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ABSTRACT. We consider a quasi-linear second order elliptic differential equation on a

euclidean domain, and for a compactification of the domain we define the harmonic

boundary relative to the structure condition of the equation. Properties of harmonic

boundary known in the classical potential theory are extended to our nonlinear case.

We show that the comparison principle with respect to harmonic boundary holds for

our equation, and give relations between Dirichlet-regular points and the harmonic

boundary points.

Introduction

In an ideal boundary theory for Riemann surfaces, the notion of harmonic

boundary has been introduced as a potential theoretically essential part of the

given ideal boundary (cf. [CC]). Among others, the minimum principle with

respect to harmonic boundary (cf. [CC; Satz 8.4 and Folgesatz 8.1]) and the

fact that the harmonic boundary on the Royden boundary coincides with the

set of all regular points with respect to the Dirichlet problem (cf. [CC;

Folgesatz 9.2]) are typical results showing the importance of this notion. Such

results have been also considered on Riemannian manifolds (cf. e.g., [GN]) and

behavior of solutions of the equation Δu — Pu = 0 at the harmonic boundary

have been studied (cf. [GKa] and [GN]). Further, these results are extended to

the /7-Royden boundary of a Riemannian manifold Ω, for which the minimum

principle (or, rather the comparison principle) and the Dirichlet problem are

considered with respect to the /7-Laplacian ([Tl] and [T2]) or more generally,

with respect to the quasi-linear elliptic equation

-diws/(x,Vu(x)) = 0,

where srf{x,ξ) : Ω x R^ —• R^ satisfies structure conditions of/7-th order with

1 <p < oo (see [N]).
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On the other hand, the authors discussed Dirichlet problems with respect

to ideal boundaries for the equation

(E) -div jtf (*, Vu{x)) + &(x, u(x)) = 0

on a euclidean domain Ω, where J/(X, ξ) satisfies weighted structure conditions

of ;?-th order with a weight μ and ̂ (x, i) : Ω x R —> R is nondecreasing in ί

(see [MaO] or §1 below for more details).

In this paper, we consider the g-compactification of Ω for a family Q of

bounded continuous functions with finite (p,μ)-Dirichlet integrals and the

associated harmonic boundary. We show that comparison principle with

respect to this harmonic boundary still holds for the equation (E) and that

the set of regular points for the Dirichlet problem with respect to the Q-

compactification and the equation (E) coincides with the harmonic boundary,

under an additional condition on Q. To obtain these results, we first discuss in

§2 harmonizability of bounded continuous functions with finite (p,μ)-Dirichlet

integrals with respect to (E).

§ 1. Preliminaries

In this section, we recall definitions and results in [MaO] which will be

used in our later discussions. Throughout this paper, let β b e a fixed domain

in R^ and we consider a quasi-linear elliptic differential equation

(E) -div sί{x, Vu(x)) + Ά{x, u{x)) = 0

on β . Here, stf :ΩxRN -^RN and 3» : Ω x R -> R satisfy the following

conditions for 1 < p < oo and a weight w which is p-admίssίble in the sense of

[HKM]:

(A.I) x H-> s/(x,ζ) is measurable on Ω for every ζ e RN and ξ ι-> s/(x,ζ) is

continuous for a.e. x e Ω;

(A.2) s/(x,ξ) ξ > 0L\w(x)\ξ\p for all ζ e RN and a.e. xeΩ with a constant

αi > 0 ;

(A.3) \s/(x,ζ)\ < oc2w(x)\ξ\p~l for all ξeRN and a.e. xeΩ with a constant

α2 > 0 ;

(A.4) (s/(x,ξι)-s/(x,ζ2))'(ζι^ζ2)>0 whenever ξuξ2eRN, ξx Φ ζ2, for

a.e. xeΩ;

(B.I) χ\-+3$(x,i) is measurable on Ω for every teR and t\->@(x,ή is

continuous for a.e. xeΩ;

(B.2) For any open set D(ξzΩ, there is a constant α3(Z)) > 0 such that

|#(jt, 01 ^ oc3(D)w(x)(\t\p-{ + 1) for all teR and a.e. x e D ;

(B.3) 11—• ^(x, /) is nondecreasing on R for a.e. xeΩ.

We remark that if si and ̂  satisfy the above conditions, then si and J?

which are defined by
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J/(JC, ξ) = -sί(x, -ξ) and J(x, t) = -£(x, -t)

also satisfy these conditions with the same constants oc\, 0L2 and CL^D).

For the nonnegative measure μ : dμ(x) = w(x)dx and an open subset D

of ί2, we consider the weighted Sobolev spaces Hι'p(D;μ), H^p(D;μ) and

H{

ι

oc

p(D-,μ) (see [HKM] for details), u e H{

l

oc

p {D; μ) is said to be a (weak)

solution of (E) in Z> if

for all φeC^(D). ueH^p(D;μ) is said to be a super solution (resp.
solutioή) of (E) in Z) if

.fi/(jt, 7M) ϊ > dx + #(x, u)φdx>0 (resp. < 0)

for all nonnegative φeC^(D).

A continuous solution of (E) in an open set D cz Ω is called (£#,$)-

harmonic in D. Note that if A is (s/, ^)-harmonic in D, then — h is ( J / , J?)-

harmonic in Z).

PROPOSITION 1.1. (Harnack principle) [MaO; Theorem 1.6] If {hn} is a

nondecreasing or nonincreasing sequence of (s/,$)-harmonic functions in a

domain D and if {hn(xo)} is bounded for some xo e D, then h := lim^oo hn is

(sf\3S)-harmonic in D.

We say that an open set D in Ω is {stf,&)-regular, if Z)(gί2 and for any

θeHfoC

p(Ω;μ) which is continuous at each point of dD, there exists a unique

h G C(D)ΠHι^(D;μ) such that h = θ on dD and h is (jtf, SI)-harmonic in Zλ

PROPOSITION 1.2. [MaO; Corollary 1.2] For ύwy compact set K and an

open set D such that K c D a Ω, there exists an (s/, ^-regular open set G such

that K <= G cz D.

A function w:Z>—>RU{oo} is said to be [si',$) -superharmonic in D if it

is lower semicontinuous, finite on a dense set in D and, for each open set

G (g D and for h e C{G) which is (j?/, J>)-harmonic in G, u > h on dG implies

u > h in G. (s/j &)-subharmonίc functions are similarly defined. A function v

is (ja/,^)-subharmonic in D if and only if —v is (s/, ,#)-superharmonic in D.

THEOREM 1.1. (Comparison principle) [MaO; Theorem 2.1] Let u be

(jtf\SS)-superharmonic in D and let v be (jtf', $)-subharmonic in D. If

x) - v(x)} >0
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for all ξ e daD, then u > v in D, where daD is the boundary ofD in the one point

compactificatίon of R^.

The following two propositions are given in [MaO; Propositions 2.1, 2.3

and Remark 2.1].

PROPOSITION 1.3. If u and v are {srf,&)-superharmonic in D, then so is

min(w, v).

PROPOSITION 1.4. Let D be an open set in Ω and let G(ςΞD be an {si ,$)-

regular open set. For an {si,&)-superharmonic function u on D, we define

uG = sup{λ G C(G) : h < u on dG and h is {si,&)-harmonic in G}.

Then

u in D\G
P{u,G):= .

[U in G

is {sέ\0ί)-superharmonic in D and {si\SS)-harmonic in G, and P{u, G) <u in D.

IfueHΪ0C

p{D;μ), then u\G - uG e H*'p(G;μ).

Next we consider the following spaces:

®p{Ω-,μ) := {feHΪoc

p{Ω;μ) : \Vf\ eLp{Ω;μ), f is bounded continuous},

y f i n L p { Q . μ )

We say that Ω is {p,μ)-hyperbolic if 1 φ@p{Ω;μ).

PROPOSITION 1.5. Let h\, h2e @p{Ω;μ) be {M\0&)-harmonic functions

in Ω. If hi -h2e^p{Ω;μ) and $Ω \Λ(x,h\(x)) - @{x,h2{x))\dx < oo, then

h\-h2 = constant. If in addition, Ω is {p,μ)-hyper bo lie, then h\ = h2.

PROOF. There exist φn e C^{Ω) such that {φn} is uniformly bounded and

ψn ~* h\ — n2 a.e., Vφn —» V{h\ — h2) in Lp{Ω\μ) as n —> oo. Since both h\ and

h2 are {si,0f)-harmonic in Ω, we have

ί srf{x,Vhx) Vφndx+\ @{x,hι)φndx = 0,
JΩ JΩ

[ sί(x, Vh2) Vφn dx + [ 0»{x, h2)φn dx = 0.
JΩ JΩ

Subtracting these two equations and letting n —> oo, we have
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• s/(x, Vh2)) (Vh{ - Vh2)dx

JΩ

It follows from (A.4) and (B.3) that Vh\ = Vh2 a.e., so that hι=h2 + c. If Ω

is (/>,μ)-hyperbolic, we see that c = 0, namely h\ — h2.

In order to prove a resolutivity result, we prepared the following two

lemmas in [MaO; Lemmas 5.1, 5.2], which we will use in this paper, too.

LEMMA 1.1. Let {un} be a uniformly bounded sequence of functions in

H0'
p(Ω;μ) such that {JΩ \Vun\

pdμ} is bounded and un —> u a.e. in Ω as n —>• oo.

If u is continuous, then ueSJ^(Ω\μ).

LEMMA 1.2. Let f e <3p(Ω;μ) and suppose that there is a bounded

super solution g of (E) in Ω such that g >f in Ω and suppose

(1.1) [ »{x,fY dx< oo.
JΩ

Then there exists an {$£\Sf) -superharmonic function u in Ω such that u>f in Ω

and u-fe@p(Ω;μ).

§2. ( e/, #)-harmonizable functions

Let / be a real function in Ω and, let

a** _ ( (j/,^)-superharmonic in Ω and Ί
f ~ \ ' u>f outside a compact set in Ω J

and

a?* _ ί (j/,^)-subharmonic in Ω and 1
f ~ \V ' v <f outside a compact set in Ω J '

THEOREM 2.1. If both <%lf and ϊ£f are nonempty, then

hf = hf ' := inf °UJ and hf — h^f'^ := s u p ^ *

are {stf',$)-harmonic in Ω and hf < hf.

PROOF. The comparison principle (Theorem 1.1) implies hf <hf. The

rest of the assertion follows from Propositions 1.3, 1.4 and 1.1 in the same way

as in [HKM; Theorem 9.2].

We say that / is ( J / , 08)-harmonizable if both °llf and 5£f are nonempty

and hf = Jif. In this case we write hf — hf ' for hf = hf.

The following proposition is clear.
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PROPOSITION 2.1. If f and g are (s&', 08)-harmonizable and f < g outside a

compact set, then hf <hg.

We recall the following conditions, which have been given in [MaO] for

the discussion of resolutivity (see Theorem 2.3).

(Ci) There exist a bounded supersolution of (E) in Ω and a bounded

subsolution of (E) in Ω.

(B.5) $Ω\Ά{x,t)\dx < oo for any teR.

THEOREM 2.2. Suppose that Ω is (p,μ)-hyperbolic and suppose that con-

ditions (Ci) and (B.5) are satisfied. If f eQ)p{Ω\μ), then f is {s4,9S)

harmonizable and hf —f e @ζ(Ω;μ).

PROOF. Letfe@p(Ω;μ) and let υ\ (resp. v2) be a bounded supersolution

(resp. subsolution) of (E) in Ω. By the boundedness o f / a n d v\, there is a

constant c\ > 0 such that υ\+c\>f in Ω. Then g\ := v\ + c\ is a super-

solution of (E) and g\ > / . Also, by condition (B.5), (1.1) is satisfied. Hence,

by Lemma 1.2, there is an («$/, J*)-superharmonic function u in Ω such that

u>f and u-fe9l(Ω\μ). Let {Dn} be an exhaustion of Ω by (s/,όi)-

regular open sets and let un = P(u,Dn) in the notation in Proposition 1.4.

Then since Dn(ξΩ and un = u in Ω\Dn, UnE^^. By the boundedness of/

and V2, there is a constant c2 such that g2:=v2 — c2<f in Ω. We may

assume that g2 is (s/, Jt)-subharmonic in ί2 ([MaO; Corollary 4.1]). Hence

<£* Φ 05 so that hf exists and un > hf for each n. On the other hand, we

obtain from the comparison principle that u>un>un+\. Thus, by Propo-

sition 1.1, ΰ := lim^oo un is (s/,08)-harmonic in ί2 and u>U>hf.

Since wn is («s/, ^)-harmonic in Ω, un — u in β\Z)« and un — ue

H^p(Dn;μ), we have

sf(x, Vun) (Fwπ - Vu)dx + J*(x, «„)(«„• - w)d.x = 0,
Jβ Jβ

so that, by (A.2) and (A.3), we have

(2.1) αi f \Vun\
pdμ<a2\ \Vun\

p-χ\Vu\dμ+ \ \®{x,un)\(u - un)dx
JΩ JΩ JΩ

-^(L^^^)" P{L^Pdμ)P

+ \Λ(x,un)\(u-un)dx,
JΩ

where in the last inequality we have used Holder's inequality. The com-

parison principle implies that g2 <un. Since un <u and u is bounded,
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we see that {u — un] is uniformly bounded. Hence, by condition (B.5),
{JΩ 3&(x, un)(u — un)dx) is bounded. Also u e Q)p(Ω\μ) implies JΩ \Vu\p dμ < oo.
It follows from (2.1) that {Jβ \Vun\

p dμ) is bounded. Hence, since u — une
H^p(Ω;μ), {u — un} is uniformly bounded and un —• w, Lemma 1.1 yields
u-Ue@p(Ω;μ), so that ΰ-f e@p(Ω;μ).

Similarly, applying the above arguments to (s/, &) and —/, we can find a
bounded (s/,0S)-harmonic function u in Ω such that w < Ay and f — ue
@p(Ω;μ). Therefore, the linearity of 2%(Ω\μ) implies ΰ-ue^(Ω μ). It
follows from Proposition 1.5 that ΰ — u, and hence Ay = Ay.

Given a compactification ί2* of ί2 and a bounded function ^ on
d*Ω = Ω*\Ω9 let

— ί (^ ' ^)-superharmonic in Ω and
M(JC) > φ(ξ) for all f e

and

/ )-subharmonic in ί2 andcp — /
^ ~ \ Γ : l imsup x^ v(x) < φ(ξ) for all ζ e d*Ω

If both Wψ and JSf̂  are nonempty, then

H(ψ;Ω*) = H{j*iί9)(ψ;Ω*) := inf %

and

are (s/,^)-harmonic in ί2 and #O;ί2*) < H(ψ;Ω*) ([MaO; Theorm 3.1]).
We say that φ is (stf, &)-resolutive if both ^ ^ and J$f̂  are nonempty and
H(ψ;Ω*)=H(ψ;Ω*). In this case we write H(φ]Ω*) = H^Λ\ψ]Ω*) for
^ ( ^ Ω*) = ̂ ( ^ ί2*). ί2* is called an (Λ/, &)-resolutive compactification, if all
φeC(d*Ω) are (.a/, #)-resolutive.

PROPOSITION 2.2. Lei f e C(Ω*) and let ψ:=f\d*Ω. φ is ( Λ / , ^ ) -

resolutive if and only if f\Ω is (s/,&)-harmonizable, and then H(φ;Ω*) =hf.

PROOF. If we^fy, then w e % Hence H(φ;Ω*) <u, so that
H(φ;Ω*) <hf. Similarly, we have Ay <H(φ;Ω*). Therefore, φ is {sί,&)-
resolutive if / i s (j/,^)-harmonizable, and H(φ;Ω*) — hf.

To show the converse, we suppose ue^ψ. Then, because w + ε e ^ y
for any ε > 0, Ay<w + ε, so that Ay < H(φ\Ω*) + ε. Since ε is arbitrary,
Ay < H(φ-,Ω*). Similarly, we have Ay > H(ψ-,Ω*). Therefore, / is (s/,Λ)-
harmonizable if φ is (ja/, $)-resolutive.

The following resolutivity result, which is the main theorem in [MaO], can
be also shown by using Theorem 2.2 and Proposition 2.2.
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THEOREM 2.1. [MaO; Theorem 3.2] Suppose that Ω is (p,μ)-hyperbolic

and suppose that conditions (C\) and (B.5) are satisfied. If Q a <3p(Ω\μ),

then the Q-compactification ΩQ of Ω (see [CC]) is an (jtf, &)-resolutive

compactification.

§3. Properties of harmonic boundary

Let Ω* be a compactification of Ω and d*Ω = Ω*\Ω. Setting

j(P,μ) : = ίξ E d*Ω : l i m i n f | / ( χ ) | = 0 for any / e

we call A^Piβi^ the (p,μ)-harmonic boundary of Ω*. It is a compact subset of

PROPOSITION 3.1. Δ^pφ) Φ0 if and only if Ω is (p,μ)-hyperbolic.

PROOF. If Ω is not (p,μ)-hyperbolic, 1 e ^g(Ω μ), and hence zf(/?'^ = 0.

To show the converse, we suppose Λ^'^ = 0. It follows from the def-

inition of Δ^μ) that, for each ξed*Ω, there is fξe@%(Ω;μ) such that

l iminf j^l/^x)! > 0. Since @%(Ω;μ) is closed under max-operation, we may

assume that fξ > 0. Thus since d*Ω is compact, we can choose fξιi '-,fξk

such that

X >ζ

for any ζ e δ*Ω. Then we can find g e Q°(ί2) such that

on Ω. The linearity of 2^{Ω\μ) implies f0 e ^(Ω μ). Hence there exist

gn e CQ)(Ω) such that {gn} is uniformly bounded and gn -^fo a.e., Vgn —• Vf0

in Lp(Ω;μ) as n-^oo. Set φn :=min{gn,l}. Thus {^} is uniformly

bounded and φn -+ 1 a.e., Vφn -^ 0 in Lp(Ω;μ) as «—> oo. Since

^ e H^p(Ω;μ), it follows that 1 e ^ ( Ω μ), so that Ω is not (/>,μ)-hyperbolic.

Let Q be a family of bounded continuous functions on Ω. Denote by

z/ί̂  ^ the (/?, μ)-harmonic boundary of Ω^. Also denote by [Q] the smallest

linear space containing Q U Q ° (Ω) and constant functions, and closed under

max- and min-operations and the uniform convergence. Note that Ωr î = ΩQ

and [Q] = C(Ωg) | β . If S)p{Ω\μ) c [Q]9 then we can write the definition of

A%* as

Δ%μ) = | ί e d*gΩ : U m / W - 0 for any / e ^ ( f l /i) j ,

where <3£Ω = Ω^\Ω.
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THEOREM 3.1. (Comparison principle with respect to (p,μ)-harmonic
boundary) Suppose that Ω is (p,μ)-hyperbolic and suppose that conditions (C\)
and (B.5) are satisfied. Let Q a @p(Ω;μ). If u is an (srf, &)-superharmonic
function in Ω which is bounded below and v is an {srf', $)-subharmonic function in
Ω which is bounded above, and

limsup v(x) < liminf u(x)

for any ξ e AQ , then v < u in Ω.

PROOF. Set u(ξ) = l iminf^ u(x) and v(ξ) = limsup^^ v(x) for ξ e dgΩ.
Then ύ (resp. v) is lower (resp. upper) semicontinuous and bounded below
(resp. above) on ΘQΩ and ύ > v on A^μ\ Let ε > 0. Then we can choose
φ e C{d*QΩ) s u c h t h a t v-ε<φ<u + εon A{£μ). S i n c e @p(Ω;μ) is a l i n e a r

space containing constant functions and closed under max- and min-operations,
[Q] f)@p(Ω;μ) is dense in [Q] with respect to the uniform convergence by the
Stone-Weierstrass theorem. Hence, there is / e C(ΩQ) Γ\@p(Ω;μ) such that

v-2ε<f < ύ + 2ε

on A(£μ\ Put

A := {ζ e d*QΩ : ύ(ξ) + 2ε <f(ζ) or v(ξ) - 2ε >f(ζ)}.

Since A is a compact subset of δgΩ\A^μ\ as in the proof of Proposition 3.1
we can find g e 3}%(Ω;μ) such that g > 0 on Ω and liminfx_^^^(x) > δ > 0 for
any ξ e A. Since/is bounded and u is bounded below, there exists c\ > 0 such
that u(ξ) +ci liminfx^g(x) >f{ξ) for any ξ e A. Thus

x) + cxg(x)} + 3ε >f(ζ) 4- e

for any £ e 5^ί2. Hence u + 3ε e ̂ /-Cιg, so that A/_Cl̂  < w + 3β. Also
hf-Cιg — (f — c\g) E ̂ Q(Ω μ) by Theorem 2.2. Similarly there exists C2 > 0
such that v-3ε < hf+C2g and /*/+C2ί? - (/ + c2g) e 2ζ(Ω\μ). The linearity of
®ζ(Ω;μ) and ge@ξ(Ω;μ) yield hf-Cιg - hf+C2g e &ζ(Ω-,μ). By (Q), we see
that hf-Cιg, hf+C2g are bounded. Hence, by (B.5), we can apply Proposition 1.5
and obtain hf-Cχg = hf+C2g- Thus we have

v -3ε < hf+C29 = hf-Cχg < u + 3ε

in Ω. Since ε > 0 is arbitrary, v < u in Ω.

In case Ω* is an («$/, J^-resolutive compactification, a point ^ e d*Ω is said
to be (jtf', ^-regular if

for any <A e C(3'fl).
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THEOREM 3.2. Suppose that Ω is {p, μ)-hyperbolic and suppose that con-
ditions (Ci) and (B.5) are satisfied. Let Qcz $)p{Ω\μ). Then any {si ,&)-
regular point ζ e ΘQΩ belongs to Agμ\

PROOF. Let ξ φ A{£μ\ Then there is g e @ζ(Ω;μ) such that g > 0 on Ω
and liminfx_^0(;c) > 0. We can find / e C(ΩQ) such that 0 < / < g on Ω
and f(ξ) > 0. Let φ =f\d*Ω. By Proposition 2.2, the comparison principle
(Theorem 1.1) and Proposition 2.1,

ho = H(0; Ω*Q) < H(φ; β*) = hf < hg,

where the subscript 0 in ho signifies the constant function 0 in β. Since
ge@ζ(Ω',μ), hg-hoe^(Ω;μ) by Theorem 2.2. Thus by Proposition 1.5,
hg = ho. Hence the above inequalities imply H(0;ΩQ) = H(Φ;ΩQ). Thus, if
ζ is (j2/, ^)-regular, then

0 < φ(ξ) = Urn H(φ;Ω*Q)(x) = lim H(0;Ω*Q)(x) = 0,

which is impossible. Thus we obtain the conclusion of the theorem.

The converse of the above theorem is valid under an additional condition.

THEOREM 3.3. Suppose that Ω is (p,μ)-hyperbolic and suppose that con-
ditions (Ci) and (B.5) are satisfied. If Q a Q)p{Ω;μ) satisfies @%(Ω;μ) cz [Q],
then any ξ e ΔQ 'μ' is an {srf', ^-regular point.

PROOF. Let ξ e Δ{£μ) and φeC(d*QΩ). By the Stone-Weierstrass theo-
rem, for any ε > 0 there is/ e C(Ω*Q) Π S)p{Ω\μ) such that/ - ε < ι ^ < / + εon
d^Ω (cf. the proof of Theorem 3.1). By Lemma 1.2 there exists an (s/,3S)-
superharmonic function u in Ω such that u >f in Ω and u — f e @ζ(Ω;μ).
Then M + ε e % so that H(φ;Ω*Q) <u + ε in Ω. Since ζ e Δ{p'μ) and
^ζ(Ω μ) cz [Q], we have limx^ξu(x) =f(ξ). Thus we obtain

(3.1) limsup#Ofcfl£)(jc) <f(ξ) +e < φ(ζ) + 2ε.

Similarily we have

(3.2) φ(ζ) -2ε< liminf H(φ;Ω*){x).

Since ε is arbitrary, (3.1) and (3.2) yield the regularity of ξed*QΩ.

REMARK 3.1. Condition @%(Ω;μ) cz [Q] cannot be suppressed in Theorem
3.3 even in the linear case. For example, let A = {x e RN : 1 < \x\ < 2},
xo e A and Ω = A\{x0}. Let / e C°°(ί2) be equal to 1 near {\x\ = 1} U {x0}
and equal to 0 near { |x |=2}. For Q = {/}, Ω*Q = ΩU {ξuξ2}, where ξλ
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corresponds to {|x| = 1} U {xo} and ξ2 corresponds to { |x |=2}. Then

ΔQ — {ζ\iζi}> while ξ{ is not regular with respect to the Laplacian, i.e., not

(Λ/,^?)-regular for sί(x,η) = η and 3i(x,i) = 0.
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