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Summary

In this paper we investigate higher order asymptotic properties of weighted
estimators of Bayes type for a Gaussian ARMA process. First, for a Gaussian
ARMA process with a scalar unknown parameter 8 we define a quasi-weighted
estimator éqw of Bayes type based on a handy “quasi”-likelihood function. We
show that if we modify 9qw to be second-order asymptotically median unbiased
(AMU), then it is second-order asymptotically efficient in the class </, of
second-order asymptotically median unbiased estimators. We also obtain the
normalizing transformation of 9qw which vanishes the second order terms of its
Edgeworth expansion. Furthermore, we consider the problem of testing H:
= 0, against A: 0 # 0,. Then higher order local powers are evaluated for a
likelihood ratio, Wald and modified Wald’ tests based on 9qw. Secondly, we
define a generalized multiparameter weighted estimator (GMWE) for a
Gaussian ARMA process with a multiparameter unknown vector, and discuss
its higher order asymptotic efficiency. Thirdly, we extend Akaike’s final
prediction error (FPE) to the case when the process concerned is a Gaussian
ARMA process and evaluate Akaike’s FPE up to higher order O(n™2). It is
shown that the generalized weighted estimator and the maximum likelihood
estimator are best up to order n~2 in the sense of FPE.

1. Introduction

In the area of time series analysis, Hosoya [17] showed that the maximum
likelihood estimator of a spectral parameter is second-order asymptotically
efficient in the sense of Rao [27]. Akahira and Takeuchi [3] showed that an
appropriately modified maximum likelihood estimator of the coefficient of an
autoregressive process of order one is second-order asymptotically efficient in
the sense of degree of concertration of the sampling distribution up to second-
order. Furthermore, Taniguchi [35] also showed that appropriately modified
maximum likelihood and quasi-maximum likelihood estimators for Gaussian
ARMA processes are second-order asymptotically efficient in the sense of
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Akahira and Takeuchi [3]. Ochi [25] proposed a generalized estimator in the
first-order autoregression, which includes the least square estimator as a special
case, and gave its third-order Edgeworth expansion. Fujikoshi and Ochi [15]
investigated the third-order asymptotic properties of the maximum likelihood
estimator and Ochi’s generalized estimator.

For independent and identically distributed observations, Takeuchi [32]
introduced a natural class 2 of estimators, and showed that the maximum
likelihood estimator is third-order asymptotically efficient in 2. For a
Gaussian ARMA process Taniguchi [37] elucidated various third-order
asymptotic properties of the maximum likelihood estimator, and showed that it
is also third-order asymptotic efficient in 2.

For i.i.d. observations, Takeuchi and Akahira [31] and Akahira and
Takeuchi [3] showed that the generalized Bayes estimator for symmetric loss
function is second-order asymptotically efficient in the class o/, of second-order
asymptotically median unbiased estimators and that it is also third-order
asymptotically efficient in the class 9. For dependent observations Rao [26]
gave a Berry-Essen type of comparison between Bayes estimator and maximum
likelihood estimator for a Markov process. For a Gaussian ARMA process
with a scalar unknown parameter 6, Myint Swe and Taniguchi [24] investigated
various higher order asymptotic properties of a weighted estimator of Bayes
type based on the exact likelihood. They obtained the normalizing transform-
ation of the weighted estimator. For the problem of testing H: 6 = 6, against
A: 0 # 0, they compared higher order local powers of a likelihood ratio, Wald
and modified Wald’s test based on it.

However if the sample size n is large, the exact likelihood is intractable in
practice because the likelihood function needs the inversion procedure of n x n
covariance matrix. Thus in Part I, a quasi-weighted estimator éqw of Bayes
type based on a handy “quasi-likelihood function is introduced for a Gaussian
process with a scalar unknown parameter. In the same way as Myint Swe and
Taniguchi [24] we investigate its higher order asymptotic properties, and obtain
the normalizing transformation of éqw which vanishes the second-order terms of
its Edgeworth expansion. Furthermore, we consider the problem of testing a
simple hypothesis H: 0 = 6, against the alternative A:60 # 0,. Then an
attempt is also made to compare higher order local powers of three tests based
on 0,

Myint Swe and Taniguchi [24] developed their discussion when the
unknown parameter is scalar. In Part II we extend their results to the case
where the unknown parameter is a vector. We define a generalized
multiparameter weighted estimator (GMWE) for a Gaussian ARMA process
with a multiparameter unknown vector and discuss its higher order efficiency.

The asymptotic mean squared error of estimated predictors is the most
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fundamental quantity to characterize the best statistical prediction in time
series. In many cases finite order autoregressive models have been used for
prediction. For the case of one step ahead prediction, Bloomfield [10] derived
the asymptotic mean square error for a general mixed ARMA (p, q9) model.
Bhansali [9] derived the asymptotic mean square error of predicting more than
one-step ahead for a general autoregressive model AR(p). Yamamoto [41]
gave a manageable expression for the asymptotic mean square error of
predicting more than one-step ahead from an estimated autoregressive model
up to O(n™!), where n is the sample size. Yamamoto [42] generalized the
above results to the case where the process concerned is a multivariate
autoregressive moving average model. The related works are Baillie [7], [8]
and Reinsel [29]. Ray [28] also derived an expression for the asymptotic
mean square error in predicting more than one step ahead from a p-variate
autoregressive model with random coefficients.

Recently Tanaka and Maekawa [33] considered the prediction in the case
of misspecifying the model as AR(1) while the true model is ARMA (1,1). Then
they derived the approximate sampling distributions of the prediction error for
the case (i) the data used in estimation are independent of the data used in
prediction, (ii) the data used in estimation are dependent on the data used in
prediction. They evaluated its bias and mean square error up to order O(n~ ')
for the case (i) and (ii). Davies and Newbold [13], Kunitomo and Yamamoto
[21] and Lewis and Reinsel [22] also investigated the mean square prediction
error with misspecified models. Furthermore, Maekawa [23] gave the
asymptotic distribution of h-step ahead prediction error in the AR(p) model up
to O(n~?) for the case (i) and (ii). He also specified the general formula for the
distributions of the predictor errors based on the maximum likelihood, two
types of least squared, and the Yule-Walker estimators in the AR(1) model and
found that all distributions are the same up to order O(n~!) except for the Yule-
Walker predictor.

In actual situations, the order of AR model is often unknown. The
difficulty is to determine the order of autoregressive model. For autoregressive
model fitting, Akaike [4], [S] proposed a simple for final prediction error (FPE)
to determine the order of autoregressive model. This criterion is defined as an
asymptotically unbiased estimator of the mean squared error of the estimated
predictor.

In part II we extend Akaike’s definition of FPE to the case when the
process concerned is a Gaussian ARMA process and evaluate Akaike’s FPE up
to order n~2. Furthermore, we show that the generalized weighted estimator
and the maximum likelihood estimator are best up to third-order in the sense of
FPE.
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Part I. Higher order asymptotic properties of quasi-weighted estimators for
Gaussian ARMA processes

2. Higher order asymptotic efficiency of quasi-weighted estimators

For a Gaussian ARMA process with a scalar unknown parameter, Myint
Swe and Taniguchi [24] investigated various higher order asymptotic properties
of a weighted estimator of Bayes type based on the exact likelihood. However,
if the sample size n is large, the exact likelihood is intractable in practice
because the likelihood function needs the inversion procedure of the n x n
covariance matrix. Thus we introduce a quasi-weighted estimator of Bayes
type based on a handy “quasi”-likelihood function.

Let {X,} be a Gaussian ARMA process with spectral density f,(4), where 0
is an unknown parameter. In this section, we propose an estimator 9qw of
Bayes types based on a quasi-likelihood function. Since our standpoint is
different from that of original Bayes idea, we call it a quasi-weighted
estimator. First, we derive a stochastic expansion of 9qw. Then we show that
9qw is second-order asymptotically efficient in the class ./, of second-order
asymptotically median unbiased estimators and that it belongs to a restricted
class 2. An approach is also presented that the higher order asymptotic bias
can be vanished by choosing the weight function.

We introduce & and & ,gma, the spaces of functions on [ — =#, n];

F = {11/ = T awexp(— iud), a(w) = a( - u),
(1 + lul)la(w)| < oo},
F awun = (3 /(D) = 02(2m) 1| T9-g e 2/| 0o b2,
(62> 0) ¢ < |Yd-0a;2/1/| X 0-0bs21? < &,

for |z] <1, 0 < ¢ < ¢ < o0}.
We set down the following assumptions.
AssUMPTION 2.1. The process {X,;¢t=0, £ 1, ---} is a Gaussian station-

ary process with spectral density fy (4)€ Z arma» 0o€C = @ = R', and mean
0. Here © is an open set of R! and C is a compact subset of 6.

AssuUMPTION 2.2. The spectral density fo(4) is continuously five times
differentiable with respect to 0e®, and the derivatives 0f,/00, 0°f,/0602,
03f4/00°, 0*f,/00* and 0°f,/00° belong to Z.

AsSUMPTION 2.3. If 6 # 0%, then f,(2) # f&(4) on a set of positive Lebesgue
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measure.

AssUMPTION 2.4. There exists d;, > 0 such that

1(6) = (4n)‘ljn {%logfo(/l)} di>d,, for all feC.

Suppose that a stretch X, = (X, -+, X,) of the series {X,} is available. In
this section we use the following quasi log-likelihood function,

log L,(0) = — (1/2) Xj=5 {log f(4) + 1.()/fo(2))},

where 1,(4) = (2mnn)~*|Yr-, X,exp(itA)|?, (4; = 2mj/n) is the periodogram. It
is known that log L,(0) is, to within constant terms, an approximation for the
exact log-likelihood.

Let Z,(0) = n_”z%log L,(6),

2

~ _ 0 0
Z,(0)=n"1? {602 log L,(0) — [602 log L, (0)]}, and

~ 0 0
Z3(9) =n" 12 {693 lOg Ln(e) [693 lOg L (9):|}

The asymptotic moments of Z,(0), Z,(0) and Z,(0) are evaluated by Taniguchi
[35] as follows.

LeEMMA 2.1. Under Assumptions 2.1-2.4 it holds that

Eo[Z,(0)] = — B(0)/y/n + O(n=3?),
Eo[Z,(0)Z,(0)1 = J(6) + O(n™Y),
Eo[Z,(0)*] = 1(0) + O(n™ 1),

E,[Z,(0)°] = K(0)/</n — 3B(O)I(8)//n + O(n~¥2),

n‘lEo|:af;2 log L (0):] —1(0) + O(n™?).
33
n_1E0[803 log L,,(B)]— —3J(0) — K(6) + O(n™ 1),

Var[n 16693 log L,,(O):l =0(n""Y).
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Here
n a 3
JO) = — o) f {ééfe(l)} (o)} d2
T (4m)? f ' {a—zf (A)}{ifw}{f W)~ di
_. |0627° 00”° o ’
ko =eo | { S} vy
L 7
B(6) = (4m) f | {%fo(i)} bo(d) {fo(A)} ~2dA,
where

b(6) = 2m)™' Y72 o lilv()e™ and y(j) = Eo(X, X, 4 )

Occasionally, we shall use the simpler notation Z 1 Zz, I, J, K, etc. instead
of Z,(0), Z,(0), 1(8), J(8), K(0), etc., respectively, when there is no danger of

confusion.

We now define a quasi-weighted estimator and investigate its higher order
asymptotic efficiency. Let ¢(0) be a non-negative weight function of
0. Suppose that &(0) is continuously two times differentiable with respect to

f0e®. The quasi-weighted estimator of 0 is defined by

0 =

qw

j 0 L,(0),(6)do

8 .

f L,(0)£(6)d0
e

Putting ¢t = \/;(0 — 0,), we obtain

Jth(eo + t/3/n) &0 + t/\/n) dt
ﬁ(éqw - 00) = f

Ly(Bo + t/\/m)E6, + t//m)dt

@.1)

f texpllog Ly(0 + t//m) 1€, + t//m)dt

fexp[log Lo(Bo + t/</m)1E(00 + t//m)dt
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Expanding log L,(0, + t/ﬁ) in a Taylor series at 6 = 8,, we obtain
0
log L,(8, + t/y/n) = log Ly(6o) + t510g Ly(60)//n
2

0
2
+t 202

63
log L,(0,)/(2n) + t3n=3/2 30

log L,(6,)/6
+0,(n"1?)
22) = log L,(8o) + t Z,(0o) + t>Z,(00)/(2</n)
+ tzEI:b%;log L,,(Oo)]/(2n) + 30732 E[a‘% log L,,(()O)] /6
+0,(n"112).
From (2.2) and Lemma 2.1 we have
log L,(0o + t/</n) = log L,(0o) + t Z1(8,) + t2Z,(60)/(2</n)
(2.3) — 121(00)/2 + t3[ — 3J(8,) — K(00)1/(6+/1)
+0,(n"112).
Next, expanding &(6, + t//n) in a Taylor series at 8 = 6, we obtain
t exp [log L,(0o + t//m)1&(00 + t/5/n) = L(0o)exp{Z3/21)}
cexp{ — (I/2)(t — Z,/1}*} [tE(0,) + 13 Z,¢(00)/(2/n)
+ 14£(00) (— 37 — K)/(6/n) + 12E0(00)//n + 0,(n )],

By using the moments of normal distribution with mean Z,/I and variance I !,
we can evaluate

(eI~ 1)~ 12 It exp[log L,(0, + t/ﬁ)] E(0, + t/ﬁ) dt
(24)
= L,(0o) exp{Z3/(21)} {A + B//n + o,(n""?)},

where 4 = (Z,&)/I and

B=(Z,62)BIZ, + Z)I173 + [¢(—3J — K)/6] 31 + 6122 + ZH)I~*
+EOI + ZH172

Similarly it is shown that
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(02,7 S fexp [log L,(B6 + t/</m1 O, + t/\/n)dt
2.5)
= L,(0o) exp{Z3/(2D)} {A + B//n + 0,(n" 12},
where A = ¢ and
B=(Z,6/)U + 23172 +[E(-3J —K)/61BIZ, + Z})1 3
+EVZ I

The relations (2.1), (2.4) and (2.5) yield

LeMMA 2.2. Under Assumptions 2.1-2.4, the quasi-weighted estimator can
be expanded as

SO —00) = Z, /1 +{Z,Z,1% + (= 3] — K) 221732}/ /n

+{(= 37 = K)[ 722 + EOJED}//n + 0,(n~12).

We shall investigate the higher order asymptotic efficiency of 9qw. Let &
and 2 be the classes of estimators:

& = {0, /00, — 00) = Z,/1 + Q//n + 0,(n™113),
Q = 0,(1), Eo(Q) = p,
D ={0,;0,6%, Eg(Z,0%) =0(1), 0 =Q — u},

where Z, = n~1/2(9/060) log (exact likelihood). Taniguchi [36] showed that the
maximum likelihood estimator 8,,, and quasi-maximum likelihood estimator

O, of 0 belong to 2. It follows from Lemma 2.2 that

1@, — 05) — /n(@45 — 0,) = (constant)//n + o,(n”~1/?).

This implies that 9qw also belongs to 2. Thus we establish the following
theorem.

THEOREM 2.1. If we modify the quasi-weighted estimator 9qw to be second-
order asymptotically median unbiased (AMU), then it is second-order asymptoti-
cally efficient in the class s/, of second-order AMU estimators. Also 9qw
belongs to the restricted class 9.

From Lemma 2.2, the cumulants of U, = ./nl (éqw — 0,) can be evaluated
as follows:
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26)  E(U)={(—2J — K)["¥* 4+ (EW/& — B)I" "2}/ \/n + o(n™1?).
= Cy/\/n + oln™ ") (say),
27  Cum{U,,U,} =1+ o(n~ '3,
28)  Cum{U,, U,, U} = {—(3J + 2K)}I" %/ /n + o(n"17?),
= Cs/y/n + oln™*1?) (say),
CumP{U,,---, U,} =0(mn~7"?*Y) for J=>3.
Applying the Edgeworth expansion formula (see Taniguchi [37]) to U,, we get
PrOPOSITION 2.1. Under Assumptions 2.1-2.4,
Py, [/n (B — 00) < ¥ = B(y) — 9())[C1/4/n + C3(y* — 1)/(6/m)]
+o(n™'7?),

where ¢(y) = (2m)~Y?exp(— y?/2) and D(y) = [*- , ¢(x)dx.

When we modify an estimator to be second-order asymptotically unbiased
or second-order AMU, we usually use the adjustment factor. Here we adjust
the asymptotic bias by choosing the weight function. As we shall see later we
can do this successfully if we know the type of parameter (e.g., 6 is an AR part
root). In many cases, maximum likelihood estimation requires iterative
computational procedure. On the other hand, 9qw has a closed form, and has
no need for bias-correction factor if we choose an appropriate weight
function. This is the reason why we do not call 9qw the Bayes estimator.

Since the evaluation of B(f) for general rational spectral such as

fod) = 0@n) [ Ties (1 — ™) (1 = e DV TE=1(1 = o) (1 — pre™)]

is very complicated, in this part we consider the following ARMA (1,1) spectral
density

29 fol®) = 0*@n) " [(1 — Ye) (1 — ye H/LA — pe)(1 — peH)],

where ¢ and p are real numbers such that [p| <1 and [¢|< 1. For the
spectral density of (2.9) the following are evaluated by Taniguchi [35] explicitly.

I(6®) =a7*/2, IY) = 1/1 —y?), I(p)=1/1—p?),
J(@}) = —a= % JW) =4/ -y Jp)=—2p/(1 —p??
K(@®) =07% K@) = —6y/(1 —y2)?% K(p)=6p/(1 — p?),
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B(o®) = —o7(p—y)?(1 —p*) "1 -y,

W —p)L+Y2?—2p—p?+3y2p> —20°p)
=¥ —yp)(1 —p?

(b—y)1—2yp +y?
1=p) A —pP)(1 —y?)

Particularly for AR(1) model, B(p) = p/(1 — p?) and for MA(1) model, B()
=yl +y /1 —y?*

In (2.6), if we choose &(6) so that C, =0 [ie., ¢M/&E = (2J + K)/I + B],
then the quasi-weighted estimator becomes second-order asymptotically
unbiased. We call the weight function £(f) chosen by this manner the second-
order asymptotically unbiased weight function. For the spectral density of (2.9)
the second-order asymptotically unbiased weight functions are given by

B(y) =

b

B(p) =

5(02) = gl=4- 20921 -p) 70 —¥)"1] 51 (0, o0) for 6, = o2,
Ep)=(1—=p»H"3% on (—1,1) for 6, =p and Y =0,
EW)=(1 -y exp{(1 — ¢ '} on (=1, 1) for 6, =y and p =0.

In Proposition 2.1, if we choose &(6) so that C, = C;/6 [ie., EV/E =
(9J + 4K)/(6I) + B], then the quasi-weighted estimator becomes second-order
AMU. We call the weight function £(0) chosen by this manner the second-
order AMU weight function. For the spectral density of (2.9) the second-order
AMU weight functions are given by

E(0?) = gl 103 =26 =¥ =)~ 114D 1 o1 (0, o0) for B, = o2,
&p)=(1—=p* ' on (—1,1) for 6,=p and ¢y =0,
EW)=01 -y Y2exp{(1 —y¢? '} on (—1,1) for 6, =y and p =0.

3. Normalizing transformations

For i.i.d. case, Konishi [20] considered a normalizing transformation of
statistics based upon the elements of the sample covariance matrix which
extinguishes the second-order terms of the Edgeworth expansion. Then he
showed that Fisher’s Z-transformation gives the normalizing transformation of
the correlation coefficient. In the area of time series analysis Taniguchi,
Krishnaiah and Chao [40] considered the normalizing transformations of the
maximum likelihood estimator and quasi-maximum likelihood estimator for
Gaussian ARMA processes. They also showed that Fisher’s Z-transformation
gives the normalizing transformation for parameters of AR part. In this
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section we shall seek the normalizing transformation of the estimator 8,,, and
show that the weight function plays a role of bias adjustment.

For a smooth function g(-) we consider the standardized transformation
I {g@,,) — 9(0,)}/gP @) of 8,,. Deriving the Edgeworth expansion of
standardized transformation, we seek the normalizing transformation which
vanishes the second-order terms of the Edgeworth expansion. Suppose that
g(0) is three times continuously differentiable. We shall derive, in the same

way as Taniguchi, Krishnaiah and Chao [40], the Edgeworth expansion of
V,=/nl(6,) {g(éqw) — 9(00)}/9"(8o).

By using Taylor’s expansion of g(f) at 6,, we obtain

(B V= /nl00) {8, — 06} + (1/2)/nI(0,) {8, — 00}29?/9)(8)

+ 0,(n"1?).

qw

Further, from Lemma 2.2 we can write V, as
(2 V,=PZ, +n'?{QZ,Z,+ RZ} + S + AZ3g®(0,)/9V(0,)}
+ 0,(n"1?),

where P=1"1Y2, Q=132 R=(—3J—-K)I™%%/2, A=1"%%/2 and S =
(=3J —=K)I732)2 + (EW/E)I 12, The asymptotic cumulants of ¥, can be
evaluated as follows:

E(V,) = { = B "% + (= 2J — K)[ 32 4 (¢W/&)[ 112
+ [g®(00)/gV(O0) 11 ~*2/2}//n + o(n~11?)
=d,/\/n+ o(n" '), (say),

Cum{V,, V,} =1+ o(n™1?),

Cum{V,, Vo, Vo} = {(— 3J — 2K)I 732 + 3[g(05)/g(00)11 "2} //n
+o(n~1?),
= dy//n + o(n™ ), (say),

Cum{V,,---, V,} =0n="?*Y,  for J>3.

Hence we obtain the Edgeworth expansion of V, in the form

(33)  Pi[V, <x] =) — o(x){d,//n+ dy(x* — 1)/\/n} + o(n™1?).

If we set d, = dy = 0, the second-order terms of (3.3) vanish. This implies
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the following theorem.

THEOREM 3.1. If the transformation ¢(-) and the weight function satisfy
(34) g@(0,)/gV(0,) = (3J + 2K)/(3I) and
(3.5) £M(00)/¢(00) = (9 + 4K)/(61) + B(0o),

then Pg, {\/ nl(6,) [g(éqw) - 9(00)]/9(1)(90) < x} = &(x) + o(n-I/Z)‘

Henceforth the transformation g(-) and the weight function ¢() satisfying
(3.4) and (3.5) are called the normalizing transformation and normalizing weight
function, respectively.

ExXAMPLE 3.1. The normalizing transformations and the normalizing
weight functions for the sepctral density of (2.9) are given as follows:

Normalizing transformations:

(i) If 6, = a?, then g(c?) = 3(c?)'3.

(ii) If 6, =y, then g(¥)=y.

(iii) If 6o = p, then g(p) =log{(l + p)/(1 — p)}/2.
Normalizng weight functions:

(i) If 6, =02, then &(02) = gl(~10/3)=20-¥X1=p?) " A=y~ 1

(i) If 6=y and p =0, then {(¥)=(1—y?) "exp{(1 -y '}

(iii) If p=p and ¢ =0, then &(p)=(1 —p?H)~ 1.

REMARK 3.1. In our results, Fisher’s Z-transformation and the transform-
ation 3(c?)'/? give the normalizing transformations for the AR part parameter p
and the innovation variance, respectively. For i.i.d. case Konishi [20] showed
that Fisher’s Z-transformation and the transformation (-)!/* give the
normalizing transformations for the correlation coefficient and the latent roots
of the sample covariance matrix, respectively. It may be noted that the AR
part parameter and the correlation coefficients represent a sort of correlation
structure, and that the innovation variance and latent roots of the covariance
matrix represent a sort of variance structure although our statistical models are
essentially different from Konishi’s one.

REMARK 3.2. When we consider the normalizing transformation of the
maximum likelihood estimator and the quasi-maximum likelihood estimator,

we need an adjustment factor C [i.e., \/ﬁ {9Bp1) — 9(00) — C/n}/g™V(0,)]. For
the normalizing transformation of quasi-weighted estimator 9qw, the adjustment
factor is not necessary because the normalizing weight function plays a role of
the adjustment factor.
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4. Higher order investigations for testing problems based on quasi-weighted
estimator

For a Gaussian ARMA process with spectral parameter 6, Taniguchi [39]
considered the problem of testing a simple hypothesis H: 8 = 6, against the
alternative A: 6 # 6, and introduced a class of tests &, which contains the
likelihood ratio(LR), Wald(W), modified Wald(MW) and Rao(R), tests. Then
he derived the ¥? type asymptotic expansion of the distribution of a test Te &
under the sequence of alternatives 4,: 0 = 0, + s/ﬁ, ¢ >0, up to order n~1/2,
where n is the sample size. He also compared the local powers of these tests
on the basis of their asymptotic expansions and showed that there is no
uniformly superior test for the local alternatives. Also Myint Swe and
Taniguchi [24] developed a similar discussion by use of a weighted estimator of
Bayes type based on the exact likelihood.

In this section we shall discuss testing problems based on the quasi-
weighted estimator. Consdier the problem of testing a simple hypothesis H: 6
= 0, against the alternative A: 6 # 0, for a Gaussian process with spectral
parameter 6. We propose a class of tests &,, which contains weighted
likelihood ratio test (WLR), weighted Wald’s test(WW), weighted modified
Wald’s test (WMW) based on the quasi-weighted estimator. Then we derive
the asymptotic expansion of local power Py .., ~(T< x) of Te ¥, up to order
n~ 12 and consider the power comparison of WLR, WW and WMW. Then it
is shown that none of the above tests is uniformly superior. However if we
modify them to be asymptotically unbiased we can show that their local powers
are identical.

Consider the transformations given by

4.1) U,0) = Z,(6)//106),
4.2) U,(0) = [Z,0) — J(O)I(0)*Z,(6)1/71(6),

where 7, = [M(8)I(6) — J(6)*1"*/1(6)*" and

T n

M@®) = n_lj

a 4
{‘ééfo(i)} fo(A)~*dA + (4m)~! J

-n

62 2 =
{Wfo(/l)} fold) 2 da

T a 2 62 -
_n—lj‘ {_Ofo(l)} {Wfo(l)}{fo('l)} *da.

For simplicity, we use U,, U,, Z,, Z,, I, J, K, y instead of U,(8), U ,(0), Z,(6),
Z,0), 1), J(O), K(), y(0) respectively, if they are evaluated at 6 =6,
+ e/\/ﬁ. Define the following class of tests;
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FLa=1{8;S={U; +100)"%e}> + n~12[c, U} + ¢,020, +d, U,
+{c;0% +¢,0,0, + dl\/f}s +{csU, + csU,)¢?
+ ¢4&%] + 0,(n~*/?), under A,, where

ey =13%¢c, — Icy + "¢y},

This class &, is also very natural. It contains the ones defined by Taniguchi
[39] and also the three tests defined by the following (i), (i) and (iii).

(i) Weighted likelihood ratio test WLR = 2[1,,(9qw) —1,(00)], where [,(6)
=log L,(0). Let V= ﬁ(éqw — 6). By expanding WLR in a Taylor series at
0= 9qw, we obtain

2

WLR = — 2(6, — qw)[ael ©) + 0, 0)8—

=52 (®)

~

+(0qw— ) 603 n(e)/2:| (00 - ) [302 n(e)

~ M
+ (qu - )

wawﬂ+@w0m

RO
+ 0,(n"112).

If we modify (éqw — 6y = (9 w— 0+ 6 —0,), then we obtain

WLR _6—‘90 0)- 2V/ﬁ+ 1,(6)-2¢//n
43 iy 0) (V2 — ¢2)/ +(1/3)n—3/26—31( 0)(V? + &)
(4.3) + 302 nl &%)/n 203
+ 0,(n"13).

Substituting
V=Z,/1 +n Y{Z ,Z,172 —(3J + K)Z31%/2 — (3] + K)I "2)2
+ EW/ED} + 0,(n 1),

32
062

n—l

WO) = — 1+ Zy//n+0(m™"),

603 10) = —3J —K + Zy//n+ 0(n™Y),
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into (4.3), we have
WLR = {U, + /1(0,)-€}> + n~12{(— KI~*?/3)0} + yU?0T,
+[(J + K)~V20, —y10,]e* + [(3J + 2K)/3]e%}
+ op(n‘” ?),

this implies that WLR belongs to & ,.
Similarly the following results (ii)—(iii) are obtained:

(i) Weighted Wald’s test WW = n(éqw — 0,)%1 (éqw) belongs to &%, with
coefficients

e, =JI7%2 ¢, =2y, d, =2EW/EI Y2 — (3] + K)I 32,
c3 =3 + K)/, ¢y =2y /1, cs = (@4J + 2K)[ 172, ¢ =0,
¢, = (2J + K).

(iii) Weighted modified Wald’s test WMW = n(éqw — 6,)%1(8,) belongs to
& 4 with coefficients

cr=—(+ K17 ¢, =2y, dy = 2E0/)I 7> — (3T + K)[ 2,
¢y = =0T +2K)/1, ca=2/1, s = = ] + K} 712, ¢ =0.
¢, =0.
The cumulants of transformations U, and U, can be evaluated as follows :
Eo(0,) = n~V2(— BI"'%) 4+ 0(n~%?),
Ey(0,) = nY2(JB)/(yI?) + O(n~>7?),
Cum(U,, U,) =1+ 0(m™Y),
Cum(U, U,) = 0(n™Y),
Cum(U, U;)=1+0(n™"),
cum(T,, U,, U,) = n"VX(KI~3?) + O(n"3?),
Cum(T,, U, U,) =n"12c), + O(n=%?),
Cum(U,, U,, Uz) =n" 1260, + 0(n=33),
Cum(U,, U,, Uy) =n"12c8, + 0(n™3?),

where ¢'Y),, c¢{}), and cY), can be expressed by the spectral density (see
Taniguchi [35] or [37] for the expressions of I, J, K).
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In order to derive an asymptotic expansion of the distribution of Se ¥,
under 4,, by using Edgeworth expansion formula (Taniguchi [37]) we establish
the following lemma.

LEMMA 4.1. Under Assumptions 2.1-2.4,

PilU, <y, U,<y,]= ﬁ ﬁw f(uy, uy)du, du, + o(n™11?),
where i
flug, ug) = o) @u)[1 + n~Y2(= BI~Y2)u; + n~2{(JB)/(yI?)}u,
+ {1/(6/m)} {K(Bo)] ~¥2(u3 — 3uy) + 3¢, (u3u, — uy)
+ 3¢,y u3 — uy) + 43, (43 — 3uy)}]
and ¢(u) = (2n)~ 2 exp(— u?/2).

By using Lemma 4.1 the characteristic function of Cg(t) of Se %, can be
evaluated under A4,. In fact

Cs(t) = Egyv41y5 {e"}

= eri'sf(ul, uy)du, du,

= J‘J\exp[it{u1 + 1(0o)%€}2]-[1 + n~12(it) {c,u3

+ couduy + dyuy + (c3ul + cquyuy + diJ1)e
+ (csuy + celir)e® + 18} ] dluy) Puy) [1

4.4) + n~ Y2 (= BI Yy, + n”Y2{(JB)/(yI?)}u,
+ (n™Y2/6){KI 3% (u} — 3u,) + 3, (uuy — uy)
+ 3¢, (uyud — uy) + ¢§3, (U3 — 3u,)}du, du,
+o(n~1?).

Integration of (4.4) with respect to u, yields

Cslt) = exp{”’f"’z)f: } (1 —2i) 12 J ()12

1
, 1—2it)(  2eit](8p)2)?2

(1 = 2it)2exp| - _ 0

(=21 e"p[ 2 {“1 1— 2it
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[+ n~ 2 {cyud + dyuy + cyude + /1dye
+ csuy e + c,8%) + n~ Y2 {— Bl "1y,
+ KI(0,)~¥*(u3 — 3u,)/6}1du, + o(n™'/3).

By calculating the above integral we get the asymptotic expansion of Cg(t)
under A4,.

LEMMA 4.2. Under Assumptions 2.1-2.4, the characteristic function Cg(t) of
SeS , under 6 =0, + s/\/; has an asymptotic expansion;

itI(GO)sz}(l _ 2it)_ 1/2

1 —2it
[+ 2Y3_ BO(1 - 2it)"] + o(n™ '3,
where B = (1/6)[{ — 91(80)*?c; + 61(8o)cs — 31(80)"*cs
— K(6o)}&® + {91(00)"*cy — 3c3 + 3K(6,)/1(0,)

Cs(t) = exp{

— 3d,/1(8,) + 6B(8,) }¢],
B = (1/2) [{61(80)**c, — 31(Bo)cs + 1(8,)"cs
+ K(85)}e® + {c; — 61(8p)*c; — 2K (80)/1(6,)
+d,\/1(8,) — 2B(8,)}e],
BY) = (1/2)[{I(6o)c; — 410", — K(0p)}e?
+ {31(00)"¢; + K(80)/1(60)}],
B = (1/6)[31(60)*2c; + K(8o)1¢*.

This lemma implies

THEOREM 4.1. Under Assumptions 2.1-2.4, the distribution function of
SeS, for 0=10,+ e/ﬁ has the following expansion

P30+a/¢i [S<x]
=P[x3(0) < x]+n" 1233 o B® P[x},,;(0) < x]
+ o(n~1?),

where 6% = 1(0,)¢?/2, and x?(0) is a noncentral y* random variable with j degrees
of freedom and noncentrality parameter 82
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For the three tests WLR, WW and WMW, we can give more explicit
expressions for the coefficients B in Theorem 4.1.

ExAMPLE 4.1.
(i) S = WLR (Weighted likelihood ratio test)
BYV® = — {3J(8) + K(00)}&%/6 + B(6o)es
B — J(6,)e3/2 — B(6,y)e, BYV™® = K (0,)e3/6, BV™® =0,
(i) S=WW (Weighted Wald’s test)
BEYW) = (1/6)[ — {3J(6,) + K(60)}¢*
— {60/ — 3(3J(8o) + K(680))/1(60)}¢] + B(Bo)e,
B = (1/2) [J (Bo)e® — {3J(6,) + K(8o) }¢/1(6,)
+ {280/ — (3J(8o) + K(80))/1(80) }e] — B(Bo)e,
BYYW) = (1/2) [ — J(Bo)e® + {3J(6,) + K (80)}¢/1(6,)],
B™ = (1/6)[3J(6o) + K(60)1¢°,
(iii) S = WMW (Weighted modified Wald’s test)
BE™W) = (1/6)[{ — 3J(8o) — K(8o)}>
— {61V/¢ = 3(3J(60) + K(60))/1(60)}€] + B(Bo)e,
B = (1/2) [J (8o)e® + {3J(6,) + 2K (8) }¢/1(6,)
+ {28W/€ = (3J(8,) + K(00))/1(60) }& — B(Bo)e,
BY™MW) = (1/2) [{J(8o) + K(8o)}&* — {3J(8o) + 2K (60)}£/1(6,)],
BYMW) — — (1/6)[3J(6,) + 2K (6,)]¢>.

In view of Theorem 4.1 we can investigate the local power properties in the
class &, By Theorem 4.1 and Example 4.1, it can be easily shown that for

Se?,,
PgoteyilS > x]1 — Py 1o [WLR > x]
=n"2[(1/2) {P((3(6) > x) — P(x5(d) > x)} @ (8,)
(4.5) + (1/2){P(£3(0) > x) — P(x3(6) > x)} 09 (6o)
+ (1/2) {P(3(6) > x) — P(x3(6) > x)} 0 (6,)]

+o(n™1?)
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where QP (0,) = {31(00)**c; — 31(0o)c; + 1(00)"*cs — J(6,)} &>
+ {cy — 31(8)c, — K(Bo)/I(8o) + d1/1(80)} ¢,
0(00) = {I(Bo)cs — 31(60)*2¢c, — K(8)} &
+ {3160)" "¢, + K(65)/1(60)}e,
09 (00) = (1/3) {31(60)*"*cy + K(6o)}¢°.
By using (4.5) and the well known relation
P[x}+200) > x]1 — P[x}(8) > x] = 2p;4 5(x; 9),

where p;(x; d) is the probability density function of y?(6), we establish the
following theorem.

THEOREM 4.2. Under Assumptions 2.1-2.4,

Pgoseryi[S > Xx] — Py sy [WLR > x]
=n" 2[99 (00)p1(x; 0) + QP (Bo)ps(x; 9)
+ O9(0o)ps(x; 8)] + o(n~'?), for Se¥,.
By using Theorem 4.2 for the spectral of (2.9), we can compare the local
power properties among the three tests WLR, WW and WMW. The following

local power comparisons are performed for the second-order asymptotically
unbiased weight function, ie., £M(6,)/E(6,) = {2J(0o) + K(00)}/1(6,) + B(0,).

ExaMpLE 4.2. (WW versus WLR under 4,)

Pgoseryi (WW > x] — Py .o mn [WLR > x]
=n"12(3J + K)[(*/3)p,(x; 8) + (¢/I)ps(x; 9)]
+n"Y2[(J + K)/I + 2B]ep,(x; 9).

(1) If 6,=0>% then 3J+K=—-20"5<0, J+K=0 and 2B=
— 267 —Y)(1 —pH '1 —y?)~* <0. which implies that WLR is more
powerful than WW.

2 If 6p=p and Yy =0, then 3J+ K =0 and (J+ K)/I +2B=6p
(1 — p?»~ 1, which implies that WW is more powerful than WLR if p > 0 and
vice versa.

() If 6= and p=0, then 3J + K = 6y(1 —y?)~? and (J + K)/I
+ 2B = 4y 3(1 — )~ 2, which implies that WW is more powerful than WLR if

¥ >0 and vice versa.
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ExaMpPLE 4.3. (WMW versus WLR under 4,)

fo+evi (WMW] > xT — Pg ) 5 [WLR > x]
=n"12(—3J = 2K) [(*/3)p,(x; 8) + (¢/I)ps(x; 9)]

+n"Y2[(J + K)/I + 2B]eps(x; 6) + o(n~'/3).

(1) If 6,=02 then (—3J—-2K)=0"5>0, J+K=0 and 2B=
—207%(p—Y)*1 —pH) (1 —y?) ! <0 which implies that we can not
determine which test is more powerful than the other test.

@ If b=p and Yy =0, then (—3J—2K)= —6p(1 —p?)~2 and
(J + K)/I + 2B = 6p(1 — p?)~!, which implies that we can not determine which

test is more powerful than the other test.

(3 If b=y and p=0, then (—3J—2K)=0 and (J + K)/I + 2B
=431 — y?)~2, which implies that WMW is more powerful than WLR if y
> 0 and vice versa.

These examples show that none of WLR, WW and WMW tests is

uniformly superior.
Finally we show that an appropriate modification of Se %, leads to a
unified result. First, we note that the coefficients c,, ¢c; and cs in the stochastic

expansion of the three tests automatically satisfy

IC3 - 313/261 - K,

(4.6)

1'2¢, — Iey = J + K.
Henceforth we confine ourselves to a class of tests

S =1{S;Se, and c,, ¢y and c; satisfy (4.6)}.

Furthermore, we impose the second-order asymptotic unbiasedness;

4.7 bo+eryi[S > x]l=o = 0o(n™1?) for Se&.

e
By Lemma 4.2 and Theorem 4.1, we can see that (4.7) is equivalent to
91'%¢; — 3¢y + 3K/I — 3d, /1 + 6B =0,

4.8) ¢y —6I'%¢c; —2K/I +d, /1 —2B =0,
31'2c; + K/I =0.

Consider a class of tests
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U, ={S;Se¥ and satisfies (4.7) and (4.8)}.

From Example 4.1, it is easy to see WLRe U%’,. From Theorem 4.2, it is not
difficult to show

Pioseya[S > x] — Py pyn [WLR > x] = o(n=17?)

for all SeU¥,.

Now we modify Se€ %, to be second-order asymptotically unbiased. Put
S* =m(9qw)S, where Se%, and m(f) is a continuously twice differentiable
function with m(6,) = 1. Then we can show that

S* = {m(0) + (8,,, — OMV(O)}S + 0,(n"1?)
= {1 + n=2mD@p)e + (8,, — OMPD(0,)}S + 0,(n™*?)
= {0, +e/T}* + n""2[(c; + h//D)U3} + ¢,030, + d, /T
+{(cs + 3002+ ¢, 0,0, +d,/T}e
+ {(cs + 3h/D) U, + csU,}e* + {c; + In}e*] + 0,(n~1/?),

where h = m1)(6,). Then the second-order asymptotic unbiased condition of
S* leads to

9/1(c;y + h//T) = 3(cs + 3h) + 3K/I — 3d,/T + 6B =0,
(c3 + 3h) — 6 JI(c, + h//T) — 2K/l + d, /T — 2B =0,
3/1(c, + h/J/T) + K/I = 0.

Thus we can see that S*e UY, if dl\/~ —2B=0,c, + h/f = — (K/3)I 32
and c; + 3h = 0. Summarizing the above we have the following unified result.

THEOREM 4.3.  Under Assumptions 2.1-2.4, the local powers of all modified
tests S* =m(B,,)S, Se Sy, with m(Bo) = 1, mV(@,) = — /Tc, — K/BI) (or =
— ¢3/3 equivalently) and dlﬁ — 2B =0 are identical up to order n='2,

This modification procedure can be realized easily. For the AR(1) model
we can see WMW = n(p,, — p)*(1 — p?)~*, and m*(p) = 2p(1 — p?)~1. Thus
the modified test of WMW is given by {1 + (3,, — p)2p(1 — p*) ™'} WMW with
¢p)=(1—p?)7'"2
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Part II. Third order asymptotic efficiency of generalized multiparameter
weighted estimators

5. Generalized multiparameter weighted estimator (GMWE)

In this section we extend the results of Myint Swe and Taniguchi [24] to
the case where the unknown parameter is a vector. That is, we define a
generalized multiparameter weighted estimator (GMWE) for a Gaussian ARMA
process and discuss its higher order asymptotic efficiency.

Let {X,;t=0, £ 1, +2, .-} be a Gaussian ARMA process with spectral
density f¢(4) which depends on an unknown multiparameter e @ < R”. We
consider stretch X, = (X, ---, X,) of the series {X,}. Let X, be the covariance
matrix of X,. The likelihood function based on X, is given by

L,(0) = Q2mn)~"2|X,|"Yexp{ — (1/2)X, 2, ' X,}.
Now we introduce D, and D,gua, the spaces of functions on [— &, n];
Dy={f;f(A) = Y% - o awexp(— iud), a(u) = a(— u),

i - [u[?|a()] < oo},

u=

Dugma = {f5f(A) = 0?2m) " Y dog a2 /13 2= Bie 12,
(6% > 0), for some positive intergers p and g, where A(z) = Y 4., a;z’
and B(z) = Y?_, B;z’ are bounded away from zero for |z| < 1}.

We set down the following assumptions.

AssuMpTION 5.1. The process {X,;t=0, +1, +2,---} is a Gaussian
stationary process with the spectral density fo(4)€ Dagma, @ = (61,--, 0,/ €O
< R?, and mean 0.

AssuMPTION 5.2. The spectral density fo(4) is continuously five times
differentiable ~ with respect to ¢, and the derivatives 0fy/00,
0%f4/00,00,, -, 0° f4/00,00,00,00,,00, (j, k, I, m, n = 1,---, p) belong to D,

ASSUMPTION 5.3. If @ # @*, then fy# fo on a set of positive Lebesgue
measure.

ASSUMPTION 5.4. The matrix

10 =) [ {7 o} {7 o fas

-n

is positive definite for all §e®.
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0
(5.1) Z,=n 20, log L,(6)

az az
— n—1/2 _
(5.2) Zy=n { 36,46, log L,(6) [ 36,90, log L (0)]}
3

0 03
= - 1/2 —_— - -
(5.3) Zyg,=n {600,69‘309? log L,(6) E[aeaaeﬂaoy log L,,(Q):]}.

It is known that their asymptotic moments are given by

EQ [Zazﬂ] = Iuﬂ + O(nnl)a
EQ [Zazﬂy] = ‘]uﬁy + O(n—-l)’

EQ[ZaZﬂZy] = n_llzKaBy + O(n—3/2)’
63
n_lEQ[m IOg Ln(Q)] = - ‘]aBy - Jﬂya - Jy-zﬂ aBy + O(n-‘l)

0? 4
Varg[ 30,70, X log L (9):| =0(n"),

53
Var, [n_14 log L,,(Q)] =0(n™Y),
8" 06,00,00,

where 1,4, J,5, and K,;, are expressed in terms of the spectral density (see
Taniguchi [37]).

Let 8o = (091, 092, -+, 0o,) be the true parameter of § and £(9) be a weight
function on @. Define

pn(len) = M_
j L,(0)¢(9)a0
e

Valdlx,) = J L[/n(d — )1 p,(0]x,)d0,
]

and

where L is a loss function. An estimator fis called a generalized
multiparameter weighted estimator (GMWE) with respect to a loss function L
and weight function ¢ if

(54) 7a(0 |x,) = infye o7,(d|x,).
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Here the estimator § is exactly a generalized Bayes estimator. However we call
it GMWE because our standpoint is different from that of original Bayes idea.

6. Third-order stochastic expansion of GMWE

In this section we shall give a stochastic expansion of the generalized
multiparameter weighted estimator defined by (5.4).
First, in O(n~'/?) neighbourhood of §,, we have

Pa(@1x,)/pu(80 %)
= exp[log p,(@|x,) — 1og pa(8olx,)]
= exp [log L,(8) — log L,(8o) + log £(§) — log ¢(8o)]

0
= ¢xXp [Z£= 1 ﬁ lOg Ln(QO) (91 - 60«1)

2

1 2

+ 525,/3= 13020, log L,(0o) (0, — 00,) (05 — Oop)
a“YVp

1 2

—_\P JE

+ 250071 39.56,30,

, &0 (00) -
+ Za=1 f(Qo) (ea - 00«) + op(n 1/2)]9

log L,(8*) (6, — 004) (65 — bog) (6, — 6o,)

where &0)(8) = &) (= 1, p) and 8<% <@y or 0> 0% >0,

a

Letting ¢, = /n(8, — 0oz) (¢ = 1,--, p) and pp, = Jup, + Jpye + Jyup + Ko, We
obtain

pn(len)/pn(Qolxn) = €Xp [Zp=l Za(QO)ta
+ (1/2)25,ﬁ= 1 {n” l/zzaﬂ(QO) — I,5(00) } sty
- (6\/;)_ ! Zg,ﬂ,y= 1 paﬂy(QO)tatBtV
+ 72 {E00)} T YR &P (@o)ts + 0,(n )]

Let I*f be the («, B) element of the inverse matrix of the information matrix
I By letting U, =Y%_,1**Z, we can modify p,(8]x,)/p.(00|x,) as follws:

(6.1)  pa(81x,)/pu@olx,) = exp {(1/2)Y 2 51 L,5(80)U, Uy}
[exp{ — (1/2)25,p=11ap(go)(ta —U)(ts — Up)}]
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{14 7@ T R B @0t + /M) B e 1 Zap(B0)aty
- (6\/;)_125%}':1 paﬁy(go)tatpty + Op(n_l/z)}
(6.1) = €Xp {(1/2)25,/1: 1I¢p(Qo) Ua, Uﬂ} qn(t; Q0|xn) (say),

where t=(ty,t,,---,t,). Therefore, letting #= \/;((3 —0o) and recalling
7@ 1x,) = [oL(y/n(@ — )p,(0]x,)d, we can rewrite y,(f |x,) as

(6.2) Valtl %) = n7 2 p,(@olx,) exp {(1/2) ) 2 p= 1 Lp(@0) U, Ug}
: J‘L(i - t)qn(t; Qolxn) dt.

Furthermore, we assume the following:
AssUMPTION 6.1. L(u) is convex and symmetric about the origin.

AssuMPTION 6.2. For each a=1,---,p, [L(—u)q,m+t;0|x,) du is
continuously partially differentiable with respect to t, under integral sign.

By (6.2) and Assumption 6.1 it is shown that the generalized multipara-
meter weighted estimator # with respect to L(-) and &(-) is given as a solution of
the equation

ai jL(u —0)q,(t; Oolx,)dt =0 (x=1,---, p).

By Assumption 6.2 we have

0 0
o, Juu — 04,(t; Golx,)dt = JL(— u) {Eqn(t +u; Qolxn)}du (@=1,-,p),

which implies that the GMWE # is obtained by a solution of the equation
63 [u-wllaerutinba=0 =1,
Substitution of (6.1) into (6.3) gives

= j L(— wexp[ — (1/232p-1 Lup@0) (E, + 1, — Uty + u — Up)]

[— Z§=1 Iaﬁ(Qo)(fﬁ + ug — Up)
AL+ nm 1 2EQ) YR ED Q) (E, + uy)
+ 2/ YL o1 Zop(00) (E, + 1) (Eg + up)
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— (65/1) 7 28 5y =1 Pagy (00 a + ) (B + up) (E, + 1)}
+ (/nE(00) 1 ED o) + 12 Y5 Zog(B0) (g + up)
— @/n) 7 Y8 =1 Papy(00) (B + up)(F, + u,) ] du
+ 0,(n" 1),

We define

M= fL(— u)exp[ — (1/2)) % 5= Lop(@o)u,upldu,

P =JL( — wuugexp[ — (1/2)Y £ 5= 1 Lg(0o)u,upldu, P = (P,p),
(aa ﬂ = 13 ) p)’
Qupys = JL( — wu ugu,usexp[ — (1/2)Zg,ﬂ=1 L,5(00)u,up)] du,

(a7 B7 7 o= 1,"'7p)'

From Assumption 6.1 it holds that for a, §,y=1,---, p,

IL( — wu,exp[— (1/2) Y2 5= 1 Lp(@o)uugldu =0,

JL( — wu ugu,exp [ — (1/2) 32 - 1 Lp(@o)uytiy} du = 0.

Letting 4, = f, — U,, we can see that (6.4) is written as

I (1)
0=— MZ§=1 Iaﬁ(Qo)ﬁﬂ — n_”zzg,Fl ————aﬂ(ggzgy) ©0) Pﬁy
Yo

—n 2y s=1125(00)Z,5(@0) U, Pps
+(6/m) " 28 60 =1 12500 P154(80) Qupys + 3U,UsPy,)

-1/2 51(11) (QO)

¢(@o)
- (2\/;)_ 125,7:1 paﬂy(go) (Pap + UﬂUyM)
+ Y8 r6=11,5(00) 1, (80)Ps,tig + 0,(n~*12).

Let E be the identity matrix of order p, an ¢*, L, V and W be column
vectors with

+n M+n V2YE_ Z4(00)UsM
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&* = [ (00)/¢@0)],
L=[~1/60)37%,s5=11ap(00) Pysy(80) Qpyay
+(1/2) 25,1=1 Papy o) Py,
V=125,-1Pp@Us U1, W=135-1UZ,(00)]
Then it follows that
(IPI — MDi = (IP — ME)§*/ﬁ + L/\/ﬁ — (IP — ME) V/(2ﬁ)
+(IP — MEYW//n + 0,(n""?).

Since (IPI — M]) is positive definite, we obtain a stochastic expansion of the
generalized multiparameter weighted estimator,

66  J/n@ —0)=U+I"'"W//n—T"'V/2/n)

+{I71E* + (IPI = MD)™'L}/\/n + 0,(n" 72,

where U= (Uy,---, U}).
Here we review the classes of estimators § and D (see Taniguchi
[37]). Let

§={0/n@ —0)=U+ Q//n+0,(n 7,
Q = (Qh ) Qp), = 0‘,(1)}

We assume that \/r_n @,- 0,) has the Edgeworth expansion up to order n~!
and that

Ego/n@ . — 80) = p/y/n + o(n™"), and
Eg,ZWZY = 1(0o) + 4(8o)/n + o(n™ ),
where p= (uy, -, 4, ) = EgQ and ZW = (Z,, -, Z,). 1t is known (Taniguchi
[37]) that for S=(Sy,+, S,) = /n[f,— Eg,(@,)]€S,
(1) Eq,(S:S) = 19 —ny;/n + Dp;/n + Dju/n + Cov(Qy, Qj)/n + o(n™),
(ii) Eq¢ (SiS;S0) = ﬁijk/\/;l + A;/(2n) + o(n™1h),
(lll) Cum(Si’ Sj, Sk7 Sm) = ﬂijkm + o(n_l)’
where IV and n;; are the (i, j) th elements of 1(§,)~" and I(§,)~ ' 4(0o)1(8,) ",

. 0 .
respectively and D;=)F_,I "‘67 (differential ~ operator). Here A
k

ijk
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= Eg(U;0;00) + Eg(U,;0:0)) + Ego(U,0:0)), and B, and i, are expressed in
terms of the spectral density.

Now we introduce a class D( < §) of estimators which satisfy 4,; = o(1) for
i,j, k=1,---, p. This class D is a natural one. Taniguchi [37] showed that
an estimator § is third-order asymptotically efficient in the clas D if and only if
§ has the following stochastic expansion;

67  /n@—00) = U+1Q) ' Z7U//n + I(8o) 'R...- U- U)(2/n)
+&//n+ 0, (n 1),

where {is a constant vector, Z¥ = {Z;;} and R... = {Riz}, Rije = — Kij — Jine
—Jjxi—Juj and R...-U-U is a p-dimensional column vector with i th
component ) ;,R;;U,;U,.

Comparing with (6.6) and (6.7) we can see that stochastic expansions of
§and Jup to order n~'2 have the same structure. Thus we establish the
following theorem.

THEOREM 6.1. Under Assumptions 5.1-5.4 and 6.1-6.2, if we modify the
generalized multiparameter weighted estimator Q of 0, to be third-order
asymptotically median unbiased, then it is third-order asymptotically efficient in
the class D.

Part . Higher order evaluation of final prediction error
7. Final prediction error (FPE) for Gaussian ARMA processes

In this section we give the definition of final prediction error for Gaussian
ARMA process. First, we review Akaike’s definition of “Final Prediction Error
(FPE)”. Suppose that {X(t)} is a stationary autoregressive process generated
by the relation

(7.1) X(@t)=YM_ am)X(t — m) + a(0) + &),

where ¢g(t) are mutually independently and identically distributed random
variables with E[e(t)]=0 and E[e*()] = 0> Assuming that {Y()} is
generated by the same relation as (7.1) and that {Y()} is independent of {X(t)},
Akaike defined an estimated predictor Y(t) of Y(f);

Y(t) = TM_, 4y (m) Y(t — m) + a,,(0),

where d,(m), m =0, 1, ---, M, are defined as the least squares estimators of a(m)

based on the observed stretch {X(t);t= —M + 1, — M +2,---,n}. Then he

evaluated the following quantity up to order n™?';



Higher order asymptotic investigations of weighted estimators 245

(72) Ex[E,{Y(t) - Y(t)}1,

where Ey and Ey mean the expectation with respect to {X(¢)} and {Y(t)},
respectively. The resulting evaluation is given by

(1.3) (FPE),, of ¥(t) = (1 + [M + 1]/n)a>.

Akaike’s FPE criterion, which determines the order of the AR model, is defined
as an asymptotically unbiased estimator of (7.3). Therefore it seems important
to evaluate the basic quantity (7.2) more accurately.

In Part Il we extend the above result to the case when the process
concerned is Gaussian ARMA process. Then we evaluate (7.2) up the order
n~2, we also show that the generalized weighted estimator and the maximum
likelihood estimator are best in the sense of FPE.

Let {X,;t=0, +1, £2,---} be a Gaussian ARMA process with spectral
density fy(4) which depends on an unknown vector §=(6;,---,6,)e®
< RP. We consider a stretch X, = (X,---, X,) of the series {X,}. Let X, be
the covariance matrix of X,. The likelihood function based on X, is given by

L) = @m)~"2|Z,| " exp { — (1/2) X, 2, X,}.

In Part IIl we use the notations and assumptions stated in Section 5. Let g,
= (001, 002, 0op) be true parameter of e 6.

Now we consider the higher order evaluation of FPE for {X,} satisfying
Assumptions 5.1-5.4. Let {X,} be observable. Let {Y,} be the ideal process
with the same structure as {X,} and be independent of {X,}. Let §
=@,,-, ép)’ be a \/; consistent estimator of @ calculated from {X,,---, X,},
which will be specified later. We construct the predictor Y(f) of Y(f) by
f3(4). Then the mean square error of prediction Y(t) can be written in the
following form:

E{¥() - T0}* = [2n)~* j " w0}

exp {(2n) ! f " 108 [3(0)/ o (M1dA} — 110% + o

(see Grenander and Rosenblatt [16]), p.261). Henceforth we call Ex[Ey{Y(t)
— Y()}*] the final prediction error for Gaussian ARMA process.

8. Some best estimators in the sense of FPE

In this section we evaluate the FPE up to higher order O(n~?2) and discuss
an optimality property of GMWE and the maximum likelihood estimator in the
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sense of FPE. Let

F@; )= 0n)! f C Uaify()da

-exp {(2m) ™" f _ log [f§(D)/fgo(A)]dA} — 1.

For simplicity we sometime use f,, f3 5 instead of fy (4), f5(4), respectively.
Expanding F(d ; 6,) in a Taylor series at 6§ = 0,, it holds that

F@;0)=F@ ;00 +n 235, F,/n@, — 05,
+(2n) 7 Y0 51 Fap /0, — 000)\/n(@5 — 65p)
(8.1) + (6132 71Y 2 Foagyn/ 10, — 00)</n(85 — 005)/n(8, — 6,
+ (24027 1Y 2, o Fogysn/ 10, — 00)3/n(05 — 00g)/n(8, — 6,,)
X \/r_z(é,, —0y5) + 0(n~?),

2 3

0
where F, = —=F(0o; 0o), Fap = 5557 F(0o; 00); Fapy = 00.00,00
aV Py

a0, “ = 30,00,
64
F =
=70 ™ 60,00,00,08,
ation free parameter (see Hosoya and Taniguchi [18]). Then the following can
be evaluated without difficulity.

F(o; 80) =0
F,=0,

" (a
= -1 —_— =
F,p=(2m) I_n{aealogf,, 60,, logfe} —godA = 21,

F(9,; 8) and

F(f,; 0,). Henceforth we assume that §, is the innov-

Fopy = 2(Japy + Jgya + Jyup + Kopy)
(8.2) Fopys = 2(2L,gy5 + Lyags + Lisagy) + 2(M 55 + Mysp,
+ M ys08) + (Ngsay + Nasgy + Npyas + Nogys
+ Noyps + Nogys + Nayps + Ngyas + Npsay + Nosgy
+ Ngsay + Nysap) + 2H g5 + H(Aupl s + Anylps
+ Aylg, + Ag, Loy + Agsly, + Aysl,p) — AyyAgs
— AupAys — AgsAgy — 8l,pl 5 — 161,14,
— 121514,
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T 2
where A;; = 2m)~* 5@‘%5 o) f, g(l)‘ldl. For the explicit forms of
-n iYVj
I,J,K, L M, N, H, see Taniguchi [37].
We now assume that the estimator § belongs to a natural class D defined
in Section 6. Then we can show that

E{ﬁ(éa - 90a)\/;(éﬂ - eop)} =] - '7ap/" + Daﬂp/”
+ Dgpto/n + Cov(Qy» Qp)/n + (Maltg)/n + o(n™ 1),

(83)  E{J/n@, — 00)/n(0; — 06p)/n®, — 00))} = 1?7/ /n
+ gl [/ + I /n+ Bugy/N/n + 0™,
E{/n(0, — 80/n (B — 009)</n(8, — 00,)3/n(B5 — 665}
=T 4 [2]% 4+ ] + O(n™ 1)
Using (8.1), (8.2) and (8.3) we obtain
E{F(@; 80)} = p/n+ D/n* + o(n"?),
where D =37, 1140 — Nap + Dot + Dgity + papts + Cov(Q,, Qp)]
+ Zf,,,,Fl(Ja,,v + Jgya + Jyap + Kagy) (1% + ugl™
+ u,l o4 Bapy) + Zg,,,,y,‘,=1(1/24)Fa,,y,,(I aB o
+ I®]P% 4 [O]FY),

If we modify § € D to be third-order AMU (say § *), then the second-order
bias u is specified by ;. Thus all the other terms in (8.3) can be expressed by
the spectral density except for the terms Cov(Q,, Qg). This implies the
undetermined term for E{F @; 6o)} is only Cov(Q,, Qp). In fact, the term
Cov(Q,, Qp) only depends upon the estimator. Thus we can see that 6*
minimizes E{F @; o)} up to order n~2 if and only if it minimizes the matrix
{Cov(Q,, Qp)}. This implies the best estimator in the sense of FPE has the
stochastic expansion (6.7) (see Proposition 6 of Taniguchi [37]). Summarizing
the above we have

THEOREM 8.1. If we choose the generalized multiparameter weighted
estimator or the maximum likelihood estimator of §and modify them to be third-
order AMU, then they minimize E{F @; 0o)} (FPE) up to order n=2 in D. That
is, the generalized multiparametr weighted estimator and the maximum likelihood
estimator are the best estimators in the class D in the sense of FPE.
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Note that, Takeuchi and Akahira [3] discussed that the weighted estimator
(Bayes estimator) and the maximum likelihood estimator are the best estimators
in the class D in the sense of highest probability concentration up to third
order.

Since general formular of E{F(§; §,)} is too complicated, we give its
explicit formula for the scalar 6, Let § be the weighted estimator or the
maximum likelihood estimator of 8,. We modify 0 to be third-order AMU,

and denote it by § *. Thus the moments of U¥* = \/ﬁ (6* — 6,) become
E(U¥*)=1—4/(In)+ (— 3L— 9N — 2H)/(31%n)
+ (135J% + 216 JK + 70K ?)/(361°n) + o(n™ 1),
84)  E(UF)=(—9J — 6K)/(2I*2/n) + o(n™Y),
E(U**) =3 +o(n™"),

Further,
52F(;Z:2, %) lge=0o = 21,
8.5) 63F£:j 60 10— = 67 + 2K,
64Fa(z:j 00) |0 2H + 8L+ 6M + 12N + 3(4 — 21) (6] — A),

n 2
where A = (21r)"1f {% f,,o(,l)} fe(A)~'dA. Thus we obtain
-n 02

E{F(*; 6,)} = 1/n — 4/(In®) — 3L+ 9N + 2H)/(3I*n?)
+ (135J% 4+ 216JK + 70K ?)/(361°n?)
(8.6) + (= 3J — 2K)(3J + K)/(2I°n?)
+ [2H + 8L+ 6M + 12N + 3(4 — 2I)(61 — A)]/(81%n?)
+ o(n~?).
Here we give a more explicit form for (8.6) when {X,} has the following
ARMA (1,1) spectral density
foo) = (0%/2m)|1 — Ye™/I1 — pe|?.

Then A(6,) for 6, = %, p and  are given by
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A(@?) =0, A(p) =21 —p*)~" and AWY)=2(1-y*7},
respectively. For 0, = 62, p and ¥, I, J, K, L, M, N, H and 4 are evaluated by
Taniguchi [37]. Finally we obtain the following evaluations.

(i) If 6, = o2, then E{F(8*; 6,)} = % — 35/(18n%) + o(n"?).

(i) If 6, = p, then

14 6p%2 —14p3y + Y?(9p* —3p% + 1)
n*(1 —p?)(1 — py)?

E{F(0*; 0,)} = % + + o(n7?).

(i) If 6, = ¥, then

0 110 4+ 1292 — p(2y + 229 + p*(1492 + 9% — 1)
EFFO*: 00} =7 + ' p(,,z(lﬁ—wz‘fu—ﬁw)z

+ o(n~?).

REMARK 8.1. It should be noted that for 6, = 6% the term of n™2 is
independent from 2. For 6, = p and 6, = y we can not neglect the terms of
order n™2 (ie., they become large) when the modulus of p and ¢ tend to 1.
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