T) and assume u has a subparabolic

minor ant. Let v = - Πu > 0. Then v e M(G) and u can be decomposed in the

form : u = Gv + GPM(w).

PROOF. Let {Ξn} be an exhaustion of Ξ by finite sets. Define vn by vn = v

on Ξn and vn = 0 on Ξ — Ξn. For each rc, hn = u — Gvn is superparabolic on Ξ

and parabolic on Ξn. Let h = GPM(u). Since h - hn < u — hn = Gvn and ft

— hn is subparabolic, we have h < hn by Lemma 6.4, namely Gvπ < u — h.

Since Gvπ |Gv (n -» oo), it follows that veM(G) and ftn decreases to a parabolic

function ft0 > ft. Then ft0 = w — Gv < w, and hence ft0 = ft = GPM(w) and w

= Gv + GPM(w).

COROLLARY 6.6. Let veSPR(N, T)nL+(Ξ). Then v is a parabolic Green

potential if and only if GPM(ι?) = 0.

THEOREM 6.7. // ueL0(Ξ)9 then u(ξ) = - Σ«*Gβ(0[;/7ιι(α)].

PROOF. Let μ = max {Πu, 0} and v = max{ - Πu, 0}. Then μ, veLo (Ξ)

and Πu = μ - v. Put ft = u - Gv + Gμ and Ξ' = {ξeΞ', u(ξ) φ 0}. Then ft is

parabolic on Ξ and - Gv < ft < Gμ on Ξ - Ξ'. By Theorem 3.2 (ii), - Gv <

ft < Gμ on S It follows from Lemma 6.4 that ft = 0, i.e., u = Gv — Gμ.

COROLLARY 6.8. IffeL^X), then the reduction function Rf is a parabolic

Green potential.

PROOF. By the above theorem, / < Gv with v = max{ — 77/, 0}. Hence,

0 < Rf < Gv. By Corollaries 6.3 and 6.6, we see that Rfis a prarabolic Green

potential.

As another application of the Riesz decomposition theorem, we shall prove

the following domination principle by the same argument as in [2 Proposition
2.5]:
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THEOREM 6.9. Let μ e M(G) and v e SPR(N, Γ) Π L+ (Ξ). If Gμ(ξ) < υ(ξ) on

the support Sμ of μ, then the same inequality holds on Ξ.

PROOF. Let f(ξ) = min{0, υ(ξ) - Gμ(ξ)} and Ξ' = Ξ - Sμ. Then υ(ξ)
— Gμ(ξ) > 0 on Ξ — Ξ and v — Gμ is superparabolic on Ξ'. Using (3.2), we
easily see that / is superparabolic on Ξ. Obviously f(ξ) > — Gμ(ξ) on Ξ. It
follows from Corollary 6.6 that f(ξ) > 0 on Ξ, namely Gμ(ξ) < v(ξ) on Ξ.

§7. Coparabolic operator and duality

As in the continuous case, we define the coparabolic operator 77* on L(Ξ)
by

77*w(x, ί) = Au(x, t) + du(x, t + 1).

Similarly to (3.1), we have

/7*ιι( ,ί) = ̂ iiί , f) + κ( , ί + l )

We say that a function ueL(Ξ) is cosuperparabolic (resp. coparabolic) on a
set Ω if 77*w(ξ) < 0 (resp. 77*w(ξ) = 0) on Ω. Denote by SPR*(N, T) (resp.
PR*(N, T)) the set of all cosuperparabolic (resp. coparabolic) functions on Ξ.

By the interchange of the order of summation, we easily obtain the
following discrete analogue of [3; Proposition 1.1]:

THEOREM 7.1. Let u, vεL(Ξ). Ifuorv belongs to L0(Ξ), then the following

equality holds:

COROLLARY 7.2. A function u e L(Ξ) is parabolic (resp. superparabolic) on Ξ
if and only if

v(ξ) = 0 (resp. < 0) for all v€L$(Ξ).

A function v e L(Ξ) is coparabolic (resp. cosuperparabolic) on Ξ if and only if

ΣξeΞv(ξ)Πu(ξ) = 0 (resp. < 0) for all uεLt(Ξ).

COROLLARY 7.3. For any ueL0(Ξ),

= V and

We obtain the dual statements of the results in §§3-6 with respect to the
operator 77* or cosuperparabolic functions. As to the Green function with
respect to 77*, we have
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THEOREM 7.4. Let u*(ξ) = Gξ(α). Then u* has the following properties:

(G*.l) u*(ξ)>0for all ξeΞ;

(G*.2) 77*ι/*(ξ) = - fiβ(ί) on Ξ;

(G*.3) IfveL(Ξ) satisfies conditions
(i) v(ξ)>OonΞ,

(ii) Π*v(ξ) < - εa(ξ) on Ξ,

then v(ξ) > u*(ξ) on Ξ.

In view of this theorem, we call G*(ξ) = Gξ(α) the coparabolic Green
function of {ΛΓ, T} with pole at α. For veL+(£), the coparabolic Green
potential G*v is defined by

Let M(G*) = (veL+(S); G*veL(Ξ)}. If μeM(G) and veM(G*), then

The reduction operator R*f for /eL+(£) is defined by

= inf{w(£); ueSPR*(N, T) and w >/ on 5*}.

o (Ξ), then K*/is a coparabolic Green potential by the dual statement of

Corollary 6.8, namely, Λ*/= G*λ* with A/eL^(5).

LEMMA 7.5. Lβί veSPR*(N, T)ί\L*(Ξ) and μeM(G). If {/„} w α
sequence of functions in L$(Ξ) which increases to v, then

Σαe-t;(α)μ(α) = lim^ ΣξeΞ Gμ(ξ)λjn(ξ).

PROOF. Since /„ < R*fn < v, we see that R*fn t v on Ξ. Hence, using (7.1)
we have

From this lemma, we immediately obtain

THEOREM 7.6. (cf. [3; Lemma 1.3]). Let μl9 μ2eM(G). If Gμ1 < Gμ2 on

Ξ, then

any veSPR*(N, T)Γ\L+(Ξ)'9 in particular



Discrete initial value problems 299

μι(Ξ) < μ2(Ξ).
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