Nonhomogeneity of Picard dimensions for negative radial densities

Dedicated to Professor Fumi-Yuki Maeda on his 60th birthday

Hideo Imai

(Received November 26, 1993)

Consider the punctured open unit ball $\{0<|x|<1\}$ in the punctured Euclidean m-space $R^{m} \backslash\{0\}(m \geq 2)$ in which we regard the origin $x=0$ as an ideal boundary component of $R^{m} \backslash\{0\}$. For each s in $(0,1]$ we set $U_{s}=\{0<|x|<s\}$, which is also an ideal boundary neighbourhood of the ideal boundary component $x=0$ in $R^{m} \backslash\{0\}$, so that $\Gamma_{s}:|x|=s$ is the relative boundary of U_{s} and the relative closure \bar{U}_{s} of U_{s} in $R^{m} \backslash\{0\}$ is $U_{s} \cup \Gamma_{s}$. We set $U_{1}=U$ and $\Gamma_{1}=\Gamma$. A density $P(x)$ on U_{s} is a locally Hölder continuous function defined on \bar{U}_{s}. Consider the time independent Schrödinger equation

$$
\begin{equation*}
L_{P} u(x) \equiv-\Delta u(x)+P(x) u(x)=0 \tag{1}
\end{equation*}
$$

defined on \bar{U}_{s}, where Δ is the Laplacian $\Delta=\sum_{i=1}^{m} \partial^{2} / \partial x_{i}^{2}$. We are interested in the class $P\left(U_{s}, P\right)$ of nonnegative solutions of (1) in U_{s} with vanishing boundary values on Γ_{s}. Let $r \omega$ be the polar coordinate expression of x, where $r=|x|$ and $\omega=(x /|x|) \in \Gamma$. We set

$$
l(u) \equiv-\frac{s}{\omega_{m}} \int_{\Gamma}\left[\frac{\partial}{\partial r} u(r \omega)\right]_{r=s} d \omega
$$

where $d \omega$ is the area element on Γ, ω_{m} the area of Γ and $\partial / \partial r$ the outer normal derivative on Γ_{s} considered in \bar{U}_{s}. It is convenient to consider the subclass $P_{1}\left(U_{s}, P\right) \equiv\left\{u \in P\left(U_{s}, P\right) ; l(u)=1\right\}$. Since $P_{1}\left(U_{s}, P\right)$ is convex, we can consider the set ex. $P_{1}\left(U_{s}, P\right)$ of extreme points of $P_{1}\left(U_{s}, P\right)$ and the cardinal number \#(ex. $\left.P_{1}\left(U_{s}, P\right)\right)$ of ex. $P_{1}\left(U_{s}, P\right)$ which will be referred to as the Picard dimension of $\left(U_{s}, P\right)$ at $x=0, \operatorname{dim}\left(U_{s}, P\right)$ in notation:

$$
\operatorname{dim}\left(U_{s}, P\right)=\#\left(e x . P_{1}\left(U_{s}, P\right)\right) .
$$

There exists a t in $(0,1]$ such that $\operatorname{dim} P\left(U_{s}, P\right)=\operatorname{dim} P\left(U_{t}, P\right)$ for any s in ($0, t$] ([8], [7], [9]). Hence we can define the Picard dimension of P at $x=0$, $\operatorname{dim} P$ in notation, by

$$
\operatorname{dim} P=\lim _{s \downharpoonright 0} \operatorname{dim}\left(U_{s}, P\right)
$$

We showed in [5] that there exists a radial density P on U_{s} with $0<s<1$ such that $\operatorname{dim} P=1$ but $\operatorname{dim}(c P)=0$ for every $c>1$. Here a density P is radial, by definition, if $P(x)$ depends only on $|x|$. It is asked in [9] whether or not there exists a radial density P on U such that $\operatorname{dim} P=0$ but $\operatorname{dim}(c P)=1$ holds for every c in $(0,1)$. Consider the negative radial density P given by

$$
\begin{equation*}
P(x) \equiv-\frac{1}{4|x|^{2}}\left\{(m-2)^{2}+\frac{1}{\left(\log \frac{\eta}{|x|}\right)^{2}}+\frac{1+a^{2}}{\left(\log \frac{\eta}{|x|} \cdot \log \log \frac{\eta}{|x|}\right)^{2}}\right\} \tag{2}
\end{equation*}
$$

where a is any fixed positive constant and η is any fixed constant with $\eta>e^{e}$. The purpose of this paper is to show the following result which settles the above problem in the positive.

Theorem. The density P given by (2) satisfies

$$
\operatorname{dim} P=0 \quad \text { but } \quad \operatorname{dim}(c P)=1
$$

for any c in $(0,1)$.
The above density P given in (2) is also considered in [2] for the case $m=2$ in the study of the existence and asymptotic behaviors of positive solutions of (1) near the point at infinity; it is also shown that there exists a density P for every dimension $m \geq 2$ such that $\operatorname{dim} P=0$ (i.e. the nonexistence of positive solutions) and $\operatorname{dim}(c P) \geq 1$ (i.e. the mere existence of positive solutions) for every $0<c<1$ stated in our formulation.

1. We begin with some definitions. A function u is a solution of (1) in U_{s} if u is a C^{2} function on U_{s} which satisfies (1) in U_{s}. A lower semicontinuous, lower finite function v on U_{s} is a supersolution of (1) in U_{s} if $v(x) \geq u(x)$ in B whenever $v(x) \geq u(x)$ on the boundary ∂B of B for any ball B in U_{s} and for any solution $u(x)$ of (1) in B continuous in \bar{B}. If $v(x)$ is a C^{2} function on U_{s}, then $v(x)$ is a supersolution of (1) on U_{s} if and only if $L_{P} v(x) \geq 0$ on U_{s}. A potential p of (1) on U_{s} is a nonnegative supersolution of (1) in U_{s} such that, if $p \geq u$ holds on U_{s} for some solution u of (1) in U_{s}, then $u \leq 0$ on U_{s}. We take any point y fixed in U_{s}. By the Green's function $G_{s}(x, y)$ of (1) on U_{s} (with its pole y) we mean, if it exists, the potential of (1) on U_{s} satisfying $L_{P} G_{s}(x, y)=\delta_{y}(x)$ on U_{s}, where $\delta_{y}(x)$ is the Dirac measure at y. The pair $\left(U_{s}, \mathscr{H}_{P}\right)$ with the sheaf \mathscr{H}_{P} of solutions of (1) on U_{s} is a Brelot's harmonic space. There exists a positive potential of (1) on U_{s} if and only if there exists the Green's function $G_{s}(x, y)$ of (1) on U_{s} ([3], [6], etc.). Consider the density $Q(x)$ on U given by
(3) $\quad Q(x) \equiv-\frac{1}{4|x|^{2}}\left\{(m-2)^{2}+\frac{1}{\left(\log \frac{\eta}{|x|}\right)^{2}}+\frac{1}{\left(\log \frac{\eta}{|x|} \cdot \log \log \frac{\eta}{|x|}\right)^{2}}\right\}$.

To find linearly independent solutions of

$$
\begin{equation*}
-\left(\frac{d^{2}}{d r^{2}} u(r)+\frac{m-1}{r} \frac{d}{d r} u(r)\right)+Q(r) u(r)=0 \tag{4}
\end{equation*}
$$

where $Q(r)$ is given in (3) with $r=|x|$, we set $\log _{2} r=\log \log r$ and $\log _{3} r=$ $\log \log _{2} r$. Take the function $p_{\alpha, \beta}(r) \equiv r^{\alpha}\left(\log (\eta / r) \log _{2}(\eta / r)\right)^{\beta}$, where α and β are arbitrarily given constants which are determined later. Then by the direct computation we can easily see that

$$
\frac{\frac{d}{d r} p_{\alpha, \beta}(r)}{p_{\alpha, \beta}(r)}=\frac{\alpha}{r}-\frac{\beta}{r \log \frac{\eta}{r}}-\frac{\beta}{r \log \frac{\eta}{r} \log _{2} \frac{\eta}{r}}
$$

and hence

$$
\begin{aligned}
& \frac{d^{2}}{d r^{2}} p_{\alpha, \beta}(r)=\left\{\frac{\alpha(\alpha-1)}{r^{2}}+\frac{\beta(1-2 \alpha)}{r^{2} \log \frac{\eta}{r}}+\frac{\beta^{2}-\beta}{\left(r \log \frac{\eta}{r}\right)^{2}}\right. \\
& \left.\quad+\frac{\beta(1-2 \alpha)}{r^{2} \log ^{\frac{\eta}{r}} \log _{2} \frac{\eta}{r}}+\frac{\beta(2 \beta-1)}{r^{2}\left(\log \frac{\eta}{r}\right)^{2} \log _{2} \frac{\eta}{r}}+\frac{\beta^{2}-\beta}{\left(r \log \frac{\eta}{r} \log _{2} \frac{\eta}{r}\right)^{2}}\right\} p_{\alpha, \beta}(r)
\end{aligned}
$$

on $(0,1]$. Therefore we have the following identity:

$$
\begin{aligned}
\frac{d^{2}}{d r^{2}} p_{\alpha, \beta}(r) & +\frac{m-1}{r} \frac{d}{d r} p_{\alpha, \beta}(r)=\left\{\frac{\alpha(\alpha+m-2)}{r^{2}}-\frac{(2 \alpha+m-2) \beta}{r^{2} \log \frac{\eta}{r}}+\frac{\beta^{2}-\beta}{\left(r \log \frac{\eta}{r}\right)^{2}}\right. \\
- & \left.\frac{(2 \alpha+m-2) \beta}{r^{2} \log \frac{\eta}{r} \log _{2} \frac{\eta}{r}}+\frac{\beta(2 \beta-1)}{\left(r \log \frac{\eta}{r}\right)^{2} \log _{2} \frac{\eta}{r}}+\frac{\beta^{2}-\beta}{\left(r \log \frac{\eta}{r} \log _{2} \frac{\eta}{r}\right)^{2}}\right\} p_{\alpha, \beta}(r) .
\end{aligned}
$$

Setting $\alpha=-(m-2) / 2$ and $\beta=1 / 2$, it follows that the function

$$
p(r)=r^{-\frac{m-2}{2}}\left\{\log \frac{\eta}{r} \log _{2} \frac{\eta}{r}\right\}^{\frac{1}{2}}
$$

is a solution of (4) in $(0,1]$. Observe that the function $q(r) \equiv \log _{3}(\eta / r)$ is a solution of

$$
\begin{equation*}
\frac{d^{2}}{d r^{2}} v(r)+\left\{\frac{m-1}{r}+2 \frac{\frac{d}{d r} p(r)}{p(r)}\right\} \frac{d}{d r} v(r)=0 \tag{5}
\end{equation*}
$$

in $(0,1]$. Hence $p(r)$ and $p(r) q(r)$ are linearly independent solutions of (4) in $(0,1]$. It is also evident that $p(|x|)$ and $p(|x|) q(|x|)$ are solutions of

$$
\begin{equation*}
L_{Q} u(x) \equiv(-\Delta+Q(x)) u(x)=0 \tag{6}
\end{equation*}
$$

in U continuous in \bar{U}.
Choose any s in $(0,1]$ and take any t fixed in $(0, s)$. We set

$$
h(x)=\frac{q(|x|)-q(s)}{q(t)-q(s)} p(|x|)
$$

which is a solution of (6) in U which coincides with $p(t)$ on Γ_{t} and 0 on Γ_{s}. Observe that

$$
\frac{q(|x|)-q(s)}{q(t)-q(s)}>1 \quad(<1, \text { resp. })
$$

for $|x|<t$ ($>t$, resp.). In view of this we see that

$$
h(x)>p(|x|) \quad(h(x)<p(|x|), \text { resp. })
$$

for $|x|<t$ ($>t$, resp.). Consider the function $v(x)$ given by $h(x)$ on $U_{s} \backslash \bar{U}_{t}$ and $p(|x|)$ on \bar{U}_{t}. Since

$$
v(x)=\min (h(x), p(|x|)) \quad\left(x \in U_{s}\right),
$$

$v(x)$ is a positive supersolution of (6) on U_{s}. The unicity theorem assures that $v(x)$ is not a solution of (6) on U_{s} by virtue of the fact that $h(x) \neq p(|x|)$ on U_{s}. Hence by the Riesz decomposition theorem (cf., e.g. [1], [6]) there exists a positive potential and thus the Green's function of (6) on U_{s}. Observe that $Q(x)=O\left(|x|^{-2}\right)$ as $|x| \rightarrow 0$. It is known ([4]) that $\operatorname{dim}\left(U_{s}, Q\right)=1$ whenever $Q(x)=O\left(|x|^{-2}\right)$ as $|x| \rightarrow 0$ and there exists the Green's function of (6) on U_{s}. Since s is arbitrary in $(0,1]$, we have shown:

Assertion 1. $\operatorname{dim} Q=1$ for the density Q given by (3).

2. We next consider the Schrödinger equation

$$
\begin{equation*}
L_{P} u(x) \equiv(-\Delta+P(x)) u(x)=0 \tag{7}
\end{equation*}
$$

on \bar{U}_{s} with $0<s \leq 1$, where $P(x)$ is the density given by (2). We set

$$
f(r)=p(r) \sin \left(\frac{a}{2} q(r)\right) \quad \text { and } \quad g(r)=p(r) \cos \left(\frac{a}{2} q(r)\right) .
$$

Since $\Delta_{r}(u(r) v(r))=\left(\Delta_{r} u(r)\right) v(r)+2 \nabla_{r} u(r) \cdot \nabla_{r} v(r)+u(r)\left(\Delta_{r} v(r)\right)$ for any functions $u(r)$ and $v(r)$, where $\Delta_{r}=\partial^{2} / \partial r^{2}+(m-1) r^{-1} \partial / \partial r$ and $\nabla_{r}=\partial / \partial r$, it is easy to see that

$$
\Delta_{r} f(r)=\left\{\frac{\Delta_{r} p(r)}{p(r)}-\frac{a^{2}}{4}\left\{\frac{d}{d r} q(r)\right\}^{2}\right\} f(r)+\frac{a}{2}\left\{2 \frac{\frac{d}{d r} p(r)}{p(r)} \frac{d}{d r} q(r)+\Delta_{r} q(r)\right\} g(r)
$$

and

$$
\Delta_{r} g(r)=\left\{\frac{\Delta_{r} p(r)}{p(r)}-\frac{a^{2}}{4}\left\{\frac{d}{d r} q(r)\right\}^{2}\right\} g(r)-\frac{a}{2}\left\{2 \frac{\frac{d}{d r} p(r)}{p(r)} \frac{d}{d r} q(r)+\Delta_{r} q(r)\right\} f(r)
$$

Then (5) with $v=q$ yields

$$
2 \frac{\frac{d}{d r} p(r)}{p(r)} \frac{d}{d r} q(r)+\Delta_{r} q(r)=0
$$

and also (4) with $u=p$ implies $\Delta_{r} p(r) / p(r)=Q(r)$. Therefore functions $f(r)$ and $g(r)$ are solutions of

$$
\begin{equation*}
-\left(\frac{d^{2}}{d r^{2}} u(r)+\frac{m-1}{r} \frac{d}{d r} u(r)\right)+P(r) u(r)=0 \tag{8}
\end{equation*}
$$

in $(0,1]$, where $P(r)$ is given in (2) with $r=|x|$. Also the Wronskian of $f(r)$ and $g(r)$ does not vanish in $(0,1]$ so that $f(r)$ and $g(r)$ are linearly independent solutions of (8) in $(0,1]$.

Suppose that there exists a nonzero function $h(x)=h(r \omega)$ in $P\left(U_{s}, P\right)$ for some s in $(0,1]$. The function

$$
h^{*}(r)=\int_{\Gamma} h(r \omega) d \omega
$$

is a positive solution of (8) in $(0, s)$ so that it is a linear combination of $f(r)$ and $g(r)$. Hence we have

$$
h^{*}(r)=k p(r) \sin \left(\frac{a}{2} q(r)+\rho\right)
$$

in $(0, s)$ for some constant $k>0$ and ρ with $2 \pi>\rho \geq 0$. This is a contradiction since h^{*} is not of constant sign in $(0, s)$. Therefore $P\left(U_{s}, P\right)=$ $\{0\}$ for any s in $(0,1]$ and we have:

Assertion 2. $\operatorname{dim} P=0$ for the density P given by (2).
3. Proof of Theorem. Since we have shown $\operatorname{dim} P=0$ in the above assertion 2 , we only have to show that $\operatorname{dim}(c P)=1$ for any c in $(0,1)$. Let $S(x)$ and $T(x)$ be any densities on U. We write $S(x)<T(x)$ if there exists an s in $(0,1]$ such that $S(x)<T(x)$ in U_{s}. We consider the Schrödinger equation given by

$$
\begin{equation*}
L_{c P} u(x) \equiv(-\Delta+c P(x)) u(x)=0 \tag{9}
\end{equation*}
$$

where c is any constant in $(0,1)$. We observe that the following relation is valid for any c in $(0,1)$:

$$
\begin{aligned}
& 4|x|^{2}\left(\log \frac{\eta}{|x|} \log _{2} \frac{\eta}{|x|}\right)^{2}(c P(x)-Q(x))+c a^{2}= \\
& \quad(1-c)(m-2)^{2}\left(\log \frac{\eta}{|x|} \log _{2} \frac{\eta}{|x|}\right)^{2}+(1-c)\left(\log _{2} \frac{\eta}{|x|}\right)^{2}+(1-c) \succ c a^{2} .
\end{aligned}
$$

Therefore we have $Q(x) \prec c P(x)$ for any c in $(0,1)$. We recall that $u(x) \equiv p(|x|)$ is a positive solution of (6) in $U: L_{Q} u(x)=0$ on U. On the other hand, since we have

$$
L_{c P} u(x)=L_{Q} u(x)+(c P(x)-Q(x)) u(x)=(c P(x)-Q(x)) u(x)>0,
$$

there exists a $t \in(0,1)$ such that $L_{c P} u(x)>0$ on U_{s} for any $s \in(0, t)$ so that $u(x)$ is a positive supersolution but not a solution of (9) in U_{s}. Hence, again by the Riesz decomposition theorem, there exists a positive potential of (9) in U_{s} and thus the Green's function of (9) in U_{s}. It is clear that $c P(x)=O\left(|x|^{-2}\right)$ as $|x| \rightarrow 0$. Hence again by [4] we have $\operatorname{dim}\left(U_{s}, c P\right)=1$ for any s in $(0, t)$ and a fortiori

$$
\operatorname{dim} c P=\lim _{s \downharpoonright 0} \operatorname{dim}\left(U_{s}, c P\right)=1
$$

for any c in $(0,1)$. The proof of Theorem is herewith complete.

References

[1] C. Constantinescu and A. Cornea, Potential Theory on Harmonic Spaces, SpringerVerlag, 1972.
[2] Y. Furusho, Positive solutions of linear and quasilinear elliptic equations in unbounded domains, Hiroshima Math. J., 15 (1985), 173-220.
[3] R.-M. Hervé, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier Grenoble, 12 (1962), 415-571.
[4] H. Imai, Picard principle for linear elliptic differential operators, Hiroshima Math. J., 14 (1985), 527-535.
[5] H. Imai, On Picard dimensions of nonpositive densities in Schrödinger equations, Complex Variables, (to appear).
[6] F.-Y. Maeda, Dirichlet Integral on Harmonic Spaces, Lecture Notes in Math., 803, Springer-Verlag, 1980.
[7] M. Murata, Isolated singularities and positive solutions of elliptic equations in R^{n}, Matematisk Institut, Aarhus Universitet, Preprint Series, 14 (1986/1987), 1-39.
[8] M. Nakai, Picard principle and Riemann theorem, Tohoku Math. J., 28 (1976), 277-292.
[9] M. Nakai and T. Tada, Monotoneity and homogeneity of Picard dimensions for signed radial densities, NIT Sem. Rep. Math., 99 (1993), 1-51.

Department of Mathematics
Daido Institute of Technology
Takiharu, Minami, Nagoya 457, Japan

