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0. Introduction

In 1960 Goldie [7] showed how to develop a structure theory for semi-
prime rings with maximum condition in terms of what he called closed ideals.
An alternative and slightly different definition was given by Lesieur and
Croisot [9] and used by Divinsky [6]. The aim of this paper is to define
analogous concepts for Lie algebras, and to establish their basic properties.

In §1 we introduce two analogous notions for Lie algebras, which we
call closed ideals and ^closed ideals to distinguish them. They are defined
in terms of the closure cl(I) and ^closure cl*(I) of an ideal /, see Definitions
1.1 and 1.2. We show that cl{I) £ cl*(I) and that the two closures coincide
for semisimple Lie algebras (defined below). The basic properties of closed
ideals are established in §2, where we show in particular that the closure of
an ideal need not be an ideal—indeed it need not even be a vector subspace.
Analogous questions for cl* are investigated in §3; in contrast, the *closure
of an ideal is always an ideal.

In § 4 we study semisimple algebras. The main result is that the following
four concepts are equivalent for semisimple algebras: centralizer ideal, comple-
ment ideal, closed ideal, and *closed ideal. In §5 we discuss, for arbitrary
Lie algebras, relations between centralizer ideals, complement ideals, closed
ideals, *closed ideals, and ideals with no proper essential extension, where
the latter concept is analogous to one defined for rings in Behrens [5] and
Goodearl [8]. The main result is that *closed ideals are always closed; closed
ideals are always complement ideals; and being a complement ideal is equiva-
lent to having no proper essential extension. Moreover, no other implications
between these properties are valid. We also show that the sum of two com-
plement (respectively closed) ideals need not be a complement (respectively
closed) ideal. Finally, in § 6, we investigate various chain conditions on closed
and *closed ideals, extending work in Aldosray and Stewart [3] and answering
part of Question 1.7 of that paper. In particular we show that the ascending
chain condition for complement ideals is equivalent to the descending chain
condition for complement ideals.

All Lie algebras considered are of finite or infinite dimension over a field
k of arbitrary characteristic, unless otherwise specified. Most notation used
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is standard, and may be found in Amayo and Stewart [4], Aldosray [1], or
Aldosray and Stewart [2, 3]. We write /<] L if / is an ideal of L, and I <L
if / is a subalgebra. The centralizer of / in L is written CL(/), and fx(L) is
the centre of L. The subalgebra generated by a subset X ^ L is denoted
<X>, and the ideal generated by a subset X ^ L is denoted <X>L. If X = {*}
is a singleton we write <x>L in place of <{x}>L.

An ideal £<i L is essential if E intersects nontrivially with every nonzero
ideal of L. The singular ideal of L is

Z(L) = { x e L : [ x , £ ] = 0 for some essential ideal E of L} .

L is semίsίmple if it has no nonzero abelian ideals: by Aldosray and Stewart
[3] Lemma 2.2 this is equivalent to Z(L) being zero.

Any other notation is defined as it is needed. The end (or absence) of
a proof is signalled by a box ••

1. Alternative definitions of closed ideals

In the ring-theoretic literature, several different definitions of the closure
of an ideal, and of closed ideals, may be found. We wish to investigate their
analogues for Lie algebras. In this section we introduce the main concepts
to be studied in this paper.

The first definition is a direct analogue of that originally introduced by
Lesieur and Croisot [9], and used by Divinsky [6].

DEFINITION 1.1. The closure in L of an ideal J o L is

clL(I) = {xe L\(yyL Π/ Φ 0 for all 0 Φ y e <x>L} .

When L is clear from the context we may write just cl(I).

The second definition is analogous to that used by Goldie [7]:

DEFINITION 1.2. The ^closure in L of an ideal / < L is

c/*(j) = {xe L|[x, E~] ^ / for some essential ideal E of L}.

When L is clear from the context we may write just cl*(I).

We also require a module version:

DEFINITION 1.3. Let M be an L-module, and S a submodule of M. The
^closure of S in M is

d*(S) = {xeM\xE^S for some essential ideal E of L} .

It is easy to show that



Closed ideals of Lie algebras 615

cl*(I) = {x G L|[<x>L, K] ^ / for some essential ideal E of L} .

The two notions of closure are almost, but not exactly, the same. The relation

between them is given in the next result.

THEOREM 1.4. For every Lie algebra L, and every ideal I of L, cl(I) ^

cl*(I). If L is semisίmple then for every ideal I of L, cl(I) = cl*(I).

PROOF. Let x e cl(I). Let E = {z e L: [<x>L, z] c /}. We claim that E

is essential in L. This is true provided, given 0 Φ J<ι L, we can find zeJ,

zΦO, such that [<x>L, z] £ /. if j n <χ>L = 0 then [<x>L, J ] = 0 g / , hence

any OφzeJ suffices. If J Π <x>L Φ 0 then pick 0 φ y e J Π <x>L. Since x e

cl(I) we have < y > L n / ^ 0 , so [<x>L, z] ^ / for ze{y}LΠI ^ J. Therefore

£ is essential, and by definition x e c/*(7). Therefore c/(/) ^ c/*(/).

Suppose that L is semisimple and x e cl*(I)\cl(I). Then there exists an

essential ideal E of L such that [<x>L, £ ] ^ /, and there exists 0 Φ y e <x>L

such that O > L Π / = 0. Then «>;>L Π E)2 c [<^>L, <χ>L Π £ ] c ( y ) ^ Π / = 0.

Since L is semisimple <^> L Π£ = 0, a contradiction. •

EXAMPLE 1.5. If L is not semisimple then cl(I) can be strictly smaller

than c/*(/).

Let A be abelian with B < A, B Φ A. It is easy to check that clA{B) = B

but cl%(B) = A. •

DEFINITION 1.6. An ideal /<ι L is closed in L if and only if clL(I) = I.

DEFINITION 1.7. An ideal /<] L is *closed in L if and only if cZ£(/) = /.

By Example 1.5, closed ideals need not be *closed; but * closed ideals are

always closed by Theorem 1.4. The following characterisation of closed ideals

is immediate from Definitions 1.1 and 1.6:

PROPOSITION 1.8. An ideal / < L is closed if and only if for all xφl9

there exists 0 Φ y e <x>L such that (y}LΓ\I = 0. •

COROLLARY 1.9. An ideal / < L is closed and essential in L if and only

if I = L. •

2. Closed ideals

In this section we establish the basic properties of closed ideals, in the

sense of Definition 1.1.

LEMMA 2.1. Let /, J be ideals of L. Then

(a) / ^ J implies that cl(I) Ώ cl(J).

(b) Let I, J^L. Then cl(I ΓιJ) = cl{I) Π cl{J).
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(c) The intersection of any set of closed ideals is always closed.

(d) // K is an ideal of L and KΠcl(I) Φ 0 then KM φO.

(e) cl(cl(I)) = cl(I).

(f) Let I ^ J<ι L, with J closed in L. Then J/I is closed in L/L

PROOF, (a) This follows from the definition.

(b) From (a) it follows that cl(I ΠJ)^ cl(I) Π cl(J). Now suppose that

x E cl{I) Π cl(J). Let 0 Φ y e <x>L. Since x e cl(I) we have <y>L Π / Φ 0. Let

OΦZG (y}L Π /. Since <y>L Π / c <X>L and x e cl(J) we have <z>L Π J φ 0.

Therefore < } ; > L Π / Π J # 0 , so xec/(/ΠJ). Therefore cl(IΠ J) ^ cl(I)Γ\cl(J)

and we are done.

(c) Let {/α} be a family of closed ideals of L, and let / = f] Ia. Clearly

7<ιL. If bφl then there exist some α such that b ^ / α . Since Jα is closed,

there exists Oφae <b>L such that Ia Π <α>L = 0. Then / Π <α>L = 0, so / is

closed.

(d) If KΠcl(I) φ 0 then there exists OφkeKΓϊcl(I). By the definition

of c/(/), we have <fc>LΠ/ Φ 0. Therefore KM Φ0.

(e) By (a) we have cl(I) ^ cl(cl(I)). Suppose that x e cl(cl(I)\ Let 0 φ

ye(x)L. Then <>0>LIΊc/(/) Φ 0. By part (d) (y}LMφ0. Therefore xe

cl(I). So cl(cl(I)) ^ c/(/) and we are done.

(f) Let bars denote images modulo /. Suppose x e L is such that <y>LΠ

JΦ0 for all 0^>>e<x> r . Then <^> L ΠJ / 0 for all y e <x>L\/. On the

other hand, if y e I then (y}L Π J Φ 0 since J 3 /. Therefore x e c/(J) = J so

xeϊ. •

We do not know whether a statement similar to part (b) holds for

arbitrary intersections. Note also that in Lemma 2.1 we have not stated that

c/(/)<ι L. It is important to realise that this is not the case. Indeed a

stronger statement holds:

EXAMPLE 2.2. If /<ι L then cl(I) need not be a vector subspace of L.

Let L have a basis

{x, y, z, w, δ, ε} (1)

over a field k, where

[x9y] = z= -[)>,x]

[x, <5] = w = - [<5, x]

[>, ε] = w = - [ε, y]

and all other products are zero. Then all triple products are zero, so the

Jacobi identity holds and L is nilpotent of class 2.
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Let / = <w, (5, ε> <α L. We show that cl{I) is not a vector subspace. The

following notation is useful: if u e L then write

if the x-coordinate (relative to the basis (1)) of u is nonzero, and similarly if

x is replaced by any other basis element.

If a « x or a « y, then z e <α>L, and <z>L = <z>, so <z>L Π / = 0. There-

fore by Definition 1.1, a $ cl(I). Thus cl(I) £ <z, w, <5, ε> = (7, say. Let ueU.

If w « <3 or u « ε then <w>L = <u, VV>. Moreover, every element i; G <M>L\<W>

satisfies v & δ oτ v & ε, and <ι?>L = <u, vv>. Therefore <t;>L Π / a w, so <ι;>L Π

/ # 0. But if 0 / i; G <w>, then <t;>L = <w>, and <i;>L Π / # 0. Therefore

M G c/(7) provided M « δ or w « ε. Otherwise, u e <z, vv>, so <M>L = <M>. NOW

u G c/(/) if and only if u e <w>. We conclude that

c/(/) = «z,w,(5,ε>\<z,w»U<>v>

which is not a vector space. •

This example sheds some light on possible modifications of the notion

of closure that would make the closure of an ideal always an ideal. Here

are two possibilities:

(a) cl'i!) = Π {J\I ^J^U J closed in L}.

(b) cΓ(I) = <c/(/)>L.

Let us compute these for the ideal / of L in Example 2.2. Clearly cl"(ϊ) =

<z, w, <5, ε> = <z> + /. Suppose that J is a closed ideal that contains /. Since

ί c j , d(I) c c/(j) = J<i L. Hence c/"(J) c j . But now J contains ζx(L) =

<w, z> which is essential, so J = L by Corollary 1.9. Therefore cl\I) = L. In

particular, cΓ(I) φ cΓ(I).

3. *Closed ideals

Next we establish the basic properties of cl*9 and of *closed ideals, using

Definitions 1.2 and 1.7.

LEMMA 3.1. Let I, J be ideals of L. Then

(a) If I^L then I <= c/*(/).

(b) ///<L then cί*(/)<L.

(c) If I=>J then cl*(I) 3 c/*(J).

(d) Lei /, J<ι L. Then cl*(I Π J) = c/*(/) Π c/*(J).

(e) T/ie intersection of two *closed ideals is *closed.

(f) // / ^ J < i L, /<] L, and J is *closed in L, then J/I is *closed in L/I.

PROOF, (a) Use £ = L in Definition 1.2.
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(b) Let xl9 x2e cl*(I), y e L, and λ, μek. Let £ f (i = 1, 2) be essential

ideals of L such that [x,, Eβ c / (i = 1, 2). Then

ίλxx + μx29 Eλ Π £ 2 ] c [X l, £ J + [χ2, £ 2 ] c / .

Hence d*(/)<aL.

(c) This follows from Definition 1.2.

(d) By part (c) we have c/*(/nj)cc/*(/)Πc/*(J). Suppose that

xec/*(/)Πc/*(J). Then there exist essential ideals E and F such that

[x, E]^I and [x, F] s J. Then £ Π F is essential, and [x9EΓ\F]^IΓ\J.

So x e d (/ΠJ).

(e) This follows from (d).

(f) Let x 4- / G cl*(J/I). Then there is an essential ideal £ of L// such

that [x + /, £] £ j / j . Let £ = £// where I <^E^\L. Then £ is essential in

L by Aldosray and Stewart [3] Lemma 2.3; and [x, £] e J. Thus x ε c/%7) =

J. Therefore x + / ε J/I as required. •

REMARKS 3.2. 1. The analogue of part (e) of Lemma 2.1 does not hold

for cl*\ see Example 3.3 below.

2. Part (d) of Lemma 2.1 does not hold for cl*: see Example 5.11. •

EXAMPLE 3.3. c/*(c/*(/)) need not equal cl*(I).

Let L have basis aί9 a2, bί9 b2, where [ah b{] = at and all other products

are zero. It is easy to see that £ is essential in L if and only if £ 3 A =

<fll9 α2>. Hence for any ideal / we have cl*(I) = {x e L: [x, ,4] ^ /}. There-

fore c/*«έi1» = <a l 9 α2, &!>. However, c/*(c/*«a1» = L.

In view of this example, we cannot conclude that c/*(/) is always

*closed. We should perhaps therefore define the **closure cl**(I) to be the

smallest *closed ideal containing /. If cl*(I) = I then c/**(/) = /; moreover

c/**(c/**(/)) = /. Clearly

where c/*(α+1)(/) = c/*(c/*(α)(/)). We do not consider cl**(l) further here. D

4. Semisimple algebras

In this section we specialise to the case of semisimple algebras, where

many of the concepts under discussion become equivalent. We begin by

recalling the appropriate definitions: see also Aldosray and Stewart [2, 3]. An

ideal CoL is a centralizer ideal if there exists an ideal / < L such that

C = CL(I). An ideal K < L is a complement ideal if there exists an ideal
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/<α L such that KΠI = 0 and if J 2 K, J<α L, and JΓίl = 0, then J = K.

That is, K is maximal subject to K Π / = 0. We say that K is a complement

to I.

The main result is:

THEOREM 4.1. Let L be semisimple. Then the following are equivalent:

(a) I is a centralizer ideal of L.

(b) / is a complement ideal of L.

(c) / is a closed ideal of L.

(d) / is a *closed ideal of L.

We first prove:

THEOREM 4.2. (a) Let I be an ideal of L with Z(I) = 0. Then every

complement in I is a ^closed submodule of I.

(b) Let I be an ideal of L. Then every ^closed ideal of L contained in

I is a complement in I.

PROOF, (a) Suppose that K is a complement (to X9 say) in /. Let

x E cl*(K) Π X. Then there exists an essential ideal E such that xE ^ K.

Therefore xE^KΠX = 0. Therefore x = 0 since Z(I) = 0, so cl*(K)ΠI = 0.

Since K is a complement, K = cl*(K\ so K is *closed.

(b) This follows from Theorem 1.4, and Corollary 5.3 and Proposition

5.4 below. •

We can now give the:

PROOF OF THEOREM 4.1. Using Theorems 1.4 and 4.2, and Lemma 2.3

of [2], it remains to show that if L is semisimple and / is a centralizer ideal

in L, then / is closed and *closed. Since cl(I) = cl*(I) when L is semisimple,

it suffices to consider *closure. Let / = CL(K) where K < L Suppose / is

not *closed, and let x e cl(I)f)K. By definition [<x>L, E] c / for some essen-

tial ideal E of L. Then [<x>L, E~\2 = 0, which implies that [<x>L, E~] = 0

by semisimplicity. Therefore c/*(/)UK = 0, so cl*(I) s CL(K) = I. Hence

x G Z(L), so x = 0. •

We note a further result:

PROPOSITION 4.3. // L is semisimple and /<] L, then CL(I) = CL(c/(/)).

PROOF. We have / c d(J), so CL(/)2CL(d(ί)). Let x e CL(/). Then

/ c CL«x>L), so that cl(I) <= c/(CL«x>L)) by Lemma 2.1a. But CL«x>L) is

a closed ideal by Theorem 4.1, hence c/(CL«x>L)) = CL«x>L). Therefore

[<x>L, c/(/)] = 0 and x e CL(d(/)). Hence CL(/) = cL(c/(/)). D
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5. Relation to centralizers and complements

In this section we discuss relations between closed ideals, *closed ideals,
centralizer ideals, complement ideals, and essential extensions, where the latter
is defined by analogy with ring theory, see Behrens [5] and Goodearl [8],
as follows:

DEFINITION 5.1. Let / < L . Then J is an essential extension of / if
J<] L, J 3 /, and whenever K<α L, KΠJ Φ 0, then KΓ\I Φ0. It is a proper
essential extension if J Φ I.

The aim of this section is to prove that the implications shown by the
arrows in the following diagram are valid, and that no others are.

*closed

complement < >• n o P™^ 1 e s s e n t i a l

extension

We first prove the implications shown, noting that *closed implies closed by
Theorem 1.4.

PROPOSITION 5.2. // J is an essential extension of /, then J ^ cl(I).

PROOF. If 0 φ x e J then <x>L ^ j . Let 0 φ y e <x>L. Then <y>L ^ j .

So <y> L Π/^0 by Definition 5.1. Thus xecl(I). •

COROLLARY 5.3. // / is closed then I has no proper essential extension.

D

PROPOSITION 5.4. // / is an ideal having no proper essential extension,
then I is a complement ideal.

PROOF. If / = L there is nothing to prove. If / φ L then L is not an
essential extension of /, so there exists 0 φ X<i L, IΓ\X = 0. Choose X<i L
maximal with respect to K Ώ. X, IΠ K = 0. Then K is a complement to /.
Let J < L be maximal such that J 2 /, JΠK = 0. We claim that J is an
essential extension of /. For a contradiction, suppose that 0 φ J' ^ J, J' <ι L,
andJ'Π/ = 0. Then / + f ^ J and J'ΠI = 0. Then / + J' <Ξ J and / + J' =



Closed ideals of Lie algebras 621

/ 0 J'. Now (/0J ' )ΠX = 0, so (/ ®J') + K is direct, and we may write it
as (/ © J') © K. So / Π (J' © K) = 0, whence Jf ^ K by maximality. But this
is a contradiction. Thus J is an essential extension of /, so J — I. Therefore
/ is a complement ideal. •

PROPOSITION 5.5. // / is a complement ideal then I has no proper essential
extension.

PROOF. Let / be a complement ideal, so that /ΠX = 0 f o r X < i L maxi-
mal with this property. Suppose that /' is a proper extension of /. Then
ΓΠKΦO. Therefore KΠ/ Φ 0, a contradiction. •

This completes the proofs of the implications. That no others exist is shown
by the following sequence of examples.

EXAMPLES 5.6. If an ideal / has no proper essential extension, then /
need not be closed.

Let L be as in Example 2.2, and let / = <vv, <5, ε>. We have proved in
Example 2.2 that / is not closed. We claim that / has no proper essential
extension. Let I < J<o L. If u e J\I then either u « x, u « y, or u e I + <z>
and u « z. In the third case, J ^ / + <z>. Suppose u « x. Then J a [w, y] =
OLZ + βw where α φ 0. Therefore z e J. Similarly if u « y we have z e J . We
conclude that J Ώ.I + <z>. But <z> o L and <z> Π / = 0, so J is not an
essential extension. •

EXAMPLE 5.7. Complement ideals need not be closed.
This follows from Example 5.6 and Proposition 5.4. •

It follows that complement ideals need not be *closed, since *closed
implies closed.

EXAMPLE 5.8. If / is a closed ideal of L and / ^ J<i L, it need not
follow that / is closed in J.

Let L be as in Example 2.2, and let Z = <z>. First we claim that Z
is closed in L. To prove this, let a φ Z. Then a « x, y, <5, ε, or a e <z, w>. If
any of the former hold, then w e <α>L. Now <w>L = <w>, so <w>L Π Z = 0.
Therefore a φ cl(Z). It follows that cl(Z) c <z, w> = 17, say. If u e (7 then
<M>L = <w>. Therefore u e cl(Z) if and only if u s Z. So Z is closed.

Let B = <x, y, z, w> <i L. We claim that Z is not closed in B, and indeed
that x e clB(Z). To prove this, observe that <x>B = <x> + <z> and that the
only ideals of B lying inside <x> H- <z> are <x> 4- <z>, <z>, and 0. Thus if
0 φ y e <x> 4- <z>, we have (y)* 9 z, so <y>*ΠZ^O. •

To end this section we show that three plausible conjectures are false.
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EXAMPLE 5.9. The sum of complement ideals need not be a complement
ideal.

Let L have basis {x, y, z, u, v} where

[ x , y ] =z= -[y,x]

[x,M] = u= -[u, X]

[y, y] = 0 = -|>,)>]

and all other products are zero. The Jacobi identity follows easily. Let V =

<M, v} <i L, Z = <z> <ι L. We claim both V and Z are complement ideals.

Clearly KΠZ = 0.

Suppose that V Ώ. V, V Π Z = 0. If α G F and a « x then without loss

of generality α = x 4- λv + ft for λ e k, b e <y, z, M>. Then V contains [α, y] =

z — /b, so Fr contains z. Therefore α Φ X. Similarly a & y. Thus ae V + Z,

so α e F , and V is a complement ideal.

Now let Z' ΏZ, VΠ Z' = 0. Let α e Z'\Z. Then α « x or a « y. If

α « x then [α, u] = λu, λΦQ, a contradiction. Similarly a « ^, a contradic-

tion, so Z is a complement ideal.

On the other hand, Z + V is essential and proper in L, so is not a

complement ideal. •

EXAMPLE 5.10. Sums of closed ideals need not be closed.

Take L as in example 5.9. It can easily be shown that Z and V are

closed. But Z + V is essential, so is not closed. •

We do not know whether sums of *closed ideals are always *closed.

EXAMPLE 5.11. Part (d) of Theorem 2.1 is false for cl*.

Let L= £f(V), the Lie algebra of all linear maps V-*> V where dimk V =
Ko

 B v Stewart [10], see also Amayo and Stewart [4] p. 173, the lattice of
ideals of L is
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where F is the algebra of linear maps of finite rank, T those of trace zero,

and S the scalar multiples of the identity. The essential ideals are T + S,

F + S, and L. It follows easily that cl*(T) = L, and then S Π T = 0 but

snc/*(Γ)#o.

6. Chain conditions

We define the classes Max-CL and Max-CL* of Lie algebras with the

ascending chain conditions on closed and *closed ideals respectively.

PROPOSITION 6.1. (a) If I ^ L2 then cl*(I) = L.

(b) // d(L) is essential in L then cl*(I) = L for all / o L and L e Max-CL*.

(c) // L is hypercentral then c/*(J) = L for all /<] L and L e Max-CL*.

PROOF, (a) Take E = L in the definition of cl*(I).

(b) Take £ = d(L) in the definition of c/*(/).

(c) If L is hypercentral then d(L) is essential: now use part (b). •

Theorem 4.1 implies that

S Π Max-c = S Π Max-ci = £ Π Max-CL = = S Π Max-CL*

where £ is the class of semisimple Lie algebras. Here Max-c is the class of

Lie algebras with the maximal condition on centralizer ideals, and Max-ci is

the class of Lie algebras with the maximal condition on complement ideals:

see Aldosray and Stewart [3].

The next theorem answers Question 1.7 of Aldosray and Stewart [3]:

THEOREM 6.2. Let / < L and suppose that L/I has no infinite direct sum

of ideals, and I contains no infinite direct sum of ideals. Then L contains no

infinite direct sum of ideals.

PROOF. This is a direct consequence of Proposition 3.13c of Goodearl

[8] applied to L, considered as a module over its universal enveloping algebra.

D

Since Lemma 2.2 of [2] shows that L has no infinite direct sum of ideals if

and only if L e Max-ci, we have:

COROLLARY 6.3. Max-ci is E-closed. •

LEMMA 6.4. (a) Let I be a complement ideal to J in L. Then I®J is

essential in L.

(b) Let I be a complement ideal in L, and suppose that I ^ K where K

is an essential ideal of L. Then K/I is an essential ideal of L/I.
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PROOF, (a) If there exists a nonzero ideal P of L such that (I ®J)Π
P = 0 then L = (/ 0 P) © J contradicting / being a complement ideal. There-
fore / Π P Φ 0, so / is essential.

(b) If K/I is not essential in L/I then there exists an ideal P of L such
that I ^ P and PΠK = 0. Since / is a complement ideal of L there exists
an ideal J of L such that / is maximal with respect to / Π J = 0. We claim
PΠJ = 0. If not, then since K is essential, K Π (P ΠJ) Φ 0, so (K Π P) Π J Φ 0,
so / ΠJ Φ 0, which is a contradiction. But P ΠJ = 0 and / ^ P contradicts
maximality of / with respect to IΠJ = 0. •

THEOREM 6.5. Max-ci = Min-ci.

PROOF. Suppose Le Max-ci and let /0 Ώ. Ix 3 ... be a descending chain
of ideals. Inductively choose complement ideals Kt to It such that Kt ^
Ki+1. (This can be done using a Zorn's lemma argument, but taking into
account the ascending chain condition. Inductively choose X ί+1 maximal
subject to Ki+ί 2 Ki and Ki+1 Π Ii+1 = 0.) By Max-ci the chain stops, say
Ki+1 = Ki. By the modular law, (/ί+1 ©JQΠ/j = Ii+l9 so that

But Ki+1 is a complement to Ii+l9 so that Ii+ίφKi+1 is essential in L by
Lemma 6.4a. Since Ii+ί is a complement ideal in L and / ί+1 ^ / / = i © ^ f + i ,
it follows that (7ί+1 φX i + 1)// i + 1 is essential in L/Ii+1 by Lemma 6.4b. There-
fore /;//,+! = 0 so that It = J i + 1. Therefore the chain of ideals stops.

The converse is similar. •

EXAMPLE 6.6. Max-CL* does not imply Max-CL or Max-ci.
Let L be infinite-dimensional abelian. Then L e Max-CL* but L φ Max-CL

and L φ Max-ci. •

EXAMPLE 6.7. Max-CL is not Q-closed.
Let A = k[x1 ? x2,...] be the polynomial algebra in countably many

commuting indeterminates, considered as an abelian Lie algebra. Define
derivations δt such that δ^f) = xj for f e A. The <5f commute. Let D =
(δi\i = 1, 2,... > and L = A + Zλ Then L e Max-ci by Aldosray and Stewart
[3] Example 1.2, so L e Max-CL by Corollary 5.3 and Proposition 5.4. But
L/A is infinite-dimensional abelian. However, abelian algebras with Max-CL
are obviously finite-dimensional.

PROPOSITION 6.8. // L/I e Max-CL (respectively Max-CL*) for all non-
zero closed (respectively *closed) ideals I of L, then L e Max-CL (respectively

Max-CL*).
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PROOF. Let 0 # ί o £ ί 1 c i i i c / | | c l , , be an ascending chain of closed

(respectively *closed) ideals of L. Then ^ / / Q ^ I2/Io ^ ... is an ascending

chain of closed (respectively *closed) ideals of L//o, by Lemma 2. If (respec-

tively Lemma 3.If). But L//o e Max-CL (respectively Max-CL*) so the chain

stops.

We end with two open questions:

QUESTIONS 6.9. 1. Is Max-CL E-closed?

2. Is Max-CL* E-closed?
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