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0. Introduction

Let M3 be a compact orientable 3-manifold. Then, M3 x S1 has an
almost complex structure, because the tangent bundle of M3 is trivial. However
by [8] Theorem 3.1, M3 x S1 cannot have any complex structure unless M3

admits a Seifert fibering structure. Moreover these complex structures are
deformation equivalent except the case that M3 is homeomorphic to a lens
space by [8] Theorem 3.2 and [11] Theorems C-l and C-2. In this note,
we determine the deformation types of all the complex structures on the
product manifold L(p,q)xSl. We begin with the precise definition of
deformation types or deformation equivalence.

DEFINITION 0.1. ([6] p. 71 Definition 2.9) When there exists a complex

analytic family (M, B, π) such that B is a connected complex manifold and the

Jacobian of π has the maximal rank at any point, any two fibers of π are

called deformations of each other.

DEFINITION 0.2. Complex manifolds X and Y are called deformation

equivalent or have the same deformation type if there exists a series of connected

complex manifolds Xi for i = 1, 2, ••-,« such that X1 = X and Xn = Y and Xi + ί

is a deformation of Xi for i = l, ,n — 1.

REMARK: This definition of deformation equivalence is equivalent to
Definition 1.1 in [3].

The purpose of this paper is to prove the following main Theorem
2.1. Let n(N) denote the number of deformation types of the complex
manifolds which are diffeomorphic to the manifold N.

THEOREM 2.1. Let p and q be positive integers with p > 1 and (p, q) = 1

and L(p, q) a ^-dimensional lens space. Then,

2 if q2φ-ί(modp)

The latter case is characterized as the case that L(p, q) and L(p, - q) are
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isomorphic only by an orientation reversing diffeomorphism. Theorem 2.1 is
a generalization of Dabrowsky's Theorem ([2] Corollary 4.4) about complex
structures on S3 x S1. To prove this theorem we list up all the complex
structures on L(p, q) x S1 and define two types so that any two complex
structures in the same type are deformation equivalent. Then it suffices to
show that these types are invariant under infinitesimal deformation, or
equivalently to construct local versal families which contain only one type of
complex structures in §2.

1. Complex structures on L (p, q) x S1 and associated covering transformations

Any complex surfaces homeomorphic to L(p, q) x S1 have p-fold coverings
homeomorphic to S3 x S1 which are primary Hopf surfaces by Theorem 1 in
[5]. So they are secondary Hopf surfaces and their universal covering space
is W= C2 — {(0,0)}. By taking conjugate the generators of commuting
covering transformations of W with finite and infinite order are given as follows
according to [4] pp. 230-231 and [7] pp. 1566-1568 and Theorem 6 in [10]:

g(r):(zl9z2)ι—>(ζ'zl9ζz2) with ζ = e2πί/p

and

/(α, β, λ,r):(zl9z2)\—^(αzt + λzr

2, βz2) with α, β, λeC and 0< |α|, \β\ < 1.

By taking conjugate again we may assume λ = 0 and |α| < \β\ if α φ βr and
A = 1 if α = βr.

The quotient space is naturally diffeomorphic to L(p, r) x S1. If
L(p, r) x S1 is diffeomorphic to L(p, q) x S1, then L(p, r) is h-cobordant and
hence diffeomorphic to L(p, q) by Theorem 7.27 in [1]. So, by the
classification theorem of lens space due to [9] the integer r satisfies

(*) qε - r ΞΞ ε' (mod p) with ε = ± 1 and ε' = ± 1.

So, we see that all the complex structures on L(p, q) x S1 are given as
the quotient space WY</(α, β, λ, r), #(r)> where r satisfies the condition
(*). Omitting mod/? hereafter, we have the following four types depending
on r by defining q' with q - q' = 1:

type la: r = q, type Ib: r = q', type Πa: r = — q and type lib: r = — q'.

When p = 2 there is no difference between the four types. For p > 3 we
have the following three cases:

(1) q = <j'(i.e. q2 = 1),
(2)-(i) q φ <z'(i.e. q2 φ 1) and - q = ^(i.e. q2 = - 1), and
(2)-(ii) q φ <7'(i.e. q2 φ 1) and -qφ <?'(i.e. q2 φ - 1).
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In the case (1) type la = type Ib and type Πa = type lib. Moreover by the

following lemma 1.1, we see that {type la} n {type Ib} Φ φ and {type Πa}

Π (type lib} / φ. Here { } stands for the set of complex structures coming

from type . So, we should call type I and type II by uniting type la with

Ib and Πa with lib for the complex structures. We see also that type

la = type lib and type Ib = type Πa in the case (2)(i). On the other hand,

we see that {type I}n{type II} = φ in the case (1) or (2)(ii) by the following

Lemma 1.2.

LEMMA 1.1. In the case (2), let r = q, s = q' (or r = — q, s = — q'). Then

there exists a biholomorphic map

fa β, λ, r), 0(r)> - > WY</(y, 3, μ, s), g(s»

if and only if λ = μ = 0, α = δ and β = y.

PROOF. If φ exists, the lifting of φ on W can be extended to a

holomorphic map φ from C2 to C2 by Hartogs' theorem, that is,

φ(zl9 z2) = (Σij>oaijz\ZJ2> Σij>o bijz\z2) From the compatibility of φ and
the covering transformations, we get λ = μ = 0, α = δ, β = y and φ(zl9 z2) =

(z2, Zx). The converse is clear.

LEMMA 1.2. ([8] Lemma 3.5.5) If q2 φ — 1, then there exist no

biholomorphic map

φ : WY</(α, β, λ, r), 0(r)> — > W/<J(y, δ, μ, s), g(s)>

for r = q and s = — q, r = q and s = — q', r = q' and s = — q or r = q' and

s= -q'.

PROOF. If φ exists, the lifting of φ on W can be extended to a

holomorphic map φ:C 2 ->C 2 satisfying φ(0, 0) = (0, 0). The induced map

φλ: C2/<#(r)>->C2/<ί/(s)> is a homeomorphism from the cone of L(p, r) into

the cone of L(p, s) which restricts to a diffeomorphism outside the cone point.

For a t > 0 big enough, L(p, s) x {1} nφι(L(p, r) x {ί}) = φ. So, we have an

h-cobordism between L(p, s) x {1} and φ^LQ?, r) x {ί}), and they should

be isomorphic by orientation preserving diffeomorphism by Theorem 7.27 in

[1]. Note that L(p, r) is isomorphic to L(p, s) by orientation preserving

diffeomorphism if and only if r ± 1 - s ^ l , and by orientation reversing

diffeomorphism if and only if r ± x s = — 1 due to [9]. So, if q2 φ — 1, L(p, r)

and L(p, s) are isomorphic only by orientation reversing diffeomorphism.

Therefore φ^ is an orientation preserving diffeomorphism but reverses the

orientation of the component of lens space, and hence so φί reverses the

orientation of the cone parameter. But this contradicts the fact that φί

preserves the cone point. Therefore φ does not exist.
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2. Deformations of complex structures on L (/?, q) x S1

First we will construct complex analytic families which connect all the

complex structures of type la on L(p, q) x S1. Take a region K = {(α, β)e

C 2 ]0 < |α|, |jβ| < 1} and put B = K x C. In this paragraph m > 0 and n > 0

denote integers such that m = n = q.

Holomorphic maps /„, g: W x B -> W x B are defined by

*, a n UαZi+λzS.j fea^jM) if n ^ O
/Π(z l5 z2, α, ft /) = <

Uαz l 5 βz2,α, β, λ) if n = 0

and

0(z1? z2, α, β, A) - (£%, (z2, α, £ /I).

An analytic family (Vn, B, πn) is defined by Vn = Wx #/</„, #> and a projection
map πn: Vn -> 5. We define Xm = {(α, jS)eC2 | α = βm}. Define C = (K - (Jm Km)

x C c β and a holomorphic map Φw: W x C -> VF x C (n > 0) by

Φn(zl9 z2, α, /J, λ] = (z, - λz"2/(a - β"), z2, α, jS, λ).

Then we have a fiber preserving biholomorphic map φn: π^1 (C) -> π ~ 1 (C)

induced by Φn (See [2] Lemma 4.3). Since C is not empty, we see that any

complex structures of type la are deformation equivalent.

In the same way we can connect all the complex structures of type Ib, Πa
and lib respectively. This means that we have estimated n(L(p, q) x S1) for

each case as

[ = 1 for the case p = 2 or (2)-(i)
n(L(p, q) x S )<

' [ < 2 for the case (1) or (2)-(ϋ).

Moreover we will show that the equality holds in the latter case. Then,
we have Theorem 2.1 which is presented in the introduction. Let X be a

complex surface diffeomorphic to L(p, q) x S1. Because c\(X) = c2(X) = 0, we
have h°(X9 Θ) = h1(X, Θ) and h2(X, Θ) = 0 by Riemann-Roch theorem, where

Θ is the sheaf of germs of holomorphic vector fields over X. We will give some

basis of H1(X, Θ) to examine the versality for the deformations of complex

structures. When r is fixed, the complex structures X = VF/</(α, β, ε, r), #(r)>

with ε = 0 or 1 and 0 < |α| < |/?| < 1 can be divided into the following cases.
( i ) ε = 0 and α = βn for some positive integer n with n = r, and (a) n = 1

or (b) n > 2

(ii) ε = 0 and α Φ βn for any positive integer n with n = r,

(iii) ε = 1 and α = βr with (a) r = 1 or (b) r > 2.
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LEMMA 2.2. In the above subdivided cases
(i) (a) H°(X,Θ)^C{zίd/dz1,z2d/dz1,z1d/dz2,z2d/dz2},

(b) /f°(*, θ) * Cjz^/^, zSδ/δZi, z2δ/dz2},
(ii) H°(X, Θ) ̂  C{z1d/dz1, z 2 d / d z 2 } and
(iii) H°(X, Θ) ̂  C{rzld/dzl + z2d/dz2, z r

2 d / d z , } .

PROOF. Let G be the group </, 0> generated by / = /(α, β, ε, r) and
g = g(r). For the case (i) and (ii) we simply consider G-invariant holomorphic
vector fields on W. By Hartogs' theorem we can extend any holomorphic
vector field over W to that over C2. So any element θ of HQ(W, Θ) can be
written as

θ = ΣiJ*θaiAzi23/dzl + Σf^ObΓ,/ZΪ4'd/dz2.

Now H°(X, Θ) = H°(W, Θ)G is obtained as mentioned above, because θ should
satisfy

and

, , = o

for/(a,/?,0,r)(z 1 ,z 2 ) = (az1,]8z2).
For the case (iii), rz^dldz^ +z2d/dz2 and z^d/dz^ are clearly G-invariant

vector fields on W Wehler showed that </>-invariant vector fields on W
are generated by the above two vector fields in [12] p. 24 Remark 2. So the
result holds.

Next we are concerned with Hί(X9θ). Let ^ = {Ut \ iel} be a locally
finite open Stein covering of X=W/(f,gy. Taking open subsets U of
W = WY<0> homeomorphic to ί7f by the canonical projection, we define

$ = {Ui\i€l} by C/i = ]Jm6z/m(^/) ^nd we get a short exact sequence of
cochain complexes as in [12] p. 26,

0 - > C'(Φ, β^) - ̂  C'(Φ, β^) ̂  C'(Φ, β^) - ̂  0.

The associated long cohomology exact sequence

0 - >H°(X, Θ) - >H°(W, θ)^-^H°(W'9 Θ)-^H1(X, Θ) - > •••

has a connecting morphism σ. So,
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Hl(X, <9) Ξ> Imσ ^ Coker (id -/* : H°(W, Θ) — >H°(W, Θ)).

LEMMA 2.3. H1(X9 Θ) coinsides with Im σ.

PROOF. Any elemnt θ of H°(W, θ) = H°(W, θ)<d> is written as

where the summation £' is taken for i,;, i',/ satisfying r(ί - 1) +j = 0 and

ri '+j '- 1=0.
If we call 0U, frΓ)/ the coefficients of θ with respect to z [ z j

2 d / d z l 9

zlίzj

2d/dz2, we can define complex numbers ά~ , bVtj. by the coefficients of

(id+fjθ with respect to z\z{d/dzl9 ziίzj

2d/dz2. Then, z\z{d/dzl9 z^zj

2d/dz2

with the pairs (i9j) and (i',/) for which α~ = bVtj, = 0 for any a i f j and feΓf/

represent a set of generators of Coker ( i d — f ^ ) .

In the cases (i) and (ii), we have ~a~j = (1 - α1"1'/?"-7)^, &ΓJ, =
(1 — &~1' β1~J')bi>j> and Coker (id — /„,) is generated by the basis corresponding
to the basis of Ker (id -/* : H°(W', Θ) -> H °(W', Θ)) = H°(X, Θ). Because
h°(X, Θ) = hl(X, Θ), we obtain the results.

In the case (iii),

So, if r(/c - 1) + / φ 0 then %^ = 0 and otherwise

In the same way, if rk + / - 1 φ 0 then bktl =0 and otherwise

H 1V'~ f c /?~ r i ~ / + i l
, H~ 1) P

i>kk/

In the case (a), we have 57io = — β~lbι,o> V i = ~ ^ό and &ι f 0 =0.

Therefore, the images of z^d/dz^ + z 2 d / d z 2 and z l d / d z 2 are linearly
independent in Coker (id -/„,). Because /z0(Ji, Θ) = Λ^Jjf, 6>) = 2, the result
holds. In the case (b), if φ^/dzj + d(z2d/dz2)elm (id-fj, then c = d = 0

because α^o = Vi = 0. Therefore, the images of z1d/dzl and z2d/dz2 are
linearly independent in Coker (id-fj. Because ft°(J!f, 6>) = Λ1^, 6>) = 2, the



Complex structures on L(p, q) x S1 429

result holds.
Let W = W7<0(r)>. If F: W x S-» W is a holomorphic map which

satisfies F(x, s0) = f(x) and F\ W x {s} is biholomorphic for any seS, we can
define a biholomorphic map H: W x S-+W x S by //(x, s) = (F(x, s), s)
where x = (z l 9z 2). Let Y=(W'xS)/H and π:7-»S a projection map.
Then (Y, S, π) is a complex analytic family containing π"1^) = X = W / ( f , g ) .

We will give examples of S and F which induce complex analytic families
versal at s0 as in [12] Theorem 2.

( i )(a)
S = {seGL(2, C) I [eigenvalues of s\ < 1}

'α O x

F(x, s) = s 'x, s0 =
\0 α

(b)
S = { ( α , / U ) 6 C 3 | 0 < | α | , | / ϊ | < l }

F(zl9 z29 α, ft λ) = (αzi + ^z"2, βz2)9 s0 = (jSΠ, ft 0) with yi = r

(ϋ)
S = { (α, j3)eC 2 | |α | , | j 3 |< l }

F(zl9 z2, α, P) = (αz l5 )8z2), s0 = (α, j8)

S = { (α,7)6C 2 | 0< |α | , | 7 |< l }

F(zl9 z2, α, y) = (ΛZI + z2, yzx + αz2), s0 = (α, 0)

(b)
S = {(α,/?)eC 2 |0< α|, | / ϊ | < 1}

F(z l f z2, α, β) = (αzx + z'2, ]5z2), s0 = (jβr, β)

To show the above families versal at s, it suffices to show the infinitesimal
deformation map

P:TSS - >H*(X9Θ)

is an isomorphism. We note that the infinitesimal deformation map can be
decomposed as follows.

LEMMA 2.4. In the above examples a linear map τ: TSS -+H°(W, θ) is
defined by

where dF/ds(x, s) = (aik). = 1 2 . Then p = σ°τ.
l<k<n
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PROOF. This lemma follows from [12] Lemma 3 by changing Wby W .

THEOREM 2.5. Each family (Y, S, π) given above is a versa! deformation

at s0.

PROOF. Case (i)-(a): Because F(zί9 z2, α, β, y, δ) = (αzt + βz2, yzx + δz2)

where we rewrite a matrix I 1 as a row vector (α, β, y, δ),

~ίz1 α - 1z2 0

0 0 α

Therefore for a tangent vector

v =

φ) = α 1 α~ 1 z 1 δ/δz 1 + a2(x~ίz2d/dzl + a^oc~1z1d/Sz2 + a4oc~1z2d/dz2.

As is mentioned in the proof of Lemma 2.3, Coker (id — /*) is generated

by z1d/dz1, z2d/dzl9 z1d/dz2 and z2d/dz2 which are contained in the images

of τ. So, τ and p are surjections by Lemma 2.3 and hence p is an isomorphism
because dimc 7^05 = hl(X, Θ) = 4. In the cases (i)-(b) and (ii) are shown in

the same way.

Case (iii)-(b): Because F(zί9 z2, α, β) = (OLZI + zr

2, jβz2),

0 jΓ1;

So, for a tangent vector v = aι(d/da)so + cι2(dβ)so,

τ(v) = a1(β~rz1 — β~2rzr

2}d/dzι + a2β~1z2d/dz2.

Because ~a^~r = β~ra10 — rβ~rb01 and α l s 0 appears only in ά^, we see

that zr

2d/δZl = (id-fJ(βr

Zld/dZl). So, φ) = a1β'rzίd/dz1 + a2

mod Im(id —/^J. As is mentioned in the proof of Lemma 2.3, Coker (id —/*)
is generated by z^d/dz^ and z2d/dz2 contained in the images of τ, so p is an

isomorphism by Lemma 2.3 as before. In the case (iii)-(a) are shown in the
same way.

COROLLARY 2.6. The types I and II of the complex structures on
L(p, q) x S1 are invariant under deformation.

PROOF. Note first that any complex structure is biholomorphic to the
fiber at s0 for some family in Theorem 2.5. By the versality any of its local
deformation belongs to the family of quotient spaces given in Theorem
2.5. Since the parameter r for the quotient space is invariant in the family
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given in Theorem 2.5, the type defined in the introduction is invariant under

the local deformation and hence under the deformation.

The proof of Theorem 2.1 follows immediately from Corollary 2.6.

REMARK: The invariance mentioned in Corrollary 2.6 is obtained also
in Corollary 7.23 in [3]. However, the statement of Corollary 7.25 in [3]

seems incorrect: qφ±q~l in the first line should be qφ—q~l and

q = ± q'1 in the third line should be q = — q'1.
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