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ABSTRACT. This paper treats the second order quasilinear elliptic system of the form

Δpu = H(\x\)va,Δqυ = K(\x\)uβ in R^ with nonnegative functions H, K. Sufficient

conditions will be given to have positive radial entire solutions and to have no

nonnegative nontrivial radial entire solutions under some restriction on p, q, α and β.

When H and K behave like positive constant multiples of |JC|V, v e R, we can completely

characterize the existence property of positive radial entire solutions.

1. Introduction and statement of results

This paper is concerned with second order quasilinear elliptic system of the
form

pu = div(\Du\p~2Du) = H(\x\)v"

Δqυ = div(\Dv\q-2Dv) =
I APu = ai\(\uu υu) = n(\x\)υ ^ R

^ ' 1 Λ 1 / I TX 1(7 — 2 TΛ \ T- / I I \ /?
I Γ 1 # 111 I

where JV > 1, /? > 1, # > 1 , oc and β are positive constants satisfying

ocβ > (p — l)(q — I), and H,K : [0, oo) —> [0, oo) are continuous. An entire

solution of (1) is denned to be a function (u,υ) e Cι(RN) x Cι(ΈLN) such that

\Du\p~2Du,\Dv\q~2DveCι(RN) and satisfies (1) at every xeRN. Such a
solution of (1) is said to be radial if it depends only on \x\.

The problem of existence and nonexistence of positive radial entire so-
lutions of scalar equations has been investigated by many authors under various
situations. To illustrate some of typical known results let us consider the
equation

(2) Apu = H{x)uσ in R",

where p > 1, σ > p — I, and H is a nonnegative continuous function in R^.
The existence and nonexistence results of positive (radial) entire solutions of (2)
may be described roughly as follows:
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THEOREM A ([8, Theorems 2.1, 3.1 and 3.2]). If H has radial symmetry

and

\x\ >ro>O,

H{x)<

H(x)<

C

c

P<N;

> r0 > 1, p = N;

\x\ >ro>O, p>N,

for some constants C > 0 and ε > 0, then (2) has positive radial entire solutions.

THEOREM B ([15, Theorems 1, 2 and 3]). If

H{x)>

H(x)>

C

M'(iog|*ir+1'
c

o,

| x | > r o > 1,

p<N-

\x\ > r0 > 0, p > TV,

for some constants C > 0, then (2) does not possess any positive entire solution.

In [8], actually existence results are proved under weaker assumptions than

above.

When H is a radial function and behaves like c\x\ , / e R and c > 0, as

|x| —• oo, Theorems A and B characterize the decaying order of H for (2) to

admit positive entire solutions. Related results are found in [11, 12, 16].

The aim of this paper is to extend such results to elliptic system (1). As

far as the author is aware, there are no results dealing with this subject except

for the case p = q = 2 ([5, 20]).

Our results are as follows:

THEOREM 1. Suppose that H and K satisfy

(3) <-^-μ, | x | > r o > O ,

where L\ > 0, Li > 0, λ and μ are constants. Then, under one of the next four

conditions, system (1) has infinitely many positive radial entire solutions:
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( i ) p <N, q<N and

μ>

q-l

β(p-λ)
p-l

(ii) p > N, q > N and

aβjp-N)

μ>βΛp-^+Mq-N)^N

p-\

(iii) p < N, q > N and

μ>

(iv) p > N, q < N and

q-l

β(p - λ)
p-l

aβ(q-N)
- + N

THEOREM 2. Suppose that H and K satisfy

(4) # ( | x | ) > i ± . , AΓ(|JC|) ^ i^f, W > r 0 > 0 ,

where L\ > 0, Li > 0, λ and μ are constants. Then, under one of the next four
conditions, system (1) does not possess any nonnegative nontriυial radial entire
solutions:
( i ) p <N, q <N and

λ<
q-l

β(p-λ)
p-l

or
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(ii) p > N, q> N and

aβ{p - N)

μ<

• + •

• + -

q-\

βJP-λ) , *β(q-N)
p-\

+ N

+ N

(iii) p < N, q > N and

<*(g - μ)
q-\ or

β(p-λ) | ocβ(q-N)

p — 1 (p -

(iv) p > N, q < N and

We note that, for the case where p = q = 2 (and N φ 2), Theorem 1
reduces to Theorems 3.1 and 3.3 in [20], and Theorem 2 to Theorems 2.1 and
2.3 in [20].

We give an illustrative example to show the sharpness of our results.
Let us consider the elliptic system

(5)

Δpu = •
C

in R7

where N > 2, N >p> 1, N > q > I, ocβ > (p - \)(q- 1), λ,μeΈL, and C is a
positive constant. We can completely characterize the existence of positive
radial entire solutions of this system in terms of /?, q, oc,β, λ and μ. In fact, the
inequalities

L\ C LΊ , ,

and

Γ ^
C

\x\λ:

\χ\μ
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hold, where L/, / = 1,... ,4, are some positive constants. From Theorem 2, if

λ < — —• + p or μ < — —- + q, then (5) does not admit any positive
q-\ 1

radial entire solutions. Conversely, from Theorem 1 if λ > — - -f p and

μ > — —- + q, then (5) has infinitely many positive radial entire solutions.
p- 1

See the figure below.

For another case that H and K are nonpositive functions, there have been

a great number of works on qualitative theory for solutions in the last three

decades. We can find necessary and/or sufficient conditions to have positive

entire solutions in this case with (or without) prescribed asymptotic forms near

oo see [4, 9, 18]. For the scalar equation, we moreover know how oscillatory

radial entire solutions behave near oo.

As far as the author knows, the study for equation (2) was initiated

essentially by J. B. Keller [10], who considered, for example, equation

Δu — u^, α > 1, in R^, and showed that this equation admits no positive entire

solutions. In [17], equation (2) with p = 2 have been considered. It is known

that there are some applications of qualitative theory for (2) to Riemannian

geometry; see [17] and the references therein.

Equations of the type (2) have been investigated deeply not only in the

entire space R^ but also in bounded domains. For example, the singular

boundary value problem

(6)
Δu = ua in D,

u —•> oo a s x —> dD,
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where D is a bounded domain, has been treated by several authors. Problems
of this type (in fact, (6) with ua replaced by eu) were firstly considered by
Bieberbach [3]. In this case the problem plays an important role in the theory
of Riemannian surfaces and in the theory of automorphic functions. Fur-
thermore, according to [19] this problem arises in the study of the electric
potential in a glowing hollow metal body. Related results on this topic are
found in [2, 6, 13, 14, 21]. From these observations we do believe that
considering system (1) is of practical interest as well as of theoretical interest.

Since for positive solutions (u,v) of (1), the functions max\x\=ru(x) and
maxμμrι;(x), r > 0, are nondecreasing, it seems that the usual variational
method does not always work effectively. Some of difficulties appearing in the
analysis of (1) come from this fact. For non-symmetric solutions we refer to

[1, 7]
The organization of the paper is as follows. The proofs of Theorems 1

and 2 are given in §2 and §3, respectively. In §4 we give existence and
nonexistence theorems for the particular case p = q = N which give stronger
results than Theorems 1 and 2.

2. Proof of Theorem 1

In this section Theorem 1 is proved. We first observe that (u,v) is a
positive radial entire solution of (1) if and only if the function (y(r),z(r)) =
(u(x),v(x)), r— |x|, satisfies the system of second order ordinary differential
equations

ί r'~N{rN-' \y'Γ2y>y = H{r)z\ r > 0, /(0) = 0,

\ r

χ-N{rN-λ |z' |"-2z')' = A-(r)/, r > 0, z'(0) = 0,

where ' = d/dr. Furthermore, integrating (7) twice, we obtain the following
system of integral equations equivalent to (7):

(8)

pr / rs \l/{p-l)

(r) = a+\ (sl~N\ tN-χH(t)z{tYdt\ ds, r > 0,

z(r) = b+\ lsι~N tN-χK(t)y{t)βdt\ ds, r > 0,

where a = y(0), b = z(0).

PROOF OF THEOREM 1. Without loss of generality, we may assume that
ro = 1 in (3). It suffices to solve (8). Choose constants a > 0 and b > 0 so
that
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(9)

and

(10)

where

and

(2Z>)«

^1(^)((2ft)w{J^WA>]^ΓI^})1

2'

- 2 '

K(t)dt,-

_

N-μ + βk

(q-\)(λ-p)-at(q-μ)

aβ - (p - l)(q - I)

Ml(N,p) =
p — λ + ocl

p - \

M2(N,q) =
q-μ+βk

q-\

.q-N

for p < TV,

for p > N,

for q < N,

for q > N.

The inequalities M\(N,p) > 1 and Mι{N,q) > 1 hold from the condition of A

and /ι when p < N and q < N, respectively. They are trivial when p > N and

q > N respectively. It is possible to choose such a and b by our assumption

aβ > (p —\)(q- \). Define functions A and B by

A(r)~

2α for 0 < r < 1,

2ark f o r r > l ,

and

2 b

f o r r > l ,
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respectively. Put R + = [0, αo). We regard the space C(R+) x C(R+) as a

Frechet space equipped with the topology of uniform convergence of functions

on each compact subinterval in R+ . Let Y a C(R+) x C(R+) denotes the

subset defined by

Y = {(y,z) e C(R+) x C(R+) : a < y{r) < A(r),b < z(r) < B(r),r> 0}.

Obviously, Y is a non-empty closed convex subset of C(R+) x C(R+).

Consider the mapping & : Y -» C(R+) x C(R+) defined by &(y,z) = (y,z),

where

and

er / rs \ l/(p-i)

y(r) = a + ί ί 1 " ^ tN-ιH{t)z{tYdt\ ds, r > 0,

5(r) =b + ̂ -N^K{t)y{tγdψq~l)ds, r>0.

In order to apply the Schauder-Tychonoff fixed point theorem, we will show

that 3F is a continuous mapping from Y into itself such that ^(Y) is relatively

compact.

(I) J^ raα/λs Γ z«/o itself. Let ( j ; , z ) e y . Clearly, j^(r) > a and

z(r) >Z?. For 0 < r < 1, we have

f i , fi χi/(P-D

α + ((2b)«\ H{t)dt\ ds

< « + - < 2a.

When p < N, for r > 1, we have

j)(r)=α+fί +Π(V-"[> ••
\Jo J i / V Jo

a \r ( αf 1

2 Jl V JO
ds

*
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3 / ( ΐι T
< -a + Mλ{N,p) ((2fe)αmax|J H(ήdt,^

a + Mλ{N,p) (^(2fe)max|Jo H(ήdt,N _ ^

3 a k ^ K
< -a + -rk <2ar\

When p > N, for r > 1, we have

\/(p-\)α l cr

o+\ι

(2Z))α

/- 11

Z))a maxj j o

tN-x~x+!i'dt

V(P-1)

< -a + -r* < 2arκ.

Thus we obtain

«<Kr) <^(r), r>0.

A similar computation shows that

b < z{r) < B[r\ r > 0.

Therefore βF(Y) a Y.
(II) J^ is continuous. Let {(ym,zm)} be a sequence in Y which con-

verges to (y,z) e Y uniformly on each compact subinterval of R+. Put

Then we have

(11) \φm(r) - φ(r)\ < [ H(s)\zm{s)* - z{s)*\ds,
Jo

and

(12) \ym(r)-y(r)\ < Γ \
Jo
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Let R > 0 be an arbitrary constant. Since {zm} converges to z uniformly

on [0, R], it follows from (11) that {φm} converges to φ uniformly on [0,R]; and

hence {φ^p~1^} converges to φλ^p~χλ> uniformly on [0,1?]. From this fact

and (12), we see that {ym} converges to y uniformly on [0,1?]. Similarly, {zm}

converges to z uniformly on each compact subinterval of [0, oo). These imply

the continuity of 3F.

(Ill) ^(Y) is relatively compact. To see this, it suffices to verify the

local equicontinuity of J^(Γ), since J*(Γ) is locally uniformly bounded by the

fact that &(Y) c Y. Let (y,z) e Y and R > 0. Then we have

y H(s)z{s)*ds\ < ̂ o H(s)B(s)*ds)

and

a r/*\N-\ \ V ( ^ - 1 ) /tR \ 1/(0-1)

o (-) K(s)y(s)βdsj < y^ K(s)A(s)βdsj
Obviously, these imply the local boundedness of the set {(y',z')\{y,z) e Y}.

Hence the relative compactness of 3F(Y) is shown by the Ascoli-Arzela

theorem.

Therefore, there exists (y,z)eY such that (y,z) — ̂ (y,z) by the

Schauder-Tychonoff fixed point theorem, that is, (y,z) satisfies the integral

equation (8). The function (u(x),v(x)) = (j( |x |),z(|x |)) then gives a solution

of (1). Since infinitely many (a,b) satisfy (9) and (10), we can construct an

infinitude of positive radial entire solutions of (1). This completes the proof.

3. Proof of Theorem 2

In this section, we prove Theorem 2. We give a preparatory observation

as a first step.

Let (u,v) be a nonnegative nontrivial radial entire solution of (1). Then

(u,v) satisfies the system of ordinary differential equation

(13) ί(rN-l\u'(r)Γ2u'(r)y = rN-ιH(ήυ(ry, r > 0, «'(0) = 0,

l^-yWI'-VWJ'^-^rMr/, r>0, i>'(0) = 0,

where r= \x\ and ' = d/dr. Integrating (13) over [0, r], we have

\u'{r)\p-2u'(r) = rι~N ί sN-ιH(s)v(s)"ds, r > 0.
Jo

Hence, we see that u'(r) > 0 for r > 0. Similarly we have v'(r) > 0 for



Positive radial entire solutions

r > 0. Integrating (13) twice over [R, r],R>0, we have

u(r)>u(R)+\Ί\Ί-)N 'H(ήv(ήadt)
JR \JR W J

447

(14)

ι (r) > i (Λ) +

ds, r>R,

r>R.

Since the functions w and i; are nondecreasing on [0, oo), there is an r* > 0 such

that w(r*) > 0 or ^(r*) > 0. We see from (14) with R = r* that w(r) > 0 and

v(r) > 0 for r > r*. Let us fix r\ > maxjro,^}.

Let R> r\. Using (4) and inequality

(15)

in (14), we have

u{r) > u{

N-\ N-\

for R<t<s<3R

N-1

-) LχΓλυ(i)*dt\ ds
R\JR\3J J

and

v{r) [ (ΐ u{t)βdt

ds, R<r < 3R,

ds, R<r < 3R,

where C\ and C2 are some positive constants independent of r and R. Now,

we fix R > r\ arbitrary for a moment, and put

cr / cs

(16) f(r;R) = CχR-λ/{p-χ) v(ή*c
JR\JR

and

(17) 'Γ.(M
1/(9-1)

R < r < 3R.

For simplicity of notation, we sometimes write /(r; R) =f(r) and g(r;R) = g(r)

if there is no ambiguity. Then

f(R)=f'(R)=g(R)=g'(R)=0,
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f'(r) = dR-Wr-vΠ'visydsj > 0,

g'{r) = C2R-μ/(q~l) ( ί uίsΫdsλ " > 0,
\3R )

R<r<3R,

/"(r) > 0, g"(f) > 0, Λ < r < 3Λ,

(18) ( / W 1 ) ' = C 3^"^Wα > C 3 ^-^(r) α , R < r < 3Λ,

and

(19) G? W 1 ) ' = CAR-μu(r)β > C4R-μf(r)β, R<r<3R,

where C3 = Cf"1 and C4 = C\~λ. From now on, we use C to denote various

positive constants independent of r and R, as we will have no confusion.

Multiplying (18) by g' > 0 and integrating by parts the resulting inequality

on [R + ε,r], ε>0, we see that

f'{rγ-χg'{r) > ^R-^gir)^1 - g(R + ε)α+1}, R + ε < r < 3R.

Letting ε —• 0, we obtain

f\r)g'{rγ/{p-χ) > CR-λ^P-^g{r){a+x)/{p-ι\ R<r<3R.

Multiplying this inequality by g' and integrating by parts, we see that

f(r)g'(r)p/{p-ι) > CR-λl^g(r)^p)/{p-χ\ R<r<3R.

From (19), we have

(g'(r)«-ιyg

t(r)pβ/{p-ι) > CR^^p-ι^p^Mr)βi^pmp'l\ R<r<3R.

Multiplying this relation by g' and integrating by parts, we obtain

g'{r) > C Λ " ^ ^ ^ " 1 ^ ^ ^ ^ ^ " 1 ) ^ ^ ) ^ ^ ^ ^ " 1 ^ ^ ^ ^ ^ " 1 ^ , R < r < 3R.

Since β { " + P \ + p - 1 > 1, we can set / ? ( " + / > ) , + J > ~ 1 = *i + l.ii > 0. Thus
pβ + q{p\) pβ + q{pi)

g'(r)g(r)~δ'~l > CR-{λβ+μ{p-χ))l(βp+q(p-ι)\ R<r<3R.

Integrating over [2R, 3R], we see that

(20) g(2R;R)-3' > CRη\ R>rx.

Repeating similar argument as above by replacing g(r) by/(r), we obtain

(21) f(2R;Ryδl > CRη\ R>rx.
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Here the constants δ\,η{,δ2, and η2 are given, respectively, by

_aβ-(p-\)(q-\)

a β ( p l ) ( q l )
o2 = 7 7τ > 0 a n d η2 =

q*+p{q\)

7 7 τ > 0 and η2 = , T T
q*+p{q-\) qoc+p(q-\)

Inequalities (20) and (21) play important role to prove Theorem 2.

On the other hand, from (17) and the monotonicity of u, we have

r2R / rs \ l/(q-l)

(22) g(2R;R) = C2R-μ/{q-ι)\ M u(t)βdt) ds

flR

JR

Similarly, from (16) and the monotonicity of υ, we have

(23) f(2R]R) >

PROOF OF THEOREM 2. Suppose to the contrary that system (1) has a

nonnegative nontrivial radial entire solution (u,v). From preceding obser-

vation, we see that u(r),v(r) > 0, r > r\ for some r\ > ro, and inequalities (20)-

(23) hold for r > r\. If ηλ > 0 or η2 > 0, then we show that g(2R\ R) -> oo or

f(2R\ R) —> oo as R —• oo to get a contradiction. Otherwise, we show that

R^g(2R R)δ] -> oo or R^f(2R;R)02 -+ oo as R -+ oo. Through this proof,

the letter C will be used to denote various positive constants independent of r

and R.

(i) Let p < N and q < N. We may consider only the case that λ < p

and μ < — —^- + q. The other case that μ < q and λ < — τ-^-+p can be

p- 1 # - 1

treated similarly. We easily see that ηx > 0 in (20). So it suffices to show that

g(2R;R) -> oo as i? ̂  oo.

We first show that, for r > r2 > π ,

Γ cr(/'-A)/(^-i)) λ<p<N,

(24) i ι(r)> < Clogr, λ=p<N,

{C(logr)p/{p-ι\ λ=p = N.

Let r > r i . Integrating (13) twice over [ri,r], we have
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(25)

u{r) > u(n) + S^-N^P-1U\ tN-lH(t)v(t)«dt) ds, r > ru

rr / rs \ 1/(9-1)

υ(r)>υ(rλ)+\ sP-Wto-i) M tN ~x K{t)u(t)β dt\ ds, r>rx.
Jrχ

Then from (4) and (25) we observe that, for λ < p <N

\/{p-\)

u{r) > {Lxv{nYΫ'^-λ)

Jri + l

>c\ s{ι~λ)/{p-ι) ds,
Jri + l

ds

for λ=p < N

a s \i

>C\ s~ιds, r > r i + l,

Jri + l

and for λ = p = N

rr /rs \ !/(/>-!)

u{r) > (Lχv(rχYΫ/{p~ι) s~ι Γ 1 ,

ds

> C ί r > n + 1.

Thus we obtain (24).

Let us fix R > 7*2 arbitrarily. From (22) and (24), we obtain

λ<p,

g{2R;R) > I CRb-Mto-χ\\ogR)βl{q-χ\ λ=p<N,

{
where τ\ = ( q — μ + — T^- ) . For λ = /?, we see that μ < q, which

shows that g(2R\R) —> oo as 7? —> oo. For λ <p, we observe that g(2R;R) —>

/ ? - 1

It remains only to discuss the case where A < /? and μ = - ^ + #. In

p- i
this case we will show that Rη*f (2R; R)δl -> oo as ^ -> oo. To this end, we
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prove that, for r > r?> > r2 + 1,

w *>*{£;*v» q<N'
[ C(logr)^m ;, q = N.

Let r > r2 + 1. Then from (24) and (25) we observe that, for q < N
or / os \\/(q-\)

D(A ^> (T ^CP\X/(q~X> \ oO-ΛOΛtf-l) f tN-\-μ+(β(p-λ)/{p-\)) jf \ J

Jr 2 + l \Jr2 )
or / os

Jr2 + 1 \Jr2

s~ι ds,
fl

and for q = N

v{r) > (L2C
β) xl{q-χ) \ s~x ( Γ r 1 Λ ) ds

Jr2 + 1 \Jr 2

Jr2-r2+1

Thus we obtain (26).

We fix R> Γ3 arbitrarily. Then from (23) and (26), we have

f(2R'R) > I C R { l o g R r \ q < N,

Hence, we see that

Rηif(2R;R)δ2 > I

Ό-λ

where T2 = ̂ /2 H τ^2 An easy computation shows that τ2 = 0, and hence
p- i

R^f(2R;R)02 -> oo as 7̂  -> c». Thus the proof of (i) is complete.
(ii) Let p > N and q > N. It suffices to treat the case that

A < - ^ — - ^ + N a n d ^ ^ , + , v w -̂ΓT + N. We show that

q-\ p-\ (p-\)(q-\)

R^g(2R R)δχ -> oo or R^f(2R;R)02 -+ oo as i? -> oo. The proof is divided

further into three cases.



452 Tomomitsu TERAMOTO

( I ) The case X < ^ 1 + N and μ J - ^ Ά + ( ^ N \ , N.
q-\ p-\ {p-\){q-\)

First we show that

(27) u{f) > Cr^-χ^P-λ^^-N^l^p-χ^-^\ r>r2>rx.

From (25) we observe that, for r > r\ + 1

Γ r /fr, + l xl/(^-l)

υ(r) > v(rλ) + s{\~N)/{q-\) ( t

N~xK{t)u{t)βdt) ds

G
Π+1 \!/to-l)fr

ri / Jri
ri + 1

Thus, we obtain

(28) v(ή > Crte-NMq-ι\ r > rx > r{ + 1.

From this estimate and (25), we have for r > r\ + 1

\/{p-\)

S(l-N)/(P-1) (

ri + 1 VJr,

Thus we obtain (27).

Let us fix R > r2 arbitrarily. From (22) and (27), we obtain

g(2R;R)>CRγ,

1 f jS(/?-Λ) ocβ(q-N) 1 ^ t .

where 7 = Γ w - y" + -^ r^ + 7 VTT ̂ T r From this estimate, we
q - l { p-\ (pl)(q\)j

have

where

ocβ - (p - l)(q ~ \)

-1)} I
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From the condition of μ we see that τ\ > 0, which shows that
R^g(2R;R)δι -> oo as R -> oo.

(II) The case X < « ^ +9 1
Let r > r2 + 1. Then from (25) and (27), we have

(29) v(ή >

1>c

r > r3 > r2

Here, the final inequality is given by integration by parts.
Let R> r3 be large enough. From (23) and (29), we obtain

f(2R;R) >

Hence, by this estimate we see that

Rη2f(2R;R)δl > C^^+ίί^-^^-i)^^

By an easy computation we have η2 + — ΛJ. f̂ -δ2 = 0. This
(p- i)w i)

shows that R^f(2R\R)δl -+ oo as /? -> oo.

(Ill) The caseX = ^ l + N and
^ 1

+ TV. Let r > ri H- 1. Then from (25) and (28), we have
p-

(30) u{r)>{CLxγ'{p-χ) Γ
Jri

Jri

{p-χ\ r > r4 > h 4- 1.

Let R> r4 be sufficiently large. From (22) and (30), we see that

g{2R;R) >
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By this estimate, we obtain

)δχ > CRτ2(logR)βδι/i{p-ι)iq-ι)\ R > r4,

where τ 2 = - n f , ( rry \ N - μ + ^ p ~ ί > 0. Hence, we see
(q - l){pβ + q(p - I)} I / > - l J

that Rηig(2R;R)δι -> oo as i? -> oo. Thus the proof of (ii) is completed.

(iii) Let /? < TV and q > N. We consider the case (I) λ < ———^ +p,

ocβ(q-N) N firs^ ^ d Λ e n t h e ^ ^ ^ < i V , A<^ — 1 {p-l)(q-l)

——τ^--\-p The proofs of (I) and (II) are almost the same as those of
q- 1

(ii) and (i), respectively. So we leave the proof to the readers.

The proof of (iv) is essentially the same as that of (iii). Thus we may

conclude the proof of Theorem 2.

4. A further study for the case of p = q = TV

To begin with, we give an example for which we cannot apply Theorems 1

and 2 for the case p = q = TV. Let us consider the elliptic system

1

(31)
A

2)"log( |x |

where N > 2,α > 0,β > 0 and ocβ > (N - I ) 2 . We can easily find that

C\ 1 C2

I iN+ε - /. I +2)N \θz(\x\ +2) X\N

where ε > 0, Ci = Ci (ε) > 0 and Cι > 0 are constants. We see therefore that

neither the condition of (i) of Theorem 1 nor that of (i) of Theorem 2

holds. But, according to [20, Theorem 2.2], it is found that (31) has no

positive radial entire solution when TV = 2.

So, we will improve Theorems 1 and 2 for the case p = q = TV so that we

can determine whether such systems have positive radial entire solutions or not.

Our results are as follows:

THEOREM 3. Let p = q = TV. Suppose that H and K satisfy

H{\A)< , κ , L l , „ ; , K(\X\)<
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where L\ and L2 are positive constants and
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μ>

N-\
β{0L + N-λ)

+ 1.
N - 1

Then (1) has infinitely many positive radial entire solutions.

THEOREM 4. Let p = q = N. Suppose that H and K satisfy

(32) H{\x\) > K(\x\) > \x\ > r0

where L\ and L2 are positive constants and

N- 1
-hi or

μ<
-λ)

N - 1
1.

Then (1) does not possess any nonnegative nontrivial radial entire solutions.

REMARK. From Theorem 4, we find that (31) has no nonnegative

nontrivial radial entire solutions even when TV > 3.

PROOF OF THEOREM 3. Without loss of generality, we may assume that

r0 = e. As in the proof of Theorem 1, it suffices to solve (8). Choose

constants a > 0 and b > 0 so that

a

r

and

(2b)α max

el (2a)

H(t)dt,
Lx

<xl-λ+\
a

2 '

where k J ~ «{N ~
aβ-(N-l)2

> p, / =
aβ-(N-iy

> Q.

It is possible to choose such a and b by the assumption aβ > (N - 1) . Put
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( 2a, 0 < r < e

\2a(\ogr)k, r>e,

and

n/.x ί 2 ^ 0<r<e

\ r>e.

Consider the set

Y = {(y,z) E C(R+) x C(R+) : α < y(r) < A(r),b < z{r) < B(ή,r> 0},

which is a closed convex subset of C(R+) x C(R+). Define the mapping

^ : Y ^ C(R + ) x C(R+) by ^ ( ^ , z ) - (y,z), where

Kr) =a + ̂ (sχ-N^tN-χH{t)z{tydλ ds, r > 0,

and

ds, r > 0 .
rr / rs

First we show that &(Y) <=: Y. Let ( jμ,z)ey. Clearly, j (r) > a and

z(r) > b. For 0 < r < e, we have

l/(N-\)

y{r) = a + J s"1 M tN-χH{i)z{ffdt\ ds

f̂l + l^j^WzίO"*) ds

<a + e({2bY I"H{t)dt"
\ Jo y

< Λ + 1 < 2α.

For r > e, we have

+ J ( ^ f H{t)z{t) dt) ds

/•e ί r \ l/(iV—1)

f̂ "1 ^ ( 0 ^ + ̂ i(2fe)α r ] ( l o g 0 α / " ^ J logr
Jo Je J
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< - α + (2b)am<ix{eN-1 H(ήdt,--^—-} (logr)^~A

2 V I Jo cd-λ+l)J

< -^(logr)* -f-^ogr)^ = 2α(logr)*\

Thus we obtain

fl <y{r) <A(r), r > 0.

A similar computation shows that

b<z(r) <B(r), r > 0.

Therefore J^(j,z) e F. The continuity of #" and the relative compactness of
J*(F) can be verified in a routine manner, and so by the Schauder-Tychonoίf
fixed point theorem there exists an element (y,z)eY such that (y, z) =
ϊF(y,z). It is clear that this (y, z) gives rise to a positive radial entire solution
(u,υ) = (y(\x\),z(\x\)) of (1). The proof is completed.

PROOF OF THEOREM 4. It suffices to treat the case that λ < α + 1 and

μ < — hi . The proof is carried out by contradiction as before.

Suppose to the contrary that system (1) admits a nonnegative nontrivial radial
entire solution (w, υ).

Step 1. As in the proof of Theorem 2, we may suppose that w(r), v(r) > 0,
r > r\ for some r\ > r0. Let R> r\ be sufficiently large. As in the proof of
Theorem 2, integrating (13) on [R,r] and using (32) and inequality (15), we
have

(33) u{r) > CχRΓN/{N-χ\\ogR)-λl{N-χ) Γ ( T v(ήadt) ds,
JR \JR

R<r<3R,

and

(34) v(r) > C2R-N^N-V(logRΓμ/iN-ι) [ Ύ Γ u
JR\JR

R<r<3R,

where C\ and C2 are some positive constants independent of r and R. Let us
define the functions f(r\ R) and g(r\ R) foτR<r< 3R by the right hand sides
of (33) and (34), respectively. Then using similar arguments as in the proof of
Theorem 2, we see that

(35) C3 > (logR)η'g(2R;R)δι, R>ru
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and

(36) C4>(\ogR)ηif(2R;R)δ\ R>ru

where C3, C4, δ\ and δj are positive constants and ηλ and η2 are constants

tradiction to (35) or (36), we will show that (logR)η]g(2R;R)δι -> oo or

{\ogR)ηif{2R;R)δl -> oo as i? -> oo. Note that, as before, we can get

(37) f(2R;R) > C5(logRyλ/{N-ι)v(Ry/{N-ι\ R > ru

and

(38) g(2R;R) > C6(\ogR)-μ/{N-ι)u(R)β/{N-ι\ R>ru

where C5 and Ce are some positive constants independent of r and R.

Step 2. First we will obtain the estimates of u and v from below. Using

the same letter C to denote various positive constants depending on

L\,L2,N,oc,β,λ and μ. From (25) we observe that, for r>r\ + l,

fr / p + l x 1/(̂ -1)

υ(r) > v(n) -h J-1 ( tN-χK{t)u(t)βdt ds

Then, we obtain
v(r) > Clogr, r > r2 > r\

From this estimate and (25), we have

u{r)
or / cs

Jr2 + 1 \Jr 2

Jr2

Again from this estimate and (25), we have

v(r) >C\ s-Ί\

> C Γ
Jr3

\ ( g y ) ds
3 + 1 J

r S> r 4 > r 3
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By repeating this procedure, we can get inductively two positive sequences

{Cm} and {rm} satisfying

r\ < r2 < - - < rm < ,

(39) u{r) > Cm(logrY+W{N-ι)2)τ^ r > rw,

and

(40) υ(r) >

where

!-—.τ\ , . m= 1,2,....
( T V - I ) 2 /

Since aβ > (N — I ) 2 by our fundamental assumption, we see that

limm^oo τm = co.

From (37), (38), (39) and (40) we obtain

f(2R; R) > iCm)^N-ι\logR)^-λ)/{N-ι))+^{N-')1)τ''', R > rm,

and

g(2R;R) > (cm)^N'1\\ogRfβ^^N-ι)^^N-1^, R > rm.

Therefore, we have

(\ogR)η>g(2R;Rf > (Cm)a3l/{N-l\logR)Ml+M2T», R>rm

and

^ 0 β δ / { N ι \ M + M , R > rm,

where M/, / = 1,.. ., 4 are constants and M2 > 0, A/4 > 0. Since limm^oo τm =

00, there exist m' and m" such that M\ + M2τm> > 0 and M3 + M^τm" > 0.

These imply that ( l o g Z ί ) ' 7 1 ^ * ; ^ 1 -^ 00 or (logR)η2f(2R;R)02 as i ^ ^ 00,

which contradicts (35) or (36). Thus the proof is completed.

REMARK. Considering some results in [20], we conjecture that Theorem 4

is still true even though the condition for (λ,μ) is weakened to
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