Nonhomogeneity of Picard dimensions
 of rotation free hyperbolic densities

Dedicated to Professor Mitsuru Nakai on his 60 th birthday
Toshimasa TADA ${ }^{1}$
(Received October 4, 1993)

Abstract

A real valued C^{∞} function $P(z)$ on the punctured disk $0<|z| \leq 1$ is constructed in such a way that there exists only one Martin minimal boundary point for the time independent Schrödinger equation $(-\Delta+P(z)) u(z)=0$ over $z=0$ and, neverthless, there exist more than one Martin minimal boundary points for $(-\Delta+P(z) / 4) u(z)=0$ over $z=0$.

We denote by Ω the punctured disc $0<|z|<1$ and consider a time independent Schrödinger equation

$$
\begin{equation*}
(-\Delta+P(z)) u(z)=0 \quad\left(\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}, z=x+y i\right) \tag{1}
\end{equation*}
$$

on Ω. The potential P is assumed to be a locally Hölder continuous function on $0<|z| \leq 1$ and referred to as a density on Ω. Then a density P may take both positive and negative values. With a density P we associate the class $P P(\Omega ; \Gamma)$ of nonnegative C^{2} functions u on $\Omega \cup \Gamma$ satisfying the equation (1) in Ω and vanishing on the unit circle $\Gamma:|z|=1$. We also denote by $P P_{1}(\Omega ; \Gamma)$ the subclass of $\operatorname{PP}(\Omega ; \Gamma)$ consisting of functions u with the normalization

$$
-\frac{1}{2 \pi} \int_{0}^{2 \pi}\left[\frac{\partial}{\partial t} u\left(t e^{i \theta}\right)\right]_{t=1} d \theta=1 .
$$

The Choquet theorem (cf. e.g. [12]) yields that there exists a bijective correspondence $u \leftrightarrow \mu$ between the convex cone $P P(\Omega ; \Gamma)$ and the set of Borel measures μ on the set ex. $P P_{1}(\Omega ; \Gamma)$ of extremal points of the convex set $P P_{1}(\Omega ; \Gamma)$ such that

$$
u=\int_{\text {ex. } \cdot P_{1}(\Omega ; \Gamma)} v d \mu(v)
$$

[^0]Thus the set ex. $P P_{1}(\Omega ; \Gamma)$ is essential for the class $P P(\Omega ; \Gamma)$, and the cardinal number \#(ex. $P P_{1}(\Omega ; \Gamma)$) of ex. $P P_{1}(\Omega ; \Gamma)$ is referred to as the Picard dimension of a density P at $z=0, \operatorname{dim} P$ in notation, i.e.

$$
\operatorname{dim} P=\#\left(\operatorname{ex} . P P_{1}(\Omega ; \Gamma)\right)
$$

We say that a density P is hyperbolic on Ω if $\operatorname{dim} P \geq 1$ and there exists the Green's function on Ω with respect to the equation (1). Then nonnegative densities are hyperbolic on Ω ([6]).

A density P is said to be rotation free if P satisfies $P(z)=P(|z|)(z \in \Omega)$. Let P be a nonnegative rotation free density. Then $\operatorname{dim} P$ is equal to 1 or the cardinal number c of the continuum ([7]) and satisfies

$$
\operatorname{dim} P=\operatorname{dim}(c P) \quad(c>0)
$$

([3]). We call this property the homogeneity of Picard dimensions of nonnegative rotation free densities.

Let P be a signed rotation free density. Then $\operatorname{dim} P$ is also 1 or c if P is hyperbolic on Ω ([7], [11], [4]). Moreover if P is hyperbolic on Ω, the density $c P(0<c \leq 1)$ is hyperbolic on Ω and satisfies

$$
\operatorname{dim} P \leq \operatorname{dim}(c P) \quad(0<c \leq 1)
$$

([11]). The purpose of this paper is to prove the following theorem which shows the nonhomogeneity of Picard dimensions of rotation free hyperbolic densities:

Theorem. There exists a rotation free hyperbolic density P on Ω such that

$$
\operatorname{dim} P=1 \quad \text { and } \quad \operatorname{dim}\left(\frac{1}{4} P\right)=c
$$

It was shown in [11] that the above inequality $\operatorname{dim} P \leq \operatorname{dim}(c P)$ $(0<c \leq 1)$ is also valid for every rotation free density P which is not hyperbolic on Ω. At the same time it was shown that the inequality sign in $\operatorname{dim} P \leq$ $\operatorname{dim}(c P)$ can not be replaced by the equality sign ([2], [11]): There exists a rotation free density P on Ω such that $\operatorname{dim} P=0$ and $\operatorname{dim}(c P)=1$ $(0<c<1)$. Precisely speaking, the Picard dimension of P ($c P$, rsep.) considered on $0<|z|<a$ is 0 (1 , resp.) for every $a \in(0,1]$ and $c \in(0,1)$. Then it was asked a question in [11] whether there exists a rotation free density P such that $1 \leq \operatorname{dim} P<\operatorname{dim}(c P)(0<c<1)$. The above theorem gives an answer to this question. We remark that the Picard dimension of a rotation free density P considered on Ω coincides with the one considered on $0<|z|<a$ ($0<a<1$) if P is hyperbolic on Ω ([8], [5], [11]).

The author is very grateful to Professor M. Nakai for his valuable advice.

1. Subunit criterions

Hearafter every density P on Ω in consideration is assumed to be rotation free and is mainly viewed as a function $P(r)$ of r in the interval $(0,1]$. For a density P we consider the differential equation

$$
L_{P} u(r) \equiv-\frac{d^{2}}{d r^{2}} u(r)-\frac{1}{r} \frac{d}{d r} u(r)+P(r) u(r)=0
$$

for C^{2} functions $u(r)$ in $(0,1)$. The unique solution f_{P} of this equation with initial conditions

$$
f_{P}(1)=0 \quad \text { and } \quad f_{P}^{\prime}(1)=-1
$$

is referred to as the P-subunit. Then we have the following characterization of hyperbolicity for P in terms of f_{P} :

Theorem A ([11], [4]). A density P is hyperbolic on Ω if and only if

$$
f_{P}(r)>0(0<r<1) \quad \text { and } \int_{0}^{1 / 2} \frac{d r}{r f_{P}(r)^{2}}<\infty .
$$

Moreover we have the following test of $\operatorname{dim} P=1$ for hyperbolic densities P :

Theorem B ([11], [4]). A hyperbolic density P on Ω satisfies $\operatorname{dim} P=1$ if and only if

$$
\int_{0}^{a} \frac{f_{P}(r)^{2}}{r} \int_{0}^{r} \frac{d s}{s f_{P}(s)^{2}} d r=\infty
$$

for some a, and hence for any a, in $(0,1]$.

2. \boldsymbol{P}-subunits for discontinuous densities \boldsymbol{P}

2.1. We take a positive numbers θ with $\theta \leq \pi / 2$ and sequences $\left\{\alpha_{n}\right\}_{1}^{\infty}$, $\left\{\beta_{n}\right\}_{1}^{\infty}$ of positive number α_{n}, β_{n}. With θ and $\left\{\beta_{n}\right\}$ we associate sequences $\left\{a_{n}\right\}_{1}^{\infty},\left\{b_{n}\right\}_{1}^{\infty}$ of positive numbers $a_{n}=a_{n}\left(\theta,\left\{\beta_{n}\right\}\right), b_{n}=b_{n}\left(\theta,\left\{\beta_{n}\right\}\right)$ defined by

$$
\begin{equation*}
\rho=100, a_{1}=1, b_{n}=\rho^{-1} a_{n}, a_{n+1}=e^{-\theta / \beta_{n}} b_{n} \quad(n=1,2, \cdots) . \tag{2}
\end{equation*}
$$

The sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ satisfy

$$
1 \geq a_{n}>b_{n}>a_{n+1}(n=1,2, \cdots), \lim _{n \rightarrow \infty} a_{n}=0
$$

Now we consider a discontinuous function $P=P\left(\cdot ; \theta,\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}\right)$ given by

$$
P(r)= \begin{cases}\frac{\alpha_{n}^{2}}{r^{2}} & \left(b_{n} \leq r \leq a_{n} ; n=1,2, \cdots\right) \tag{3}\\ -\frac{\beta_{n}^{2}}{r^{2}} & \left(a_{n+1}<r<b_{n} ; n=1,2, \cdots\right)\end{cases}
$$

and a C^{1} function F_{P} on $(0,1]$ satisfying

$$
\begin{equation*}
F_{P}(1)=0, F_{P}^{\prime}(1)=-1, L_{P} F_{P}=0 \text { on } \bigcup_{n=1}^{\infty}\left\{\left(a_{n+1}, b_{n}\right) \cup\left(b_{n}, a_{n}\right)\right\} . \tag{4}
\end{equation*}
$$

The definition of a density on Ω can be generalized ([1], [4], [9], [10]). In this sense, the above function P is a discontinuous density on Ω. Moreover F_{P} is equal to the P-subunit f_{P} and both Theorems A and B are valid for P and $f_{P}=F_{P}$. However we do not use these facts in this paper.
2.2. By the condition (4), the function F_{P} has the following form on each interval:

$$
F_{P}(r)=\left\{\begin{array}{r}
x_{n}\left\{\left(\frac{a_{n}}{r}\right)^{\alpha_{n}}-\left(\frac{r}{a_{n}}\right)^{\alpha_{n}}\right\}+y_{n}\left\{\left(\frac{r}{b_{n}}\right)^{\alpha_{n}}-\left(\frac{b_{n}}{r}\right)^{\alpha_{n}}\right\} \tag{5}\\
\left(b_{n} \leq r \leq a_{n}\right) \\
-z_{n} \sin \left(\beta_{n} \log \frac{r}{b_{n}}\right)+w_{n} \sin \left(\beta_{n} \log \frac{r}{a_{n+1}}\right) \\
\left(a_{n+1}<r<b_{n}\right) \\
(n=1,2, \cdots) .
\end{array}\right.
$$

The coefficients $x_{n}=x_{n}(P), y_{n}=y_{n}(P), z_{n}=z_{n}(P), w_{n}=w_{n}(P)$ depend on P and hence $\theta,\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$. In particular

$$
\begin{equation*}
x_{1}=\frac{1}{2 \alpha_{1}}, \quad y_{1}=0 \tag{6}
\end{equation*}
$$

by (4). Since F_{P} is of class C^{1}, these coefficients satisfy conditions

$$
\begin{gathered}
w_{n} \sin \theta=\left(\rho^{\alpha_{n}}-\rho^{-\alpha_{n}}\right) x_{n}, \\
-\beta_{n} z_{n}+\beta_{n} w_{n} \cos \theta=-\alpha_{n}\left(\rho^{\alpha_{n}}+\rho^{-\alpha_{n}}\right) x_{n}+2 \alpha_{n} y_{n}, \\
\left(\rho^{\alpha_{n+1}}-\rho^{-\alpha_{n+1}}\right) y_{n+1}=z_{n} \sin \theta, \\
-2 \alpha_{n+1} x_{n+1}+\alpha_{n+1}\left(\rho^{\alpha_{n+1}}+\rho^{-\alpha_{n+1}}\right) y_{n+1}=-\beta_{n} z_{n} \cos \theta+\beta_{n} w_{n}
\end{gathered}
$$

for every $n=1,2, \cdots$ which are equivalent to

$$
\begin{gathered}
\left(\begin{array}{cc}
0 & \sin \theta \\
-\beta_{n} & \beta_{n} \cos \theta
\end{array}\right)\binom{z_{n}}{w_{n}}=\left(\begin{array}{cc}
\rho^{\alpha_{n}}-\rho^{-\alpha_{n}} & 0 \\
-\alpha_{n}\left(\rho^{\alpha_{n}}+\rho^{-\alpha_{n}}\right. & 2 \alpha_{n}
\end{array}\right)\binom{x_{n}}{y_{n}}, \\
\left(\begin{array}{cc}
0 & \rho^{\alpha_{n+1}}-\rho^{-\alpha_{n+1}} \\
-2 \alpha_{n+1} & \alpha_{n+1}\left(\rho^{\alpha_{n+1}}+\rho^{-\alpha_{n+1}}\right)
\end{array}\right)\binom{x_{n+1}}{y_{n+1}}=\left(\begin{array}{cc}
\sin \theta & 0 \\
-\beta_{n} \cos \theta & \beta_{n}
\end{array}\right)\binom{z_{n}}{w_{n}} .
\end{gathered}
$$

These conditions are also equivalent to

$$
\begin{gathered}
\binom{z_{n}}{w_{n}}\left(\begin{array}{cc}
\cot \theta & -\frac{1}{\beta_{n}} \\
\operatorname{cosec} \theta & 0
\end{array}\right)\left(\begin{array}{cc}
\rho^{\alpha_{n}}-\rho^{-\alpha_{n}} & 0 \\
-\alpha_{n}\left(\rho^{\alpha_{n}}+\rho^{-\alpha_{n}}\right) & 2 \alpha_{n}
\end{array}\right)\binom{x_{n}}{y_{n}}, \\
\binom{x_{n+1}}{y_{n+1}}=\left(\begin{array}{cc}
\frac{\rho^{\alpha_{n+1}}+\rho^{-\alpha_{n+1}}}{2\left(\rho^{\alpha_{n+1}}-\rho^{-\alpha_{n+1}}\right)} & -\frac{1}{2 \alpha_{n+1}} \\
\frac{1}{\rho^{\alpha_{n+1}}-\rho^{-\alpha_{n+1}}} & 0
\end{array}\right)\left(\begin{array}{cc}
\sin \theta & 0 \\
-\beta_{n} \cos \theta & \beta_{n}
\end{array}\right)\binom{z_{n}}{w_{n}}
\end{gathered}
$$

so that we have

$$
\binom{z_{n}}{w_{n}}=\rho^{\alpha_{n}}\left(\begin{array}{cc}
\left(1-\rho^{-2 \alpha_{n}}\right) \cot \theta+\frac{\alpha_{n}}{\beta_{n}}\left(1+\rho^{-2 \alpha_{n}}\right) & -\frac{2 \alpha_{n}}{\beta_{n}} \rho^{-\alpha_{n}} \tag{7}\\
\left(1-\rho^{-2 \alpha_{n}}\right) \operatorname{cosec} \theta & 0
\end{array}\right)\binom{x_{n}}{y_{n}}
$$

$$
\begin{gather*}
\binom{x_{n+1}}{y_{n+1}}=\frac{\rho^{\alpha_{n}}}{2\left(1-\rho^{-2 \alpha_{n+1}}\right)}\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\binom{x_{n}}{y_{n}} \tag{8}\\
(n=1,2, \cdots),
\end{gather*}
$$

where

$$
\begin{aligned}
A_{11}= & \left\{\left(1-\rho^{-2 \alpha_{n}}\right)\left(1+\rho^{-2 \alpha_{n+1}}\right)+\frac{\alpha_{n}}{\alpha_{n+1}}\left(1+\rho^{-2 \alpha_{n}}\right)\left(1-\rho^{-2 \alpha_{n+1}}\right)\right\} \cos \theta \\
& +\left\{\frac{\alpha_{n}}{\beta_{n}}\left(1+\rho^{-2 \alpha_{n}}\right)\left(1+\rho^{-2 \alpha_{n+1}}\right)-\frac{\beta_{n}}{\alpha_{n+1}}\left(1-\rho^{-2 \alpha_{n}}\right)\left(1-\rho^{-2 \alpha_{n}+1}\right)\right\} \sin \theta, \\
A_{12}= & -2 \rho^{-\alpha_{n}}\left\{\frac{\alpha_{n}}{\alpha_{n+1}}\left(1-\rho^{-2 \alpha_{n+1}}\right) \cos \theta+\frac{\alpha_{n}}{\beta_{n}}\left(1+\rho^{-2 \alpha_{n+1}}\right) \sin \theta\right\}, \\
A_{21}= & 2 \rho^{-\alpha_{n+1}}\left\{\left(1-\rho^{-2 \alpha_{n}}\right) \cos \theta+\frac{\alpha_{n}}{\beta_{n}}\left(1+\rho^{-2 \alpha_{n}}\right) \sin \theta\right\}, \\
A_{22}= & -4 \frac{\alpha_{n}}{\beta_{n}} \rho^{-\alpha_{n}} \rho^{-\alpha_{n+1}} \sin \theta .
\end{aligned}
$$

2.3. Assume that $x_{n}>y_{n} \geq 0$ for some n. Then from (7) and (8) it follows that

$$
\begin{aligned}
& \frac{z_{n}}{x_{n}}>\rho^{\alpha_{n}}\left\{\left(1-\rho^{-2 \alpha_{n}}\right) \cot \theta+\frac{\alpha_{n}}{\beta_{n}}\left(1-\rho^{-\alpha_{n}}\right)^{2}\right\}>0 \\
& \frac{w_{n}}{x_{n}}=\rho^{\alpha_{n}}\left(1-\rho^{-2 \alpha_{n}}\right) \operatorname{cosec} \theta>0 \\
& y_{n+1}=\frac{z_{n} \sin \theta}{\rho^{\alpha_{n+1}}-\rho^{-\alpha_{n+1}}>0} .
\end{aligned}
$$

Therefore we obtain the following lemma:
Lemma 1. If $x_{n}>y_{n} \geq 0$ for some n, then $z_{n}>0, w_{n}>0, y_{n+1}>0$.

3. Calculations of integrals

3.1. In this section we assume that $x_{n}>0, z_{n}>0, w_{n}>0, y_{n+1}>0$ $(n=1,2, \cdots)$. This assumption is equivalent to $F_{P}(r)>0(0<r<1)$. In this no. we calculate integrals below.

Lemma 2. If $n=2,3, \cdots$, then

$$
\begin{align*}
& \int_{b_{n}}^{a_{n}} \frac{d r}{r F_{P}(r)^{2}}=\frac{1}{2 \alpha_{n} x_{n} y_{n}\left(\rho^{\alpha_{n}}-\rho^{-\alpha_{n}}\right)}, \tag{i}\\
& \int_{b_{n}}^{a_{n}} \frac{F_{P}(r)^{2}}{r} \int_{b_{n}}^{r} \frac{d s}{s F_{P}(s)^{2}} d r=\frac{1}{4 \alpha_{n}^{2}\left(\rho^{\alpha_{n}}-\rho^{-\alpha_{n}}\right)} \\
& \times\left\{\frac{y_{n}}{x_{n}}\left(\rho^{2 \alpha_{n}}-\rho^{-2 \alpha_{n}}-2 \log \rho^{2 \alpha_{n}}\right)\right. \\
&\left.+\rho^{-\alpha_{n}}\left(\left(\rho^{2 \alpha_{n}}+1\right) \log \rho^{2 \alpha_{n}}-2\left(\rho^{2 \alpha_{n}}-1\right)\right)\right\} .
\end{align*}
$$

(ii)

Proof. Consider the function

$$
E(r)=F_{P}(r) \int_{b_{n}}^{r} \frac{d s}{s F_{P}(s)^{2}}
$$

of r in $\left[b_{n}, a_{n}\right]$ which is a solution of $L_{P} u=0$ on $\left(b_{n}, a_{n}\right)$ along with F_{P}. Since $E\left(b_{n}\right)=0, E(r)$ has the form

$$
\begin{equation*}
E(r)=c\left\{\left(\frac{r}{b_{n}}\right)^{\alpha_{n}}-\left(\frac{b_{n}}{r}\right)^{\alpha_{n}}\right\} \tag{9}
\end{equation*}
$$

with a positive constant c. By setting $r=b_{n}$ in an equality

$$
F_{P}^{\prime}(r) \int_{b_{n}}^{r} \frac{d s}{s F_{P}(s)^{2}}+\frac{1}{r F_{P}(r)}=\frac{c \alpha_{n}}{r}\left\{\left(\frac{r}{b_{n}}\right)^{\alpha_{n}}+\left(\frac{b_{n}}{r}\right)^{\alpha_{n}}\right\}
$$

and (5) we have

$$
c=\frac{1}{2 \alpha_{n} x_{n}\left(\rho^{\alpha_{n}}-\rho^{-\alpha_{n}}\right)} .
$$

Hence the equality (9) for $r=a_{n}$ is (i). The equality (ii) follows from calculations

$$
\begin{aligned}
& 2 \alpha_{n} x_{n}\left(\rho^{\alpha_{n}}-\rho^{-\alpha_{n}}\right) \int_{b_{n}}^{a_{n}} \frac{F_{P}(r)^{2}}{r} \int_{b_{n}}^{r} \frac{d s}{s F_{P}(s)^{2}} d r \\
& =\int_{b_{n}}^{a_{n}} \frac{1}{r}\left\{x_{n}\left(\left(\frac{a_{n}}{r}\right)^{\alpha_{n}}-\left(\frac{r}{a_{n}}\right)^{\alpha_{n}}\right)+y_{n}\left(\left(\frac{r}{b_{n}}\right)^{\alpha_{n}}-\left(\frac{b_{n}}{r}\right)^{\alpha_{n}}\right)\right\} \\
& \quad \times\left\{\left(\frac{r}{b_{n}}\right)^{\alpha_{n}}-\left(\frac{b_{n}}{r}\right)^{\alpha_{n}}\right\} d r \\
& =\int_{1}^{\rho} \frac{1}{t}\left\{x_{n}\left(\left(\frac{\rho}{t}\right)^{\alpha_{n}}-\left(\frac{t}{\rho}\right)^{\alpha_{n}}\right)+y_{n}\left(t^{\alpha_{n}}-\frac{1}{t^{\alpha_{n}}}\right)\right\}\left\{t^{\alpha_{n}}-\frac{1}{t^{\alpha_{n}}}\right\} d t \\
& =\frac{1}{2 \alpha_{n}}\left\{\left(y_{n}-x_{n} \rho^{-\alpha_{n}}\right)\left(\rho^{2 \alpha_{n}}-1\right)+\left(y_{n}-x_{n} \rho^{\alpha_{n}}\right)\left(1-\rho^{-2 \alpha_{n}}\right)\right\} \\
& \quad+\left\{x_{n}\left(\rho^{\alpha_{n}}+\rho^{-\alpha_{n}}\right)-2 y_{n}\right\} \log \rho .
\end{aligned}
$$

Lemma 3. If $n=2,3, \cdots$, then

$$
\begin{aligned}
\int_{b_{n}}^{a_{n}} \frac{F_{P}(r)^{2}}{r} d r= & \frac{1}{2 \alpha_{n}}\left\{\left(x_{n}^{2}+y_{n}^{2}\right)\left(\rho^{2 \alpha_{n}}-\rho^{-2 \alpha_{n}}-2 \log \rho^{2 \alpha_{n}}\right)\right. \\
& \left.+2 x_{n} y_{n} \rho^{-\alpha_{n}}\left(\left(\rho^{2 \alpha_{n}}+1\right) \log \rho^{2 \alpha_{n}}-2\left(\rho^{2 \alpha_{n}}-1\right)\right)\right\} .
\end{aligned}
$$

Proof. Lemma follows from calculations

$$
\begin{aligned}
\int_{b_{n}}^{a_{n}} \frac{F_{P}(r)^{2}}{r} d r= & \int_{b_{n}}^{a_{n}} \frac{1}{r}\left\{x_{n}\left(\left(\frac{a_{n}}{r}\right)^{\alpha_{n}}-\left(\frac{r}{a_{n}}\right)^{\alpha_{n}}\right)\right. \\
& \left.+y_{n}\left(\left(\frac{r}{b_{n}}\right)^{\alpha_{n}}-\left(\frac{b_{n}}{r}\right)^{\alpha_{n}}\right)\right\}^{2} d r \\
= & \int_{1}^{\rho} \frac{1}{t}\left\{x_{n}\left(\left(\frac{\rho}{t}\right)^{\alpha_{n}}-\left(\frac{t}{\rho}\right)^{\alpha_{n}}\right)+y_{n}\left(t^{\alpha_{n}}-\frac{1}{t^{\alpha_{n}}}\right)\right\}^{2} d t \\
= & \int_{1}^{\rho} \frac{1}{t}\left\{\left(x_{n}^{2}+y_{n}^{2}\right)\left(t^{\alpha_{n}}-\frac{1}{t^{\alpha_{n}}}\right)^{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\quad+2 x_{n} y_{n}\left(\rho^{\alpha_{n}}+\rho^{-\alpha_{n}}-\frac{t^{2 \alpha_{n}}}{\rho^{\alpha_{n}}}-\frac{\rho^{\alpha_{n}}}{t^{2 \alpha_{n}}}\right)\right\} d t \\
& =\left(x_{n}^{2}+y_{n}^{2}\right)\left(\frac{\rho^{2 \alpha_{n}}-\rho^{-2 \alpha_{n}}}{2 \alpha_{n}}-2 \log \rho\right) \\
& \quad+2 x_{n} y_{n}\left(\left(\rho^{\alpha_{n}}+\rho^{-\alpha_{n}}\right) \log \rho-\frac{\rho^{\alpha_{n}}-\rho^{-\alpha_{n}}}{\alpha_{n}}\right)
\end{aligned}
$$

where we use

$$
\int_{1}^{\rho} \frac{1}{t}\left\{\left(\frac{\rho}{t}\right)^{\alpha_{n}}-\left(\frac{t}{\rho}\right)^{\alpha_{n}}\right\}^{2} d t=\int_{1}^{\rho} \frac{1}{t}\left\{\frac{1}{t^{\alpha_{n}}}-t^{\alpha_{n}}\right\}^{2} d t
$$

Lemma 4. If $n=1,2, \cdots$, then

$$
\begin{align*}
\int_{a_{n+1}}^{b_{n}} \frac{d r}{r F_{P}(r)^{2}}= & \frac{1}{\beta_{n} z_{n} w_{n} \sin \theta} \tag{i}\\
\int_{a_{n+1}}^{b_{n}} \frac{F_{P}(r)^{2}}{r} \int_{a_{n+1}}^{r} \frac{d s}{s F_{P}(s)^{2}} d r= & \frac{1}{2 \beta_{n}^{2} \sin \theta}\left\{\frac{w_{n}}{z_{n}}(\theta-\sin \theta \cos \theta)\right. \\
& +\sin \theta-\theta \cos \theta\}
\end{align*}
$$

Proof. Consider the function

$$
E(r)=F_{P}(r) \int_{a_{n+1}}^{r} \frac{d s}{s F_{P}(s)^{2}}
$$

of r in $\left(a_{n+1}, b_{n}\right)$ which is a solution of $L_{P} u=0$ on $\left(a_{n+1}, b_{n}\right)$ along with F_{P}. Since $E\left(a_{n+1}\right)=0, E(r)$ has the form

$$
\begin{equation*}
E(r)=c \sin \left(\beta_{n} \log \frac{r}{a_{n+1}}\right) \tag{10}
\end{equation*}
$$

with a positive constant c. By making $r \downarrow a_{n+1}$ in the equality

$$
F_{P}^{\prime}(r) \int_{a_{n+1}}^{r} \frac{d s}{s F_{P}(s)^{2}}+\frac{1}{r F_{P}(r)}=\frac{c \beta_{n}}{r} \cos \left(\beta_{n} \log \frac{r}{a_{n+1}}\right)
$$

and (5) we have

$$
c=\frac{1}{\beta_{n} z_{n} \sin \theta}
$$

Hence the equality (10) for $r=b_{n}$ is (i). The equality (ii) follows from calculations

$$
\begin{aligned}
\beta_{n} z_{n} \sin \theta & \int_{a_{n+1}}^{b_{n}} \frac{F_{P}(r)^{2}}{r} \int_{a_{n+1}}^{r} \frac{d s}{s F_{P}(s)^{2}} d r \\
= & \int_{a_{n+1}}^{b_{n}} \frac{1}{r}\left\{-z_{n} \sin \left(\beta_{n} \log \frac{r}{b_{n}}\right)+w_{n} \sin \left(\beta_{n} \log \frac{r}{a_{n+1}}\right)\right\} \\
& \times \sin \left(\beta_{n} \log \frac{r}{a_{n+1}}\right) d r \\
= & \int_{0}^{\theta} \frac{1}{\beta_{n}}\left\{-z_{n} \sin (t-\theta)+w_{n} \sin t\right\} \sin t d t \\
= & \frac{1}{2 \beta_{n}} \int_{0}^{\theta}\left\{z_{n}(\cos (2 t-\theta)-\cos \theta)+w_{n}(1-\cos 2 t)\right\} d t
\end{aligned}
$$

Lemma 5. If $n=1,2, \cdots$, then

$$
\int_{a_{n+1}}^{b_{n}} \frac{F_{P}(r)^{2}}{r} d r=\frac{1}{2 \beta_{n}}\left\{\left(z_{n}^{2}+w_{n}^{2}\right)(\theta-\sin \theta \cos \theta)+2 z_{n} w_{n}(\sin \theta-\theta \cos \theta)\right\} .
$$

Proof. Lemma follows from calculations

$$
\begin{aligned}
\int_{a_{n+1}}^{b_{n}} \frac{F_{P}(r)^{2}}{r} d r & =\int_{a_{n+1}}^{b_{n}} \frac{1}{r}\left\{-z_{n} \sin \left(\beta_{n} \log \frac{r}{b_{n}}\right)+w_{n} \sin \left(\beta_{n} \log \frac{r}{a_{n+1}}\right)\right\}^{2} d r \\
& =\int_{0}^{\theta} \frac{1}{\beta_{n}}\left\{-z_{n} \sin (t-\theta)+w_{n} \sin t\right\}^{2} d t \\
& =\frac{1}{\beta_{n}} \int_{0}^{\theta}\left\{\frac{z_{n}^{2}+w_{n}^{2}}{2}(1-\cos 2 t)+z_{n} w_{n}(\cos (2 t-\theta)-\cos \theta)\right\} d t
\end{aligned}
$$

3.2. In the final section, a discontinuous function P will be aproximated by a density Q on Ω such that behaviour of the Q-subunit f_{Q} is similar to that of F_{P}. An estimation of f_{Q} will be given by using the following integral form of f_{Q} / F_{P} :

Lemma 6. If a density Q on Ω satisfy $Q(r)=P(r)\left(b_{1} \leq r \leq 1\right)$, then the Q-subunit f_{Q} satisfy

$$
\frac{f_{Q}(r)}{F_{P}(r)}=1+\int_{r}^{b_{1}} s\{Q(s)-P(s)\} f_{Q}(s) F_{P}(s) \int_{r}^{s} \frac{d t}{t F_{P}(t)^{2}} d s \quad(0<r<1) .
$$

Proof. Since f_{Q} and F_{P} are solutions of $L_{Q} u=0$ and $L_{P} u=0$ respectively, we have

$$
\frac{d}{d r}\left\{r F_{P}(r)^{2} \frac{d}{d r} \frac{f_{Q}(r)}{F_{P}(r)}\right\}=r(Q(r)-P(r)) f_{Q}(r) F_{P}(r)
$$

$$
\left(r \in \bigcup_{n=1}^{\infty}\left(\left(a_{n+1}, b_{n}\right) \cup\left(b_{n}, a_{n}\right)\right)\right)
$$

Let b be a number in $\left(b_{1}, 1\right)$. The fact that F_{P}^{\prime} is right and left differentiable yields

$$
\begin{aligned}
& b\left\{f_{Q}^{\prime}(b) F_{P}(b)-f_{Q}(b) F_{P}^{\prime}(b)\right\}-r F_{P}(r)^{2}\left\{\frac{f_{Q}(r)}{F_{P}(r)}\right\}^{\prime} \\
& \quad=\int_{r}^{b_{1}} s\{Q(s)-P(s)\} f_{Q}(s) F_{P}(s) d s \quad(0<r<1)
\end{aligned}
$$

If $b \uparrow 1$, then the first term of the above equality goes to 0 . This implies

$$
\frac{f_{Q}(r)}{F_{P}(r)}-\frac{f_{Q}(b)}{F_{P}(b)}=\int_{r}^{b_{1}} \frac{1}{t F_{P}(t)^{2}} \int_{t}^{b_{1}} s\{Q(s)-P(s)\} f_{Q}(s) F_{P}(s) d s d t
$$

By $b \uparrow 1$ again, we obtain the lemma.

4. $\quad \boldsymbol{F}_{\boldsymbol{R}}$ for a special \boldsymbol{R}

4.1. We fix values of θ, α_{n}, and β_{n} :

$$
\begin{align*}
& \theta=\frac{\pi}{2}, \alpha_{n}=n^{2}, \\
& \beta_{n}=\frac{(n+1)^{2}}{2}\left\{\sqrt{\rho^{-2 n^{2}+2 n}+\frac{4 n^{2}}{(n+1)^{2}}}-\rho^{-n^{2}+n}\right\} \quad(n=1,2, \cdots) . \tag{11}
\end{align*}
$$

Hereafter R denotes a special discontinuous function $P=P\left(\cdot ; \theta,\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}\right)$ given by (3) with these θ, α_{n}, and β_{n}, where a_{n} and b_{n} are special numbers defined by (2) with these θ and β_{n}. Then F_{R} means a special C^{1} function satisfying (4) with these a_{n}, b_{n}, and $P=R$ so that the coefficients x_{n}, y_{n}, z_{n}, and w_{n} in (5) are also special numbers. They are fixed by the initial values

$$
\begin{equation*}
x_{1}=\frac{1}{2 \alpha_{1}}=\frac{1}{2}, y_{1}=0 \tag{12}
\end{equation*}
$$

and the recursion formulas (7), (8) with (11):

$$
\binom{z_{n}}{w_{n}}=\rho^{\alpha_{n}}\left(\begin{array}{cc}
\frac{\alpha_{n}}{\beta_{n}}\left(1+\rho^{-2 \alpha_{n}}\right) & -\frac{2 \alpha_{n}}{\beta_{n}} \rho^{-\alpha_{n}} \tag{13}\\
1-\rho^{-2 \alpha_{n}} & 0
\end{array}\right)\binom{x_{n}}{y_{n}}
$$

$$
\begin{align*}
\binom{x_{n+1}}{y_{n+1}}= & \frac{\rho^{\alpha_{n}}}{2\left(1-\rho^{-2 \alpha_{n+1}}\right)}\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\binom{x_{n}}{y_{n}} \tag{14}\\
& (n=1,2, \cdots),
\end{align*}
$$

where

$$
\begin{aligned}
& A_{11}=\frac{\alpha_{n}}{\beta_{n}}\left(1+\rho^{-2 \alpha_{n}}\right)\left(1+\rho^{-2 \alpha_{n}+1}\right)-\frac{\beta_{n}}{\alpha_{n+1}}\left(1-\rho^{-2 \alpha_{n}}\right)\left(1-\rho^{-2 \alpha_{n}+1}\right), \\
& A_{12}=-\frac{2 \alpha_{n}}{\beta_{n}} \rho^{-\alpha_{n}}\left(1+\rho^{-2 \alpha_{n}+1}\right) \\
& A_{21}=\frac{2 \alpha_{n}}{\beta_{n}} \rho^{-\alpha_{n+1}}\left(1+\rho^{-2 \alpha_{n}}\right), A_{22}=-\frac{4 \alpha_{n}}{\beta_{n}} \rho^{-\alpha_{n}} \rho^{-\alpha_{n+1}} .
\end{aligned}
$$

In the proof of the lemma below we use properties of β_{n}

$$
\begin{equation*}
\frac{\alpha_{n}}{\beta_{n}}-\frac{\beta_{n}}{\alpha_{n+1}}=\rho^{-n^{2}+n}, \frac{1}{2} \leq \frac{\alpha_{n}}{\beta_{n}} \leq 2 \quad(n=1,2, \cdots) \tag{15}
\end{equation*}
$$

which are derived from

$$
\begin{aligned}
& \left(\frac{2 \beta_{n}}{\alpha_{n+1}}+\rho^{-n^{2}+n}\right)^{2}=\rho^{-2 n^{2}+2 n}+\frac{4 \alpha_{n}}{\alpha_{n+1}} \\
& \frac{\beta_{n}}{\alpha_{n}}=\frac{2}{\sqrt{\rho^{-2 n^{2}+2 n}+4 \alpha_{n} / \alpha_{n+1}}+\rho^{-n^{2}+n}}
\end{aligned}
$$

The following lemma shows that F_{R} is positive on $(0,1)$:
Lemma 7. The numbers x_{n}, y_{n}, z_{n}, and w_{n} satisfy

$$
y_{1}=0, x_{n}>y_{n}, z_{n}>0, w_{n}>0, y_{n+1}>0 \quad(n=1,2, \cdots)
$$

Proof. In view of Lemma 1 and (12) we only need to prove that $x_{n}>y_{n} \geq 0$ implies $x_{n+1}>y_{n+1}$. Suppose $x_{n}>y_{n} \geq 0$. Then by (14) we have

$$
\begin{aligned}
& \frac{x_{n+1}-y_{n+1}}{x_{n}} \frac{2\left(1-\rho^{-2 \alpha_{n}+1}\right)}{\rho^{\alpha_{n}}}=\frac{\alpha_{n}}{\beta_{n}}\left(1+\rho^{-2 \alpha_{n}}\right)\left(1-\rho^{-\alpha_{n+1}}\right)^{2} \\
& \quad-\frac{\beta_{n}}{\alpha_{n+1}}\left(1-\rho^{-2 \alpha_{n}}\right)\left(1-\rho^{-2 \alpha_{n+1}}\right)-\frac{2 \alpha_{n}}{\beta_{n}} \frac{y_{n}}{x_{n}} \rho^{-\alpha_{n}}\left(1-\rho^{-\alpha_{n+1}}\right)^{2} \\
& \quad \geq \frac{\alpha_{n}}{\beta_{n}}\left(1-\rho^{-\alpha_{n}}\right)^{2}\left(1-\rho^{-\alpha_{n+1}}\right)^{2}-\frac{\beta_{n}}{\alpha_{n+1}}\left(1-\rho^{-2 \alpha_{n}}\right)\left(1-\rho^{-2 \alpha_{n+1}}\right) .
\end{aligned}
$$

Hence by (15) we have

$$
\begin{aligned}
\frac{x_{n+1}-y_{n+1}}{x_{n}} \frac{2\left(1+\rho^{-\alpha_{n}+1}\right)}{\rho^{\alpha_{n}}\left(1-\rho^{-\alpha_{n}}\right)} \geq & \left(\frac{\alpha_{n}}{\beta_{n}}-\frac{\beta_{n}}{\alpha_{n+1}}\right)\left(1+\rho^{-\alpha_{n}-\alpha_{n}+1}\right) \\
& -\left(\frac{\alpha_{n}}{\beta_{n}}+\frac{\beta_{n}}{\alpha_{n+1}}\right)\left(\rho^{-\alpha_{n}}+\rho^{-\alpha_{n}+1}\right) \\
& >\rho^{-n^{2}+n}-8 \rho^{-n^{2}} .
\end{aligned}
$$

This implies $x_{n+1}-y_{n+1}>0$ since $\rho=100$.
4.2. Behaviour of the function F_{R} is determined by the coefficients x_{n}, y_{n}, z_{n}, and w_{n}. We estimate growth of these numbers as $n \rightarrow \infty$.

Lemma 8. There exists a positive constant C_{1} with $C_{1}>1$ such that

$$
\begin{equation*}
x_{n} \geq C_{1}^{-n} \rho^{n^{2} / 2} \quad(n=1,2, \cdots) \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\frac{y_{n}}{x_{n}} \geq C_{1}^{-1} \rho^{-3 n} \quad(n=2,3, \cdots), \tag{ii}
\end{equation*}
$$

(iii)

$$
\frac{z_{n}}{x_{n}} \geq C_{1}^{-1} \rho^{n^{2}}, \frac{w_{n}}{x_{n}} \geq C_{1}^{-1} \rho^{n^{2}} \quad(n=1,2, \cdots)
$$

Proof. The proof is based upon Lemma 7 and formulas (12)-(15). The letters $m_{i}(i=1, \cdots, 7)$ used below denote positive constans satisfying $m_{i}>1$. Since

$$
\begin{aligned}
\frac{x_{n+1}}{x_{n}} \geq & \frac{\rho^{\alpha_{n}}}{2\left(1-\rho^{-2 \alpha_{n+1}}\right)}\left\{\frac{\alpha_{n}}{\beta_{n}}\left(1-\rho^{-\alpha_{n}}\right)^{2}\left(1+\rho^{-2 \alpha_{n+1}}\right)\right. \\
& \left.-\frac{\beta_{n}}{\alpha_{n+1}}\left(1-\rho^{-2 \alpha_{n}}\right)\left(1-\rho^{-2 \alpha_{n+1}}\right)\right\} \\
= & \frac{\rho^{\alpha_{n}}\left(1-\rho^{-\alpha_{n}}\right)}{2\left(1-\rho^{-2 \alpha_{n+1}}\right)}\left\{\left(\frac{\alpha_{n}}{\beta_{n}}-\frac{\beta_{n}}{\alpha_{n+1}}\right)\left(1-\rho^{-\alpha_{n}-2 \alpha_{n+1}}\right)\right. \\
& \left.-\left(\frac{\alpha_{n}}{\beta_{n}}+\frac{\beta_{n}}{\alpha_{n+1}}\right)\left(\rho^{-\alpha_{n}}-\rho^{-2 \alpha_{n+1}}\right)\right\} \\
\geq & \frac{\rho^{n^{2}}\left(1-\rho^{-1}\right)}{2}\left\{\rho^{-n^{2}+n}\left(1-\rho^{-9}\right)-4 \rho^{-n^{2}}\right\} \\
\geq & \frac{\rho^{n}}{2}\left(1-100^{-1}\right)\left(1-100^{-1}-4 \cdot 100^{-1}\right) \geq m_{1}^{-1} \rho^{n},
\end{aligned}
$$

the inequality (i) holds:

$$
x_{n} \geq m_{1}^{-n+1} \rho^{\left(n^{2}-n\right) / 2} x_{1} \geq m_{2}^{-n} \rho^{n^{2} / 2}
$$

For the proof of (ii) we need an upper estimate of x_{n+1} / x_{n} :

$$
\begin{aligned}
\frac{x_{n+1}}{x_{n}} \leq & \frac{\rho^{\alpha_{n}}}{2\left(1-\rho^{-2 \alpha_{n+1}}\right)}\left\{\frac{\alpha_{n}}{\beta_{n}}\left(1+\rho^{-2 \alpha_{n}}\right)\left(1+\rho^{-2 \alpha_{n+1}}\right)\right. \\
& \left.-\frac{\beta_{n}}{\alpha_{n+1}}\left(1-\rho^{-2 \alpha_{n}}\right)\left(1-\rho^{-2 \alpha_{n+1}}\right)\right\} \\
= & \frac{\rho^{\alpha_{n}}}{2\left(1-\rho^{-2 \alpha_{n}+1}\right)}\left\{\left(\frac{\alpha_{n}}{\beta_{n}}-\frac{\beta_{n}}{\alpha_{n+1}}\right)\left(1+\rho^{-2 \alpha_{n}-2 \alpha_{n}+1}\right)\right. \\
& \left.+\left(\frac{\alpha_{n}}{\beta_{n}}+\frac{\beta_{n}}{\alpha_{n+1}}\right)\left(\rho^{-2 \alpha_{n}}+\rho^{-2 \alpha_{n+1}}\right)\right\} \\
\leq & \frac{\rho^{n^{2}}}{2\left(1-\rho^{-8}\right)}\left\{\rho^{-n^{2}+n}\left(1+\rho^{-10}\right)+4 \rho^{-n^{2}+n}\left(\rho^{-2}+\rho^{-8}\right)\right\} \leq m_{3} \rho^{n} .
\end{aligned}
$$

Now we have

$$
\frac{x_{n+1}}{x_{n}} \geq \frac{\alpha_{n} \rho^{\alpha_{n}-\alpha_{n}+1}\left(1-\rho^{-\alpha_{n}}\right)^{2}}{\beta_{n}\left(1-\rho^{-2 \alpha_{n}+1}\right)} \geq \frac{1}{2} \rho^{-2 n-1}\left(1-\rho^{-1}\right)^{2} \geq m_{4}^{-1} \rho^{-2 n}
$$

and hence

$$
\frac{y_{n+1}}{x_{n+1}}=\frac{y_{n+1}}{x_{n}} \frac{x_{n}}{x_{n+1}} \geq m_{4}^{-1} \rho^{-2 n} m_{3}^{-1} \rho^{-n} \geq m_{5}^{-1} \rho^{-3(n+1)}
$$

The estimate (iii) follows from

$$
\begin{aligned}
& \frac{z_{n}}{x_{n}} \geq \frac{\alpha_{n}}{\beta_{n}} \rho^{\alpha_{n}}\left(1-\rho^{-\alpha_{n}}\right)^{2} \geq \frac{\left(1-\rho^{-1}\right)^{2}}{2} \rho^{n^{2}} \geq m_{6}^{-1} \rho^{n^{2}} \\
& \frac{w_{n}}{x_{n}}=\rho^{\alpha_{n}}\left(1-\rho^{-2 \alpha_{n}}\right) \geq m_{7}^{-1} \rho^{n^{2}}
\end{aligned}
$$

4.3. We are ready to show that the function F_{R} succeeds in the integral test in Theorems A and B.

Lemma 9. The function F_{R} satisfies

$$
\int_{0}^{b_{1}} \frac{d r}{r F_{R}(r)^{2}}<\infty
$$

Proof. In view of Lemmas 2 and 8 we have

$$
\int_{b_{n}}^{a_{n}} \frac{d r}{r F_{R}(r)^{2}} \leq \frac{C_{1} \rho^{3 n}}{2 \alpha_{n} x_{n}^{2}\left(\rho^{\alpha_{n}}-\rho^{-\alpha_{n}}\right)} \leq \frac{C_{1}^{2 n+1} \rho^{3 n}}{2 n^{2} \rho^{2 n^{2}}\left(1-\rho^{-2}\right)} \quad(n=1,2, \cdots)
$$

We also have

$$
\int_{a_{n+1}}^{b_{n}} \frac{d r}{r F_{R}(r)^{2}} \leq \frac{2 C_{1}^{2}}{\alpha_{n} x_{n}^{2} \rho^{2 n^{2}}} \leq \frac{2 C_{1}^{2 n+2}}{n^{2} \rho^{3 n^{2}}} \quad(n=1,2, \cdots)
$$

by Lemma 4, 8 and (15). These inequalities prove the lemma.
Lemma 10. The function F_{R} satisfies

$$
\int_{0}^{b_{1}} \frac{F_{R}(r)^{2}}{r} \int_{0}^{r} \frac{d s}{s F_{R}(s)^{2}} d r=\infty
$$

Proof. Apply inequalities

$$
\begin{aligned}
& \rho^{2 \alpha_{n}}-\rho^{-2 \alpha_{n}}-2 \log \rho^{2 \alpha_{n}} \geq \rho^{2 \alpha_{n}}\left(1-\rho^{-4}-2 \rho^{-2} \log \rho^{2}\right)>0 \quad(n=1,2, \cdots), \\
& \left(\rho^{2 \alpha_{n}}+1\right) \log \rho^{\alpha_{n}}-\left(\rho^{2 \alpha_{n}}-1\right)>0 \quad(n=1,2, \cdots)
\end{aligned}
$$

and Lemma 8 to (ii) in Lemma 2. Then

$$
\begin{aligned}
\int_{b_{n}}^{a_{n}} \frac{F_{R}(r)^{2}}{r} \int_{b_{n}}^{r} \frac{d s}{s F_{R}(s)^{2}} d r & \geq \frac{1}{4 \alpha_{n}^{2}\left(\rho^{\alpha_{n}}-\rho^{-\alpha_{n}}\right)} \frac{y_{n}}{x_{n}} \rho^{2 \alpha_{n}}\left(1-\rho^{-4}-2 \rho^{-2} \log \rho^{2}\right) \\
& \geq \frac{1-\rho^{-4}-4 \rho^{-2} \log \rho}{4 C_{1}\left(1-\rho^{-2}\right)} \frac{\rho^{n^{2}-3 n}}{n^{2}} \quad(n=2,3, \cdots)
\end{aligned}
$$

This proves the lemma.

5. $\quad F_{S}$ for $S=R / 4$

5.1. We consider a discontinuous function $S=P\left(\cdot ; \theta / 2,\left\{\alpha_{n} / 2\right\},\left\{\beta_{n} / 2\right\}\right)$ on (0,1], where θ, α_{n}, and β_{n} are the numbers given by (11). Recall the definition of symbol $P=P(\cdot ;$, , $)$ in No. 2.1. Then S has an expression $S=R / 4$ with the discontinuous function R considered in No. 4.1 since the sequences $\left\{a_{n}\left(\theta / 2,\left\{\beta_{n} / 2\right\}\right)\right\}$ and $\left\{b_{n}\left(\theta / 2,\left\{\beta_{n} / 2\right\}\right)\right\}$ are equal to the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ defined in No. 4.1, respectively. We also associate F_{S} with S that is the C^{1} function on $(0,1]$ satisfying

$$
F_{S}(1)=0, F_{S}^{\prime}=-1, L_{S} F_{S}=0 \text { on } \bigcup_{n=1}^{\infty}\left\{\left(a_{n+1}, b_{n}\right) \cup\left(b_{n}, a_{n}\right)\right\} .
$$

Then by (5) F_{S} has the following form:

$$
F_{S}(r)=\left\{\begin{array}{c}
X_{n}\left\{\left(\frac{a_{n}}{r}\right)^{\alpha_{n} / 2}-\left(\frac{r}{a_{n}}\right)^{\alpha_{n} / 2}\right\}+Y_{n}\left\{\left(\frac{r}{b_{n}}\right)^{\alpha_{n} / 2}-\left(\frac{b_{n}}{r}\right)^{\alpha_{n} / 2}\right\} \\
-Z_{n} \sin \left(\frac{\beta_{n}}{2} \log \frac{r}{b_{n}}\right)+W_{n} \sin \left(\frac{\beta_{n}}{2} \log \frac{r}{a_{n+1}}\right) \\
(n=1,2, \cdots) .
\end{array}\right.
$$

In view of (6)-(8) the coefficients X_{n}, Y_{n}, Z_{n}, and W_{n} are given by initial values

$$
\begin{equation*}
X_{1}=\frac{1}{2\left(\alpha_{1} / 2\right)}=1, Y_{1}=0 \tag{16}
\end{equation*}
$$

and recursion formulas

$$
\begin{gather*}
\binom{Z_{n}}{W_{n}}=\rho^{\alpha_{n} / 2}\left(\begin{array}{cc}
1-\rho^{-\alpha_{n}}+\frac{\alpha_{n}}{\beta_{n}}\left(1+\rho^{-\alpha_{n}}\right) & -\frac{2 \alpha_{n}}{\beta_{n}} \rho^{-\alpha_{n} / 2} \\
\sqrt{2}\left(1-\rho^{-\alpha_{n}}\right) & 0
\end{array}\right)\binom{X_{n}}{Y_{n}}, \tag{17}\\
\binom{X_{n+1}}{Y_{n+1}}=\frac{\sqrt{2} \rho^{\alpha_{n} / 2}}{4\left(1-\rho^{-\alpha_{n+1}}\right)}\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right)\binom{X_{n}}{Y_{n}} \tag{18}\\
(n=1,2, \cdots),
\end{gather*}
$$

where

$$
\begin{aligned}
B_{11}= & \left(1-\rho^{-\alpha_{n}}\right)\left(1+\rho^{-\alpha_{n+1}}\right)+\frac{\alpha_{n}}{\alpha_{n+1}}\left(1+\rho^{-\alpha_{n}}\right)\left(1-\rho^{-\alpha_{n+1}}\right) \\
& +\frac{\alpha_{n}}{\beta_{n}}\left(1+\rho^{-\alpha_{n}}\right)\left(1+\rho^{-\alpha_{n+1}}\right)-\frac{\beta_{n}}{\alpha_{n+1}}\left(1-\rho^{-\alpha_{n}}\right)\left(1-\rho^{-\alpha_{n+1}}\right), \\
B_{12}= & -2 \rho^{-\alpha_{n} / 2}\left\{\frac{\alpha_{n}}{\beta_{n}}\left(1+\rho^{-\alpha_{n+1}}\right)+\frac{\alpha_{n}}{\alpha_{n+1}}\left(1-\rho^{-\alpha_{n+1}}\right)\right\}, \\
B_{21}= & 2 \rho^{-\alpha_{n+1} / 2}\left\{1-\rho^{-\alpha_{n}}+\frac{\alpha_{n}}{\beta_{n}}\left(1+\rho^{-\alpha_{n}}\right)\right\}, \\
B_{22}= & -4 \frac{\alpha_{n}}{\beta_{n}} \rho^{-\alpha_{n} / 2} \rho^{-\alpha_{n+1} / 2} .
\end{aligned}
$$

The following lemma shows that F_{S} is positive on $(0,1)$:
Lemma 11. The numbers X_{n}, Y_{n}, Z_{n}, and W_{n} satisfy

$$
Y_{1}=0, X_{n}>Y_{n}, Z_{n}>0, W_{n}>0, Y_{n+1}>0 \quad(n=1,2, \cdots)
$$

Proof. In view of Lemma 1 and (16) we only need to prove that $X_{n}>Y_{n} \geq 0$ implies $X_{n+1}>Y_{n+1}$. Suppose $X_{n}>Y_{n} \geq 0$. Then by (18) we have

$$
\begin{aligned}
& \frac{X_{n+1}}{}-Y_{n+1} \frac{4\left(1-\rho^{-\alpha_{n+1}}\right)}{\sqrt{2} \rho^{\alpha_{n} / 2}} \\
&=\left(1-\rho^{-\alpha_{n}}\right)\left(1-\rho^{-\alpha_{n+1} / 2}\right)^{2}+\frac{\alpha_{n}}{\alpha_{n+1}}\left(1+\rho^{-\alpha_{n}}\right)\left(1-\rho^{-\alpha_{n+1}}\right) \\
&+\frac{\alpha_{n}}{\beta_{n}}\left(1+\rho^{-\alpha_{n}}\right)\left(1-\rho^{-\alpha_{n+1} / 2}\right)^{2}-\frac{\beta_{n}}{\alpha_{n+1}}\left(1-\rho^{-\alpha_{n}}\right)\left(1-\rho^{-\alpha_{n+1}}\right) \\
&-2 \frac{Y_{n}}{X_{n}} \rho^{-\alpha_{n} / 2}\left\{\frac{\alpha_{n}}{\beta_{n}}\left(1-\rho^{-\alpha_{n+1} / 2}\right)^{2}+\frac{\alpha_{n}}{\alpha_{n+1}}\left(1-\rho^{-\alpha_{n+1} 1}\right)\right\} \\
&>\left(1-\rho^{-\alpha_{n}}\right)\left(1-\rho^{-\alpha_{n+1} / 2}\right)^{2}+\frac{\alpha_{n}}{\alpha_{n+1}}\left(1-\rho^{-\alpha_{n} / 2}\right)^{2}\left(1-\rho^{-\alpha_{n+1}}\right) \\
& \quad+\frac{\alpha_{n}}{\beta_{n}}\left(1-\rho^{-\alpha_{n} / 2}\right)^{2}\left(1-\rho^{-\alpha_{n+1} / 2}\right)^{2}-\frac{\beta_{n}}{\alpha_{n+1}}\left(1-\rho^{-\alpha_{n}}\right)\left(1-\rho^{-\alpha_{n+1}}\right) .
\end{aligned}
$$

Hence by (15) we have

$$
\begin{aligned}
& \frac{X_{n+1}-Y_{n+1}}{X_{n}} \frac{4\left(1+\rho^{-\alpha_{n+1} / 2}\right)}{\sqrt{2} \rho^{\alpha_{n} / 2}\left(1-\rho^{-\alpha_{n} / 2}\right)} \\
& > \\
& >1-\rho^{-\alpha_{n+1} / 2}+\frac{\alpha_{n}}{\alpha_{n+1}}\left(1-\rho^{-\alpha_{n} / 2}\right)+\frac{\alpha_{n}}{\beta_{n}}\left(1-\rho^{-\alpha_{n} / 2}-\rho^{-\alpha_{n}+1 / 2}\right) \\
& \quad-\frac{\beta_{n}}{\alpha_{n+1}}\left(1+\rho^{-\alpha_{n} / 2}+\rho^{-\alpha_{n+1} / 2}+\rho^{-\left(\alpha_{n}+\alpha_{n+1}\right) / 2}\right) \\
& =\left(1+\frac{\alpha_{n}}{\alpha_{n+1}}+\frac{\alpha_{n}}{\beta_{n}}-\frac{\beta_{n}}{\alpha_{n+1}}\right)-\left(\frac{\alpha_{n}}{\alpha_{n+1}}+\frac{\alpha_{n}}{\beta_{n}}+\frac{\beta_{n}}{\alpha_{n+1}}\right) \rho^{-\alpha_{n} / 2} \\
& \quad-\left(1+\frac{\alpha_{n}}{\beta_{n}}+\frac{\beta_{n}}{\alpha_{n+1}}\right) \rho^{-\alpha_{n+1} / 2}-\frac{\beta_{n}}{\alpha_{n+1}} \rho^{-\left(\alpha_{n}+\alpha_{n+1}\right) / 2} \\
& \geq \\
& \geq \frac{5}{4}-5 \rho^{-1 / 2}-5 \rho^{-2}-2 \rho^{-5 / 2} .
\end{aligned}
$$

This implies $X_{n+1}-Y_{n+1}>0$ since $\rho=100$.
5.2. Behaviour of the function F_{S} is determined by the coefficients X_{n}, Y_{n}, Z_{n}, and W_{n}. We estimate growth of these numbers as $n \rightarrow \infty$.

Lemma 12. There exists a positive constant C_{2} with $C_{2}>1$ such that

$$
\begin{equation*}
C_{2}^{-1} \rho^{n^{2} / 2} \leq \frac{X_{n+1}}{X_{n}} \leq C_{2} \rho^{n^{2} / 2} \quad(n=1,2, \cdots) \tag{i}
\end{equation*}
$$

(ii)

$$
C_{2}^{-1} \rho^{-n^{2} / 2} \leq \frac{Y_{n}}{X_{n}} \leq C_{2} \rho^{-n^{2} / 2} \quad(n=2,3, \cdots),
$$

(iii)

$$
C_{2}^{-1} \rho^{n^{2} / 2} \leq \frac{Z_{n}}{X_{n}} \leq C_{2} \rho^{n^{2} / 2} \quad(n=1,2, \cdots)
$$

(iv)

$$
C_{2}^{-1} \rho^{n^{2} / 2} \leq \frac{W_{n}}{X_{n}} \leq C_{2} \rho^{n^{2} / 2} \quad(n=1,2, \cdots)
$$

Proof. The proof is based upon Lemma 11 and formulas (15)-(18). The letters $m_{i}(i=1, \cdots, 8)$ used below denote positive constants satisfying $m_{i}>1$. The inequality (i) follows from

$$
\begin{aligned}
\frac{X_{n+1}}{X_{n}} \geq & \frac{\sqrt{2} \rho^{\alpha_{n} / 2}\left(1-\rho^{-\alpha_{n} / 2}\right)}{4\left(1-\rho^{-\alpha_{n+1}}\right)}\left\{\left(1+\rho^{-\alpha_{n} / 2}\right)\left(1+\rho^{-\alpha_{n+1}}\right)\right. \\
& +\frac{\alpha_{n}}{\alpha_{n+1}}\left(1-\rho^{-\alpha_{n} / 2}\right)\left(1-\rho^{-\alpha_{n}+1}\right)+\frac{\alpha_{n}}{\beta_{n}}\left(1-\rho^{-\alpha_{n} / 2}\right)\left(1+\rho^{-\alpha_{n+1}}\right) \\
& \left.-\frac{\beta_{n}}{\alpha_{n+1}}\left(1+\rho^{-\alpha_{n} / 2}\right)\left(1-\rho^{-\alpha_{n+1}}\right)\right\} \\
\geq & \frac{\sqrt{2}\left(1-\rho^{-1 / 2}\right)}{4} \rho^{\alpha_{n} / 2}\left\{1+\frac{\alpha_{n}}{\alpha_{n+1}}\left(1-\rho^{-\alpha_{n} / 2}-\rho^{-\alpha_{n+1}}\right)\right. \\
& \left.+\frac{\alpha_{n}}{\beta_{n}}\left(1-\rho^{-\alpha_{n} / 2}\right)-\frac{\beta_{n}}{\alpha_{n+1}}\left(1+\rho^{-\alpha_{n} / 2}\right)\right\} \\
= & \frac{\sqrt{2}\left(1-\rho^{-1 / 2}\right)}{4} \rho^{\alpha_{n} / 2}\left\{1+\frac{\alpha_{n}}{\alpha_{n+1}}+\frac{\alpha_{n}}{\beta_{n}}-\frac{\beta_{n}}{\alpha_{n+1}}\right. \\
& \left.-\left(\frac{\alpha_{n}}{\alpha_{n+1}}+\frac{\alpha_{n}}{\beta_{n}}+\frac{\beta_{n}}{\alpha_{n+1}}\right) \rho^{-\alpha_{n} / 2}-\frac{\alpha_{n}}{\alpha_{n+1}} \rho^{-\alpha_{n+1}}\right\} \\
\geq & \frac{\sqrt{2}\left(1-\rho^{-1 / 2}\right)}{4}\left(\frac{5}{4}-5 \rho^{-1 / 2}-\rho^{-4}\right) \rho^{\alpha_{n} / 2} \\
= & \frac{\sqrt{2}}{4}\left(1-10^{-1}\right)\left(\frac{5}{4}-\frac{1}{2}-100^{-4}\right) \rho^{n^{2} / 2} \geq m_{1}^{-1} \rho^{n^{2} / 2}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{X_{n+1}}{X_{n}} \leq & \frac{\sqrt{2} \rho^{\alpha_{n} / 2}}{4\left(1-\rho^{-\alpha_{n+1}}\right)}\left\{1+\rho^{-\alpha_{n+1}}+\frac{\alpha^{n}}{\alpha_{n+1}}\left(1+\rho^{-\alpha_{n}}\right)\right. \\
& \left.+\frac{\alpha_{n}}{\beta_{n}}\left(1+\rho^{-\alpha_{n}}\right)\left(1+\rho^{-\alpha_{n+1}}\right)\right\} \\
\leq & \frac{\sqrt{2}}{4\left(1-\rho^{-4}\right)}\left\{1+\rho^{-4}+1+\rho^{-1}+2\left(1+\rho^{-1}\right)\left(1+\rho^{-4}\right)\right\} \rho^{\alpha_{n} / 2} \leq m_{2} \rho^{n^{2} / 2} .
\end{aligned}
$$

Since we have inequalities

$$
\begin{aligned}
\frac{Y_{n+1}}{X_{n}} & \geq \frac{\rho^{\left(\alpha_{n}-\alpha_{n+1}\right) / 2}}{\sqrt{2}\left(1-\rho^{-\alpha_{n+1}}\right)}\left\{1-\rho^{-\alpha_{n}}+\frac{\alpha_{n}}{\beta_{n}}\left(1-\rho^{-\alpha_{n} / 2}\right)^{2}\right\} \\
& \geq \frac{1-\rho^{-\alpha_{n} / 2}}{\sqrt{2}} \rho^{\left(\alpha_{n}-\alpha_{n+1}\right) / 2}\left\{1+\rho^{-\alpha_{n} / 2}+\frac{\alpha_{n}}{\beta_{n}}\left(1-\rho^{-\alpha_{n} / 2}\right)\right\} \\
& \geq \frac{1}{\sqrt{2}}\left(1-\rho^{-1 / 2}\right)\left\{1+\frac{1}{2}\left(1-\rho^{-1 / 2}\right)\right\} \rho^{-n-1 / 2} \geq m_{3}^{-1} \rho^{-n}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{Y_{n+1}}{X_{n}} & \leq \frac{\rho^{\left(\alpha_{n}-\alpha_{n+1}\right) / 2}}{\sqrt{2}\left(1-\rho^{-\alpha_{n+1}}\right)}\left\{1-\rho^{-\alpha_{n}}+\frac{\alpha_{n}}{\beta_{n}}\left(1+\rho^{-\alpha_{n}}\right)\right\} \\
& \leq \frac{\rho^{-n-1 / 2}}{\sqrt{2}\left(1-\rho^{-4}\right)}\left\{1+2\left(1+\rho^{-1}\right)\right\} \leq m_{4} \rho^{-n},
\end{aligned}
$$

we obtain (ii):

$$
\begin{aligned}
\frac{Y_{n+1}}{X_{n+1}}= & \frac{Y_{n+1}}{X_{n}} \frac{X_{n}}{X_{n+1}} \geq m_{3}^{-1} \rho^{-n} m_{2}^{-1} \rho^{-n^{2} / 2} \geq m_{5}^{-1} \rho^{-(n+1)^{2} / 2} \\
& \frac{Y_{n+1}}{X_{n+1}} \leq m_{4} \rho^{-n} m_{1} \rho^{-n^{2} / 2} \leq m_{6} \rho^{-(n+1)^{2} / 2}
\end{aligned}
$$

The estimates (iii) and (iv) follow from

$$
\begin{aligned}
& \frac{Z_{n}}{X_{n}} \geq \rho^{\alpha_{n} / 2}\left\{1-\rho^{-\alpha_{n}}+\frac{\alpha_{n}}{\beta_{n}}\left(1-\rho^{-\alpha_{n} / 2}\right)^{2}\right\} \geq \rho^{\alpha_{n} / 2}\left(1-\rho^{-1}\right) \geq m_{7}^{-1} \rho^{n^{2} / 2}, \\
& \frac{Z_{n}}{X_{n}} \leq \rho^{\alpha_{n} / 2}\left\{1+\frac{\alpha_{n}}{\beta_{n}}\left(1+\rho^{-\alpha_{n}}\right)\right\} \leq \rho^{\alpha_{n} / 2}\left\{1+2\left(1+\rho^{-1}\right)\right\} \leq m_{8} \rho^{n^{2} / 2}
\end{aligned}
$$

and

$$
\frac{W_{n}}{X_{n}} \geq \sqrt{2}\left(1-\rho^{-1}\right) \rho^{n^{2} / 2}, \frac{W_{n}}{X_{n}} \leq \sqrt{2} \rho^{n^{2} / 2}
$$

respectively.
5.3. We are ready to show that the function F_{S} fails in the integral test in Theorem B although it succeeds in the integral test in Theorem A. For the purpose we consider integrals

$$
\begin{aligned}
& I_{1, n}=\int_{b_{n}}^{a_{n}} \frac{d r}{r F_{S}(r)^{2}}, \quad I_{2, n}=\int_{a_{n+1}}^{b_{n}} \frac{d r}{r F_{S}(r)^{2}}, \\
& J_{1, n}=\int_{b_{n}}^{a_{n}} \frac{F_{S}(r)^{2}}{r} d r, \quad J_{2, n}=\int_{a_{n+1}}^{b_{n}} \frac{F_{S}(r)^{2}}{r} d r, \\
& K_{1, n}=\int_{b_{n}}^{a_{n}} \frac{F_{S}(r)^{2}}{r} \int_{b_{n}}^{r} \frac{d s}{s F_{S}(s)^{2}} d r, \quad K_{2, n}=\int_{a_{n+1}}^{b_{n}} \frac{F_{S}(r)^{2}}{r} \int_{a_{n+1}}^{r} \frac{d s}{F_{S}(s)^{2}} d r .
\end{aligned}
$$

These integrals satisfy the following inequalities:
Lemma 13. There exists a positive constant C_{3} such that

$$
\begin{equation*}
\sum_{k=n}^{\infty} I_{1, k} \leq \frac{C_{3}}{n^{2} X_{n}^{2}} \quad(n=2,3, \cdots), \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=n}^{\infty} I_{2, k} \leq \frac{C_{3}}{n^{2} X_{n}^{2} \rho^{n^{2}}} \quad(n=1,2, \cdots), \tag{ii}
\end{equation*}
$$

$$
\begin{align*}
& J_{1, n} \leq \frac{C_{3} X_{n}^{2} \rho^{n^{2}}}{n^{2}}, \quad K_{1, n} \leq \frac{C_{3}}{n^{2}} \quad(n=2,3, \cdots), \tag{iii}\\
& J_{2, n} \leq \frac{C_{3} X_{n}^{2} \rho^{n^{2}}}{n^{2}}, \quad K_{2, n} \leq \frac{C_{3}}{n^{4}} \quad(n=1,2, \cdots) . \tag{iv}
\end{align*}
$$

Proof. The proof is based upon Lemmas 2-5, 11-12, and the formula (15). The letters $m_{i}(i=1, \cdots, 7)$ used below denote positive constants. Since for every $n=2,3, \cdots$ and $k=1,2, \cdots$ we have

$$
\begin{aligned}
\frac{I_{1, n+k}}{I_{1, n}} & =\frac{n^{2} X_{n} Y_{n}\left(\rho^{n^{2} / 2}-\rho^{-n^{2} / 2}\right)}{(n+k)^{2} X_{n+k} Y_{n+k}\left(\rho^{(n+k)^{2} / 2}-\rho^{-(n+k)^{2} / 2}\right)} \\
& \leq \frac{C_{2}^{2} X_{n}^{2}}{X_{n+k}^{2}} \frac{1-\rho^{-n^{2}}}{1-\rho^{-(n+k)^{2}}} \\
& \leq C_{2}^{2 k+2} \rho^{-\left\{n^{2}+\cdots+(n+k-1)^{2}\right\}} \\
& \leq C_{2}^{2 k+2} \rho^{-\left\{2^{2}+\cdots+(k+1)^{2}\right\}}
\end{aligned}
$$

and $I_{1, n} \leq m_{1} n^{-2} X_{n}^{-2}$, we obtain (i):

$$
\sum_{k=n}^{\infty} I_{1, k}=I_{1, n} \sum_{k=0}^{\infty} \frac{I_{1, n+k}}{I_{1, n}} \leq \frac{m_{2}}{n^{2} X_{n}^{2}} .
$$

We have also for evry $n=1,2, \cdots$ and $k=1,2, \cdots$

$$
\frac{I_{2, n+k}}{I_{2, n}}=\frac{\beta_{n} Z_{n} W_{n}}{\beta_{n+k} Z_{n+k} W_{n+k}} \leq \frac{4 C_{2}^{4} \alpha_{n} X_{n}^{2} \rho^{n^{2}}}{\alpha_{n+k} X_{n+k}^{2} \rho^{(n+k)^{2}}} \leq \frac{4 C_{2}^{4} X_{n}^{2}}{X_{n+k}^{2}} .
$$

Therefore $I_{2, n} \leq m_{3} n^{-2} X_{n}^{-2} \rho^{-n^{2}}$ yields (ii). The inequalities (iii) and (iv) hold since

$$
\begin{aligned}
& J_{1, n} \leq \frac{1}{n^{2}}\left\{X_{n}^{2}\left(1+C_{2}^{2} \rho^{-n^{2}}\right) \rho^{n^{2}}+2 C_{2} X_{n}^{2} \rho^{-n^{2}}\left(\rho^{n^{2}}+1\right) \log \rho^{n^{2}}\right\} \leq \frac{m_{4} X_{n}^{2} \rho^{n^{2}}}{n^{2}} \\
& K_{1, n} \leq \frac{1}{n^{4} \rho^{n^{2} / 2}\left(1-\rho^{-n^{2}}\right)}\left\{C_{2} \rho^{n^{2} / 2}+\rho^{-n^{2} / 2}\left(\rho^{n^{2}}+1\right) \log \rho^{n^{2}}\right\} \leq \frac{m_{5}}{n^{2}} \\
& J_{2, n} \leq \frac{2}{n^{2}}\left\{2 C_{2}^{2} X_{n}^{2} \rho^{n^{2}}\left(\frac{\pi}{4}-\frac{1}{2}\right)+2 C_{2}^{2} X_{n}^{2} \rho^{n^{2}}\left(\frac{1}{\sqrt{2}}-\frac{\pi}{4 \sqrt{2}}\right)\right\} \leq \frac{m_{6} X_{n}^{2} \rho^{n^{2}}}{n^{2}} \\
& K_{2, n} \leq \frac{2 \sqrt{2}}{\beta_{n}^{2}}\left\{C_{2}^{2}\left(\frac{\pi}{4}-\frac{1}{2}\right)+\frac{1}{\sqrt{2}}-\frac{\pi}{4 \sqrt{2}}\right\} \leq \frac{m_{7}}{n^{4}}
\end{aligned}
$$

From this lemma it follows that

$$
\int_{0}^{b_{1}} \frac{d r}{r F_{S}(r)^{2}}=\sum_{n=1}^{\infty}\left(I_{1, n+1}+I_{2, n}\right) \leq \frac{C_{3}}{4 X_{2}^{2}}+\frac{C_{3}}{X_{1}^{2} \rho}<\infty
$$

and

$$
\begin{aligned}
& \int_{0}^{b_{1}} \frac{F_{S}(r)^{2}}{r} \int_{0}^{r} \frac{d s}{s F_{S}(s)^{2}} d r \\
&= \sum_{n=1}^{\infty}\left\{K_{2, n}+J_{2, n} \sum_{k=n+1}^{\infty}\left(I_{1, k}+I_{2, k}\right)\right\} \\
&+\sum_{n=2}^{\infty}\left\{K_{1, n}+J_{1, n} \sum_{k=n}^{\infty}\left(I_{2, k}+I_{1, k+1}\right)\right\} \\
& \leq \sum_{n=1}^{\infty}\left\{\frac{C_{3}}{n^{4}}+\frac{C_{3} X_{n}^{2} \rho^{n^{2}}}{n^{2}}\left(\frac{C_{3}}{(n+1)^{2} X_{n+1}^{2}}+\frac{C_{3}}{(n+1)^{2} X_{n+1}^{2} \rho^{(n+1)^{2}}}\right)\right\} \\
&+\sum_{n=2}^{\infty}\left\{\frac{C_{3}}{n^{2}}+\frac{C_{3} X_{n}^{2} \rho^{n^{2}}}{n^{2}}\left(\frac{C_{3}}{n^{2} X_{n}^{2} \rho^{n^{2}}}+\frac{C_{3}}{(n+1)^{2} X_{n+1}^{2}}\right)\right\} \\
& \leq \sum_{n=1}^{\infty}\left\{\frac{C_{3}}{n^{4}}+\frac{C_{2}^{2} C_{3}^{2}}{n^{2}(n+1)^{2}}\left(1+\rho^{-(n+1)^{2}}\right)\right\} \\
&+\sum_{n=2}^{\infty}\left\{\frac{C_{3}}{n^{2}}+\frac{C_{3}^{2}}{n^{4}}\left(1+\frac{C_{2}^{2} n^{2}}{(n+1)^{2}}\right)\right\} .
\end{aligned}
$$

Thus we proved the following lemma:
Lemma 14. The function F_{S} satisfies

$$
\begin{align*}
& \int_{0}^{b_{1}} \frac{d r}{r F_{S}(r)^{2}}<\infty, \tag{i}\\
& \int_{0}^{b_{1}} \frac{F_{S}(r)^{2}}{r} \int_{0}^{r} \frac{d s}{s F_{S}(s)^{2}} d r<\infty .
\end{align*}
$$

6. Proof of Theorem

Recall the discontinuous function $R\left(S=R / 4\right.$, resp.) and the C^{1} function F_{R} (F_{S}, resp.) considered in Section 4 (5 , resp.). In the definition of these functions, we used the sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{a_{n}\right\},\left\{b_{n}\right\}$ given by (11) and (2), respectively. In the proof of Theorem, these letters denote the same.

Let $\delta=\left\{\delta_{n}\right\}_{1}^{\infty}$ be a sequence of numbers δ_{n} satisfying

$$
\begin{equation*}
0<\delta_{n} \leq \frac{b_{n}-a_{n+1}}{2} \quad(n=1,2, \cdots) \tag{19}
\end{equation*}
$$

With δ and R we associate a density R_{δ} on Ω defined by

$$
R_{\delta}=\left\{\begin{array}{lr}
R(r)=\frac{\alpha_{n}^{2}}{r^{2}} & \left(b_{n} \leq r \leq a_{n}\right) \\
\frac{1}{\delta_{n}}\left\{\frac{\alpha_{n}^{2}}{b_{n}^{2}}+\frac{\beta_{n}^{2}}{\left(b_{n}-\delta_{n}\right)^{2}}\right\}\left(r-b_{n}\right)+\frac{\alpha_{n}^{2}}{b_{n}^{2}} & \left(b_{n}-\delta_{n}<r<b_{n}\right) \\
R(r)=-\frac{\beta_{n}^{2}}{r^{2}} & \left(a_{n+1}+\delta_{n} \leq r \leq b_{n}-\delta_{n}\right) \\
-\frac{1}{\delta_{n}}\left\{\frac{\beta_{n}^{2}}{\left(a_{n+1}+\delta_{n}\right)^{2}}+\frac{\alpha_{n+1}^{2}}{a_{n+1}^{2}}\right\}\left(r-a_{n+1}\right)+\frac{\alpha_{n+1}^{2}}{a_{n+1}^{2}} & \left(a_{n+1}<r<a_{n+1}+\delta_{n}\right) \\
(n=1,2, \cdots) .
\end{array}\right.
$$

Apply Lemma 6 to $P=R$ and $Q=R_{\delta}$. Then $R_{\delta} \geq R$ implies $f_{R_{\delta}} \geq F_{R}$, where $f_{R_{\delta}}$ is the R_{δ}-subunit. In particular we denote by R_{0} the density R_{δ} with $\delta_{n}=\left(b_{n}-a_{n+1}\right) / 2(n=1,2, \cdots)$ and $f_{R_{0}}$ the R_{0}-subunit. For a general δ satisfying (19), $R_{\delta} \leq R_{0}$ implies $f_{R_{\delta}} \leq f_{R_{0}}$ ([8]). Moreover in view of this and Lemma 6 and 9 , following inequalities hold for positive constant C_{4} :

$$
\begin{equation*}
1 \leq \frac{f_{R_{o}}(r)}{F_{R}(r)} \leq 1+C_{4} \int_{0}^{b_{1}} s\left\{R_{\delta}(s)-R(s)\right\} f_{R_{0}}(s) F_{R}(s) d s \quad(0<r<1) \tag{20}
\end{equation*}
$$

We also consider densities $R_{\delta} / 4$ and $R_{0} / 4$. Then the $R_{\delta} / 4$-subunit $f_{R_{\delta} / 4}$ is dominated by the $R_{0} / 4$-subunit $f_{R_{0} / 4}$ so that following inequalities hold for positive constant C_{5} :

$$
\begin{equation*}
1 \leq \frac{f_{R_{\delta} / 4}(r)}{F_{S}(r)} \leq 1+C_{5} \int_{0}^{b_{1}} s\left\{\frac{R_{\delta}(s)}{4}-\frac{R(s)}{4}\right\} f_{R_{0} / 4}(s) F_{S}(s) d s \quad(0<r<1) \tag{21}
\end{equation*}
$$

by Lemmas 6 and 14 .
Now we set

$$
\gamma_{n}=\frac{b_{n}\left(\alpha_{n+1}^{2}+\beta_{n}^{2}\right)}{a_{n+1}^{2}}, U_{n}=\left(a_{n+1}, a_{n+1}+\delta_{n}\right) \cup\left(b_{n}-\delta_{n}, b_{n}\right) \quad(n=1,2, \cdots) .
$$

We can choose and fix $\delta=\left\{\delta_{n}\right\}$ satisfying (19) and the following condition:

$$
\begin{equation*}
\sum_{n=1}^{\infty} \gamma_{n} \int_{U_{n}}\left\{f_{R_{0}}(s) F_{R}(s)+f_{R_{0} / 4}(s) F_{S}(s)\right\} d s<\infty \tag{22}
\end{equation*}
$$

Let P be the density R_{δ} with this δ. By (20)-(22) the P-subunit f_{P} and the function F_{R} (the $P / 4$-subunit $f_{P / 4}$ and the function F_{S}, resp.) are comparable since $s\left\{R_{\delta}(s)-R(s)\right\}$ is dominated by γ_{n} on $U_{n}(n=1,2, \cdots)$ and vanishies otherwise : there exists a positive constant C_{6} such that

$$
1 \leq \frac{f_{P}(r)}{F_{R}(r)} \leq C_{6}\left(1 \leq \frac{f_{P / 4}(r)}{F_{S}(r)} \leq C_{6}, \text { resp. }\right) \quad(0<r<1)
$$

Hence Lemma 9 and (i) of Lemma 14 yield

$$
\int_{0}^{b_{1}} \frac{d r}{r f_{P}(r)^{2}}<\infty, \quad \int_{0}^{b_{1}} \frac{d r}{r f_{P / 4}(r)^{2}}<\infty
$$

so that P and $P / 4$ are both hyperbolic by Theorem A. Moreover Lemma 10 and (ii) of Lemma 14 yield

$$
\int_{0}^{b_{1}} \frac{f_{P}(r)^{2}}{r} \int_{0}^{r} \frac{d s}{s f_{P}(s)^{2}} d r=\infty, \quad \int_{0}^{b_{1}} \frac{f_{P / 4}(r)^{2}}{r} \int_{0}^{r} \frac{d s}{s f_{P / 4}(s)^{2}} d r<\infty
$$

Thus we conclude $\operatorname{dim} P=1$ and $\operatorname{dim}(P / 4)=c$ by Theorem B.
In the above proof, the density P can be replaced by a C^{∞} density. In fact we can construct a C^{∞} density Q on Ω such that $0 \leq Q(s)-R(s) \leq \gamma_{n} / b_{n}$ $\left(s \in U_{n} ; n=1,2, \cdots\right)$ and $Q(s)-R(s)$ vanishes otherwise. By the same reason as that of P, the functions Q and $R(Q / 4$ and S, resp.) are also comparable. Hence Q is hyperbolic and satisfy $\operatorname{dim} Q=1, \operatorname{dim}(Q / 4)=c$.

References

[1] M. Aizenman and B. Simon, Brownian motion and Harnack inequality for Schrödinger operators, Comm. Pure Appl. Math., 35 (1982), 209-273.
[2] H. Imai, On Picard dimensions of nonpositive densities in Schrödinger equations, Complex Variables, (to appear).
[3] M. Kawamura and M. Nakai, A test of Picard principle for rotation free densities, II, J. Math. Soc. Japan, 28 (1976), 323-342.
[4] M. Murata, Structure of positive solutions to $(-\Delta+V) u=0$ in \mathbb{R}^{n}, Duke Math. J., 53 (1986), 869-943.
[5] M. Murata, Isolated singularites and positive solutions of elliptic equations in \mathbb{R}^{n}, Aarhus Univ. Preprint Series, 14 (1986/87), 1-39.
[6] L. Myrberg, Über die Existenz der Greenschen Funktion der Gleichung $\Delta u=c(P) u$ auf Riemannschen Flächen, Ann. Acad. Sci. Fenn., 170 (1954), 1-8.
[7] M. Nakai, Martin boundary over an isolated singularity of rotation free density, J. Math. Soc. Japan, 26 (1974), 483-507.
[8] M. Nakai, Picard principle and Riemann theorem, Tohoku Math. J., 28 (1976), 277-292.
[9] M. Nakai, Comparison of Martin boundaries for Schrödinger operators, Hokkaido Math. J., 18 (1989), 245-261.
[10] M. Nakai, Continuity of solutions of Schrödinger equations, Math. Proc. Camb. Phil. Soc., 110 (1991), 581-597.
[11] M. Nakai and T. Tada, Monotoneity and homogeneity of Picard dimensions for signed radial densities, NIT Sem. Rep., 99 (1993), 1-51.
[12] R. Phelps, Lectures on Choquet's Theorem, Van Nostrand Math. Studies \#7, 1965.

Department of Mathematics
Daido Institute of Technology
Takiharu, Minami, Nagoya 457, Japan

[^0]: ${ }^{1}$ The author was supported in part by Grant-in-Aid for Scientific Research, No. 04302006 and 04302007, Japanese Ministry of Education, Science and Culture.

