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Introduction

Let R be a compact or noncompact Riemann surface and let y be a
cycle in R. Then there exists a unique square integrable harmonic differential
o in R such that [,0 = (w, *6)g (= [[rw A 6) for all C* square integrable
closed differentials @ in R. We call ¢ the reproducing differential for (R, y).
The norm A = ||g||% is called the harmonic module for (R, y). L. V. Ahlfors
[2] noted their significance in the theory of functions of one complex vari-
able. In this paper we shall show their usefulness in that of several complex
variables.

To a complex parameter ¢ in a disk B, we let correspond a covering sur-
face R(t) over the z-plane C with C* smooth boundary JR(t) and with branch
points &;(¢) (1 <i < q), where g does not depend on t € B. Assume that JR(t)
varies C® smoothly with the parameter t € B and that ,(t) is a holomorphic
function on B. Thus # = | ),s(t, R(t)) is a ramified Riemann domain over
B x C. We simply denote 0% = U,EB(t, OR(t)), and write #:t — R(t), t € B.
Now let y(t) be a cycle in R(t) which varies continuously with t e B in #. As
a Riemann surface, each R(t) with y(t) carries the reproducing differential
a(t, -) and the harmonic module A(¢) for (R(t), y(¢)). We put Q(t, z) = o(t, z) +
ixa(t, z) = f(t, z)dz for ze R(t) and |Q|(t, z) = |f(t, z)]. In [15] and [16] we
%At R 2
giar = | ) g
t € B. Furthermore, the equality holds for all t € B, if and only if # is Levi
flat. In this paper, for any #:t— R(t), t € B, we shall prove a variation
formula for A(t) of the second order, which deduces the above result in the
pseudoconvex or Levi flat case. Precisely, let ¢(t, z) be a C? defining function

of #, and put, for (¢, z) € 04.
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which is called the Levi curvature of 0R at (¢, z). Then, we have
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By a triple (4, rn, B), we mean that .# is a connected 2-dimensional
complex manifold, B a region in the complex plane C, and = a holomorphic
mapping from # onto B such that each n7(t), te B is a 1-dimensional
irreducible non-singular analytic set in .#. We put M(t) = n~'(t) for t€ B,
which is a compact or noncompact Riemann surface. A triple M = (4, n, B)
is said to be topologically trivial, if there exist a Riemann surface R and a
topological mapping T from .# onto B x R such that nzo T = where 7y
is the projection from B x R to B. If R is of (topological) type (g, n), that
is, R is of genus g (0 < g < o) and has n (0 < n < o) ideal boundary compo-
nents, then I is said to be of type (g,n). If g and n are finite, M is said
to be of finite type. Otherwise, M is said to be of infinite type. A triple
IR is said to be holomorphically trivial, if we can take a biholomorphic mapping
T from .# onto B x R such that ngo T=mn. A triple I is said to be of
locally Stein, if for any t, € B, there exists a disk B, in B centered at ¢, such
that n~Y(B,) is a Stein manifold. As usual a holomorphic mapping o from
B into .# such that m o a = (identity) is called a holomorphic section of M
defined on B.

As an application of the variation formula, we shall show

THEOREM. Let M = (M, n, C) be a topologically trivial triple of finite or
infinite type (g,n). Then we have the following results (I) ~ (IV):

(I) If n=0, then M is holomorphically trivial.

Let n>1 and assume that M is of locally Stein. Then

(I) M is holomorphically trivial except for the following three cases (i),
(i) and (iii):

(i) (9,m)=(0,1) and M(t,) for some t,e C is conformally equivalent to

a unit disk,
(ii) (g,n) =(0,2) and M(t,) for some t,e C is conformally equivalent to
a punctured unit disk,

(iii) 9N is of infinite type.

(IIT) In case (i), M is holomorphically trivial, provided that there exist at
least two holomorphic sections of M defined on C (which may intersect each
other).

(IV) In cases (ii) and (iii), the same is true, provided that there exists at
least one holomorphic section of M defined on C.

Assertion (I) is proved by a combination of some classical theorems for
compact Riemann surfaces. (We shall give its brief proof at the end of this
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paper.) We recall that any noncompact Riemann surface S of finite type
(g, n) is conformally equivalent to the interior R of a compact Riemann sur-
face R" of genus g excluded n’ (0 < n’ <n) simply connected domains {D,}
with C® smooth boundary dD; and n —n’ points {P;}, namely, R = R" —
Ui<i<w {D:UOD,UP;}. Then we say that S has n’' non-degenerating, and
1<j<n—n’

n — n' degenerating ideal boundary components. The special case in (II) such
that all ideal boundary components of each n7(t), t € C are degenerating, is
immediately reduced to (I) by Theorem 2 in Nishino [11]. Thus the variation
formula will be essentially used in the proof of the general case in (II) such
that n~1(t,) for some ¢, € C has at least one non-degenerating ideal boundary
component, and in the proofs of (III) and (IV).

The authors thank Professor Masakazu Shiba for very useful comments,
by which the original manuscript was largely revised.

1. Harmonic modules

Let R be a compact or noncompact Riemann surface. Following Ahlfors
and Sario [3] we define

I'(R) = the Hilbert space of square integrable differentials in R;
T 2(R) = the space of square integrable closed differentials of class C? in R;
I,(R) = the space of square integrable harmonic differentials in R.

Let y be a cycle in R. Then there exists a unique o, € I,(R) such that
1.1) J o = (w, *0,)g for all w e I}(R).
Y

The harmonic differential o, is called the reproducing differential (or briefly,
r-diff) for (R,y). The norm A, = ||ayl|,2¢ is called the harmonic module (or,
h-mod.) for (R,7y). It is well-known that, for any cycle é in R,

(1.2) f o,=y %90 (intersection number) .
o

Assume that R is a compact bordered Riemann surface of type (g, n). That
is, R is of genus g and OR consists of n smooth curves {C;} (1 <i<n} of
class C? in a larger Riemann surface R* o> R. Weput£=2g+n—1. As
a canonical homology base of RUJR, we can take £ smooth curves on RU
OR: {4;,B;C;} (1<j<g;1<i<n-—1)such that 4; x B;=J;; (Kronecker’s
delta) and A4; x A;=B, x B;j=0 (1 <i,j<g). Let y be a cycle in R. Then
o, is constructed as follows:
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Case 1. y~C(l<i<n-—1). We consider the harmonic function u;(z)

in R with boundary values 1 on C; and 0 on (0R) — C;. Then ¢, = dy; in R.

Case 2. y~ A;. We cut R along A;, so that (R — 4;) = (OR) + A} —
A7. We form a harmonic function v,(z) on R — A4; such that v;(z) =0 on
OR and such that v/(z) is harmonically extended across 4;} and A4; to be
functions v (z) and v; (z) with v} (z2) =v; (z) — 1 for ze U, where U; is an
annulus around A4;. Then ¢, =dv; in R.

Case 3. y ~ B,. By replacing 4; and v;(z) by B; and w;(z) such that
wi(z)=w (z) + 1 for ze U; where U; is an annulus around B;, we have
g, =dw; in R.

g n—1

General Case. y~ Y [@,4; + bB]+ Y ¢C, (a;, b;, ¢, are integers). If

i=1 k=1

we set u,(z) = Y, [a;v,(2) + bw,(z)] + Y. c,u(2), then u,(2) is a harmonic function
in R — U?=1(AiUBi) such that (1) du, =0, in R; (2) u,(z)=0 on C,.

Such u,(z) being unique, we say that wu,(z) is the normalized Abelian
integral for (R,7). We note that

(1.3) u,(z) = const. ¢, on each contour G, (1 <k<n-—1).

In particular, o,(z) is of class C* up to dD.
New let y be a Jordan curve in R. Two cases occur:

Case (i). y is a dividing cycle. Namely, R is divided into two domains
R’ and R” by y where the orientation of y is negative (resp. positive) with
respect to R’ (resp. R").

Case (ii). 7y is a non-dividing cycle, so that R — y is connected.
In both cases, for a fixed point ae R —y, we consider the Green function

g(a, z) for 49 =0 of R with (logarithmic) pole at a. We set

—1
(1.4) I(a) = S j *dg(a, 2)

Then we have

PROPOSITION 1.1.  In Case (i), u,(a) = I(a) + 1 for ae R’; = I(a) for ae R",
while, in Case (i), u,(a) = I(a) for ae R — .

Proor. Stokes’ formula implies that

f u,(2) *dg(a, 2) = f g(a, 2) % du,(2)
(0R)—y—d,(a)

(0R)—7—d,(a)
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where d,(a) is the circle of center a and radius ¢ > 0. By letting ¢ -0, we
obtain Proposition 1.1. [

ReMARK 1.1. In §4, we shall treat the case when R consists of a countable
number of Riemann surfaces {R;} (1 <j < 00) and when y = R consists of cycles
% in R; (1 <i<k;k<o0). By relation (1.1) we define the r-diff. o, and the
h-mod. 4, for (R, 7). Clearly, 0, =0, in R(1 <j<kj=0in Rik + 1 <j < o)
and 4,=4, + " +4,, where o, and 4, denote those for (R;, y)).

Vi

2. Smooth variations

Let B be a disk: = {te C||t| <r} and consider an unramified covering
domain 2 spread over B x C. We simply say that 2 is a domain over
B x C. Given t € B, we set D(t) = {z|(t, z) € 2}. Then D(t) consists of an at
most countable number of covering Riemann surfaces over C without branch
points. We call D(t) the fiber of 2 at t. 2 may be regarded as a varia-
tion of Riemann surfaces D(t) with the complex parameter t € B. We write
9.t D(t), te B. The following condition is imposed on 2:

ConbDITION 2.1. There exist another domain 2~ over B x C and a real-
valued C* function ¢(t, z) in 2~ such that
(1) 27" >2 and D~(t) o> D(t) # ¢ for any te B, We denote by 02
the boundary of 2 in 2~, and by 0D(t) the boundary of D(t) in D~(t);
2 2={(t2e2 et z)<0}; 02 = {(t,z) € 2~ |o(t, z) = 0};

0
(3) For any fixed t € B, a—f # 0 for any z € dD(¢).

When Condition 2.1 is satisfied, we say that 2 is a C* smooth variation,
and that the pair (2, ¢) defines 9. Note that 02 = | ),.5(t, dD(t)). We put,

for (t,z) € 092.
2 6(0 a(p 62(p 2 azq)
— 2R hihd
az| T2 C{ 9207

0t 0z otoz
which is independent of the choice of the pair (27, ¢). k,(t, z) is called the
Levi curvature of 09 at (t,z) (cf. Levenberg and Yamaguchi [6]). By (3) of
Condition 2.1, there exists a compact bordered Riemann surface S and a C®
diffeomorphism T :(t, z) - (t, w) = (t, ¥(t, z)) of 2U02 onto B x § such that
Y(t, D()) = S.

op?

0z

0o
o

QY ke, 2)= {6—‘” % ,

otot

3. Variation formulas

Let 2 be a domain over B x C with Condition 2.1. We keep the nota-
tions ¥ and S at the end of §2. Let S be of type (g,n). Let y be a cycle
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in S, and put y(f) =y ~!(t,y) for te B. Then y(t) is a cycle in D(t) which
varies continuously with te B in 2. For any fixed t € B, we have the r-diff.
o(t, -) and the h-mod. A(¢) for (D(¢), y(¢)). If we put a(t, z) = a(t, z)dx + b(t, z)dy,
then a(t,z) and b(t, z) are harmonic functions for z e D(t) and of class C?
with respect to (t,z) e 2U 02 from (1.3).

DeriNITION 3.1. For (t,z) e 2U 09, we put

oo Oa ob

(62 = St D + 6 2y
d%c d%a o*b
g{a—f(t, z) = Fai(t, Z)dx + a‘a'—f(t, Z)dy .

They are harmonic differentials in each D(t), t€ B. We consider the
0 02
normalized Abelian integral u(t, z) for (D(¢), y(t)). Then a—l:(t, z) and —at—auf(t, z)

are single-valued for z e D(t). Indeed, we shall prove this in the case y ~ 4;,
for example. Let t,e B. We can find a disk B, of center ¢, such that
A;(t,) = D(¢) for all te B, and A,(t,) ~ A,(t) in D(t). Since u*(t,z)=u"(t,z) — 1
for ze U, and te B, where U, > A(t,), we have du*/ot = ou™ /ot and 0%u™*/
0tot = 0*u~ /otor for all (¢, z) € B, x U;, which proves our claim. We thus have

oo ou d%c *u
(31) E(ta Z) =d <E (ta Z)) s W(L Z) =d (?af(t, Z))
for ze D(t). Given te€ B, we write

Qt,2) =0t 2) +ixo(t,2) = f(t, 2)dz; Q| 2) = |f(t 2)|;

0Q do . Oc of
ﬁ(t’ z) = E(t, z) + I*E(t, z)= E(t’ z)dz .
Then (0f/0f)(t,z) as well as f{(t,z) is a holomorphic function for ze D(t),

and is of class C? up to oD(t). Clearly, (t, z)=2(;—bzl(t, z) and %St:)(t, z) =
0%u
0toz
(D), y(®))-

THEOREM 3.1. For te B, we have

04 1 0
20 e Few) ;
(1)

02%(t) 1 2
2) St 2 faD(z) k,(t, 2)[122]1*(t, z)ds, +

2 (t, z)dz. We shall show the variation formulas of the h-mod. A(t) for

2

0Q
’E—_(t’ )

D(t)

where ds, denotes the Euclidean line element of 0D(t).
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Proor. It suffices to prove these at t =0. First, we prove (1) and

oA ou

(3.2) 67(0) = me at( ) (0 z)ds, ;
022 0%u

(3.3) F@f(o) = Lmo) 3 a_(O z) (O)ds

0
In fact, (,7(;(0, z) is harmonic in D(0), and is of class C? up to 0D(0). Since

y(t) ~ 7(0) in D(¢) for any t close to 0, we have

6 Jdo

1
Since the last term is equal to <Q(0 ‘), _(O )> from (1.2), we get
D(0)

2
(1). By (1.3), we have +0(0, z) = _a“(o 2)dz = g—

d/on, denotes the outer normal derivative. It follows from (3.1) that

(0, z)ds, along 0D(0). Here

ou
(0) IL(O) o (0,2) A x0(0, 2) = LD(O) at( ) on, 20, 2)ds,

which proves (3.2). Analogously, we have (3.3).
Next we shall prove that, for any z € dD(0)(= | Ji-; Ci(0)) with Z—:(O, 2) #0,

ou 0*u

o0%u 0t 0toz

(34) = aE(0 2) = =k, (0, z) (o 2+ 2Red “EL(0,2).
0z
0
In fact, let z,€ C(0) (1 <k <n) with a_‘z‘(o, z)#0. In ,2,) 2 0,
(1.3) implies that the function =+ (u(t, z) — c;) is a defining function of 02 near
©, z,). Hence
o*u Ou 0u 0%u oul? o%u oul?
R A, A= A=A =~ A A= -~ 9
k20, 2,) = {&81‘. oz e{@t 2z 6taz}+ o 626'2'}/ oz

where the right hand side is evaluated at (0, z,). Since u(0,z) is harmonic

, Z,) = 12|a—u(0, z,,)l, we obtain
0z

ou
on,
(3.4). If we substitute (3.4) for (3.3), then
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%) 1 1 ou 0%u
otor 2 J.an(oy k200, Z)< © Z)> a5 +4 Re{i LD(O) <6t o0toz )( ) Z}

0
Since 8_':(0’ z) is a single-valued harmonic function for z € D(0), it follows by

Stokes’ formula that the second term of the right hand side is equal to

ool L)oo
“refi L

(2) of Theorem 3.1 is proved. []

2

0Q
5557 (0 z) dz A dz} HE(O, z)

D(0)

In the Introduction we defined a triple I = (#,n, B). We call = a
projection. We put M(t) = n~(t), t € B, and call it the fiber of .# att. We
write # = | ),.p(t, M(1)). For an open set B, B, we put #z =n"'(B,),
and define My = (M3, mp,, B,), which is called a subtriple of M on B,. Let
p, € # with n(p,) =t,. Then we can take local coordinates B, x U, where
B,={|t—t,|<r,} and U,={|z|] <p,} of a neighborhood # < = # of p,
such that p, corresponds to (t,,0), and M(t)N% to {t} x U,. We call (t,2)€
B, x U, m-local coordinates at p,.

DEerFINITION 3.2. A triple MM = (A, =, B) is said to have C*®(resp. C®)
smooth boundary, if there exists a larger triple MM~ = (#~, n~, B) and a real-
valued C®(resp. C®) function ¢(p) on 4~ such that

(1) #~ > M and 7~ =7n on A, and M~(t) o> M(t) for all te B. We

denote by 0.# the boundary of .# in /~;

(2) #={peM|p(p)<0}, 04 ={pe #~|p(p) =0} and (3p/02)(p,) #

0 at any p,€ 0.# in .4~ where (t,z) is n~-local coordinates at p,.

We say that the pair (IM™~, @) defines M with C*(resp. C®) smooth bound-
ary. In the rest of this section we assume that a triple 9t have a C* smooth
boundary. Let p,ed# in 4™, and let (t,z)e B, x U, be n~-local coordi-
nates at p,. Using ¢(t, z) in B, x U,, we define k,(t,z) on (0.4)N(B, x U,)
by (2.1). By simple calculation we see that k,(t, z)/|dz| is independent of the
choice of the pair (/#~, ¢) and of n~-local coordinates (¢, z) at p,, and so is
k,(t,z) >0 or =0.

Now let a cycle y(t) in M(t) vary continuously in .# with te B. We
consider the r-diff. a(t, z) and the h-mod. A(t) for (M(¢), y(¢)). We put Q(¢, z) =
o(t,z) +ixo(t,z) = f(t,z)dz on M(t). Let pe # and (t,z)e B, x U, be =n-
local coordinates at p. Then (df/0f)dz does not depend on the choice of
n-local coordinates. It follow that, for a fixed te B, (df/dt)(t, z)dz defines



A variation formula for harmonic modules 501

a holomorphic differential on M(f). We denote it by (0Q/0f)(t, z). Since
|121I(¢, z)|dz| is invariant on M(t)UJM(t), k,(t,2)|R|(t, z) is a function on
0M(). Then we have

THEOREM 3.2. For a triple M = (M, n, B) with C*® smooth boundary, the
same variation formulas (1) and (2) (where D(t) and ds, are replaced by M(t)
and |dz|) of Theorem 3.1 hold.

Proor. It suffices to prove these at t=0. By Nishimura [9] there
exists a disk B, of center 0 such that the subtriple My of M on B, is
biholomorphically mapped onto an unramified domain R = | J,.p (t, R(t)) over
B, x C with Condition 2.1 by a transformation @:(t, z) - (t, w) = (¢, (¢, 2))
where ¢(t, M(t)) = R(¢) for all te B,, We put y*(t) = ¢(t, y(t)) in R(t), and
consider the r-diff. ¢"(t, w) and the h-mod. A"(¢) for (R(t), y"(t)). We apply
Theorem 3.1 to R and A”(¢), so that formulas (1) and (2) for A*(¢) hold. Since
all five terms appeared in (1) and (2) are invariant under the transformation
@, we have Theorem 3.2. [

We note that the variation formula for A(¢) of the second order stated
in the Introduction is a special caseof (2) of Theorem 3.2. We recall the
definition of pseudoconvexity for (., n, B. Let ped.# and let (¢t,z) be =n-
local coordinates at p in #~. If k,(t,z) >0 at p, then p is called a pseudo-
convex boundary point of M. If 0.4 consists of all pseudoconvex boundary
points, ./ is said to be pseudoconvex. If k,(t,z)=0 on 0.4, # is said to
be Levi flat. By Theorem 3.2, we have

CoroLLARY 3.1. Let (#,m,B) be a triple with C* smooth boundary.
o2 A(t) 1510] 2
2, )

Suppose that M is pseudoconvex. Then, (1) > ¥ for te B.

otor — M@

The equality holds for all te B, if and only if M is Levi flat; (2) If A(t) is
a harmonic function on B, then M is Levi flat and Q(t, z) is holomorphic for
(t,z)e M. Conversely, if Q(t,z) is holomorphic for (t,z)e .#, then A(t) is a
constant on B.

4. Differentiability condition

In order to study the case of an infinitely many sheeted ramified domain
over B x C, we need a differentiability condition for o(t,z). Let 2 be an
unramified covering domain over B x C which satisfies

ConDITION 4.1. There exist another unramified domain 2~ and a C®
plurisubharmonic function @(t, z) in 2~ such that
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(1) 2~ >9; D(t)> o> D(t) # ¢ for any te B, We denote by 02 the
boundary of 2 in 2~, and by dD(t) the boundary of D(t) in D~(¢);
2 2={(t2e2|¢(tz)<0}; 02 ={(t,2) € 2 |o(t, z) = 0};

op 0
(3) (6_10’ 6_(:) (¢, 2) # 0 for any (t, z) € 02;

(4) The subset L = {(t, 2)e D7 |o(t, 2) = (Z—f(t, z) = 0} consists of a finite

number of real 1-dimensional C® smooth arcs (which may intersect
each other) in 9~. We denote by ¢ the projection of L to B.

By real analyticity of ¢(t,z) in 27, (i) £ consist of a finite number of
real 1-dimensional C® smooth arcs; (ii) 0D(t) for t €/ has a finite number of
singular points; (iii) 02 = | ),.p(t, 0D(¢)). In general, the variation 9 :t — D(t),
t € B is no longer even topologically trivial.

Fix te B and ae D(t). We denote by g(t, a, z) the Green function for
(D(¢t), a). Precisely, let D,(t) be a connected component of D(t) containing a,
and denote by g,(t, a, z) the Green function of D,(¢) with pole at a. Then
g(t, a,z) = g,(t, a,z) for ze D,(t); =0 for ze D(t) — D,(t). We put

A(t, a) = lim (g(t, a, z) — log lz—la)

z—a

which is called the Robin constant for (D(t),a). In [17] it was shown that
under Condition 4.1,

(4.1) g(t, a,z) is continuous for (t, a, z) € ( ),c5(t, D(t), D(t)) with a # z.

Moreover, aa—/:(t, a) exists and is continuous for (t,a)e 2.
By the same method we can prove
LEMMA 4.1. Under Condition 4.1, %(r, a, z) exists and is continuous for
(t, a, z) €  Jsen(t; D(t), D(t)) with a # z. Furthermore, if we set %(t, a,a) =
a—/tl(t, a), then %(t’ a, z) is continuous even at a = z.

Now we assume

ConDITION 4.2. To each te B we let correspond a cycle y(¢) in D(t) in
a continuous way in 9.

Precisely speaking, for any t, € B and any product neighborhood B, x G
of (t,,y(t,)) in 2, we can find a disk B; = B, of center t, such that y(t) = G
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for all te B, and 7y(¢) ~ y(¢,) in G. Therefore, the following situations may
occur: y(t) for some te B, is a dividing cycle in D(t), while y(t) for other
t € B, is a non-dividing cycle in D(t); the number of components of y(t) varies
with te B,. For each te B, we denote by o(t, ) and A(t) the r-diff. and
h-mod. for (D(t), y(t)). Then we have

THEOREM 4.1. Suppose that 9 satisfies Conditions 4.1 and 4.2. Then, (1)
0
%(t, z) exists and is continuous for (t,z) e D; (2) A(t) is of class C' in B.
Proor. Let t,e B and write y(t,) =7y, It suffices to prove the case
when y, is a smooth curve. By Condition 4.2 we find a neighborhood B, x G
of (t,,7,) in 2 such that y(t) ~y, in G. We thus assume y(t) =y, for t € B,.

We denote by D,(t) the connected component of D(t) containing y,. Two
cases occur:

Case (i). 7, is a dividing cycle in D,(¢t). Then D,(t) is divided into two
domains D;(t) and Dj(t) such that D,(¢) — y, ~ Di(¢)U D5(t); oD{(t) = Ci(t) — 7,;
oD{(t) = C5(t) + 7, where 0D, (t) = Ci(t) + C3(¢).

Case (ii). 7y, is a non-dividing cycle in D, (¢).

In both cases we take a point ae D(t) —y, and consider the integral
defined by (1.4): I(t,a) = %jyn xdg(t, a, z). By (4.1), I(t, a) is continuous for
(t,a) € Dy, — (B, x 7,). Since (dg/dt)(t, a, z) is separately harmonic for a and
z, Lemma 4.1 implies that %(t, a) = % jyo *d <%€Z (t, a, z)) exists and is continu-

ous for (t,a) € D5, — (B, x 7,). Since the integrand of the right hand side is
a harmonic differential for z € D(t) (even at z = a), the integral is invariant

. . ol
under replacing y, by another curve y ~y, in G. It follows that E(t’ a)
defines a continuous function for all (¢, a) € D5, and that, for any fixed t € B,,
ol . .
c‘Tt(t’ a) is harmonic for a e D(t).

Now let u(t, z) be the nomralized Abelian integral for (D(t), y,) such that
a(t, z) = du(t, z) for ze D(t). By Remark 1.1, we have a(t, z) = 0 in D(t) — D,(t)
and u(t, z) = 0 on D(t) — D,(t). Proposition 1.1 implies that, for ¢t € B, in Case
(i), u(t, z) = I(t, a) + 1 for a € Di(t); = I(t, a) for a € D{(t); = 0 for a € D(t) — D, (¢),
while, for t € B, in Case (ii), u(t, a) = I(t, a) for a € D,(t) — y,; = 0 for a e D(t) —

0 0 )
D,(t). In both cases, a—l:(t, a) exists and a—l:(t, a) =6—£(t’ a) for (t,a)e D5, —



504 Andrew BROWDER and Hiroshi YAMAGUCHI

0 0
(B, x 7,). Again moving 7y, a little in G, we have ai;(t, a)=a~£(t, a) for all

1
(t,a) € Z5,. By (3. 1) (t a) = ( t(t, a)) exists and is continuous for (¢, a) e

a/1( )

D, which proves (1) of Theorem 4.1. Since = jya (t, z), (2) follows

from (1). O

CoOROLLARY 4.1. Under the same conditions as in Theorem 4.1, either
1/A(t)(> 0) is a C' superharmonic function on B, or 1/A(f) = + o0 on B.

Proor. We denote by B’ (resp. B”) = {t € B|A(t) > O (resp. = 0)}. Note
that t e B” iff y(t) ~0. By Theorem 4.1, B’ is open in B. Since 2 is un-
ramified over B x C, B" is open in B. Consequently, B= B or B". We
assume B=B'. Let t,e B— ¢ where / was defined in (4) of Condition 4.1.
We take a disk B, centered at t, such that B B—¢. Then, the triple
(Zs,, m, B,) satisfies Condition 2.1. Since ¢(t, z) in Condition 4.1 is plurisub-
harmonic in 27, the domain 2 over B, x C is pseudoconvex.

By Corollary 3.1, 02A(1)/0t0t > ||02/0t | 3, for t € B,. Applying Schwarz’s
inequality to (1) of Theorem 3.1, we have

o) ?
o

2%A(t)

<5 /1()

Q(t,
HEORIE Ny e

|

Thus, 1/A(t) is a C? superharmonic function in B,, and hence in B — 7. On
the other hand, by Theorem 4.1, 1/A(t) is of class C* on B. Since ¢ consists
of real 1-dimensional smooth curves in B, it follows from Stokes’ formula
that 1/A(¢) is a C! superharmonic function on B. O

5. Approximation theorem

Let 2 be a ramified domain over B x C which may be infinitely many
sheeted. For t € B, we denote by (g(t), n(t)) the topological type of the fiber
D(t), and put £(t) = 2g(t) + n(t) — 1. In general, (g(t), n(t)) depend on te B,
and £(t) may be +o00. Let & be the set of branch surfaces of &, and, 7,
the set of singular points of &, so that &/ consists of isolated points in
2. We put 9 = J,p(t, D®)); & = Usen(t, S()) and o = | ), 5(t, A(t)). We
assume

ConDITION 5.1. & contains no surfaces of the form t = const., and
D(t) # ¢ for any te B.

Let (t,,z,) € . We find a bidisk B, x K, centered at (t,, z,) such that
[B, x (0K,)INY = ¢ and L N[{t,} x K,] = (t,,2,). Each fiber D) NK,, t €
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B, — {t,} consists of a finite number of components, each a sheeted surface
over K, without relative boundary, say d;(tf) (1 <i<m). Note that m is
independent of ¢t. Let t—t,, Then some of these components, say d;(t)
(1 <i<k<m), will be separated into several components di(t,) (m+ 1<
j<h). Each di(t,) or d(t,) (m+ 1 <s <n)is equivalent to the unit disk as
Riemann surface.

Now we set 2* = 9 — & = | J,p(t, D*(t)), so that 2* is an unramified
domain over B x C, and each fiber D*(t), t € B consists of an at most countable
number of unramified domains over C. We assume

CONDITION 5.2. 2* is a Stein manifold;

ConprTtioN 5.3. To each t € B we let correspond a cycle y(t) in D(t) — A(t)
in a continuous way in 9 — .

Fix t,e B. We denote by o(t, -) and A(t) the r-diff. and the h-mod. for
(D(¢), (t)). We set Q(t,z) =o0(t,z) + i*o(t,z) for ze D(t). Contrary to the
case of compact bordered Riemann surfaces, it may happen that o(t,z) =0
on D(t) and A(t) =0 for some ¢t € B even when y(¢) is not homologous to 0
in D(t). (Precisely when y(t) is a dividing cycle on D(t) such that the ideal
boundary component of D(f) determined by y(t) or —7y(t) is of generalized
capacity zero. See Marden and Rodin [8], for details.) The following theo-
rem is useful in §§6 ~ 8.

THEOREM S5.1. Assume that 9 satisfies Conditions 5.1 ~53. Then (1)
1/A(t) (> 0) is a superharmonic function on B, which may be identically + co;
(2) If A(t) is a harmonic function on B, then Q(t,z) is holomorphic for
tze2— 4.

Proor. Let t,e B. By Condition 5.3 we find a cycle y, near y(¢,) in
D*(t,) and a neighborhood B, x G =« = 9* of (t,,7,) such that y(t) ~ v, in
D(t) for all te B,. By Condition 5.2 there exists a C® plurisubharmonic
function ¢(t, z) in 2* such that, for any o < oo,

9,={(t,z)e 2*|te B, and o(t,z) <o} = = D*.

We take an a, such that 9, o> B, x G. We can choose an increasing
sequence {a,} with a,— oo such that 9, =) (t, D, (¢)) is an unramified
domain over B, x C satisfying Condition 4.1. Note the 2, — Z*({n — ).
We simply put a, = n. Each (D,(t), y,) carries the r-diff. ¢,(t, -) and the h-mod.
A,(t). By Corollary 4.1, 1/4,(t) (> 0) is either a C' superharmonic function
on B,, or identically + co.

Now fix te B, and let m > n. Since o,(t, -) € [,,(D,(¢)) and y(t) ~y, in
D,(t), we have



506 Andrew BROWDER and Hiroshi YAMAGUCHI

(.1) lom(®, 3,0 = J *0p(t, ) = (T(t, *)s 0u(ts )y »

so that |la,(t, *) — 6,(t, )}, < 4a(t) — 4,(t). Hence, the sequence {o,(t, *)}
uniformly converges to a harmonic differential ¢”(t, -) on any compact set
in D*(t), and 4,(t) - [lo"(t, ") 3+, as n— co. Since D(t) — D*(r)(< S(2)) is an
isolated set, o (¢, -) is harmonically extended to D(t), so that a”(t, -) € I,(D(t))
and ¢”(t, ') = o(t, *) in D(t). Hence, 4,(t) = A(t) decreasingly as n — oo. This
implies (1) of Theorem S5.1.

To prove (2), assume that A(¢) is a harmonic function on B. Then, by
Dini’s theorem, 4,(t) = A(t) uniformly on B,. We set, for any t € B,, Q,(t, z) =
0,(t, 2) + i*a,(t, z) = f,(t, z2)dz on D,(¢t); 2(t, z) = o(t, z) + i* a(t, z) = f(t, z)dz on
D*(t). If we extend f,(t,z) to be 0 on D*(t) — D,(t), then f(t,z)— f(t, 2)
uniformly on any compact set on D*(t). We write t =t, +it, and dV =
dxdydt,dt, (the volume element of R*) and 2§ = (J,p, (¢, D*(t)). It follows
from (5.1) and (1.2) that

lim f f £t 2) — f(&, 2)|>dV < 2 lim f (A (8) — A(t))dtdt, = O .
n—oo 28, n=wo JB,

We shall show
of

(5.2) b_f(t’ z) =0 for (t,z) € 25 in the sense of distributions .

In fact, take any bidisk B, x V; c = 9§ and let ¢(t, z) e Cg(B; x V;). Since
fi(t, z) is of class C' in 2, from (1) of Theorem 4.1, we have

O o .
By xV, 5 n>w J JB xV, ot n—o leV,

By xV,

P2 < {lim j f
n-w J JB xV,
2
< {lim f dtldtz} {” l¢|2dV].
n—o JB, B,(t) By xV,

Let ¢, = {te B,|0D,(t) has at least one singular point}, which consists of
1-dimensional C® smooth arcs. We set B, — ¢, = | )iz, B¥ where BY is a
connected component. Then, 9,:t— D,(t), t € B¥ is a C*® smooth variation.
Since &, is pseudoconvex, (1) of Corollary 3.1 implies 24,/0t0t > 02,/0%||3
in B®, and hence in B, — ¢,. Let y(t) e C?(B,) such that y(¢) >0 in B, and
Y(t)=1 on B;. Then

0Q,
ﬁ (ta )
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2 az
dt dt, < JJ Mt//(t)dtldtz =K,.
Dy(t) Bo—¢,

oQ,
F o

)

By (2) of Theorem 4.1, A,(t) is of class C! on B, and of class C? on B, — 7,.
Since ¢, consists of C® smooth arcs, it follows by Stokes’ formula that

” ,,(t)az'/’ t)dt i, > ” 105 z‘l’dt i, =0.

The last equality follows from the assumption 6%A(t)/0tdf =0 on B. Hence
J =0 and (5.2) is proved.

On the other hand, f(t,z) is a holomorphic for z e D(t), so that f{(t, z)
is holomorphic for (¢,z)€ 25 . In other words, Q(t, z) is holomorphic for
(t,z) e 2§ . Since each Q(t, z), t € B, is holomorphic for z in D(t) — o, Q(t, z)
is holomorphic for (t,z) € 25, — /. (2) of Theorem 5.1 is proved [

By a generalized triple (#,n, B) we mean that .# is a connected 2-
dimensional complex space, B a region in the complex plane C, and = a
holomorphic mapping from .# onto B such that each n7!(t), t € B consists
of an at most countable number of 1-dimensional irreducible analytic sets.
We denote by o/ the set of singular points of .#. Assume that there exists
a cycle y(t) in M(t) — o/ varying continuously with t € B. We have the r-diff.
a(t, z) and the h-mod. A(t) for (M(¢), y(t)). We put Q(t, z) = o(t, z) + i * o(t, 2)
on M(t). Then we have

COROLLARY 5.1. If # is a Stein space, then (1) and (2) (where 2 is
replaced by M) of Theorem 5.1 hold.

Proor. By Bishop’s theorem [4], .# is biholomorphically mapped onto
a ramified domain 2 over B x C with Conditions 5.1 and 5.2 by a transforma-
tion @:(t,z)e M > (t,W)=(t,9(t,2)) e 2. We put &/" = D(&) and y"(t) =
#(t, y(t)). Then /" is the set of singular points of 2 and y”(t) varies continu-
ously in 2 — &/* with te B, that is, y"(t) satisfies Condition 5.3. Hence
Theorem 5.1 is applied to 2 and y*(t). Since A(t) and Q(t, z) are invariant
under the transformation &, we have Corollary 5.1. [

6. Proof of (III) and (IV) in the Introduction

Given two triples M; = (A;, n;, B) (i = 1, 2), we say that I, is topologi-
cally (resp. holomorphically) equivalent to M,, if there exists a topological (resp.
biholomorphic) mapping T from .#, onto .#, such that n, o T =mx,. In the
holomorphic case we write IMM; ~ IM,. As defined in the Introduction, in the
case when I, = (B x R, ng, B), where R is a Riemann surface and 7 is the
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first projection, we say that IR, is topologically (resp. holomorphically) trivial.
If R is of (topological) type (g, n), M, is said to be of type (g, n).

THEOREM 6.1. Let MM = (M, n, C) be a topologically trivial triple of type
0,1). Assume that (a) M is of locally Stein; (b) M(t,) for some t,e C is
conformally equivalent to the unit disk D = {|w| < 1}; (c) There exist at least
two holomorphic sections o;:t —o;t) (i=1,2) of A defined on C. Then M
is holomorphically trivial: M ~ (C x D, n¢, C).

Proor. By (c) we draw a Jordan curve y(t) on each M(t), t € C rounding
o, (t) and a,(t) positively such that y(t) varies continuously with the parameter
teC in /. We consider the double sheeted domain #" over .# with
branch surfaces a; and a, and without relative boundary. Let J: . #" —» .#
be the canonical projection. We put n* =noJ and n*"1(tf) = M*(t), so that
M = Jiec(t, M (t)) and M" () is the double sheeted surface over M(t) with
branch points «,(f) and «,(t) and without relative boundary. Denote by
J,: M"(t) > M(t) the restriction J to M"(t). We find two disjoint curves
y:(t) = M*(t) (i =1,2) over y(t), which vary continuously with te C in #".
For any teC, we consider the r-diff. o(¢,z") and the h-mod. A(t) for
(M"(2), y1(t)). We write Q(t,z") = o(t,z") + i*o(t,z") on M"(t). Fix t,eC.
By (a), we find a disk B = C of center t, such that .#3 is a Stein space. By
Corollary 5.1, 1/A(¢) is a superharmonic function on B. Consequently, 1/A(t)
is a non-negative superharmonic function on C, so that it is a constant 1/c
on C, namely, 0 < A(t) =c < oo for all te C. Theorem in [14, p. 84] says
that, under conditions (a) and (b), all M(¢) for t e C — K, where K is a closed
set of logarithmic capacity 0: Cap K =0 in C, are conformally equivalent to
the unit disk D. If we take a point ¢, € C — K such that a,(t,) # a,(t,), then
0 < A(t,) =c < oo. It conversely follows that a,(t) # a,(t) for all t e C, and
that each M(t), t € C is conformal to D. By (2) of Corollary 5.1, Q(t, z") is
holomorphic for (t,z")e .#".

2
Fix te C and let z* e M"(t). We put (¢, z") = exp {?nf .Q(t,zA)},
£(t)

where /(t) is an arc connecting «,(t) and z* in M"(t). From the theory of
one complex variable, we have (i) M"(t) is conformally equivalent to the
annulus 4 = {1/r < |W| <r} by W = ¢(t, z") such that r = e™; (¢, 2,(t)) = 1
and ¢(t, a,(t)) = —1; (i) for z e M(t), we take two points z) e M*(t) (i=1,2)
such that Ji(z') = z. If we put W, = ¢(t, z{"), then W, W, = 1; (iii) if we con-
sider the identification I: W, ~ W, by W, W, =1 on A, then the quotient
space A/~ is conformally equivalent to the unit disk D. If follows that, for
each te C, w =10 ¢(t, J7'(2)) (= ¥(t, z)) is well-defined and one to one con-
formal mapping from M(¢) onto D. Since Q(t, z") is holomorphic for (¢, z") €
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A", Y(t, z) holomorphically depends on t € C. Hence, M ~ (C x D, n¢, C) by
Y.tz Pt2) O

REMARK 6.1. The idea of constructing a double covering .#" of A is
useful to prove the Picared theorem: If an entire function f(t) on C attains
neither O nor 1, then f(t) is a constant. Indeed, for each t e C, we construct
a double covering D(t) over P' with 4 distinct branch points {0, 1, f(¢), o0}.
D(t) is a compact Riemann surface of genus 1. We can draw a non-trivial
cycle y(t) in D(t) such that y(¢) varies continuously with ¢t e C, and consider
the h-mod. A(t) for (D(¢), y(¢)). If we put 2 = U,Ec(t, D(t)), then 2 and y(t)
satisfy Conditions 5.1 ~ 5.3. By (1) of Theorem 5.1, 1/A(¢) is a positive super-
harmonic function on C, so that A(t) is a constant on C, and hence f(¢) is
a constant on C.

COROLLARY 6.1. Let M = (M, n, C) be a topologically trivial triple of
finite or infinite type (g, n). Assume that (@) n>1 and M is of locally Stein;
(b) There exists t, € C such that the universal covering surface M~(t,) of M(t,)
is conformally equivalent to the unit disk D; (c) There exists at least one
holomorphic section a:t — a(t) of # defined on C. Then M is holomorphically
trivial: M ~ (C x R, n¢, C).

Proor. For any t € C we construct the universal covering surface M ~(t)
of M(t) starting from the point «(tf). We denote by G(t) = {f,(, 2)}n=0.1....
the cover transformation group of M~(t), so that M~(t)/G(t) = M(t). Since
I is topologically trivial, we canonically obtain the topologically trivial triple
M~ = (A", 7, C) of type (0, 1) and a holomorphic cover transformation group
%~ = {T}eo.1.... of M~ such that () M~/F~ = M; (i) M~ = Useclt, M™(0)
with 7~71(t) = M~(¢) for t € C; (iii) each T, e ¥~ satisfies n~ o T, =n"~ in A~
and the restriction of T, to each M~(¢), t € C is identical with f,(t,z). We
note that f,(t, z) is holomorphic for (t,z) e .#. Since M is of locally Stein,
so is M~. By condition (c), M~ has infinitely many holomorphic sections
o, =T, oo (n=0,1,---) defined on C. By (b), Theorem 6.1 implies that
M~ ~(C x D, nc, C). We denote by L,(t,z) the cover transformation of D
corresponding to f,(t,z) of M~(t). Since L,(t,z) is of the form L,(t, z) =
ez — a,(t))/(1 — a,(t)z) and since L,(t, z) is holomorphic for (t,z)e C x D,
L,(t, z) does not depend on t € C: L,(t, z) = L,(z). If we put D/{L,(2)},=0.1.... =
R, then M= (C x R, n., C). O

By the proof, we note that the holomorphic section a of .# corresponds
to a constant section of C x R. Statement (III) in the Introduction is Theo-
rem 6.1, and (IV) easily follows Corollary 6.1.

In the theory of function algebra, it has been studied when an analytic
multivalued function & in B x C contains a 1-dimensional analytic set (cf.
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Wermer [9, Theorem 1]). It is known that & is a pseudoconcave set in B x C
in the theory of several complex variables, and the converse is true (see
Aupetit [1, Chap. VII]). We put E(t) = {ze C|(t, z) € &} for each te B. By
applying the usual normal family method to Theorem 6.1 we immediately
have the following result concerning this subject:

COROLLARY 6.2. Let & be a nonempty pseudoconcave set in C? of two
complex variables (t, z) such that each E(t), t € C is bounded in C and P' — E(t)
is simply connected. Assume that there exists a meromorphic function f(t) on
C such that f(t)¢ E(t) for te C. Then we find an entire function g(t) such
that g(t) € E(t) for teC.

We often use the following

NoTAaTION 6.1. Let M = (A, =, B) be a topologically trivial triple of finite
type (g, n) with n > 1. We thus have a topological mapping

(N,) T:(t,z)e M > (t,w)=(t, ¢, 2)eB xS with ngo T=m,

where S is a Riemann surface of genus g and with n boundary components.
For any te B and any K = S, we define K(t) = ¢~ !(t, K) = M(t). Hence,
given cycle y in S, y(t) defines a cycle in M(¢) which varies continuously with
teB in /. For each te B, we denote by o,(t,z) and 1,(t) the r-diff. and
h-mod. for (M(t), y(¢)), and write Q.(t, z) = o,(t, z) + \/—_1 *0,(t, z) for ze M(?).
We put 0S=Cy +---+ C;. We can draw n smooth cycles C; in S such
that C; and C; surround annulus domain E; of S in the manner that

(N,) OE;=C7 — C; and E;NE; = ¢(i #j).

We say that E; is an end of S with boundary component C~. So, each E(t),
t € B defines a noncompact region in M(t) such that E;(t) has a relative
boundary 0E;(t) = C;(t) and an ideal boundary component of M(t), which we
denote by C(t). E(?) is called an end of M(t) with ideal boundary component
C(t). We write 0Ei(t) = C (1) — Ci(t), and Ci(t) ~ C(t) in M(t). In case
when y = C(1 <i < n), we simply put

(N3) ac(t, z) = ai(t, 2) ; Ac(®) = A,() and Qc(t, 2) = (¢, 2) .

As stated in the Introduction, each ideal boundary component C;(t) of M(t)
is either degenerating (to a point) or non-degenerating. We put

(Ny)
K = {t € BIM(¢) has at least one degenerating ideal boundary component} .

Under these notations we have
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LEMMA 6.1. Let I = (A, n, B) be a topologically trivial triple of finite
type (g, n), and of locally Stein. If Cap Ky > 0, then we find a topologically
trivial triple (M#~,n~, B) of type (g,n — 1) and a holomorphic section a of
M~ defined on B such that M ~ (M~ — a(B), ", B).

Proor. Take t, € B such that, for any disk B, of center t,, Cap(B, N Ko) >
0. Let p,e M(t,) and let B, x U, be a m-local coordinates at p,, We put
M'(t) = M(t) — U, and consider a triple ' = (#', 7', B,) where MA' = M —
B, x U, (c #) and n'"'(t) = M'(t) for te B,, M is a topologically trivial tri-
ple of type (g, n + 1). We can take the cycle C,(t)(~C;(t)) c M'(t) (1 <i < n).
Then we have the h-mod. u(t) for (M'(t), Ci(t)) for t e B. It is clear that
u(t) =0, if and only if C;(t) is a degenerating ideal boundary component of
M(t). Since each 1/p(t)(> 0) is superharmonic on B, and since Y 7, 1/p,(t) =
+ o on B,N Ky, it follows that one of them, say 1/u,(t), is identically + oo
on B,, and hence on B. Thus, the ideal boundary component C{(¢) of any
M(t), t € B is degenerating. It follows from Fundamental Theorem in Nishino
[10] combined with §3 in [13] that, for any t,e B, we find a disk B, of
center t, and an end E| (c E;) of S with ideal boundary C{ such that, if
we put & = T"Y(B, x E}) (= .#), then the triple (&;, =, B,) is holomorphically
equivalent to a triple (%4, n,, B,) of type (0,2) such that each fiber G,(t),
te B, is a Jordan domain punctured at O which corresponds to C;(t). Thus
the lemma is proved. [J

We can now prove that, under the condition: Cap Ky > 0, statement (II)
in the Introduction is true.

In fact, let M = (A, n, C) be a topologically trivial triple of finite type
(g,n) with n>1, and of locally Stein. Assume that Cap Kgu > 0. Then
Corollary 6.1 combined with Lemma 6.1 readily implies that I is holomor-
phically trivial, if (i) n > 2 and M(t,) for some t,e C has at least one non-
degenerating ideal boundary component, or (ii) 2g + n — 1 > 3. The other
case is: M is of type (0, 1), (0, 2) or (1, 1) such that all ideal boundary compo-
nents of each M(t), t € C are degenerating. This case is reduced to (I) by
Nishino [11]. O

Statement (II) under Cap K¢ = 0 remains to be proved. In order to
study this in §8, we prepare local properties in §7.
7. Local properties

Let (#, n, B) be a triple. Let fi(t, z) (i = 1, 2) be a meromorphic function
for (t,z) € # such that, for any fixed t € B,
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(7.1) fi(t, z) is non-constant for z e M(t).
We consider the transformation
T,:(t,z)e M —(t, W) =(t, fi(t,z) e B x P!,

and denote by 9; = T(#). Thus 2, is a ramified domain over B x P!, and
T,o T; ! is a biholomorphic mapping from 2, onto 2,. We write

(7.2) T,0 Tl_l (5, wy) > (8, wp) = (8, D, Wl)) s

where @(t, wy) = f,(t, fi*(t, w;)) is a meromorphic function on 2, such that,
for each t e B, @(t, w;) is non-constant for w, € D,(t). We put

&, = {all irreducible components of the branch surfaces of 2} .

Let s € % and take a non-singular point (¢,, w,) of s. Then, s near (¢,, w,)
in 9; is written in the form a:w;, = £(t) with &(t,) =w,, where £(t) is a
meromophic function for t. In the case when &(f) is constant (resp. non-
constant) for t, we say that the component s in % is constant (resp. non-contant)
for t. We put

S (resp. F') = {s € F|o is constant (resp. non-constant) for t} .
We consider the following subset X in B x P?:
2 = {(t, w;, wy) € B x P*|w, = fi(t, z) for (t,2)e M},

which is a 2-dimensional irreducible analytic set in B x P? (not always closed
in B x P?). We call X the graph of # by (f,,f,). We say that X realizes
M, if X and A are one to one except for an at most countable 1-dimensional
analytic sets. Then we have

LEMMA 7.1. Assume that there exists a 3-dimensional C® set ¥ =
U,EB(t, L(t)) in an open set ¥ (<= M) such that (a) each L(t), te B is a 1-
dimensional C® non-singular arc in M(t);, (b) Im {fi(t,2)} =0 for (t,z2)e &L
(i=1,2). Then the following results (1) and (2) hold: (1) If 4, € &, exists,
then T, o Ty *(s,) (= 4,) belongs to &, and the order of ramification of 2,
along 4, is equal to that of 2, along s,; (2) If X (defined above) realizes M,
then %"(i = 1, 2) is empty.

Proor. We first show that
(7.3) @D(t, w;) of (7.2) does not depend on te B.

In fact, by (7.1), (a) and (b), we find a point gq,€ & with =n(q,) =t, (We put
t, = 0) and =-local coordinates B, x U, = (|t| <1,) X (|z| < p,) of A at g, such
that (i) each arc L(t), te B, divides U, into two regions; (ii) the function
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fit, z) (i =1,2) is holomorphic in B, x U,; (iii) for any fixed t € B,, fi(t, z) is
univalent on U,; (iv) Im {fi(t,z)} =0 for all ze L()NU,, te B,, Now we
put (a,, a,) = (f1(q,), f>(q,)) € C?, where Ima; =0 (i = 1,2). Then, T;:(t, z) »
(¢, fi(¢, z)) is a biholomorphic mapping from B, x U, onto a (schlicht) neigh-
borhood ¥; of (0,a;) in B, x C, so that ¥; and ¥, are biholomorphic by
T, o T i (t, wy) = (8, wy) = ((t, D(t, w;)). We have

Wy = Bt w) =S ()W — ay) with co(0) = a;
n=0

in a bidisk B; x V; (< ¥]) of center (0,a,). Each c,(t) is holomorphic on
B,. By (iv), Im {®(t, w;)} = O for all (¢, w,;) € B, x V; with Imw; =0. Hence
¢,(t) is real-valued on B,, and c,(t) = const. ¢, on B;. So, &(t,w,) on B, x V;
does not depend on t € B;,. Since 2, is connected, (7.3) follows by analytic
continuation. In order to prove (1) of Lemma 7.1, let 4, € & and let £ — 1
(= 2) be the order of ramification of 2, along s,. We take a point (t,, a,) € 4,
such that 4, near (t,,a;) in 2, is of the form 4,: w, = &,(¢t) for t € B, with
&,(t,) =a, where &,(t) is a non-constant holomorphic function in a disk
B,(c <= B) of center t,. We put p, = T, '(t,, a,), T = T, '(sy) < M, a, = f5(p,),
g, = TH(1) =D, and a4, w, = &,(t) for te B,. Then &,(t) is a meromorphic
function on B, with &,(t,) = a,. For simplicity we assume that &,(t) is holo-
morphic on B,. We take n-local coordinates (t,z) e B, x U, at p, such that
7 corresponds to B, x {0}. Then, fi(t, z) near (¢,, 0) is of the form

(7.4) Wy = fi(t,2) = E4(0) + bz + bry (27 4 -+
‘ wy = fo(t, 2) = E,(0) + ¢, ()z + c5(t)z2 + -+,

where (¢, z) runs in B, x U,. Each coefficient by(t), ¢;(t) is holomorphic in B,
and b,(t) #0 for any te B,. It is enough for (1) of Lemma 7.1 to show
that (i) £,(t) is non-constant for t € B,; (ii) ¢,(t)=---=c,_,(t) =0 on B, and
c,(t) # 0 for some te B,. To prove these, we consider a set

(7.5) o = {(wy, w,) € P%|w; = fi(t,,2) for ze U,}.

If we take a small bidisk V| x V, of center (a,, a,), then s N(V; X V,) (= a,)
is a closed 1-dimensional analytic set in V; x V,. By (7.1), we can write
6, = {(wy, wy) € V; x V3|F(wy, w,) = 0} where F(w,, w,) is a holomorphic func-

OF (i wp) =0 or
ow,

tion on V; x ¥V, such that the set A={(w1,w2)eo",

oF
aT(wl,wz)=0} is a finite point set. We take a smaller bidisk B; x U;
2

(= B, x U,) of center (t,,0) such that f(B,,U;)< V, (i=1,2). Consider the
subgraph X, of X: X, = {(t, w;, w,) € B; x V; x V,|w; = fi(t, z) for (t,z) € B, x
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U,}. Then (7.3) implies that
(7.6) 5, cB, xa,.

First, we put z=0 in (7.4). Then we have {(t, £,(t), &,(t) € By X V; x V,|
teB,} c X, B, x 0, Since & (t) is non-const. on B, and since A4 is a finite
set, &,(¢) is non-const. on B,. (i) is proved. Next, we put B] = {t € B,|c;(t) # 0
for some j (1 <j<¢ — 1)} and B = {t € By|c,(t) = 0}. Fix te BiUB{. Then
(7.4), together with b,(t) # 0, implies that {(£,(t), &,(t))|t € BjUB{} = A. Since
£,(¢) is non-const. on B,, the set B{UBj is also a finite point set. Hence,
B; = ¢. Since b,(t) #0 for any t e B,, (7.6) implies B = ¢. (ii) is proved.
We shall prove (2) of Lemma 7.1 by contradiction. Assume that there
exists an ¢, € ¥’ with order of ramification ¢/ — 1 (> 1). Using the above

notations we have
Zo={(t, &1(8) + b(O)z’ + -+, &5(t) + c/t)z’ +-+*)|(t, 2) € By x Uy} < B, X o,
Since 2 5 2, and # > B; x U,, this contradicts the hypothesis. []

ACKNOWLEDGEMENT. (1) of Lemma 7.1 was proved in [16] by calcula-
tion. The above intuitive proof by use of the graph is due to Professor
Tetsuo Ueda.

Let M = (A, n, B) be a topologically trivial triple of finite type (g, n). We
use (N;) ~(N,) in Notation 6.1 for this . Then we have

LEMMA 7.2. Assume that (a) M is of locally Stein; (b) Cap Ky =0; (¢)
n>2 and at least one of {A,(t)} <i<n> Say A,(t), is a constant k, in B. Then,
for any t,e B, we find a disk B, centered at t, such that the subtriple Mgy
of M on B, is holomorphically equivalent to a triple W' = (A, 7', B,) with C®
smooth boundary: My ~ M.

Proor. By (b), there exists t* € B such that the fiber M(t*) is conformally
equivalent to the interior R, of a compact bordered Riemann surface R, of
genus g with n C® smooth boundary contours {C,,} by a conformal mapping

(71.7) Eze M(t*) > w=E(z)eR,.

We let correspond C;™(t*) to C;,, (1 <i<n) by & We have 4,(t*)=k; > 0.
By (2) of Corollary 5.1, Q(t,z) is holomorphic for (t,z)e .# such that
Q,(t,z) #0 on M(t) for any t € B. We shall prove

=1lc; (=1 where ¢, >0,
. Q = !
(7.8) _L(,) 1(t2) {/ —1¢2<i<n) where ¢; < 0.

In fact, the integral I;(t) = j'ci(,)!)l(t, z) (1 <i<n)is a holomorphic function
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for te B. By (1.2), we have Re {I;(1)} = C,(t) x Ci(t) =0, so that I(t) is a
constant ./ —1 ¢;. If we consider the harmonic function U(w) on R, with
boundary values 1 on C;, and 0 on C;, (2 <i < n), then we have g,(t*, z) =

dU o &(z) on M(t*), and ¢; = jciog%]dsz (1<i<n). Hence, c, =4,t*)=k, >

0, while ¢; <0 (2<i<n). (7.8) is proved.

Since ¢; # 0 (1 <i < n) in (7.8), we see that each ideal boundary components
of all M(t), t € B is non-degenerating. Hence, for any ¢ € B, we find a harmonic
function u(t,z) on M(t) such that o,(t, z) = du(t, z) and

. 1 fori=1

(79) z-lvlcr?(z) ult, 2) = {0 for 2<i<n

where u(t*,z) = U o &(z) in M(t*). Let ¢, be any point of B. Take a small
disk B, of center t; and a holomorphic section a:t— a(t) of #p defined on
B,. For simplicity we write t; =0; B, =B and # =.#4. We put E;=
T'BxE)= U,e s(t, Ei(t)), where E; is defined in (N,) in Notation 6.1. Be-
sides the section a of # on B, we draw holomorphic sections «; such that
o;(t) € E(t) for all te B. For any fixed te B, we connects a(t) and o;(t) by
an arc /;(t) in M(t) such that Z,(t) varies continuously in .# with te B. We
consider the function on E;:

(7.10) fit, z2) = exp {26—” <J‘“ ) Q. 2)+ jz( ) Q,(t, z))}

where a path in the second integration lies in E;(t). We put H(t) = u(t, a(t)).
Then |£i(t, 2)| = exp {(2n/c)(u(t, 2) — H()}. We put

= {exp {@n/c,)(1 — H(®))} for i=1
r(t) = exp {(—2n/c;)H(t) for 2<i<n.

By (7.8), each fi(t,z) (1 <i<mn) is a single-valued holomorphic function for
(t,z)e E;. By (79), fi(t,z), te B is univalent in E,(t) (if necessary, take a
smaller end E,(t) with ideal boundary component C;~(t)). Hence the mapping

T:(t,z)eE;—»(t,w)=(t, fi(t,z)) e Bx C

is a holomorphic injection. We put 9; = T,(E;) = | J,c5(t, D(t)), where Dy(t) =
fi(t, E;(t)). It follows that D,(t), t € B is a double connected region in C whose
outer boundary component (which corresponds to C;~(¢)) is given by the circle
|w| = r(t). It thus suffices for Lemma 7.2 to verify that H(t) is a C*® function
on B.

In fact, by condition (a), 9; is pseudoconvex at all outer boundary points.
By measuring the outer radius from the origin w =0 of each D), we see
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from Hartogs’ theorem that all 7,(t) (1 <i < n) are logarithmic superharmonic
function on B, so that H(t) is harmonic, and hence C® on B. [

REMARK 7.1. Under the same conditions as in Lemma 7.2, we assume
that (g,n) =(0,2). Then, for any t,e€ B, we find a disk B, centered at ¢,
such that the subtriple My of M on B, is holomorphically trivial: My ~
(B, x R,, mp,, B,) where R, = ({1 <|w| <r,} and r, = &*"*.,

Proor. We use the same notation as in the proof of Lemma 7.2. When
(g, n) = (0, 2), we have a,(t, z) = —0a,(t, z) on M(t) and C,(t) = —C,(t) for t € B.
Moreover, the function w = f;(t, z) of (7.10) for i = 1 conformally maps each
M(t), t € B onto the annulus

D(t) = {w e C|e"@™VHO < || < o@men(-HO)}

Since H(t) is harmonic on B, we can find a holomorphic function g(tf) on B
such that log |g(t)| = (2n/c,)H(t) on B. Since c, = k,, .# is biholomorphic
to B x R, by the transformation Ty™:(t, z) - (t, W) = (¢, g(t)f1(t, z)). Remark
7.1 is valid. O

Now let MM = (A, n, B) be a triple with C® smooth boundary. Then, M
is topologically trivial of finite type (g, n) with n > 1. We use Notation 6.1.
We assume £ =29 —n—1>2. Take £ independent cycles y,(1 <i < #) in
S. For te B, we have a cycle y(t) in M(t) which varies continuously with
teB in /. Assume that

(7.11) Q, (t,z) and 2, (¢, z) are holomorphic for (¢,z) e ./ .

Then the ratio Y(t, z) = Q, (t 2)/2,,(t,z) is a meromorphic function for
(t, z) € # such that Y (t, z) is non-constant on each M(t), te B. We consider
the mapping

Y.(t,z)e M —(t,w)=(t,¥(t,z)) e B x P!,
and put
(7.12) V(M) =D = |)iep(t, D(2)) -

Then 2 is an (at most 24 — 2) sheeted Riemann domain over B x P! with

some branch surfaces & such that (#, n, B) ~ (2, ng, B) by ¥ where ngl(t) =

D(t). As in Lemma 7.1, we put ¥ = ¥'U¥" and &/ =¥ (S M.
Under these notations we shall prove

LemMa 7.3. Let (M, n, B) be a triple with C® smooth boundary, where B
is a disk centered at 0. Assume that £ >2 and (7.11). We construct 9 by
(7.12). Then (1) If " = ¢, then 2 = B x D(0); (2) If " # @, then any Q, (¢, 2)
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holomorphic for (t,z)e M is zero on A5 (3) If all Q,(t,2) (1 <i<4#) are
holomorphic for (t,z)e M, then 2 = B x D(0).

Proor. By (2) of Corollary 3.1, .4 is Levi flat. By (1.3), we have
Im {y(t,z)} =0 on d.#. Since 0.4 is C* smooth, Y(t, z) is meromorphic for
(t,z) beyond 0.#. Levi’s theorem implies that, for a given Q€ d.#(0), we
find a unique holomorphic section B:te B — (t, Q) € 0.# such that B0, Q) =
Q. It follows that, for t € B,

o.u(t) = {B(t, Q)IQ e d#(0)};  oD(t) = {y(t, B(t, Q)IQ € IM(0)} .

For any fixed Q € dM(0), the function y(t, B(t, Q)) is meromorphic for ¢ € B,
so that it is a constant (0, Q) (because of Im y =0 on d.#). Hence 0D(t) =
0D(0) for all te B, by which (1) of Lemma 7.3 follows. To prove (2), as-
sume that " # ¢ and €, (t, z) is holomorphic for (¢,z) € #. Then the ratio
yi(t, z) = @, (¢, z)/dy (¢, z) is meromorphic for (¢, z) € A such that, for any fixed
te B, Yt z) is non-constant on M(t) and Im {yjt,z)} =0 on d.#4. We
construct the mapping ¥ (t,z)€ M —(t, w,) = (t, Y(t, 2)) e B x P!, and put
V(M) = D; = | ):es(t, Dit)). Thus 2; is a Riemann domain over B x P! with
branch surfaces (= </UY"). Now, take any component s€ %" and let
¢ — 1 (= 1) be the order of ramification of 2 along s. We can apply Lemma
Tlfor & =0d; fi=y and f, =y;. Weputt=y ‘(o) =N, g;=y;(1) = F
t:z=f(t) for teB, s:w=n(t) for te B, and 4;:w; = 1,(t) for te B. By (1)
of Lemma 7.1, ¥ and y; near z = f(t) are of the form

w =yt 2) =n0t) + a )z — BE)" + a, (O — @) + 75
w; = Y(t, 2) = nj(t) + be(t)(z — PO + b (O)(z — BE)YT + -,
where a,(t), b,(t) #0. It follows that
Q(t, 2) = (e, Y (¢, 2)
= {c,1(0)z = B! + c )z — B@®) + -+ }dz,

where c,_,(t) = £ n(t)a (t). Since £ > 2, Q4t, z) is zero on B(t). We thus have
(2) of Lemma 7.3. To prove (3), fix te B. Then, each Q(t,z) (1 <i < #) can
be holomorphically extended to the double M*(t) of M(t), which is a compact
Riemann surface of genus £. Consequently, (£, {z € M*(t)|Qi(t, z) = 0} = ¢.
Hence, (3) follows by (1) and (2). [

8. Proof of (II) in the Introduction

We shall give the proof of statement (II) for the triple M with Cap
K‘]R = 0.
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THEOREM 8.1. Let IM = (M, , C) be a topologically trivial triple of finite
type (g, n) except for (g,n) =(0,1). If M is of locally Stein and Cap Kgy = 0,
then M is holomorphically trivial.

Proor. Throughout the proof we use Notation 6.1 for our I for B = C.
By Cap Ky =0, we take a point t* € C which satisfies (7.7). The proof of
Theorem 8.1 is divided into four short steps:

1 step. (1) For any nontrivial cycle y in S (defined in (N,)). A,(t) is
constant on C; (2) Q,(t, z) is holomorphic for (t, z) € # such that Q.(t,z) # 0
on each M(t), te C.

In fact, (1) of Corollary 5.1 implies that 1/4,(t) (> 0) is a superharmonic
function on C (which may be = +c on C). Thus, 4,(t) is a constant c,
(=0) on C. It follows from (2) of Corollary 5.1 that £.(t, z) is holomorphic
for (t,z)e #. Since c, = 4,(t*) >0, we see that Q.(t,z) # 0 on each M(e),
teC.

2" step. Theorem 8.1 is true in the case (g, n) = (0, 2).

In fact, we can take y = C, in the 1st step. Then, 1,(t) (defined in (N3))
is a constant k; > 0, so that Remark 7.1 is applied to our triple 9. The
rest of the proof of the 2nd step is standard: We choose a family of disks
(B} (i=1,2,...)in C such that U?‘;IB,- = C and (#p, 7, B) ~ (B; x R,, ng, R,)
by a holomorphic T:(t,z) € My — (t,w;) = (t, fi(t, 2)) € B; x S. Here R, was
defined in Remark 7.1 (independent of i =1, 2,...). Assume B;NB; # ¢ and
fix te BNB;. Then w;= fjo f;"(t, w;) = f;(t, w;) gives a holomorphic auto-
morphism of the annulus R,. Since f;(t, w;) holomorphically depend on te
B,N B; and since f;(t, C;) ~ C, in §, it follows that w; = f;(t, w;) = e\/‘_“’"fw,-,
where 0 is a real constant on B;NB;. Since 6; + 0, + 6,; =0 (mod 27) on
B,NB;NB, # ¢, we find a real constant 6, on B; (i=1,2,...) such that 0; =
0, — 6; (mod 2m) on B;NB;. Then, the mapping

(t, 2) € My, — (t, eV (2, 2)) € B x R,
is a well-defined holomorphic transformation from .# onto C x R,.

From now on we may assume that £ =2g+n—12>2. Our triple M
is not assumed to have a C® smooth boundary. However we make

3 step. For any t,e C, there exists a disk B, centered at t, such that
the subtriple My of M on B, is holomorphically equivalent to a triple M’ =
(', 7', B,) with C® smooth boundary: My ~ M

In fact, we first assume that n > 2. Then we can take y = C, in the 1st
step, so that A,(t) is constant k;, > 0. From Lemma 7.2 we obtain the 3rd
step for n > 2. We next assume that n=1. Since g > 1, we can construct
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a two-sheeted covering surface S; over S with neither relative boundary point
nor branch point such that S; is of type (g,2). Since M is of locally Stein
and is topologically equivalent to (C x S, nc, C), we have the triple I, =
(A#,,m,, C) where #, is a double covering of .# with neither branch surface
nor relative boundary point such that IR, is also of locally Stein and is
topologically equivalent to (C x S;, n¢, C). Since n > 2 for IM,, the 3rd step
is true for M,, and hence for M.

4™ step. Theorem 8.1 holds.

In fact, we have #(> 2) independent cycles {y;} on S. By the lIst step,
we make £ holomorphic @, (t,z) in #. Then Y(t,2) = Q,,(t, 2)/2,,(t, 2) is
a meromorphic function on .#. We consider the mapping ¥Y:(t,z)e A4 —
(t,w)=(t, ¥(t,z))e B x P!, and put ¥(#) =2 =).c(t,D(t)) like (7.12).
Hence 2 is a (at most 24 — 2) sheeted Riemann domain over C x P! such
that (#, n, C) ~ (2, nc, C) by ¥, where ncl(t) = D(t) = y(t, M(t)) for te C. Tt
is enough for the 4th step to prove 2 = C x D(0). By the 3rd step we find
a family of disks B; (j=1,2,--) of center t; such that C= Uj‘;lBj and
My, ~ M; = (M}, 7}, B;), where I; has a C” smooth boundary. Note that,
for any fixed te C, 2t ,z) (1 <i<#£) is invariant under the holomorphic
mappings for z. Since all @, z) (1 <j < #) are holomorphic for (¢, z) e A,
it follows from (3) of Lemma 7.3 that 95, = B; x D(t;) for each j, where Zp =
nc'(B;). Consequently, D(t}) = D(0) for j=1, 2, -+, so that 2 =C x D(0). O

Proof of (I) in Introduction. Since M is topological trivial, we draw a
canonical homology basis {A4;(t), Bi(t)}{-, of each compact Riemann surface
M(t) (of genus g independent of t € C), where A4,(t) and B,(t) vary continuously
in # with te C. For any i (1 <i < g), we have a unique analytic differential
ai(t, ©) on M(t) such that [, ot )=0; (1<j<g). If we put byt)=
j,,j(,) w;(t, -), then Im {(b;(t)};<; <, is a positive definite matrix. Since M is
a triple, each b,(t) is a holomorphic function on C. Hence, b(t) must be a
constant on C. By Torelli’s theorem each M(t) is thus conformal equivalent
to M(0). Then Fischer-Grauert’s theorem [5] (even in the case when M(t)
is higher dimensional) implies that the triple MM is locally holomorphically
trivial. By the standard argument in the cohomology theory like the 2nd
step in the proof of Theorem 8.1, we see that I is holomorphically trivial. []
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