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Introduction

The time behaviour of one-component isotropic isothermal fluid is usually

described by a Navier-Stokes system (cf., [5], [6], [14]). In contrast to the
classical point of view, the balance of angular momentum must be taken into
account if the stress tensor is not assumed to be symmetric (cf., [3]). In this
case the angular momentum can be decomposed into external and internal

parts. The internal part represents the rotational motion of the fluid
particles. If the fluid does not accompany any intrinsic motion, the stress

tensor is symmetric (cf., [2]). However this situation is relevant for only
fluids comprising spherical molecules or those characterized by very low mass

density and, in general, the antisymmetric components cannot be neglected.
In this paper we consider the general case and treat the two-term

representation of the total stress whose components stand for the scalar
equilibrium stress as well as viscous stresses. This setting leads us to an

equation of angular momentum balance of the form

(0.1) ωt - (ca + cd) A ω — (c0 + cd - ca) V div ω + u - Vω + 4 vrω = 2vr curl u + g(θ),

where ω = (ωί9 ω2, ω3) denotes the angular velocity vector of the constituent
fluid particles, g represents the momentum density of exterior forces, positive
constants vr, c0, cd, ca are viscosity coefficients associated with the non-
symmetricity of the stress tensor. In particular, the rotational viscous motion
of the fluid may make both internal and external friction effects. These effects,
together with the heat conduction and convection, yield variation of

temperature θ. The energy is understood to the the sum of internal energy

and kinetic energy. For the viscous flows under consideration, we employ
the energy balance equation

(0.2) θt-κΔΘ + u VΘ = Φ(u, ω) + ft,

where the positive constant K is the heat conductivity, ft denotes the heat
source and Φ is a dissipation function. The dissipation function can be written
in the following form which is derived from the energy balance:
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(0-3) Φ = Σ Φt,

where

(0.4) Φί(u)=1-v Σ
2 ij=i \0Xj CXiJ

/ I V
(0.5) Φ2(w, ω) = 4vr I - curl u — ω 1 ,

(0.7) Φ4(ω) = (ca + Q) I

3
/Π C\ /ΊS / \ / \ X"1 vyvΛ.f j VIΛSJ

ij=ι δXj δXi

In the case that the stress tensor is nonsymmetric, the mechanical motion of
the fluid is governed by the equation of linear momentum balance

(0.9) ut - (v + vr) Δu + (u - V}u + Vp = 2vr curl ω + /(#),

where u denotes the velocity vector, v the usual kinematic Newtonian viscosity

and / stands for the volumetric force. Mass density p of the fluid does not
explicitly appear in equations (0.1)-(0.9). This is because p can be regarded

as a constant function so far as the variation of θ remains small. We here
assume that p = constant = 1. Then, it is natural to assume that the fluid is
incompressible and the mass balance is formulated as

(0.10) d i v w = 0.

Equations (0.1), (0.2), (0.9) and (0.10) constitute a Navier-Stokes system
describing the motion of viscous, incompressible, isotropic and heat convective
fluids with nonsymmetric stress tensor (cf. [13]). Thus, an initial-boundary
value problem can be formulated for the system (0.1), (0.2), (0.9) and (0.10)

under the initial and boundary conditions

θ\t = o = Θ0, Θ\6Ω = 0,

where Ω is a bounded domain in R3 with smooth boundary dΩ. In what
follows, the problem for (0.1), (0.2), (0.9) and (0.10) is simply called Problem (P).
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Lukaszewicz [10] discussed the initial and boundary value problem for

(0.1), (0.9) and (0.10) in the case where / and g do not depend upon Θ. He

gave a sufficient condition for the existence of global solutions of the problem

(0.1), (0.9) and (0.10). If equations (0.1), (0.9) and (0.10) are coupled with

temperature #, the dissipation function Φ must be taken into account in

equation (0.2). Lukaszewicz and Walus [12] treated the stationary problem

of (0.1), (0.2), (0.9) and (0.10) and proved the existence and uniqueness under
the assumptions that /, g are bounded and v, ca H- cd are sufficiently large.

Our objective here is to treat the nonstationary problem for the system

(0.1), (0.2), (0.9) and (0.10) and discuss the existence and uniqueness of strong

solutions of Problem (P). In the theory of weak solutions of the Navier-Stokes

equations usual energy estimates are given in terms of L2-estimates for u and

Vu. However, the dissipation function Φ contains quadratic nonlinearity of

Vu and Vω as stated in (0.4) through (0.8), and so we also necessitate estimating
the second order derivatives of u and ω. Therefore only strong solutions are

considered in our argument. Using these a priori estimates, we show the

local existence of strong solutions via the Banach fixed point argument. The

Navier-Stokes equations in three space dimension admit only strong solutions
in a local sense for general initial data. Our result corresponds to this

well-known state. If we restrict ourselves to small initial data, we can obtain
the global existence of strong solutions for the Navier-Stokes equations in

three space dimension. In a way similar to this argument, we also discuss

the global existence of strong solutions of Problem (P).

The present paper consists of six sections. In Section 1 we introduce the

notion of strong solutions of Problem (P) and state our main results. In

Section 2 we discuss the linearized problem for (0.9) and (0.10). In Sections

3 and 4 we treat equations (0.1) and (0.2) for ω and #, respectively. In Section

5 we prove the existence theorem of strong solutions of Problem (P). Finally,

in Section 6, we show the uniqueness of strong solutions.

The second author is indebted to Dr. G. Lukaszewicz for turning her

attention to the subject of this paper. The authors are grateful to Professors

N. Kenmochi, T. Miyakawa and S. Oharu for their valuable comments and

advice.

1. Main Results

We begin by introducing function spaces (functions from Ω into R3 and

those from Ω into R) and notation which are used in this paper. The usual

Lp space is denoted by Lp = LP(Ω) and the norm is denoted by | \p. The

closure of C£°(ί2) with respect to the norm || H i = |F |2 is denoted by HO
and the dual of the space HQ is denoted by H~l. The symbol H2 = H2(Ω)
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stands for the usual L2 Sobolev space of order 2 with norm || ||2. We write
H and V for the closures of {ueCg(Ω)3', div u = 0} in L2 and H&,
respectively. Given a Banach space X with norm || ||x, we write Z/(0, T; X)
for the space of functions v on (0, T) with values in X such that the real

valued function ί-HIKOH* belongs to I/(0, T). The space of continuous
functions from [0, T] into X is denoted by C(0, T; X). We do not distinguish

between the spaces of scalar functions and those of vector functions if there

is no confusion. By ( . , . ) and ( ( . , . ) ) we mean the inner products on L2

and HQ, respectively. The dual pairing between HQ and H"1 is denoted by
<•,•>. Furthermore, we define the trilinear form

b(u, ω, v) = (u Pω, t;).

We often use the Gagliardo-Nirenberg inequality (cf. [4])

(1.1) \u\3<C\ru\\\u\i

the Sobolev inequality (cf. [4])

(1.2) \u\6<C\Vu\2

and Poincare's inequality (cf. [1])

(1.3) \θ\2<,

where C means various positive constants depending only on Ω and d is the
diameter of Ω.

On the functions /, g and h, we put the following conditions : there exist
positive constants Mf and Mg such that

(1.4) \f(θ1)-f(θ2)\ < Mf\θ, - Θ2\, 19(0,) - g(θ2)\ < Mg\θ, - Θ2

for Θ ί 9 θ2eR,

/(O) = 0(0) = 0

and

0, Γ L2).

Furthermore, we suppose that the initial values w0, ω0, Θ0 belong to the
following function spaces

We now introduce a notion of strong solution to Problem (P).

DEFINITION. A triple of functions (u, ω, θ) is called a strong solution, if
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it satisfies

weL°°(0, Γ; F)nL2(0, Γ; H2), w,eL2(0, T; #),

(1.5) ωeL°°(0, T; H^)nL2(0, T; #2), ω,eL2(0, T; L2),

<9eL°°(0, T; L2)nL2(0, T; #*), θteL2(Q, T; H'1)

the initial conditions

(1.6) w(0) = u0, ω(0) = ω0, θ(0) = Θ0,

the identities

ω +/(#), φ) A,
pr ΛΓ ΛΓ

(1.7) (u,-(v + vr)Δu, φ)dt + b(u, u, φ)dt = (2v rcurlι
Jo Jo Jo

(ω,, ψ) dt - (ca + cd) (Δω, ψ)dt - (c0 + cd- ca) (F div ω, φ) dt

(1.8) J° J° J°
f Γ fΓ ΛT

+ b(u, ω, φ)dt + 4vr (ω, φ)dt = (2vrcurl u + g(θ), φ)dt
Jo Jo Jo

and

(1.9)
pr rr Λ T pr

<0f, φydt H- K (F0, F0)Λ + ( M - F0, φ)Λ = (Φ(w, ω) + ft, φ)dt
Jo Jo Jo Jo

for φeL2(0, T; H), ιAeL2(0, Γ; L2) and (/>eL2(0, T; j f f j) .
By condition (1.5) and standard interpolation theorems (cf. [8]) it is seen

that weC(0, T; 7), ωeC(0, Γ; H^) and 0eC(0 T; L2). Hence, condition (1.6)
makes sense. We now state our main results.

THEOREM 1.1. (i) For each triple of initial values (MO, ω0, #0) ί/zere ex/5/
a positive number T^ and a unique strong solution (u, ω, θ) to Problem (P) on
[0, T^], where T^ depends only on v, vr, cα, cd, c0, κ;, M/? Mg, ί2, (MO, ω0, 00)
α«J ft.

(ii) T/' vr, My, Mg9 (w0, ω0) α«J ft are sufficiently small, the strong solution
(u, ω, θ) exists on all of [0, oo).

2. Existence and uniqueness for the linear momentum equation

In this section we deal with the following problem which is a linearized
version of (0.9) subject to (0.10).

PROBLEM 1. Given u0εV and FeL2(0, Γ; L2), find u satisfying
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ueC(0, T K)ΠL2(0, T; H2), u,eL2(0, T; H), n(0) = u0

and

(2.1) I Γ(«, - (v + vr)z)u, <j»)Λ = Γ(F, ς»)Λ /or φeL2(0, Γ; H).
Jo Jo

For this initial-boundary value problem we use the following existence

and uniqueness results (cf. [10]).

PROPOSITION 2.1. Problem 1 admits a unique solution satisfying

(2.2) || « ||£(0i Γ K) + (V + V r)MW | |2

2 ( 0 ? Γ ; L 2 ) < N o l l ? +
(v + vr)

where the operator A is defined on (H2)3 Π V by A = — P ° A and P is the

orthogonal projection of L2 onto H.

PROOF. The existence and uniqueness results for Problem 1 are obtained

directly by applying the Faedo-Galerkin approximations and energy estimates

for linear parabolic equations (cf., [7], [15]). We then show a priori estimates

(2.2) (cf., [10]), which are derived through the approximation argument.

Let u be a solution to Problem 1. By (2.1) we have the identity

(2.3) (ut-(v + vr}Au,φ} = ( F , φ )

for all φeH in the sense of distributions on (0, T). To show (2.2), we put

φ = Au(t) as test function in (2.3). Then the identity

(2.4) (ut-(v + vr)Δ

holds in the sense of distributions on (0, T). Since

(ut, Au) = - —\\u\\l and -(v + vr)(Λιι, Au) = (v + vr)\Au\2

2
2 at

for all w e / / 2 n F , we get

^l|ι«ll? + (v + vr)«
2 at 2(v + vr) 2

and, consequently,

(2.5) ^ || ii || J + (v 4- vr)\Au\2

2 < — !— |F|2

2.
dt (v + vr)

The desired estimate (2.2) follows immediately from (2.5). This completes the

proof.
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3. Existence and uniqueness for the angular momentum equation

In this section we study the initial-boundary value problem for ω. For
this purpose, we introduce the operator L:

Lω= - (ca + cd}Δ ω - (c0 + cd - ca) V div ω for ω 6 (H2)3 n (H^)3 .

The operator L is strongly elliptic and satisfies

|L1 / 2ω|l = (Lω, ω)>c\Vω\\

and

C~l \Lω\2 < \\ω\\2 <C|Lω| 2,

where c = min(cα + cd, c0 + 2cd) and C is a positive constant depending only
on c0, cα, cd and Ω.

We now pose the following problem for the angular momentum equation.

PROBLEM 2. Given ω0eH^ weC(0, T; K)nL2(0, T; H2), ώeC(0, T; H£)
ΠL2(0, T; #2) fl/id ^eC(0, T; L2)nL2(0, Γ; H^), ^«J ω satisfying ωeC(0, T;
//^)nL2(0, T; tf2), ωίeL

2(0, T; L2), ω(0) = ω0,

Λ Γ Λ Γ Λ T

(ω,, ψ)dt+ (Lω, ι^)Λ + 4v r (ω, ι^)Λ
Jo Jo Jo

- b(ΰ9 ώ,
Jo

(3-D

= (2vΓcurlS + 0(0),^)Λ
Jo

for all ιAeL2(0, T; L2).

PROPOSITION 3.1. There exists a unique solution ω of Problem 2. This
solution satisfies

(1 ")\ ^ I T 1/2 .... |2
Jy.ZJ S \Lι ω0|2 "

_ι_ 7~Ί/2 I I ,7 I I 2 I I I " 1 / 2 ™ I I I I Γ /7ι I I \
^ ^ I I w l lC(0,Γ;K) I I ̂  ω l lC(0,Γ;L 2 ) I I ̂ ω l lL 2 (0,Γ;L 2 )/5

where C > 0 is a constant depending only on vr, c0, cα, cd, Mg and Ω.

PROOF. The existence and uniqueness results for Problem 2 follow directly
from the general theory of linear parabolic equations (cf., [7], [9]). Therefore,
it remains to show the estimate (3.2).

Let ω be a solution to Problem 2. By (3.1),

(3.3) (ω,, v) + (Lω, v) + 4vr(ω, v) = (2v rcurl ΰ + 0(0), v) — b(ΰ, ώ, v)
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for all veL2 in the sense of distributions on (0, T). To show (3.2), we take

v = Lω in (3.3) as test function. Then,

(3.4)

- -\Ll/2ω\2

2 + \Lω\l < 2vr|(curlS, Lω)| + \(g(β)9 Lω)\ + \b(ύ, ώ, Lω)|.
2 dt

We estimate the right-hand side of (3.4) term by term: The first term is

estimated as

|(2v rcurlΰ, Lω)| < C v 2 \ \ ΰ \ \ 2 + -|Lω|2,
6

the second term can be estimated as

|fo(0), Lω)| < C\g(θ)\2

2 + \\Lω\2 < CM2\Θ\2 + \\Lω\\
6 o

and the Gagliardo-Nirenberg inequality (1.1) implies

\b(ύ, ώ, Lω)\ < |u | 6 |Fώ| 3 |Lα>| 2 < C\\ύ\\, \Lίl2ώ\\/2\Lώ\\l2\Lω\2

We thus obtain

\\ω\\2 + |Lω|i < C(| | iί | |? + |β|| + \\u\\\ |L1 / 2ώ|2 |Lώ|2),
αί

and (3.2) follows. The proof is complete.

4. Existence and uniqueness for the energy balance equation

In this section we consider the following initial-boundary value problem

for θ.

PROBLEM 3. Given ΰeC(0, Γ; F)nL2(0, T; H2), ώeC(0, Γ; H^)nL2(0, T;
H2), 0eC(0, T; L2)nL2(0, T; //^), 6>0eL2 αm//ιeL2(0, T; L2), find θ such that

θeC(Q, T; L2)nL2(0, T; H^), 6>feL2(0, T; H"1), 0(0) = 00,

T

(4.1)
i J

(«, ώ),
o

- Γ(ί - F0, 0)dί + [
Jo J
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for all φeL2(0, T; H$.

PROPOSITION 4.1. Problem 3 admits a unique solution θ. This solution

satisfies

<|00li + —
K

(A1\ _ι_ Γ*(Tl/2 I I V7(/T ^j ~r ^^ I || W

+ T1/2 | |L1/2ώ||3

(0,Γ;L2) | |Lώ||L2(0,Γ;L2)

+ T 1/2 II ύ ||έ(0,Γ;K) II 0 IIC(O.T;L2) II θ | | L 2 ( 0,Γ;H>))>

where C is a positive constant depending only on v, vr, c0, cβ, cd, K and ί2.

We first show the following

LEMMA 4.2. Le/ ε be a positive number. Then the inequality

o), φ) |<ε | |φ | |? + Cε(v2 + v2)W

for we(// 2 ) 3 f )K ω6(H2)3n(/ίo)3 β«^ φeH^. //ere Cε w α positive
constant depending only on ε and Ω, and C'ε is a positive constant depending
only on ε, c0, ca9 cd and Ω.

PROOF. Recall that

5

Φ(w, ω) = X Φt

with

1 3 (dUi duΛ2

ΦI(M) = - v > I 1 1 ,
2 ί t ι /=ι \Sxj δxi/

/ I \2

Φ2(w, ω) = 4v r l -curlw — ω I ,

Φ3(ω) =c0(divω)2,

3

i , j=l

3 dcui da):
Φ5(ω) = (cd — cα) ^

Thus,
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(4.3) \(Φ(u, ω), φ)\ < £ \(Φt(u, ω), φ)\,
1=1

and so it suffices to estimate each term of the right-hand side of (4.3). Since
the inequality

\\v\\2 <C\Av\2

holds for all ve(H2)3Γ\V with C > 0 depending only on Ω, we apply the
Sobolev inequality (1.2) and the Gagliardo-Nirenberg inequality (1.1) to obtain
the estimate

\(Φ,(u)9 φ ) | < v 7u\2\φ\dx

^- I I Φ H i + C£v
2 \\u\\\\Au\2

with Cε = Cε(ε, Ω). We also have

f
|(Φ2(κ, ω), φ)\ < vr (\Vu\2\φ\ + \ω\2\φ\)dx

J

+ Crf \\u\\l \Au\2+ vr\ω\2 ω|3 |φ|6

with Cε = Cε(ε, Ω) and C£' = Cε(ε, c0, ca, cd, Ω). Here we have used the
Gagliardo-Nirenberg inequality (1.1) and the Poincare inequality (1.3).
Similarly, the other terms can be estimated as

|(Φ3(ω), 0)| < I M | ? + C'ε\Lll2ω\\\Lω\2,

\(Φ4(ω), θ)\ < || ψ \\\ + C.ΊL1'^!! |Lco|2,

\(Φ5(ω), θ)\ < £- || φ ||? + C'ε\L^2ω\l \Lω\2

with Cε = Cε'(ε, c0, ca, c,,, ί3), and hence Lemma 4.2 immediately follows. This
completes the proof.
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PROOF OF PROPOSITION 4.1. The existence and uniqueness for Problem
3 follow directly from the general theory of linear parabolic equations
(cf., [7], [9]). It remains to show the estimate (4.2).

Let θ be a solution to Problem 3. For all veH^, (4.1) implies that

(4.4) <0f, t?> + κ(F0, Pι>) = (Φ(ύ, ώ) + Λ, t?) - (w F0, v)

in the sense of distributions on (0, T). Take υ = θ(i) in (4.4) to get

<0f, 0> + κ(7θ9 Vθ) = (Φ(U9 ώ) + fc, 0) - (ΰ - F0, θ).

Taking ε = κ/6 and φ = θ in Lemma 4.2, we then have

+ ιc||0||f < |(Φ(ΰ, ώ), 0)1 + |(fc, 0)1 + |(ii- F0,
2 αί

| | ? |AM| 2 + |L1/2ώ|* + |L1/2ώ|||Lώ|2).

Since

\(u VΘ, θ)\ = |(ύ Fe, 0)| < l ί l β l l ί l l j f l l a < C l l δ l U \\e\\t \\Θ\\\I2\Θ\V2

we have

(4.5) l|0|| + κ||0| |?^—
έίί K

Inequality (4.2) immediately follows from (4.5). This completes the proof.

5. Proof of Theorem 1.1

We here prove Theorem 1.1 via the Banach fixed point argument.

PROOF OF THEOREM 1.1. Let u0 e V, ω0 eH^ and 00 eL2. For M > 0 and
T> 0, we denote U = (u, ω, 0)eJ&?(M, T) if U = (u, ω, 0) has the following
properties:

, T; K)nL2(0, T; #2), ωeC(0, T; //έ)nL2(0, T;

0eC(0, T;L2)ΠL2(0, T; Hft;
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I I I C / I I I 2 = l l « l l c ( o . Γ i K ) + \\L1/2ω\\2c«,,τ ,Li) + l |0| |§<o,r;L>)
(π) 2 2 2

(iii) w(0) = tt0, ω(0) = ω0> 0(0) = 00 .

We fix M > 0 so that

|| u0 ||f + |L1 / 2ω0ll + I0oll + — II h \\l(0,τ.,L^ < M/2.
K

For each Ό = (ΰ, ώ, 0)eJ2?(M, T), we define a map Γ by Γ(U) = U, where
U = (u, ω, 0) satisfies the system

and

ΛΓ rr
(wf - (v + vr}Au, φ)dt = (2vrcurl ω + f(θ) -u Vu, φ)dt,

Jo Jo
T ΓT /T

(ωf, ψ)dt+\ (Lω,\l/)dt + 4vr\ (ω,\l/)dt
3 Jθ Jo

r τ _ ΛΓ
= (2v rcurli< + flf(0),^)Λ- b(ΰ,ώ,ψ)dt

Jo Jo

f τ ΓT f τ r τ
(θt, φ)dt + κ\ (Vθ, Vφ}άt = (Φ(ύ, ώ) + h,φ)dt-\ (« Vθ, φ)dt

Jo Jo Jo Jo

for all (?eL2(0, Γ; H), ^eL2(0, T; L2) and all_(/>eL2(0, T; H$. As it follows
from Propositions 2.1, 3.1 and 4.1 for each U = (ΰ, ώ, #), there exists exactly

one triple U = (u, ω, 0) such that weC(0, Γ; F)nL2(0, Γ; /f2), ωeC(0, T; H<J)
ΠL2(0, T /f2), 0eC(0, Γ;L2)nL2(0, T Ho1) and U satisfies the above-

mentioned system.
Let F = 2v rcurlώ + f(θ) -ΰ-Vΰ. Then we have the estimate (cf., [10])

\F\\ < 12v2 ||ώ ||2 + 3|/(0)|2 + C\\ΰ\\\\Aΰ

<C(\L^2ώ\l + \θ\2

2+ \\u\\\\ Aύ\2).

This together with (2.2) yields

(5.1) < I N o l l 2 + C(T||L1 / 2ώ||2

( 0,Γ ; L 2 )

It follows from (3.2), (4.2) and (5.1) that if L/eJ^(M, T), then the inequality
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M
III U H I 2 < — 4- C(M2T1/2 + MΓ+ M2T)

holds for some constant C > 0 depending only on v9 vr9 cθ9 ca9 cd9 K and
Ω. Thus, there exists a small Tx > 0 such that Γ maps JS?(M, 7~ί) into

jSf (Λί, TJ. We next show that Γ is a contraction map on f̂ (M, T2) for
sufficiently small T2 > 0. For this purpose, we consider Ut = (ui9 ώh θ^e

&(M, T), i = 1, 2. Set Ut = Π^), ί7 = [/! - L/2 and U=Ul-U2. Then,
by the same argument as in Sections 2-4 (cf., Section 6), we obtain

IMIC(0,Γ;K) + (V + V,)

H W I I C ( O . T K)

0,T;F) \\Lώ1 ||L2(0,Γ;L2)

;F) II L

and

I M2 I I C ( O . Γ ;

^1/2 II "2 llέ(0,Γ;F) II θ ||L2(0.r;Hi) II « | | C (O.T;L>)

T 1 / 2 | | w | | έ ( 0 , Γ ; F ) l | W l + M2llc(0,Γ;nM("l

T||L1/2ώ||2

( 0, r ; L 2 ) | |L
1/2(ώ1 + ώ2)||2(0,Γ;L2)

1 + ώ2)||L2(0,T;L2)).

It follows that if t/ jeJSf (M, T), then

Hence, Γ is a contraction map on JSf (M, Γ2) for sufficiently small

T2 > 0. Therefore, if 7^ = τrim(Tl9 T2), the Banach fixed point theorem implies
that mapping Γ has a fixed point U in JS?(M, T^) which solves our problem

(P). The proof of (i) is complete.
We now prove the assertion (ii). In view of the proof of (i), it suffices

to give a priori bounds for (w, ω, θ) which satisfies the system

(5.2) ut + (v + vr) Au + Pu Vu = P(2vr curl ω +
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(5.3) ωt + Lω + u Vω + 4v rω = 2v rcurlw +

(5.4) θt-κAΘ + u VΘ= Φ(u, ω) + ft,

w(0) = w0, ω(0) = ω0, 0(0>=00

Taking the scalar product of (5.2) with Au, we obtain

(5.5) H U H ? + (v + vr)\Au\l = ~ (u Pw, ΛH) + 2vr(curlω, Aw) +
2 £lt

By the Sobolev inequality (1.2) and the Gagliardo-Nirenberg inequality (1.1),
we can estimate the right-hand side of (5.5) from above by

< C\\u\\\12 \Au\\'2 + 2vr\\ω\\,\Au\2 + Mf\θ\2\Au\

where C is a positive constant depending only on c0, ca9 cd and Ω. Thus, we

have

1 I I II A Λ I 1^, I / \ ^ ' I 4

at 2 \_ (v + vr) v + vr v + vr

with C > 0 depending only on c0, cα, cd and Ω, and so

lulids

(5.6)
I l ί II 17 II" v* Λ/f t

ι ιβ ι ι? ώ
- 4 - v ι v -t- v v - h v1 κ r/ ' r ' i

with G! > 0 depending only on c0, cα, cd and Ω. Similarly, we obtain

3 Γ
|L1/2ω(ί)li +- \Lω\2

2ds
2J 0(5.7)

< \Ll<2ω0\
2

2 + C2\ (||U | |? + \L^2ω\\ + v2 \\u\\2 + M2

g\\θ\\2)ds
Jo

with C2 > 0 depending only on c0, ca, Q and Ω. Taking the scalar product
of (5.4) with θ, we have

2 at
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It is easy to see from Lemma 4.2 that for any ε > 0 and any η > 0, the
inequality

(5.8)

\(Φ(u, ω), 0)|

< * ||0||2 + ±|X«|2 + ΊlLωl2 + C( L^L. | |M | |6 + J_ |Ll/2ω |6 + IT. |Ll/2ω |4

8 9 9 \ C-fc^ Mlί-^ ITΔ Δ \ ofV lyrV Λ,

holds for some constant C > 0 depending only on c0, ca, cd and ί2. On the
other hand,

K 2d2

\(h, θ)\ < \h\2\θ\2 < d\h\2 \\e\\,. < - ml + |Λ||.
8 K

This together with (5.8) implies that

^ \θ\\ + — ||0||2 < ε\Au\l + η\Lω\\ + — \h\2

2at 2 K

\u\\6,^ 1

ε/c Y\K

where C3 is a positive constant depending only on c0, cfl, cd and β. From
this it follows that

(5.9)

!κ Γf P Γr 4ί/2 Γ
-̂ I l 0 | l i d s ^ | 0 o l l + fi l^nl ids + i? |Lω|ids + - \h\\ds

2 Jo Jo Jo κ Jo

f / v4 4- 4 2

εκ ηκ K

We take ε > 0 and η > 0 so that

Then (5.6), (5.7) and (5.9) together imply

\\u(t)\\\ + \L^2ω(t)\l + 5(V+

Λ

Vr} \Au\\

K \ V + V r
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(5.10) + * - + M \h\lds
K2\V + V, / J o

+ Pl Γ flunks + γ, fV / 2ω|f ds + y2 Γ|L1 / 2ω|f ds
Jo Jo Jo

o

where the constants ρ1,y1,y2 are denned by

^ 2
f2

and C4 > 0 is a positive constant dpending only on c0, cfl, cd and ί2. Since
there exist positive constants c( — c((Ω) and c'2 = c'2(cQ, cfl, cd, Ω) such that

\\u\\ ,<c[\Au\2 for we(H 2 ) 3 nK

and

\L1/2ω\2<c'2\Lω\2 for ωe(H2

we can conclude with the aid of (5.10) that if

(5.11) C4cί2v r

2< and
4

then

\\u(t)\\ I + \L1/2ω(t)\2

2 + (v + vr) Γ \Au\\ds + I |Lω|ids
Jo Jo

< II M o | | 2 + \Ll'2ω0\l + -* ^ + M2 |^0|
2

/C \ V + V,
(5.12)

Γl lMHfds + y! Γ|L1/2ω|^s + y2 Γ
Jo Jo Jo
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Now, assume that

Γ* / Λ/f2 \ TOO

\h\\dt <c,

(5.13)

V + V

where c3 = 4 1 min(c3, c3), c3 = ( - r- and c3 is a positive root of
2 p i c

4- v /2

r-
i i

2) = 0. Then,

(5.14) ||κ(ί)||ϊ + |L1/2ω(ί)|2 < 4c3 for all ί.

Indeed, || w(ί)||2 -f |L1/2ω(ί)|2 is a continuous function of ί, and hence we have

(5.15) ||ιι(ί)||? + \L1/2ω(t)\2

2 < 4c3 for small ί.

On the other hand, we can show that

and

ι ί*' Γ' f
is > 0-7l Γ |L 1 / 2 ω(s)l fώ~y 2 Γ'

Jo Jo

whenever ||w(s)||2 + |L1/2ω(s)|i < 4c3 for all 0 < s < t. These inequalities

follow from the estimates

ίγ _j_ y \ y _|_ y

I Aliic\\2 n II ιι(<!\ 11^ ^> ^ II j>^c^ II ̂  n II n fcΉI ^
- i/iw^ύ;^ PI II M\Λ; II i -̂ ~τ ^Γ II M\ύ; II i r i l l M \ ύ / l l ι

2ci2

and

Thus, we deduce from (5.12) that
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||u(ί)||? + \Lίl2ω(t)\2

2 < H u o l l ? + \L1'2ω0\
2

2 + ̂  (-^- + M9

2 ) I |λ | l</s

provided that ||n(s)||? + |L1/2ω(s)|^ < 4c3 for all 0 < s < ί. This together with
(5.15) implies (5.14). We thus obtain the desired a priori bounds from (5.9),
(5.12) and (5.14) provided that (5.11) and (5.13) are satisfied. This completes
the proof.

6. Uniqueness of strong solutions to Problem (P)

We here prove the uniqueness of strong solutions to Problem (P) we
constructed in the previous sections.

Our uniqueness theorem is stated as follows.

THEOREM 6.1. A strong solution (u, ω, θ) of Problem (P) is unique.

PROOF. Let (w ί5 ωί? #t ), i = 1, 2 be two solutions of Problem (P) with the
same initial value. For simplicity in notation, we put

u = ui — u2, co = ωt — ω2, θ = θί — Θ2.

In terms of these new variables we get the following inequality

(6.1)

2 at

< \b(u, «!, Au)\ + \b(u2, u, Au)\ + |(2vr curlω, Au) + \(f(θ,)-f(θ2), Au)\.

We then estimate the right-hand side of (6.1) term by term. Using the
Gagliardo-Nirenberg inequality (1.1) and Sobolev inequality (1.2) we have

(6.2) \b(u, «„ Au)\ <--\Au\l + C\\u\\l ||u, h
O

(6.3) \b(u2, u, Au)\ < (^-^\Au\\ + C || «2 ||ί ||
O

Standard calculations under the assumption (1.4):

\f(θ,)-f(Θ2)\2<Mf\θ1-θ2\2

give the estimates
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(6.4) I (2 vr curl ω, Au)\ ̂  + ^r\Au\2

2 + C\L1/2ω\2

2
O

and

(6.5) \ ( f ( Θ J - f ( θ 2 ) 9 Au)\ < (^-^ \Au\l + M}\θ\\.
o

Inequalities (6.1) through (6.5) together imply

~ l l " l l ? + (v + vr)|Xιι||
at

^ /~*( \\ 11^2 \\ it II I A ιι I ι l l « j | | 2 | | . , f | | 4 ι ^ | / Ί | 2 ι ^ | r l / 2 . , , v | 2 \
5> {-s\\\ U II i II "i || i I All 112 ~Γ || W || j || 1̂ 2 | l l " τ " | f | 2 ' l - ' - J ^l2/

As in Sections 3 and 4, and by the assumption (1.4)

\9(θί)-g(θ2)\2<Mg\θl-θ2\2ί

we see that the functions ω and θ satisfy

at

and

(6.6) ^\θ\l + κ \ \ θ \ \ \ < \ ( H , θ ) \ ,
at

where

H = (u ?Θ2, θ) - Φ(ult ωj + Φ(u2, ω2).

In view of (0.4) through (0.8) which define Φ, the right-hand side of (6.6) is
estimated in the following way:

|(u VΘ2, 0)| = |(M Vθ, Θ2)\ < \u\6\rθ\2 \Θ2\3

!(«!> - Φ,(u2), θ)\<c |Ftt| |F(Ml + u2)| \θ\
Ω
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^l l f l l l i + C l l u l l ϊ l l ί i i + t i z l l J Λ ^ + M^,

\(Φ2(u1,ωl)-Φ2(u2,ω2),θ)\

< C(\ru\2\r(Ul + u2)\3\θ\6 + H3|F(tt l + u2)\2\θ\6

+ K + ω 2 | 3 |Fw| 2 |0 | 6 + M2 |ω1 + ω2\3\θ\6)

? + C(\\u\\\\A(Ul + u2)\2 K + u2 ||? + |L1/2ω|2 \\u, + «2||?

+ ω2)|f | |u||? + IL^ωlllL^K + α>2)|2),

4

KΦ/ίωJ - Φ,(ω2), θ)\ < C \7ω\ \7(ω, + ω2)\ \θ\
3 JΩ

< I I ^ H f + C|L1 / 2ω|i |L1/2(ωι + ω2)|2 |L(ωι + α>2)|2,
6

and

KΦsiωJ - Φ5(ω2), θ)\

|Fω

Finally, combining the above estimates gives

i|| ii I? + IL1'2^ + |0|2) < S(ί)(| |M||? + \L^2ω\\ + \θ\2

2),
at

where S(t) is an integrable function on [0, T]. Now the application of
GronwalΓs inequality implies

This completes the proof.
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