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Summary

In this paper we investigate higher order asymptotic properties of weighted
estimators of Bayes type for a Gaussian ARMA process. First, for a Gaussian
ARMA process with a scalar unknown parameter θ we define a quasi-weighted
estimator θqw of Bayes type based on a handy "quasi"-likelihood function. We
show that if we modify θqw to be second-order asymptotically median unbiased
(AMU), then it is second-order asymptotically efficient in the class j#2 °f
second-order asymptotically median unbiased estimators. We also obtain the
normalizing transformation of θqw which vanishes the second order terms of its
Edgeworth expansion. Furthermore, we consider the problem of testing H: θ
= ΘQ against A: θ φ Θ0. Then higher order local powers are evaluated for a
likelihood ratio, Wald and modified Wald' tests based on θqw. Secondly, we
define a generalized multiparameter weighted estimator (GMWE) for a
Gaussian ARMA process with a multiparameter unknown vector, and discuss
its higher order asymptotic efficiency. Thirdly, we extend Akaike's final
prediction error (FPE) to the case when the process concerned is a Gaussian
ARMA process and evaluate Akaike's FPE up to higher order 0(n~2). It is
shown that the generalized weighted estimator and the maximum likelihood
estimator are best up to order n~2 in the sense of FPE.

1. Introduction

In the area of time series analysis, Hosoya [17] showed that the maximum
likelihood estimator of a spectral parameter is second-order asymptotically
efficient in the sense of Rao [27]. Akahira and Takeuchi [3] showed that an
appropriately modified maximum likelihood estimator of the coefficient of an
autoregressive process of order one is second-order asymptotically efficient in
the sense of degree of concertration of the sampling distribution up to second-
order. Furthermore, Taniguchi [35] also showed that appropriately modified
maximum likelihood and quasi-maximum likelihood estimators for Gaussian
ARMA processes are second-order asymptotically efficient in the sense of
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Akahira and Takeuchi [3]. Ochi [25] proposed a generalized estimator in the
first-order autoregression, which includes the least square estimator as a special
case, and gave its third-order Edgeworth expansion. Fujikoshi and Ochi [15]

investigated the third-order asymptotic properties of the maximum likelihood

estimator and Ochi's generalized estimator.
For independent and identically distributed observations, Takeuchi [32]

introduced a natural class 2 of estimators, and showed that the maximum
likelihood estimator is third-order asymptotically efficient in 2. For a
Gaussian ARMA process Taniguchi [37] elucidated various third-order
asymptotic properties of the maximum likelihood estimator, and showed that it
is also third-order asymptotic efficient in Q).

For i.i.d. observations, Takeuchi and Akahira [31] and Akahira and
Takeuchi [3] showed that the generalized Bayes estimator for symmetric loss

function is second-order asymptotically efficient in the class j/2 °f second-order
asymptotically median unbiased estimators and that it is also third-order
asymptotically efficient in the class 2. For dependent observations Rao [26]
gave a Berry-Essen type of comparison between Bayes estimator and maximum
likelihood estimator for a Markov process. For a Gaussian ARMA process
with a scalar unknown parameter 0, Myint Swe and Taniguchi [24] investigated
various higher order asymptotic properties of a weighted estimator of Bayes
type based on the exact likelihood. They obtained the normalizing transform-
ation of the weighted estimator. For the problem of testing H: θ = 00 against
A: θ φ 00, they compared higher order local powers of a likelihood ratio, Wald
and modified Wald's test based on it.

However if the sample size n is large, the exact likelihood is intractable in
practice because the likelihood function needs the inversion procedure of n x n
covariance matrix. Thus in Part I, a quasi-weighted estimator 0gw of Bayes
type based on a handy "quasi-likelihood function is introduced for a Gaussian
process with a scalar unknown parameter. In the same way as Myint Swe and
Taniguchi [24] we investigate its higher order asymptotic properties, and obtain

the normalizing transformation of 04W which vanishes the second-order terms of
its Edgeworth expansion. Furthermore, we consider the problem of testing a
simple hypothesis H : Θ = Θ0 against the alternative A: θ ̂  Θ0. Then an
attempt is also made to compare higher order local powers of three tests based
on θqw.

Myint Swe and Taniguchi [24] developed their discussion when the
unknown parameter is scalar. In Part II we extend their results to the case
where the unknown parameter is a vector. We define a generalized
multiparameter weighted estimator (GMWE) for a Gaussian ARMA process
with a multiparameter unknown vector and discuss its higher order efficiency.

The asymptotic mean squared error of estimated predictors is the most
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fundamental quantity to characterize the best statistical prediction in time

series. In many cases finite order autoregressive models have been used for
prediction. For the case of one step ahead prediction, Bloomfield [10] derived
the asymptotic mean square error for a general mixed ARMA (p, q) model.
Bhansali [9] derived the asymptotic mean square error of predicting more than

one-step ahead for a general autoregressive model AR(p). Yamamoto [41]

gave a manageable expression for the asymptotic mean square error of
predicting more than one-step ahead from an estimated autoregressive model

up to 0(n~^\ where n is the sample size. Yamamoto [42] generalized the
above results to the case where the process concerned is a multivariate

autoregressive moving average model. The related works are Baillie [7], [8]

and Reinsel [29]. Ray [28] also derived an expression for the asymptotic
mean square error in predicting more than one step ahead from a p-variate

autoregressive model with random coefficients.
Recently Tanaka and Maekawa [33] considered the prediction in the case

of misspecifying the model as AR(1) while the true model is ARMA (1,1). Then
they derived the approximate sampling distributions of the prediction error for
the case (i) the data used in estimation are independent of the data used in
prediction, (ii) the data used in estimation are dependent on the data used in

prediction. They evaluated its bias and mean square error up to order 0(n~^}

for the case (i) and (ii). Davies and Newbold [13], Kunitomo and Yamamoto
[21] and Lewis and Reinsel [22] also investigated the mean square prediction

error with misspecified models. Furthermore, Maekawa [23] gave the
asymptotic distribution of /i-step ahead prediction error in the AR(p) model up

to 0(π-1) for the case (i) and (ii). He also specified the general formula for the
distributions of the predictor errors based on the maximum likelihood, two

types of least squared, and the Yule-Walker estimators in the AR(1) model and
found that all distributions are the same up to order 0(n~l) except for the Yule-
Walker predictor.

In actual situations, the order of AR model is often unknown. The

difficulty is to determine the order of autoregressive model. For autoregressive
model fitting, Akaike [4], [5] proposed a simple for final prediction error (FPE)
to determine the order of autoregressive model. This criterion is defined as an
asymptotically unbiased estimator of the mean squared error of the estimated

predictor.

In part ΠI we extend Akaike's definition of FPE to the case when the

process concerned is a Gaussian ARMA process and evaluate Akaike's FPE up

to order n~2. Furthermore, we show that the generalized weighted estimator

and the maximum likelihood estimator are best up to third-order in the sense of

FPE.
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Part I. Higher order asymptotic properties of quasi-weighted estimators for
Gaussian ARMA processes

2. Higher order asymptotic efficiency of quasi-weighted estimators

For a Gaussian ARMA process with a scalar unknown parameter, Myint

Swe and Taniguchi [24] investigated various higher order asymptotic properties

of a weighted estimator of Bayes type based on the exact likelihood. However,

if the sample size n is large, the exact likelihood is intractable in practice
because the likelihood function needs the inversion procedure of the n x n
covariance matrix. Thus we introduce a quasi-weighted estimator of Bayes
type based on a handy "quasi"-likelihood function.

Let {Xt} be a Gaussian ARMA process with spectral density fθ(λ\ where θ
is an unknown parameter. In this section, we propose an estimator θqw of

Bayes types based on a quasi-likelihood function. Since our standpoint is

different from that of original Bayes idea, we call it a quasi -weighted
estimator. First, we derive a stochastic expansion of θqw. Then we show that

θq^ is second-order asymptotically efficient in the class s/2 of second-order
asymptotically median unbiased estimators and that it belongs to a restricted
class Q). An approach is also presented that the higher order asymptotic bias
can be vanished by choosing the weight function.

We introduce 2F and ^ARMA? the spaces of functions on [ — π, π]

= Σu= -co Φ)exp( - iuλ\ a(u) = a(- u),

(σ2 > 0), c < lΣj=o Vl 2/lΣ?=o VI2 < έ>

for \z\ < 1, 0 < c < c < oo}.

We set down the following assumptions.

ASSUMPTION 2.1. The process {Xt; t = 0, ± 1, ••- } is a Gaussian station-
ary process with spectral density fθo (λ) e^ARMA9 θ0eC c Θ c Λ1, and mean
0. Here Θ is an open set of R1 and C is a compact subset of Θ.

ASSUMPTION 2.2. The spectral density fθ(λ) is continuously five times
differentiable with respect to θeθ, and the derivatives dfθ/dθ, d2fθ/dθ2,
d*fθ/dθ\ d4fθ/dθ4 and d5fθ/dθ5 belong to F.

ASSUMPTION 2.3. If θ φ θ*, thenfθ(λ) ϊf$(λ) on a set of positive Lebesgue



Higher order asymptotic investigations of weighted estimators 221

measure.

ASSUMPTION 2.4. There exists d1 > 0 such that

/(θ) = (4πΓ1 f l-j^log fe(λ)\2dλϊ>dl9 for all θeC.
J - π l ^ J

Suppose that a stretch Xn = ( X ί 9 ••• , JfJ' of the series {Xt} is available. In
this section we use the following quasi log-likelihood function,

where /„(!,•) = (2πn)"1 |£?=1 Xfexp(iίλ7)|2, (A; = 2πj/n) is the periodogram. It
is known that log Ln(θ) is, to within constant terms, an approximation for the
exact log-likelihood.

Let

Z2(θ) = n-1/2 j^log Ln(θ) - £β[^log Ln(θ)J j,and

The asymptotic moments of Z^θ), Z2(θ) and Z3(θ) are evaluated by Taniguchi
[35] as follows.

LEMMA 2.1. f/nίfer Assumptions 2.1-2.4 i'Z AoWs Z/zαί
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Here

J(θ) = - (IπΓ1 /βW {/.(A)}-3 dλ

+ (4πΓ1 Γ \wfβ(λ)} \ίθfe(λ)} tf w2 dλ>J π v. J V. J

= (4π)-1 Γ ί̂
J - π ( d θ

where

b(θ) = (27CΓ1 Xf= _«, |;|70>IVA flwrf Ύ(j) = Eθ(XtXt+j).

Occasionally, we shall use the simpler notation Z1? Z2, /, J, K, etc. instead
of 2^(0), Z2(0), /(0), J(0), X(0), etc., respectively, when there is no danger of
confusion.

We now define a quasi-weighted estimator and investigate its higher order
asymptotic efficiency. Let ζ(θ) be a non-negative weight function of
θ. Suppose that ξ(θ) is continuously two times differentiate with respect to
0e<9. The quasi- weighted estimator of θ is defined by

_L
" J/

Putting ί = ^/n(θ — Θ0), we obtain

Γ

ΘLa(θ)ξ(θ)dθ

θπw —

(θ)ξ(θ)dθ
θ

(2.1)

ίexp[logLn(00I ί

[exp[logLn(00
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Expanding log Ln(θ0 + t/^/n) in a Taylor series at θ = 00, we obtain

log Ln(θ0 + tljn) = log Lπ(00) + ί^log Ln(θQ)/^n

(2.2) = log Ln(θ0) + ί ZΛίg + £2Z2(Θ0)/(2NA)

^log Lπ(00)]/(2«) + r3n-3/2E^l

From (2.2) and Lemma 2.1 we have

log Ln(θ0 + t/V^) = log Lπ(00) + tZ^

(2.3) - I2/(θ0)/2 + £3 [ -

Next, expanding ξ(θ0 + t/^/n) in a Taylor series at θ = Θ0 we obtain

t exp[log Ln(00 + t/^ξ(θ0 + t/^n) = Ln(00)exp{Z2/(2/)}

exp{ - (//2)(ί - Z,//)2

+ t*ξ(θϋ)(- 3J -

By using the moments of normal distribution with mean Zί/I and variance / 1,
we can evaluate

(2π/-1)-1/2 f ί exp[log LΠ(Θ0 + ί/^)] {(ί

(2.4)
= LB(θ0)exp{Z?/(2/)}μ +

where A = (Zίξ)/I and

B = (Z2ξ/2)(3IZι + Z?)/-3 + K(- 3J - K)/6](3/2 + 6/Z2 + Z*)Γ4

Similarly it is shown that
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Ln(θ0 + ί / ) ] ξ(θ0

(2.5)

= Ln(θ0) exp{Z?/(2/)} {A + B/Jn +

where Ά = ξ and

B = (Z2£/2)(/ + Z?)/-2 + K(- 3J - ίO/qp/zΊ + Z

The relations (2.1), (2.4) and (2.5) yield

LEMMA 2.2. Under Assumptions 2.1-2.4, the quasi-weighted estimator can
be expanded as

n(qw - Θ0) = ZJI + [Z,Z2Γ
2 + (- 3J -

+ {(- 3J - K)Γ2/2

We shall investigate the higher order asymptotic efficiency of θqw. Let
and ® be the classes of estimators:

= {θnι n(θn - Θ0) = ZJI

9 = {θn; θnε<S, Eθo(ZιQ2) = o(l), Q = Q - μ}9

where Z1 = n~1/2(d/dθ)log (exact likelihood). Taniguchi [36] showed that the
maximum likelihood estimator ΘML and quasi-maximum likelihood estimator

@qML °f ^ belong to 3). It follows from Lemma 2.2 that

V^w - β0) ~ V"(θqML ~ Θ0) = (constant)/^ + ̂ (π'1/2).

This implies that θqw also belongs to 2. Thus we establish the following

theorem.

THEOREM 2.1. //* we modify the quasi-weighted estimator θqw to be second-
order asymptotically median unbiased (AMU), then it is second-order asymptoti-

cally efficient in the class j/2 °f second-order AMU estimators. Also θqw

belongs to the restricted class Q).

From Lemma 2.2, the cumulants of Un = ^/nl (θqw — Θ0) can be evaluated

as follows:
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(2.6) E(Un) ={(-2J-

(2.7) Cum{UH9 Un} = l+o(n-V2)

(2.8) Cum{UH9 UΛ9 Un} = {- (3 J

CWJ){t/,,, , Un} = 0(n-J/2 + 1) for J > 3.

Applying the Edgeworth expansion formula (see Taniguchi [37]) to UΛ9 we get

PROPOSITION 2.1. Under Assumptions 2.1-2.4,

^ - Θ0) < )>] =

= (2π)~1/2exp( - y2/2) and Φ(y) = ̂

When we modify an estimator to be second- order asymptotically unbiased
or second-order AMU, we usually use the adjustment factor. Here we adjust
the asymptotic bias by choosing the weight function. As we shall see later we
can do this successfully if we know the type of parameter (e.g., θ is an AR part
root). In many cases, maximum likelihood estimation requires iterative
computational procedure. On the other hand, 9qw has a closed form, and has
no need for bias-correction factor if we choose an appropriate weight
function. This is the reason why we do not call θqw the Bayes estimator.

Since the evaluation of B(θ) for general rational spectral such as

f9(λ) = σ^πΓ^ΠZ-iίl - Φ*eiλ)(l - Φke-iλ)ml\k=ι(^ ~ Pke
iλ)(l - Pke~iλ^

is very complicated, in this part we consider the following ARMA(1,1) spectral
density

(2.9) fθ(λ) = σ2(2π)~1[(l - ψeίλ)(ΐ - ι^-ίλ)]/[(l - peiλ)(l - pe~iλ)^

where ψ and p are real numbers such that \p\ < 1 and \ψ\ < 1. For the
spectral density of (2.9) the following are evaluated by Taniguchi [35] explicitly.

^2)2> J(p} = _ 2p/(i _ p2}25

K(σ2) = σ-6, K(φ) = - 6ιA/(l - Ψ2)2> K(p) = 6p/(ί - p2)2,
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B(σ2)= - σ~2(p - ^)2(1-p2)""1

(φ — p)(l H- ψ2 -

B(P) = (1^
Particularly for AR(1) model, B(ρ) = p/(l -p2) and for MA(1) model, B(ψ)

In (2.6), if we choose ξ(θ) so that d =0 [i.e., ξ ( ί ) / ξ = (2J + X)// + B],
then the quasi-weighted estimator becomes second-order asymptotically

unbiased. We call the weight function ξ(θ) chosen by this manner the second-

order asymptotically unbiased weight function. For the spectral density of (2.9)
the second-order asymptotically unbiased weight functions are given by

ξ(p) = (1 - p2)-3/2 on (- 1, 1) for 00 = p and ψ = 0,

l-^2Γ1} on (-1, 1) for Θ0 = ψ and p = 0.

In Proposition 2.1, if we choose ξ(θ) so that C1 = C3/6 [i.e., ξ(1)/ξ =
(9J + 4K)/(6/) H- £], then the quasi-weighted estimator becomes second-order

AMU. We call the weight function ξ(θ) chosen by this manner the second-

order AMU weight function. For the spectral density of (2.9) the second-order

AMU weight functions are given by

ξ(σ*) = σ[(-ιo/V-2(P-W(i-pir^-^->i on (0) oo) for 00 = σ2,

ξ(p) = (1 - p2)-1 on (- 1, 1) for 00 = p and ψ = 0,

^2)-1} on (-1,1) for 00 = ψ and p = Q.

3. Normalizing transformations

For i.i.d. case, Konishi [20] considered a normalizing transformation of
statistics based upon the elements of the sample covariance matrix which
extinguishes the second-order terms of the Edgeworth expansion. Then he

showed that Fisher's Z-transformation gives the normalizing transformation of
the correlation coefficient. In the area of time series analysis Taniguchi,
Krishnaiah and Chao [40] considered the normalizing transformations of the
maximum likelihood estimator and quasi-maximum likelihood estimator for
Gaussian ARM A processes. They also showed that Fisher's Z-transformation
gives the normalizing transformation for parameters of AR part. In this
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section we shall seek the normalizing transformation of the estimator Θqw9 and
show that the weight function plays a role of bias adjustment.

For a smooth function g(-) we consider the standardized transformation

y/ήϊ {gφyj — g(θo)}/g(1)(θ0) of 0qvv. Deriving the Edgeworth expansion of
standardized transformation, we seek the normalizing transformation which
vanishes the second-order terms of the Edgeworth expansion. Suppose that
g(θ) is three times continuously differentiable. We shall derive, in the same
way as Taniguchi, Krishnaiah and Chao [40], the Edgeworth expansion of

vn =

By using Taylor's expansion of g(θ) at Θ0, we obtain

(3.1) Vn = v^W {Θ9W - Θ0} + (l/2)7nl(^) {θqw - 00}V2)/0(1)(0o)

+ 0P(«-1/2)

Further, from Lemma 2.2 we can write Vtt as

(3.2) Vn = PZ, + n-1'2 [QZ, Z2 + RZ2 + S + AZ2g^(θ0)/g^(θ0)}

+ op(n-1'2),

where P = Γ112, Q = Γ3'2, R = (- 3J - X)/'5/2/2, A = Γ3l2/2 and S =
(-3J -K)Γ3'2/2 + (ξ^/ξ)Γίl2. The asymptotic cumulants of Vn can be
evaluated as follows:

E(Vn) = { - B(00)/-1/2 + (- 2J - K)Γ3'2 + (ξw/ξ)Γ112

+ o(n-1>2), (say),

Cum{Vn, Fn} = l+o(n- 1/ 2),

Cum{Vn, Vn, Vn} = {(- 3J -

(say),

for J > 3.

Hence we obtain the Edgeworth expansion of Vn in the form

(3.3) P"9o[Fn < x] = Φ(x) - φ(x) {djjn + d3(x2 - l)/^} + o(»Γ 1/2).

If we set dj = ί/3 = 0, the second-order terms of (3.3) vanish. This implies
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the following theorem.

THEOREM 3.1. If the transformation g ( - ) and the weight function satisfy

(3.4) 0(2)(0o)/0(1)(0o) = (3 J + 2X)/(3/) and

(3.5) ξ(l\θ0)/ξ(θ0) = (9J + 4K)/(6/) + B(Θ0),

then Pn

θo{^nI(θ0)\:g(θqJ - 0(00)]/0(1)(00) < x} = Φ(x) + o(n~112).

Henceforth the transformation g ( - ) and the weight function ξ(θ) satisfying
(3.4) and (3.5) are called the normalizing transformation and normalizing weight

function, respectively.

EXAMPLE 3.1. The normalizing transformations and the normalizing

weight functions for the sepctral density of (2.9) are given as follows:

Normalizing transformations:

( i ) I f0 0 = σ2, then^(σ2) = 3(σ

2)1/3.

(ii) If θo = ψ, then g(ψ) = ψ.
(iii) If 00 = p, then g(p) = log{(l + p)/(l - p)}/2.

Normalizng weight functions:
( i ) If Θ0 = σ2, then ξ(σ2) = σ[<-ιo/3)-2<p-*)2<ι-p*)-i<ι-**)-']β

(ii) If Θ0 = ψ and p = 0, thenί(^) = (l-^2Γ1 / 2exp{(l-^T1}-
(iii) If 00 = p and ψ = 0, then ξ(p) = (1 - p2)'1.

REMARK 3.1. In our results, Fisher's Z-transformation and the transform-
ation 3(σ2)1/3 give the normalizing transformations for the AR part parameter p

and the innovation variance, respectively. For i.i.d. case Konishi [20] showed

that Fisher's Z-transformation and the transformation ( )1/3 giγe the
normalizing transformations for the correlation coefficient and the latent roots
of the sample covariance matrix, respectively. It may be noted that the AR
part parameter and the correlation coefficients represent a sort of correlation

structure, and that the innovation variance and latent roots of the covariance

matrix represent a sort of variance structure although our statistical models are
essentially different from Konishi's one.

REMARK 3.2. When we consider the normalizing transformation of the

maximum likelihood estimator and the quasi-maximum likelihood estimator,

we need an adjustment factor C [i.e., ^/nΊ{g(θML) - g(θ0) - C/n}/0(1)(00)]. For
the normalizing transformation of quasi-weighted estimator 0gvv, the adjustment
factor is not necessary because the normalizing weight function plays a role of
the adjustment factor.
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4. Higher order investigations for testing problems based on quasi-weighted

estimator

For a Gaussian ARMA process with spectral parameter θ, Taniguchi [39]

considered the problem of testing a simple hypothesis H : θ = Θ0 against the
alternative A : θ φ 00, and introduced a class of tests y, which contains the
likelihood ratio(LR), Wald(W), modified Wald(MW) and Rao(R), tests. Then
he derived the χ2 type asymptotic expansion of the distribution of a test Te y

under the sequence of alternatives An: θ = Θ0 + ε/^/ή, ε > 0, up to order n~1/2,

where n is the sample size. He also compared the local powers of these tests

on the basis of their asymptotic expansions and showed that there is no
uniformly superior test for the local alternatives. Also Myint Swe and
Taniguchi [24] developed a similar discussion by use of a weighted estimator of
Bayes type based on the exact likelihood.

In this section we shall discuss testing problems based on the quasi -
weighted estimator. Consdier the problem of testing a simple hypothesis H: θ

= Θ0 against the alternative A : θ Φ ΘQ for a Gaussian process with spectral
parameter θ. We propose a class of tests y ^ which contains weighted
likelihood ratio test (WLR), weighted Wald's test(WW), weighted modified

Wald's test (WMW) based on the quasi-weighted estimator. Then we derive

the asymptotic expansion of local power Pθo+ε/v-(T< x) of Te^A up to order
n~1 / 2 and consider the power comparison of WLR, WW and WMW. Then it
is shown that none of the above tests is uniformly superior. However if we

modify them to be asymptotically unbiased we can show that their local powers

are identical.

Consider the transformations given by

(4.1)

(4.2) U2(θ) = [Z2(0) -

where yβ = [M(0)/(0) - J(0)2]1/2//(0)3/2 and

~ π ~ ι Γ ίέ/βW}2{έ
«/ ft v. J \.

For simplicity, we use Ul9 U2, Zl9 Z2, /, J, X, y instead of ϋ^β), U2(0), 2^(0),
Z2(0), /(0), J(0), K(θ)9 y(θ) respectively, if they are evaluated at θ = ΘQ

Define the following class of tests
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= {S; 5 = {U1 + I(θ0)
ί/2ε}2 + n'^lc^l + c 2 U 2 U 2 + d, U,

+ {c3t/2 + c^ t/2 + d l λ//}ε + foί/! + c6U2}ε2

+ c7ε
3] + op(n~1/2), under An, where

This class &'A is also very natural. It contains the ones defined by Taniguchi
[39] and also the three tests defined by the following (i), (ii) and (iii).

(i) Weighted likelihood ratio test WLR = 2[/π(0βJ - /π(00)], where ln(θ)

= logLM(0). Let V= ^/n(θqw - θ). By expanding WLR in a Taylor series at
0 = θaw, we obtain

WLR = -

^ /.(0)/2 J - (Θ0 - O2 [̂ 2

+ o,(fΓ1'2).

If we modify (^w - 6»0) = Φqw -θ + θ- 00), then we obtain

WLR = /B(0) .27/ +

(4.3)

Substituting

F= ZJI + n-ll2{ZlZ2Γ
2-(^J + K)ZlΓ3/2 - (3J + K)Γ2/2

n~ ' ln(θ}
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into (4.3), we have

WLR = (0! + VW ε}2 + n-ll2{(-KΓ3ι2/3)U3 + yϋ\ϋ 2

1/2 U1 - γl C/2]ε2 + [(3 J + 2K)/3]ε3}

this implies that WLR belongs to £f A.
Similarly the following results (ii)-(iii) are obtained:

(ii) Weighted Wald's test WW = n(θqw - Θ0)
2l(θqw) belongs to ίf A with

coefficients

Cl = JΓ312, c2 = 2y, d, = 2(ξ^/ξ)Γ1'2 - (3J + K)Γ3'2,

c3 = (3J + K)/I, c4 = 2y^ϊ, cs = (4J + 2K)Γ1/2, c6 = 0,

CΊ = (2J + K).

(iii) Weighted modified Wald's test WMW = n(θqw - Θ0)
2I(Θ0) belongs to

& ' A with coefficients

Cl = - (J + K)Γ3'2, c2 = 2y, di = ΣtfW/ί)/-1/2 - (3J + K)/-3/2,

c3 = - (3J + 2X)//, c4 = 27^7, cs = - (2J + K)/-1/2, c6 = 0.

c , = 0.

The cumulants of transformations U1 and t/2

 can be evaluated as follows:

+ 0(n-3'2),

Ctιm(Uly {/!)= l

Cum(U2, 0 2 )=l + 0(n-1),

U1 ( ϋj = n"1 / 2(KJ-3 / 2) + 0(n~3/2),

t, ϋlt U 2 ) = n-ίl2c(ft2 + 0(rΓ3/2),

Cumφ,, 02, U2) = n-'/VΛΊ + 0(«-3/2),

Cum(U2, U2, U2) = n"1/2^ + 0(n~3/2),

where c^l2, c(ι22 and c(

222 can be expressed by the spectral density (see
Taniguchi [35] or [37] for the expressions of /, J, K).
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In order to derive an asymptotic expansion of the distribution of
under AΛ9 by using Edgeworth expansion formula (Taniguchi [37]) we establish

the following lemma.

LEMMA 4.1. Under Assumptions 2.1-2.4,

PθolVi < yl9 U2 < y,] = Γ Γ f(ul9 U2)du1du2 + o(n'll2\
J — oo J — oo

where

f(ulf u2) = φ(Uί)φ(u2)[\ + n-''2(- BΓ1'2)^ + n-
ll2{(JB)/(γI2)}u2

-*i2(ul - 3Ml) + 3c<1>2(u2u2 - "2)

and φ(u) = (2π)~1/2exp( - u2/2).

By using Lemma 4.1 the characteristic function of Cs(ί) of Se^A can be
evaluated under An. In fact

= [ ίeί(S/("ι,

= f ίexpCίϊ^!

+ (csMj + C6u2)ε2 + c7ε
3}] 0(uj) φ(u2) [1

(4.4) +n-1 / 2(-B/-1 / 2)M l +n- 1

Integration of (4.4) with respect to u2 yields
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KI(θ0Γ
3l2(ul - 3Wl)/6}]rfWl + o(ιΓ1/2).

By calculating the above integral we get the asymptotic expansion of Cs(ί)
under An.

LEMMA 4.2. t/wder Assumptions 2.1-2.4, f/ze characteristic function Cs(t) of

under 0 = 00 + ε/^/n has an asymptotic expansion;

[1 + n-^Σ^oflf (1 - 2it)-1 + oίn-1/2),

- 9/(θ0)
3/2

Cl + 6/(00)c3 - 3/(θ0)
1/2c5

)}ε3 + {9/(θ0)
1/2c1 - 3c3 + 3K(Θ0)/I(Θ0)

ϊ(ΘJ + 6B(θ0)}έ],

/2

Cl - 3/(00)c3 + /(00)
1/2c5

K(θ0)}ε3 + {c3 - 6/(00)
1/2

Cl -2K(Θ0)/I(Θ0)

Bf = (!/2)[{/(β0)c3 -

+ {3/(θ0)
1/2c1 + K(θ0)/I(θ0)}e],

B<3S> = (l/6)[3/(θ0)
3'2Cl + X(θ0)]ε3-

This lemma implies

THEOREM 4.1. Under Assumptions 2.1-2.4, the distribution function of

S e y A for θ = Θ0 + ε/ v/ή te ίΛ^ following expansion

~ 1/2 Σl=o

2 = I(θ0)ε2/2, and χf(δ) is a noncentral χ2 random variable with j degrees

of freedom and noncentrality parameter δ2.
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For the three tests WLR, WW and WMW, we can give more explicit
expressions for the coefficients Bf} in Theorem 4.1.

EXAMPLE 4.1.

(i) S = WLR (Weighted likelihood ratio test)

β(WLR) = _ {3y(0o) + K(θ0)}ε3/6 + B(θ0)ε,

β<WLR) = J(θ0)ε3/2 - B(θ0)ε, 5<2

WLR) = K(θ0)ε3/6, B<3

WLR> = 0,

(ii) S = WW (Weighted Wald's test)

β<0

ww> = (1/6) [ - {3 J(Θ0) + K(θ0)}ε3

- {6?»/ξ - 3(3 J(Θ0) + K(βo))//(0o)}«] + B(θ0)ε,

β<WW) = (1/2) [W3 - {3J(00) + K(θ0)}ε/I(θ0)

+ {2?»/ξ - (3 J(β0) + K(β0))//(β0)}β] - B(θ0)ε,

= (1/2) [- J(θ0)ε3

(iii) S = WMW (Weighted modified Wald's test)

β<0

WMW> = (1/6) [{ - 3 J(Θ0) - K(θ0)}ε3

- {6ξw/ξ - 3(3 J(00) + K(θ0))/I(θ0)}έ] + B(θ0)ε,

- (3J(Θ0) + K(θ0))/I(θ0)}ε - B(θ0)ε,

Θ0) + K(θ0)}ε3 - (3J(Θ0)

B(WMW) = _

In view of Theorem 4.1 we can investigate the local power properties in the
class ί?A. By Theorem 4.1 and Example 4.1, it can be easily shown that for

> x] - Pg0+£/v5[WLR > x]

= «-1/2[(l/2){P(χ?(5) > x) - P(χ2

5(δ)

(4.5) + (1/2) {P(χ2

s(δ) > x) - P(χ2

3(δ) >

5) > x) - P(χl(δ) >
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where β?>(00) = {3I(θ0)^2

Cl - 3/(00)c3 + W/2c5 - J(00)}ε3

+ {c3 -

By using (4.5) and the well known relation

P[Xj+2(δ) > x] - PlXj(δ) > x] = 2pj+2(x; δ),

where pj(x δ) is the probability density function of χj(δ), we establish the
following theorem.

THEOREM 4.2. Lfoίfer Assumptions 2.1-2.4,

LR > X]

; δ) + e(2S)(0o)P5(*; 5)

By using Theorem 4.2 for the spectral of (2.9), we can compare the local
power properties among the three tests WLR, WW and WMW. The following
local power comparisons are performed for the second-order asymptotically

unbiased weight function, i.e., ξ(l\θ0)/ξ(θ0) = (2J(Θ0) + K(00)}//(00) + B(θ<>).

EXAMPLE 4.2. (WW versus WLR under An)

Pne0+E,,n [ww > x] - PS^^CWLR > x]

= n-^2(3J + K)[(ε3/3)p7(x; δ) + (ε//)p5(x; δ)]

+ n-1/2[(J + K)/I + 2B]εp3(x; δ).

(1) If 00 = σ2, then 3 J + K = - 2σ"6 < 0, J + K = 0 and 2B =

- 2σ"2(p - ι^)2(l - p2)-1(l - lA 2)" 1 < 0. which implies that WLR is more
powerful than WW.

(2) If 00 = P and ^ = 0, then 3J + X = 0 and (J + K)/I + 2B = 6p
(1 — p2)"1, which implies that WW is more powerful than WLR if p > 0 and
vice versa.

(3) If 00 = \l/ and p = 0, then 3 J + K = 6^(1 - ^2)"2 and (J + K)/I
+ 2B = 4ψ3(l - ιA2Γ2> which implies that WW is more powerful than WLR if
ψ > 0 and vice versa.
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EXAMPLE 4.3. (WMW versus WLR under An)

Pe0+ε/,n [WMW] > x] - Pn

θo+E/,Έ [WLR > x]

= n -ι/2 ( _ 3J _ 2K)[(ε3/3)p7(x; (5) +

+ >Γ1/2[(J + X)// + 2B]ε/?3(x; (5) + o(π~1/2).

(1) If Θ0 = σ2, then (- 3J - 2X) = σ~6 > 0, J + X = 0 and 25 =
- 2σ"2(p - ι/02(l - P2)-1(1 - ίA2)"1 < 0 which implies that we can not
determine which test is more powerful than the other test.

(2) If Θ0 = p and ψ = 0, then ( - 3 J - 2K) = - 6p(l - p2)~2 and
(J + K)/I + 2B = 6p(l - p2)"1, which implies that we can not determine which
test is more powerful than the other test.

(3) If Θ0 = φ and p = 0, then (-3J-2K) = 0 and (J + K)/I + 2B
= 4ι/^3(l — ψ2)~2, which implies that WMW is more powerful than WLR if ψ
> 0 and vice versa.

These examples show that none of WLR, WW and WMW tests is
uniformly superior.

Finally we show that an appropriate modification of SeίfA leads to a
unified result. First, we note that the coefficients cl9 c3 and c5 in the stochastic
expansion of the three tests automatically satisfy

7c3-3/3 / 2c1 =X,
(4.6)

/ 1 / 2c 5-/c 3 = J + K.

Henceforth we confine ourselves to a class of tests

Sf'A = {5; Se&A and c l 9 c3 and c5 satisfy (4.6)}.

Furthermore, we impose the second-order asymptotic unbiasedness

(4.7) PΛ

θo+Λl^S > x]|ε=0 = Φ"1/2) fo

By Lemma 4.2 and Theorem 4.1, we can see that (4.7) is equivalent to

9/1/2

Cl - 3c3 + 3K/I - 3d, Jϊ + 6B = 0,

(4.8) c3 - 61 1/2c, - 2K/I + dί^ϊ-2B = 09

Consider a class of tests
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\jy'A = {S;Se#"A and satisfies (4.7) and (4.8)}.

From Example 4.1, it is easy to see WLRe U&"A. From Theorem 4.2, it is not

difficult to show

for all SeU#"A.
Now we modify Se&"A to be second-order asymptotically unbiased. Put

S* = m(θqw)S9 where Se&"A and m(θ) is a continuously twice differentiate

function with m(θQ) = 1. Then we can show that

S* = {m(θ) + (θqw - θ)m

= {1 + fΓ1/2m(1)(00)β

+ {(c3

+ {(c5 + 3/1^/7)0! + c6U2}ε2 + [CΊ + //z}ε3] + o>~1/2),

where /ι = m(1)(00). Then the second-order asymptotic unbiased condition of
S* leads to

ci + Λ/^/7) - 3(c3 + 3Λ) + 3K/I - 3d, <JΪ + 6B = 0,

3/z) - 6 v/7^ + Λ/v/7) - 2K/I +

K/I = 0.

Thus we can see that 5*6 I) ff"A if d lv/7 - 2B = 0, c t + Λ/^/7 = - (K/3)/~3/2

and c3 + 3h = 0. Summarizing the above we have the following unified result.

THEOREM 4.3. Under Assumptions 2.1 -2 .4, ίλe local powers of all modified

tests 5* = m(^J5, 5 e^, with m(θ0) = 1, m(1)(00) = - ^/ϊcί - K/(3I) (or =

— c3/3 equivalently) and d1^/I — 2B = 0 are identical up to order n~1/2.

This modification procedure can be realized easily. For the AR(1) model

we can see WMW = n(pqw - p)2(l - p2)~\ and m(1\p) = 2p(l - p2)'1. Thus
the modified test of WMW is given by {1 + (pqw - p)2p(ΐ - p2)"1} WMW with
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Part II. Third order asymptotic efficiency of generalized multiparameter
weighted estimators

5. Generalized multiparameter weighted estimator (GMWE)

In this section we extend the results of Myint Swe and Taniguchi [24] to

the case where the unknown parameter is a vector. That is, we define a
generalized multiparameter weighted estimator (GMWE) for a Gaussian ARMA
process and discuss its higher order asymptotic efficiency.

Let {Xt\ t = 0, ±1, ± 2, •-• } be a Gaussian ARMA process with spectral

density /0(Λ) which depends on an unknown multiparameter θeθ c Rp. We

consider stretch Xn = (Xί9 ••• , Xn)' of the series {Xt}- Let Σn be the co variance
matrix of Xn. The likelihood function based on Xn is given by

Lπ(θ) = (2πΓn/2 \Σ.\- "2 exp { - (1/2)*; Σ~ 1 *„} .

Now we introduce DΔ and DARMA> the spaces of functions on [— π, π];

DA = {/; f(λ) = Σu= - oo Φ)exp( - iuλ), a(u) = a( - u),

(σ2 > 0), for some positive intergers p and q, where A(z) = XJ=Q ^jzj

and 5(z) = Σj=oβjZJ are bounded away from zero for \z\ < 1}.

We set down the following assumptions.

ASSUMPTION 5.1. The process {Xt;t = Q9 ±1, ±2, •••} is a Gaussian

stationary process with the spectral density fθ(λ) e DARMA> θ = (^ι» "•» θp)'Gθ
a Rp, and mean 0.

ASSUMPTION 5.2. The spectral density /β(A) is continuously five times
differentiable with respect to 0, and the derivatives dfθ/dθp

d2fe/dθjdθk,. , d'fe/dθjdθtdθtdθjθ,. d k, /, m, n = 1, - , p) belong to D^

ASSUMPTION 5.3. If θ^θ*, then /β^/β* on a set of positive Lebesgue
measure.

ASSUMPTION 5.4. The matrix

log/,(A) ,

is positive definite for all θeΘ.

J"
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Let

(5.1) Zx = n-l'2~\ogLn(θ)

(5'2) z« = n~112 log L^ ~ E log L

(5 3) z- = "- 1/2 β; log L^ - £ log

It is known that their asymptotic moments are given by

EelZχZβZy] — n

log Ln(θ) I = - Jxβy - Jβyx -

where IΛβ, JΛβy and Kα/3y are expressed in terms of the spectral density (see
Taniguchi [37]).

Let Θ0 = (001, 002, •••, Θ0p)' be the true parameter of θ and ξ(θ) be a weight
function on θ. Define

LLn(θ)ξ(θ)dθ
(

Jn(d\Xn) = ί
J<9

where L is a loss function. An estimator θ is called a generalized
multiparameter weighted estimator (GMWE) with respect to a loss function L

and weight function ξ if

(5.4)
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Here the estimator θ is exactly a generalized Bayes estimator. However we call

it GMWE because our standpoint is different from that of original Bayes idea.

6. Third-order stochastic expansion of GMWE

In this section we shall give a stochastic expansion of the generalized

multiparameter weighted estimator defined by (5.4).

First, in 0(n~1/2) neighbourhood of 00, we have

Pn(θ\Xn)/Pn(θ0\Xn)

= exp [log Ln(θ) - log Lπ(00) + log ξ(θ) - log ξ(00)]

CΣ?= 1 4- log Ln(θ0) (ΘΛ - 00α)
a

\ ΣΪ./I. i -fifft- log Ln(θ0) (β. - Θ0x) (βt - 0o,)

j-j-gg- Iθ8 A ffi*) (θ. ~ ^Oα) (θ, ~ θoβ) (θy - Θ0y)

where ξ^(θ0) = Γξ(θ0) (α = 1,-, p) and Θ<Θ*<Θ0 or Θ>Θ*>Θ0.

Letting ίβ = (0. - Θ0α) (α = 1, ••• , p) and paίy = Jαίy + Jβvx + Jγaβ + Kα^ we

obtain

Let /"p be the (α, /?) element of the inverse matrix of the information matrix

/. By letting U. = £?-!/•% we can modify pn(θ\xn)/pn(θ0\xn) as follws:

(6.1) Pn(θ

• [exp { -
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•{1 + fΓ'/^ίgoΓ'ΣΣ-i^tfo)*.

(6.1) = exp {(ί/2)^β = 1Ixβ(θ0)UxUβ}qn(t; Θ0\xn) (say),

where t = (tί,t2, ,tp)'. Therefore, letting t = ^/n(θ — Θ0) and recalling

Jn(θ M = $θH(θ - θ)Pn(θ\Xn)dθ, we can rewrite γn(θ \xn) as

(6.2) γn(ί\xn) = «-1/2p,((?o

ίUi-t)qn(t θϋ\xn}dt.

Furthermore, we assume the following:

ASSUMPTION 6.1. L(ιι) is convex and symmetric about the origin.

ASSUMPTION 6.2. For each α = 1, ••• , p, |L( - u)qn(u + t Θ0\xn) du is
continuously partially differentiable with respect to ία under integral sign.

By (6.2) and Assumption 6.1 it is shown that the generalized multipara-
meter weighted estimator t with respect to L( ) and £(•) is given as a solution of
the equation

Λ Γ
— I L(u - t)qn(t; Θ0\xn)dt = 0 (α = 1,-, p).

By Assumption 6.2 we have

?ι C C ( r) Ί

— I Uμ - t)qn(t Θ0\xn)dt = I L(- H)|— qn(t + u, Θ0\xn)\du (α = 1, -, p),

which implies that the GMWE t is obtained by a solution of the equation

(6.3) JL(-H)|^-ίn(ί + ιι; 001^)1^ = 0 (α = I,-, p).

Substitution of (6.1) into (6.3) gives

0 = JL( - «)exp [ - (l/2)Σί.,= i I^S0)(t. + ux- Ua)(ίβ + uβ - I/,)]

t. + ux)(ίβ + uβ)
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)-ιχ^=1 pxβγ(θϋ)(tβ + ut)(ty + uy)-]du

p

We define

op(n~1'2).

M = L( - «)exp[ -

Pxβ = fa - «)«.«„ exp[ -

= U( - wίWαUβM.U^

(α, j3, 7, δ= 1, -- ,

From Assumption 6.1 it holds that for α, J?, γ = 1, ••• , p,

Jl<-ιr)«.exp[-(l/2)Σf./».ι/.

JL(-«)«.«„«,exp[- (1/2)ΣS./»-ιMδo)«.«/ι}d« = 0.

Letting ύx = tx— Ux, we can see that (6.4) is written as

Let £" be the identity matrix of order p, an ξ*9 L, F and PF be column
vectors with
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=

Then it follows that

(7P7 - M7)« = (77> -

+ (7P - ME) W/Jn + o>~1/2).

Since (7P7 — MI) is positive definite, we obtain a stochastic expansion of the
generalized multiparameter weighted estimator,

(6.6) n(θ -Θ0) = U+Γ1 Wjn -

+ {Γlξ*

where t/ = (t/1, , Up)'.
Here we review the classes of estimators S and D (see Taniguchi

[37]). Let

= {θ; Vn( - go) =

We assume that ^/n(θ „ — Θ0) has the Edgeworth expansion up to order n
and that

n + o(n 1), and

where #= (μl9 •••, μp )' = E^Q and Z(1) = (Z1? •••, Zp)'. It is known (Taniguchi

[37]) that for 5 = (S^ Γs,)' = V " K n - %(L)]eS,

( i ) E&0(SiSj) = Iij - ηu/n + D^/n + D^j/π + Cθϋ(βi, β^/π H- o^'1),

(ii) Eeo(SiSjSk) = βijk/\/n + Aijk/(2n) + o^"1),

(iii) Cww(Sί? SJ5 Sk, SJ = j80-fcm + o(n-1),

where 7° and ηtj are the (1,7) th elements of /(βo)"1 and

respectively and Dt = Ύί=\^ik^^- (differential operator). Here
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= Eθ0(UiQjQk) + EfrCUjQtQJ + E^UtQiQj), and βijk and βijΊtm are expressed in
terms of the spectral density.

Now we introduce a class D( a S) of estimators which satisfy Aijk = 0(1) for
i,7, k = 1, •••, p. This class D is a natural one. Taniguchi [37] showed that
an estimator θ is third-order asymptotically efficient in the clas D if and only if
θ has the following stochastic expansion

(6.7) n(θ- fl0) = U+

where £is a constant vector, Z(2) = {Z^} and /?... = {Rijk}, Rijk = - Kijk - Jijk

-~Jjki — Jkij> and R...-U-U is a p-dimensional column vector with i th
component YjtkRiJkUjUk.

Comparing with (6.6) and (6.7) we can see that stochastic expansions of
θ and 9 up to order n~1 / 2 have the same structure. Thus we establish the
following theorem.

THEOREM 6.1. Under Assumptions 5.1-5.4 and 6.1-6.2, if we modify the
generalized multίparameter weighted estimator θ of Θ0 to be third-order
asymptotically median unbiased, then it is third-order asymptotically efficient in
the class D.

Part IΠ. Higher order evaluation of final prediction error

7. Final prediction error (FPE) for Gaussian ARMA processes

In this section we give the definition of final prediction error for Gaussian
ARMA process. First, we review Akaike's definition of "Final Prediction Error
(FPE)". Suppose that {X(t)} is a stationary autoregressive process generated

by the relation

(7.1) X(t) = Σ2f= ! a(m)X(t - m) + α(0) + e(ί),

where ε(ί) are mutually independently and identically distributed random

variables with £[ε(ί)] = 0 and £[ε2(f)] = σ2. Assuming that {Y(t)} is
generated by the same relation as (7.1) and that {Y(t}} is independent of {X(t)},
Akaike defined an estimated predictor Ϋ(t) of

- m) + αM(0),

where άM(m\ m = 0, 1, ••• , M, are defined as the least squares estimators of a(m)
based on the observed stretch {X(t);t= - M + 1, - M + 2, ••• , n}. Then he
evaluated the following quantity up to order n" 1;
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(7.2)

where Ex and Eγ mean the expectation with respect to {X(t)} and {Y(t)}9

respectively. The resulting evaluation is given by

(7.3) (FPE)M of Ϋ(t) = (1 + [M + l]/n)σ2.

Akaike's FPE criterion, which determines the order of the AR model, is defined
as an asymptotically unbiased estimator of (7.3). Therefore it seems important
to evaluate the basic quantity (7.2) more accurately.

In Part IΠ we extend the above result to the case when the process
concerned is Gaussian ARMA process. Then we evaluate (7.2) up the order
n~2., we also show that the generalized weighted estimator and the maximum
likelihood estimator are best in the sense of FPE.

Let [Xt\ t = 0, ± 1, ± 2, •••} be a Gaussian ARMA process with spectral
density fθ(λ) which depends on an unknown vector Θ = (θl9 9θp)'eθ
c Rp. We consider a stretch Xn = (Xl9-~, XJ of the series {Xt}. Let Σn be
the covariance matrix of Xn. The likelihood function based on Xn is given by

In Part IΠ we use the notations and assumptions stated in Section 5. Let 00
= (0oι> #o2> > ΘOP)' be true parameter of θeθ.

Now we consider the higher order evaluation of FPE for {Xt} satisfying
Assumptions 5.1-5.4. Let {Xt} be observable. Let {Yt} be the ideal process
with the same structure as {Xt} and be independent of {Xt} Let θ

= (Θί9 -", θp)
f be a %/ίϊ consistent estimator of θ calculated from {X l5 •••, Xn},

which will be specified later. We construct the predictor Ϋ(t) of Y(t) by
f§(λ). Then the mean square error of prediction Ϋ(t) can be written in the
following form:

Eγ{Y(t) - Ϋ(t)}2 = [(27EΓ1 Γ {feQW/feW}dλ
J —π

ι Γπ

• exp {(2π)~ log U$(WfβQW]dλ} - l]σ2 + σ2

J-π ~

(see Grenander and Rosenblatt [16]), p.261). Henceforth we call Ex[EY{Y(t)
the final prediction error for Gaussian ARMA process.

8. Some best estimators in the sense of FPE

In this section we evaluate the FPE up to higher order 0(n~2) and discuss
an optimality property of GMWE and the maximum likelihood estimator in the
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sense of FPE. Let

fe(λ)}dλΓ
J -

2π)-1 Γ
J -

exp{(2π)-1 log L/|W//io(A)]<W} - 1

For simplicity we sometime use fβo,f§ instead of fβo(λ), f$(λ), respectively.
Expanding F(θ Θ0) in a Taylor series at θ = Θ0, it holds that

F(θ i Θ0) = F(Θ0 ;θ0) + n- "2 £j- , Fx Jnφx - Θ0x)

+ CnΓ'ΣίL/ί-i JW»& - θoJy/n(θ, - Θ0β)

(8.1) + (όB3'2)-1 .̂,.,-!̂ .̂ - Θ0x)^(θβ - Θ0β)^/nφy - Θ0y)

- Θ0δ) + o(n-2),

where Fx = -F(Θ0; Θ0), Fxf = F(Θ0; §0), Fxβ7 = ̂ F (ft,; W and

fχβyil = WWWWF^~0'~^' Henceforth we assume that ^o is the innov-

ation free parameter (see Hosoya and Taniguchi [18]). Then the following can
be evaluated without difficulity.

' Γ
J i

F = (2π)-' - l o / - l o / l ^ d A = 2Ixβ,

(8.2) Fapya = 2(21̂ ,, + Lyxβδ + LSxβy) + 2(Mxγβδ + Mxδβy

+ Myixβ) + (Nβiay + Nxίβy + Nβyxδ + Nxβyi

+ Nxyβδ + Nxβyδ + Nxyβδ + Nβyxδ + Nβδxy + N^

+ Nβδxy + Nγδxβ) + 2Hxβyi + 4(AxβIyδ + Axylβδ

+ A*slβγ + Aβylxi + Aβδlxy + Ayδlxβ) - AxyAβi

— A.ΛpAΊδ — AxίAβy — 8IxβIy} — ί6IΛyIβδ
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Γπ d2

where Aίj = (2π)~1 * * fβW'fβW 1dλ. For the explicit forms of
J-*v"iV"j

I, J, K, L, M, N, H, see Taniguchi [37].

We now assume that the estimator θ belongs to a natural class D denned

in Section 6. Then we can show that

+ Dβμjn + Cov(ρα, Qβ)/n + (μtμ

(8.3) E [Jnφx - Θ^JnΦe ~ θoβ)^/n(§, - Θ0y)} =

- θos)}

ι«»jβy + 0(n~l).

Using (8.1), (8.2) and (8.3) we obtain

E{F(Θ Θ0)} = p/n + D/n2 + o(n~
2),

where D = £ίt, - 1 /^ [ - H* + D*Hβ + Dβl** + Wf + Cov(Qx, Qβ)]

+ Σ5Λr-ι(^r + Jίr« + J τl> + *«>Wr + ̂

+ μj * + βxβy) + JΣiβ,γJ.ί(ίpA)F^7i(I Ί^

_j_ JΛγjβδ _j_ jΛδjβγ\

If we modify θ eZ) to be third-order AMU (say θ *), then the second-order

bias # is specified by βm. Thus all the other terms in (8.3) can be expressed by

the spectral density except for the terms Cov(Qa, Qβ). This implies the

undetermined term for E { F ( Θ ' , Θ 0 ) } is only Cov(QΛ9 Qβ). In fact, the term

Cov(QΛ9 Qβ) only depends upon the estimator. Thus we can see that θ*

minimizes E{F(Θ'9 00)} up to order n~2 if and only if it minimizes the matrix

{Cov(QΛ9 Qβ)}. This implies the best estimator in the sense of FPE has the

stochastic expansion (6.7) (see Proposition 6 of Taniguchi [37]). Summarizing

the above we have

THEOREM 8.1. If we choose the generalized multiparameter weighted

estimator or the maximum likelihood estimator of θ and modify them to be third-

order AMU, then they minimize E{F(Θ 00)} (FPE) up to order n~2 in D. That

is, the generalized multiparametr weighted estimator and the maximum likelihood

estimator are the best estimators in the class D in the sense of FPE.
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Note that, Takeuchi and Akahira [3] discussed that the weighted estimator
(Bayes estimator) and the maximum likelihood estimator are the best estimators
in the class D in the sense of highest probability concentration up to third
order.

Since general formular of E { F ( Θ ; Θ 0 ) } is too complicated, we give its
explicit formula for the scalar 00. Let θ be the weighted estimator or the
maximum likelihood estimator of 00. We modify θ to be third-order AMU,

and denote it by θ *. Thus the moments of 17* = ^/nϊ(θ* — 00) become

E(U*2) = 1 - A /(In) + (-3L-9N- 2H)/(3I2ή)

+ (135 J2 + 216 JK + 70K2)/(36/3n) + φ'1),

(8.4)

Further,

^) = (-9J-

dθ*2

d3F(θ*;θ0

8L+ 6M + 12N

where = (2πΓ1 \ {^-/βoWJ/βoW"1^-J-π(ύϋ02 J

(8.6)

τhus we obtain

2ί/)/(3/2n2)

+ (135J2 + 216JK + 70X2)/(36/3n2)

+ ( - 3 J - 2K)(3J + K)/(2I3n2)

+ [2H + 8L.+ 6M + 12N + 3(A - 2I)(6I -

Here we give a more explicit form for (8.6) when {X,} has the following

ARMA(1,1) spectral density

- peiλ2

Then /4(Θ0) for Θ0 = σ2, p and ψ are given by
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= 2(l-p2Γ1 and A(ψ) = 2(1 - ψ2)'1,

respectively. For Θ0 = σ2, p and ψ, /, J, K, L, M, N, H and J are evaluated by

Taniguchi [37]. Finally we obtain the following evaluations.

( i ) If 00 = σ2, then £{F(0*; 00)} = - - 35/(18n2) + o(n~2).

(ii) If Θ0 = p, then

(iii) If Θ0 = ψ, then

1 10
E{F(Θ ;

REMARK 8.1. It should be noted that for 00 = σ2, the term of n~2 is

independent from σ2. For Θ0 = p and 00 = ^ we can not neglect the terms of

order n~2 (i.e., they become large) when the modulus of p and ψ tend to 1.
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