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Abstract. A real valued C°° function P(z) on the punctured disk 0 < |z| < 1 is

constructed in such a way that there exists only one Martin minimal boundary point

for the time independent Schrόdinger equation (— Δ + P(z))u(z) = 0 over z = 0 and,

neverthless, there exist more than one Martin minimal boundary points for

(- Δ + P(z)/4)u(z) = 0 over z = 0.

We denote by Ω the punctured disc 0 < |z| < 1 and consider a time
independent Schrodinger equation

(1) (-Λ 9
dx2 dy2

on Ω. The potential P is assumed to be a locally Holder continuous function
on 0 < |z| < 1 and referred to as a density on Ω. Then a density P may
take both positive and negative values. With a density P we associate the
class PP(Ω; Γ) of nonnegative C2 functions u on Ω\jΓ satisfying the equation
(1) in Ω and vanishing on the unit circle Γ: \z\ = 1. We also denote by
PP1(Ω',Γ) the subclass of P P ( Ω ; Γ ) consisting of functions u with the
normalization

2 π J 0 Idt

The Choquet theorem (cf. e.g. [12]) yields that there exists a bijective
correspondence u+->μ between the convex cone PP(Ω\ Γ) and the set of Borel
measures μ on the set Gx.PP^Ω Γ) of extremal points of the convex set
PP^Ω; Γ) such that

-ίJex.PPι(β;

vdμ(v).
Π
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Thus the set ex.PP^β; Γ) is essential for the class PP(ί2; Γ), and the cardinal
number #(ex.PP1(β; Γ)) of ex.PP^Ω; Γ) is referred to as the Picard dimension

of a density P at z = 0, dim P in notation, i.e.

dimP = #(ex.PP1(ί2;Γ)).

We say that a density P is hyperbolic on Ω if dim P > 1 and there exists

the Green's function on Ω with respect to the equation (1). Then nonnegative

densities are hyperbolic on Ω ([6]).
A density P is said to be rotation free if P satisfies P(z) = P(|z|)(zeί2).

Let P be a nonnegative rotation free density. Then dimP is equal to 1 or

the cardinal number c of the continuum ([7]) and satisfies

dim P = dim (cP) (c > 0)

([3]). We call this property the homogeneity of Picard dimensions of

nonnegative rotation free densities.
Let P be a signed rotation free density. Then dim P is also 1 or c if P

is hyperbolic on Ω ([7], [11], [4]). Moreover if P is hyperbolic on ί2, the

density cP (0 < c < 1) is hyperbolic on Ω and satisfies

dim P < dim (cP) (0 < c < 1)

([11]). The purpose of this paper is to prove the following theorem which

shows the nonhomogeneity of Picard dimensions of rotation free hyperbolic

densities :

THEOREM. There exists a rotation free hyperbolic density P on Ω such that

dim P = 1 and dim - P = c.

It was shown in [11] that the above inequality dimP<dim(cP)
(0 < c < 1) is also valid for every rotation free density P which is not hyperbolic

on Ω. At the same time it was shown that the inequality sign in dim P <

dim(cP) can not be replaced by the equality sign ([2], [11]): There exists
a rotation free density P on Ω such that dim P = 0 and dim (cP) = 1

(0 < c < 1). Precisely speaking, the Picard dimension of P (cP, rsep.)
considered o n O < | z | < α i s O ( l , resp.) for every αe(0, 1] and ce(0, 1). Then

it was asked a question in [11] whether there exists a rotation free density

P such that 1 < dim P < dim (cP) (0 < c < 1). The above theorem gives an
answer to this question. We remark that the Picard dimension of a rotation
free density P considered on Ω coincides with the one considered on 0 < |z| < a
(0 < a < 1) if P is hyperbolic on Ω ([8], [5], [11]).

The author is very grateful to Professor M. Nakai for his valuable advice.
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1. Subunit criterions

Hearafter every density P on Ω in consideration is assumed to be rotation

free and is mainly viewed as a function P(r) of r in the interval (0, 1]. For

a density P we consider the differential equation

LPu(r) = - ^u(r) -- ^u(r) + P(r)u(r) = 0
dr r dr

for C2 functions u(r) in (0, 1). The unique solution fp of this equation with

initial conditions

fp(l) = 0 and f p ( l ) = — 1

is referred to as the P-subunit. Then we have the following characterization

of hyperbolicity for P in terms of fp:

THEOREM A ([11], [4]). A density P is hyperbolic on Ω if and only if

Γ 1 / 2 dr
fp(r) > 0 (0 < r < 1) and ——^ < oo.

Jo rfp(r)2

Moreover we have the following test of dim P = 1 for hyperbolic densities

P:

THEOREM B ([11], [4]). A hyperbolic density P on Ω satisfies dim P = 1

if and only if

f¥fJo ' Jo

ds
-dr = oo

for some a, and hence for any a, in (0, 1].

2. P-subunits for discontinuous densities P

2.1. We take a positive numbers θ with θ<π/2 and sequences {απ}5°,

{βn}ι° of positive number απ, /?„. With 0 and {/?„} we associate sequences

Mΐ> {bn}? of positive numbers an = an(θ9 {βn}), bn = bn(θ, {βn}) defined by

(2) p = 100, fll = 1, fr. = p-1^, αn + 1 = β-^-fr,, (* = 1, 2,-).

The sequences {#„} and {ί?M} satisfy

1 > an > bn > an+1 (n = 1, 2, ), Hm απ = 0.
w-* oo

Now we consider a discontinuous function P = P( β, {απ}, {/?„}) given by
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(3) P(r) =

(bn<r<an;n= 1,2,-)

-ί-ί (an+l<r<bn;n = l,2,
r2

and a C1 function FP on (0, 1] satisfying

(4) F P ( ί ) = 0, F P ( ί ) = - 1, LpFp = 0 on , απ)}.
ίi=l

The definition of a density on Ω can be generalized ([1], [4], [9], [10]).

In this sense, the above function P is a discontinuous density on Ω. Moreover

Fp is equal to the P-subunit fp and both Theorems A and B are valid for

P and fp = FP. However we do not use these facts in this paper.

2.2. By the condition (4), the function FP has the following form on

each interval:

(5) F,(r) =
(bn<r< an)

-zBsin j8nlog— + WB sin I ft, log
bn

(απ+1 <r<bn)

(n = ί , 2 , ).

The coefficients xn = xn(P), yn = yn(P), zn = zn(P), wn = wn(P) depend on P and

hence θ, {αn}, {βn}. In particular

(6) >Ί=°

by (4). Since FP is of class C1, these coefficients satisfy conditions

- βnzn + βnwa cos θ = - απ(

- 2απ + 1xπ + 1 + απ + 1(pα"+1

for every n = 1, 2, which are equivalent to
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0 sin0

-βn βncosθj\wn/

O
n , «

p n+ 1

-2αn + 1 αn + 1(pαn

These conditions are also equivalent to

/ Λ 1 \

0 Wx.

"") 2«.)\y

0 \ / z

yn+

so that we have

::)

)-

C0t" ~7Γ \f p p'
Pn

1 1 \ — απ(p n H-
y cosec θ 0 /

/ pΛn + 1 - |-p~ α n + 1 1 \

2(pαn+1 — p~α n + 1) 2ocπ+1

1 o

(8)

where

X n+l

^n+1

(n=l,2, ),

22

sin 0 0 \ / ZM

-βncosθ I

cos

βn
( 1 + ,

2 = -2p-"»

«n+l

, α«

-
Pn

Λ

+ p-2^)sin0L

= -4 — 9-α"p"α"+ 1si

2.3. Assume that xn> yn>0 for some n. Then from (7) and (8) it follows
that
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^ > pα" {(1 - p-2α") COt 0 + ̂  (1 - p'α")2 1 > 0,
Xn I βn )

w
— = pα"(l-p-2 α")cosec0>0,

z sin θ

Therefore we obtain the following lemma:

LEMMA 1. If xn > yn > 0 for some n, then zn > 0, wn > 0, yn + ί > 0.

3. Calculations of integrals

3.1. In this section we assume that xn > 0, zn > 0, wn > 0, yπ + 1 > 0

(n = 1, 2, ). This assumption is equivalent to FP(r) > 0 (0 < r < 1). In this

no. we calculate integrals below.

LEMMA 2. If n = 2, 3,-",then

(i)

-FP(r)2 p

x

+ p-α"((p2α"+ I)logp2 α"-

PROOF. Consider the function

of r in [fcn, αj which is a solution of LPu = 0 on (bn, an) along with FP. Since

bn) = 0, £(r) has the form

<*«
-

with a positive constant c. By setting r = bn in an equality
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and (5) we have

c =

Hence the equality (9) for r = an is (i). The equality (ii) follows from

calculations

bn sFP(s)2

ΓM [ // p-lτM(τ
r- {(Λ - ^P"α")(p2α" - i) + (y. -
2α

LEMMA 3. If n = 2, 3, ,

Γ f lMFp(r)2 1
dr =—{(x2 + yϊ)(ρ2Λn-p 2αn - 2 log p2α")

Jbn r 2απ

+ 2xnynp-"»((p2*» + l)logp2^ - 2(p2α" - 1))}.

PROOF. Lemma follows from calculations

bn
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2log

+ 2xnyn((p*" + p α")logp-

where we use

Γp 1 ίY/Λα" / t V"l2 Γ" 1 f 1
1 1 -) - \ L ) dt= -\^-tX

J i t IV ί / \ p / J J i ί U*"

2

dt

LEMMA 4. If n= \,2, , then

"
f i )

)2 Cr ds
(ii)

+ sin θ — θ cos θ f .

PROOF. Consider the function

E(r) = FP(r)

of r in (an + 1,bn) which is a solution of LPu = 0 on (an + 1,bn) along with
FP. Since E(an+1) = 0, £(r) has the form

(10) £(r) = cs in(^log —

with a positive constant c. By making r[an + l in the equality

=
r

and (5) we have

βnzn sinθ

Hence the equality (10) for r = fcn is (i). The equality (ii) follows from
calculations
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p ' a P" FP(^ P ds iβnznsmθ dr
Jan+l r Jan+ίsFp(s)2

- \ ~ zn sin (β n log ̂  ) + wπ sin ( βn log -ϊ— } i
J α n + i r I \ onj \ an + ι / J

(
γ

βnlog }dr

re j
= — {— zn sin (ί - θ) + wn sin ί} sin

J o P «

~2β~nL Z"C°S r COS + W n (/ o

LEMMA 5. TjΓ w = 1, 2, ,

Γbn Fpίr)2 1
-̂ - dr=— {(z2 + w2)((9 - sin <9 cos 19) 4- 2zMwπ(sin θ - θ cos θ)}.

J f l n + l Γ ^P«

PROOF. Lemma follows from calculations

/ γ

,ipg —ί
bn p ίr\2 Γ b « l f

^dr= I |-z.ri

> n + ! r J«n + l ^ I

Cθ 1
= -{-znsm(t

J O Pn

1 ^(1 - cos 2ί) + znwπ(cos (2ί - (9) - cos ^)>dί.
J «^o L 2 J PI

3.2. In the final section, a discontinuous function P will be aproximated

by a density Q on ί2 such that behaviour of the β-subunit fQ is similar to

that of FP. An estimation of fQ will be given by using the following integral

form of fQ/FP:

LEMMA 6. If a density Q on Ω satisfy Q(r) = P(r) (bί < r < 1), then the

Q-subunit fQ satisfy

= 1 + Γ s{Q(s) - P ( s ) } f Q ( s ) F P ( s ) f ds (0 < r < 1).

PROOF. Since fQ and FP are solutions of LQu = 0 and LPu = 0

respectively, we have

dr [ dr FP(r)
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(re U ((an+1,bn)(j(bn,an))).
n = l

Let b be a number in (bl9 1). The fact that F'P is right and left differentiate
yields

b)-fQ(b)F'P(b)}-rFP(r)2

FP(r)

= Γ s{β(s) - P(s)}fQ(s)FP(s)ds (0 < r < 1).
Jr

If b 1 1, then the first term of the above equality goes to 0. This implies

By b 1 1 again, we obtain the lemma. Π

4. FR for a special R

4.1. We fix values of θ, απ, and βn:

(11) 2(n + l ) 2 f / 4 -̂ 1
βn = — —\ p~2"2 + 2n + —^—r - p~"2+n> (π = l, 2, )
^M 2 l>r (n+1) 2 J

Hereafter R denotes a special discontinuous function P = P( 0, {αj, {j8M})
given by (3) with these 0, απ, and βn, where αM and bn are special numbers
defined by (2) with these θ and βn. Then FΛ means a special C1 function
satisfying (4) with these an,bn, and P = R so that the coefficients xn, yn, zn9

and WM in (5) are also special numbers. They are fixed by the initial values

(12) Xί = - 1 * ^ = 0
2α! 2

and the recursion formulas (7), (8) with (11):

(13) Ί = ̂ ^ A
l-p- 2 α" 0
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(14)

(n=l,2, ),

where

Λ I I = ~(ί + p-2*")(l + P"2ot"+1) - —(1 -
Pπ α π+l

βn

(15)

In the proof of the lemma below we use properties of βn

W 2 + Π

βn «„,

which are derived from

The following lemma shows that FR is positive on (0, 1):

LEMMA 7. The numbers xn, yπ, zn9 and wn satisfy

yl = 0, xπ > yn9 zn > 0, wπ > 0, yn + 1 > 0 (n = 1, 2, ).

PROOF. In view of Lemma 1 and (12) we only need to prove that

xn > yn > 0 implies xn+l > yn+1. Suppose xn> yn> 0. Then by (14) we have

Hence by (15) we have
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O ( 1 I — "M + 1 \

(1 +p Λn an+ί)

βn \

Jn ' «^~J(P + P

This implies xn+l — yn+l > 0 since p = 100. Π

4.2. Behaviour of the function FR is determined by the coefficients
xn, yn, zn, and wn. We estimate growth of these numbers as rc-» oo.

LEMMA 8. There exists a positive constant C1 with C± > 1 »swc/z //zαί

( i ) xn > Cί

 npn (n = 1, 2,•••),

(ϋ) ^>CΓV 3 π (π = 2,3,-),

ZM 2 W 1 2

(iii) — > Cx V" , — > CΓV" (n = I 2, )

PROOF. The proof is based upon Lemma 7 and formulas (12)-(15). The
letters m£ ( i = l , •••,?) used below denote positive constans satisfying
m{ > 1. Since

2(1 -

> -(1 - lOO-^ίl - 100-1 -4- 100-1) > mΓ V,

the inequality (i) holds:
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For the proof of (ii) we need an upper estimate of xn+1/xn

^7~2(l-p-2 α"+ ')ίp\ +P +P

απ βn

~2(l-p- 8 )

Now we have

m3p

xn+ί

and hence

> — _ ——>-p 2n'1(l - p'1)2 > w^ 1/

The estimate (iii) follows from

ZJL > %-(! -
Xn Pπ

D

4.3. We are ready to show that the function FR succeeds in the integral
test in Theorems A and B.

LEMMA 9. The function FR satisfies

dr

J
< oo.

PROOF. In view of Lemmas 2 and 8 we have

an dr C 3n C^+V

r < r-^- <
-p-°») 2n2p2n'(l-
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We also have

ί (n=l ,2 ,- )
an+ι rFR(r)2 αM *ΠF » r

by Lemma 4, 8 and (15). These inequalities prove the lemma. Π

LEMMA 10. The function FR satisfies

PROOF. Apply inequalities

p2«n _ p-2«n _ 2 log p2 n > p2«-(i _ p-+ _ 2p~2 log p2) > 0 (n = 1, 2, ),

(p2«- + 1) log p"" - (p2"" - 1) > 0 (n = 1, 2, -)

and Lemma 8 to (ii) in Lemma 2. Then

™! Γ _*
r J f c nsFR(

logp2)

- -

- 4 1 - - 2 )

This proves the lemma. Π

5. Fs for 5 = R/4

5.1. We consider a discontinuous function S = P( - 0/2, {αn/2}, {j?π/2})
on (0, 1], where 0, απ, and /?„ are the numbers given by (11). Recall the
definition of symbol P = P( - , , ) in No. 2.1. Then S has an expression

S = R/4 with the discontinuous function R considered in No. 4.1 since the

sequences {an(θ/2, {βn/2})} and {bn(θ/2, {βn/2})} are equal to the sequences

{an} and {bn} defined in No. 4.1, respectively. We also associate Fs with S
that is the C1 function on (0, 1] satisfying

F s ( ί ) = 0,F'S=-1, LSFS = 0 on U {fa, + ι, bju(bn, an)}.
n=l

Then by (5) Fs has the following form:
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(bn<r< an)

<Λ σ

(αn+1 <r<bn)

(n = l,2,-).

In view of (6)-(8) the coefficients Xn, Yn, Zn, and Wn are given by initial values

(16)

and recursion formulas

*ι =
2(αt/2)

= 1, Y1 = 0

(17)

(18)

72(1-p--)

4(1-

where

β,

αn

Λ 1

The following lemma shows that Fs is positive on (0, 1):

LEMMA 11. The numbers Xn, Ύn, Zn, and Wn satisfy
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Y, = 0, *„ > Yn, Zn > 0, Wn > 0, 7n+1 > 0 (n = 1, 2, . ).

PROOF. In view of Lemma 1 and (16) we only need to prove that
Xn > Yn > 0 implies Xa+l>Yn+1. Suppose Xn > Yn > 0. Then by (18) we
have

Xn+1-Yn+1 4(l-p--+ )

--*' / 2 2

!(l-p-— '2)2 + -=-(! -p--)
Pn απ+l

4- (1 - p-
Λ

Hence by (15) we have

Xn+ί-Yn+1 4(

Xn

_ J^_(i
αw + ι

α π + 1 / V « B + I P» απ4

-«"+ I/ 2 _ A* -(«n + «n+

βn *„ + !

~~ 4

This implies Xπ + 1 — Yn+1 > 0 since p = 100. Π

5.2. Behaviour of the function Fs is determined by the coefficients
Xn9 Yn, Zn, and Wn. We estimate growth of these numbers as n-> oo.
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LEMMA 12. There exists a positive constant C2 with C2 > I such that

( i ) C2-V2/2 < ̂ p < C2p"2/2 (n = 1, 2,. 0,

(ii) C2-V2/2 ^Y^. C2P~"2/2 (n = 2, 3, ),

(iii) C2

l p"2'2 < —- < C2p"2/2 (n = 1, 2, ),

W
(iv) Cϊ1pn /2 < —- < C2ρ

n /2 (n = 1, 2, )

PROOF. The proof is based upon Lemma 11 and formulas (15)-(18). The
letters mi(i= !,•••>8) used below denote positive constants satisfying mt > 1.

The inequality (i) follows from

-'-'•!(!+,•
4(1 -p--*')

-?=-(!- p-α"/2)(l - p-a-') + ̂
αn+ι βa

Λ H + 1

and
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XH+I ^
^7~4(Γ

4(1_ -4

Since we have inequalities

y -(«„-«„+1)/2

^-^+ β«

and

y n(Λn-Λn+l)/2

<

72(1-

we obtain (ii):

{1 + 2(1 + p-1)} < m4p-",

< m6p- ( n + 1 ) 2 / 2.

The estimates (iii) and (iv) follow from

< pα"/2 l + (l + p-α") < pα"/2{l + 2(1
Pn

and
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respectively. Q

5.3. We are ready to show that the function Fs fails in the integral test

in Theorem B although it succeeds in the integral test in Theorem A. For

the purpose we consider integrals

»" dr

fα»Fs(r)2 f ds p» Fs(r)2 p ds
Ki „ = αr, /C2 n

 = o "r

r ϊF M2 ι,n ί .2
Jf)n

 r JbnSrs(S) Jα n + ι ' J α n + ι r S V s J

These integrals satisfy the following inequalities:

LEMMA 13. There exists a positive constant C3 such that

(i) Σ
k = n

(i") Ji.. < CsZ"P" . Kι,n<^ (n = 2,3,...),
n2 n2

Ov) J2. < C3XfP" . ^2,n<^ (n = l,2,.. ).
n n

PROOF. The proof is based upon Lemmas 2-5, 11-12, and the formula

(15). The letters m{ (i = 1, ,7) used below denote positive constants. Since

for every n = 2, 3, and k = 1, 2, we have

Γ M2 Y Y in"2/2 n~n2!2\
M,n + k n Λ n I nlP ~" P /

-(n + k)2/2\
n + fcn + k ~P J

n-n2

~ P

Λ
— P

< -{«2+

<-• ^ -{22+ -+(fc+l) 2 }

and /1 ? π < mίn~2Xή2, we obtain (i):

oo o

y / _ /
L J l , f e ~ ^1," Z
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We have also for evry n = 1, 2, and k = 1, 2,

B
~ 2 ~

Therefore I2n < w3π
 2Xn

2p n yields (ii). The inequalities (iii) and (iv) hold

since

n pn ' (1 — p n) n

1 π \) m6X
2pn2

4 2

4 o / /^ „ /^ i ~" ^4. D

From this lemma it follows that

dr * < _C3_ C

and

Γ^^Γ^-drJo r J0sFs(s)2

= Σ {K2.n + J2,n Σ (Ί,*

+ Σ ί^l,n + JltΛ Σ U2,fc
M = 2 f c = W

C3+ ϊ-̂ -

n = ^

c3

r*

Π =ι

Σ
α
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Thus we proved the following lemma:

LEMMA 14. The function Fs satisfies

ί \ { dr

<" l.^f<00

09 '"'•Wr

JΓ:

o ' JosFs(s)2

6. Proof of Theorem

Recall the discontinuous function R (S = JR/4, resp.) and the C1 function
FR (Fs, resp.) considered in Section 4 (5, resp.). In the definition of these
functions, we used the sequences {αj, {/?„} and {an}, {bn} given by (11) and
(2), respectively. In the proof of Theorem, these letters denote the same.

Let δ = {<5Π}5° be a sequence of numbers δn satisfying

(19) Q<δn<
bn~n + 1 (n = l,2,» ).

With δ and R we associate a density Rδ on Ω defined by

Λ(r) = ̂  (ft. < r < an)2

Apply Lemma 6 to P = R and β = Rδ. Then Rδ> R implies /Λd > FR, where
/Λd is the 1^-subunit. In particular we denote by R0 the density Rδ with

δn = (bn - an+ι)/2(n = 1> 2, ) and /Ko the .R0-subunit. For a general (5
satisfying (19), Rδ < RQ implies fRδ <fRo ([8]). Moreover in view of this and
Lemma 6 and 9, following inequalities hold for positive constant C4:

(20) 1 < < 1 + C4 5{^(s) - R(s)}fRo(s)FR(s)ds (0 < r < 1).
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We also consider densities Rδ/4 and R0/4. Then the ^/4-subunit fRό/4 is
dominated by the .R0/4-subunit /Ro/4 so that following inequalities hold for

positive constant C5:

(21) 1 < %^ < 1 + C

by Lemmas 6 and 14.
Now we set

" , I/. = («„ + !, απ + 1 + <5n)U(fcn - δn, bn) (n = 1, 2,.. ).

We can choose and fix <5 = {δn} satisfying (19) and the following condition:

(22) £ yn \ {fRo(s)FR(s)+fRo/4(s)Fs(s)}ds < oo.
1=1 J l/n

Let P be the density Rδ with this δ. By (20)-(22) the P-subunit fp and the
function FR (the P/4-subunit /P/4 and the function Fs, resp.) are comparable
since s{Rδ(s) — R(s)} is dominated by yn on [/„ ( r c = l , 2, ) and vanishies
otherwise: there exists a positive constant C6 such that

1 < ̂  < C6(l <^ < C6, resp.) (0 < r < 1).
^W V ^sM /

Hence Lemma 9 and (i) of Lemma 14 yield

f b l dr f b l dr
< oo,

Jo rfp(r)2 Jo rfp/4(r
- < oo
f

so that P and P/4 are both hyperbolic by Theorem A. Moreover Lemma 10
and (ii) of Lemma 14 yield

ds ,
-dr < oo.

, r / \ 9 f*w Ί Λh r / \ *) (*v
I \Γι I M S I / (r) I

o r Jos/p(s)2 Jo r Jo Vp/4^;

Thus we conclude dim P = 1 and dim (P/4) = c by Theorem B. Π

In the above proof, the density P can be replaced by a C°° density. In
fact we can construct a C°° density Q on Ω such that 0 < Q(s) — R(s) < yn/bn

(se Unι n = 1, 2, ) and Q(s) — R(s) vanishes otherwise. By the same reason
as that of P, the functions Q and R (Q/4 and 5, resp.) are also
comparable. Hence Q is hyperbolic and satisfy dim 6 = 1, dim (6/4) = c.
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