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ABSTRACT. A Hessian domain (β, D, g = Ddφ) is a flat statistical manifold, and level

surfaces of φ are 1-conformally flat statistical submanifolds of {Ω,D, g). In this paper

we consider a foliation defined by level surfaces of φ and its orthogonal foliation, and

then we investigate divergences restricted to leaves of these foliations.

1. Introduction

Statistical manifolds have been studied in terms of information geometry.

Dualistic structures of statistical manifolds play important roles on statistical

inference, control systems theory, and so on [1] [12]. It is known that a

Hessian structure is a dually flat structure and gives, for examples geometry

of an exponential family [14]. Applications of the dually flat structures of

submanifolds are in [4] [12]. Non-flat statistical manifolds are studied in [6] [7]

[8]. It seems that there are not results on statistical submanifolds without

dually flat structures. So, we treat non-flat dualistic structures on submani-

folds, especially on level surfaces of Hessian domain, and show 1-conformal

flatness, if considering a Hessian domain as a flat statistical manifold.

Let φ be a function on a domain Ω in a real affine space A"+ 1. Denoting

by D the canonical flat affine connection on A"+ 1, we set g = Ddφ and suppose

that g is non-degenerate. Then a Hessian domain (β, D, g) is a flat statistical

manifold. In [15] we proved that ^-dimensional level surfaces of φ are

l-conformally flat statistical submanifolds of (Ω,D,g). Using this fact, we

show that dual-projectively equivalent affine connections can be led on a leaf of

a foliation J^ defined by ^-dimensional level surfaces of φ on Ω. In addition

we study the orthogonal foliation !FL of 3F.

We also discuss divergences on leaves of the foliations !F and J^1- in §4.

Nagaoka and Amari first studied divergences of flat statistical manifolds in view

of statistics [1]. Kurose defined the canonical divergences of l-conformally flat

statistical manifolds [7]. In this paper we show that, for M e f , Kurose's
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divergence of a 1-conformally flat statistical submanifold (M,D,g) coincides
with the restriction of Nagaoka and Amari's divergence of (Ω,D,g). In §5,
we give the decomposition of the divergence of (Ω,D,g) with respect to
orthogonal foliations SF and J^ 1, and see that the projection of a point in Ω to
M along a leaf of J^ 1 is given by minimization of the divergence. Finally we
give a gradient system using the divergence. Gradient systems are important to
study relation with information geometry and integrable dynamical systems [4]
[10].

An original reason for our investigation of divergences is that divergences
are canonical contrast functions, which generate statistical manifolds. On
contrast functions and minimum contrast leaves, see [2] [9]. Divergences of
conformally-projectively flat statistical manifolds are described in [8]. Shima
studied the Riemannian foliations on Hessian domains deeply in [13].

2. Statistical manifolds and Hessian domains

We recall properties of statistical manifolds, Hessian domains, and affine
differential geometry.

Let D and {x1,... ,xw+1} be the canonical flat affine connection and the
canonical affine coordinate system on A"+1, i.e., Ddxl — 0. If the Hessian
Ddφ = J2ij(d2φ/dxidxJ)dxidxJ is non-degenerate for a function f) on a
domain Ω in An+1, we call (Ω,D,g = Ddφ) a Hessian domain. For a torsion-
free affine connection V and a pseudo-Riemannian metric U n a manifold N,
the triple (TV, V, h) is called a statistical manifold if Vh is symmetric. If the
curvature tensor R of V vanishes, (N, V, h) is said to be flat. A Hessian
domain (Ω, D,g = Ddφ) is a flat statistical manifold. Conversely, a flat
statistical manifold is locally a Hessian domain [1] [13].

For a statistical manifold (N,V,h), let V' be an affine connection on N
such that

Xh{Y,Z)=h{VxY,Z)+h{YyxZ), X,Y,ZeX{N),

where U£(N) is the set of all tangent vector fields on N. The affine connection
V' is torsion free, and V'h symmetric. Then V' is called the dual connection of
V, the triple (N,V',h) the dual statistical manifold of (N,V,h), and (V,V',h)
the dualistic structure on N, respectively. The curvature tensor of Vf vanishes
if and only if one of V does, and then (V,V',h) is called the dually flat
structure.

Let A*+1 and {xj8,... ,x*+1} be the dual affine space of Aw+1 and the dual
affine coordinate system of {x1,... ,x"+1}, respectively. We define the gradient
mapping ϊ from Ω to A*+1 by
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and a flat affine connection Df on Ω by

uφ'jΫ) = D*jϊ*(Ϋ) for X, Ϋe%(Ω),

where ^ ί * ( Γ ) is covariant derivative along ί induced by the canonical flat

affine connection D* on A*+1. Then (Ω,Df,g) is the dual statistical manifold

of (β,D, g). We set x = xf o 7 = -(<p/xθ Then {x|,...,x^+ 1} is the affine

flat coordinate system with respect to Df, i.e., D'dx[ = 0. Remark that a

straight line with respect to an affine coordinate {x1,... ,x"+ 1} (resp.

{x{,... ,^+ 1}) is a Z>- (resp. Z)'-) geodesic, where we call a geodesic relative to

D (resp. D') a Z)- (resp. .D7-) geodesic. If ϊ is invertible, we can define a

function on Ω* = ϊ(Ω) called the Legendre transform φ* of φ by

φ* oϊ = — ̂ x ' x — #>.

For α e R , statistical manifolds (N,V,h) and {N,V,h) are said to be

α-conformally equivalent if there exists a function φ on N such that

, Y)

, z) + ̂ ( r)A(jr, z)}

for JΓ, y,Ze£r(iV). A statistical manifold (N,V,h) is called α-conformally

flat if (N,V,h) is locally α-conformally equivalent to a flat statistical manifold.

Statistical manifolds (TV, V, h) and (N, V, h) are α-conformally equivalent if and

only if the dual statistical manifolds (TV, V, h) and (TV, V, h) are (—α)-conformally

equivalent. Especially, a statistical manifold (TV, V,h) is 1-conformally flat if

and only if the dual statistical manifold (N,V',h) is (-l)-conformally flat [7].

Henceforth, we suppose that g is positive definite.

Let E be the gradient vector field of ψ on Ω defined by

g(X,E) = dφ{X) for X e %(Ω),

where SC(Ω) is the set of all tangent vector fields on Ω. We set

E - -dφ(E)~{E on Ωo.
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For p G Ωo, Ep is perpendicular to TPM with respect to g, where M c Ωo is a
level surface of ^ containing /? and TPM is the set of all tangent vectors at p
on M.

Let x be a canonical immersion of an ^-dimensional level surface M into
Ω. For D and an affine immersion (x,E), we can define the induced affine
connection DE, the affine fundamental form gE on M by

Z>jry = Z>f 7 + ^ ( Z , r ) £ for I , F e #(M).

For M, we denote by (M,D,g) the statistical submanifold realized in (Ω,D,g),
which coincides with the manifold (M,DE\gE) induced by an affine immersion
(x,E) [15].

An affine immersion (x, E) is non-degenerate equiaffine, and (M, Z), g) is a
1-conformally flat statistical manifold [7]. In fact, we have:

THEOREM 2.1. ([15]) Let M be a simply connected n-dimensίonal level
surface of φ on an (n+ I)-dimensional Hessian domain (Ω,D,g = Ddφ) with a
Riemannian metric g, and suppose that n>2. If we consider (β, D, g) a flat
statistical manifold, (M,D,g) is a l-conformally flat statistical submanifold of
(Ω, D, g), where we denote by D and g the connection and the Riemannian metric
on M induced by D and g.

3. Foliations by level surfaces

We denote by 3F and J^^ a foliation on Ωo defined by level surfaces of φ
and a foliation by the flow of E, respectively. In this section we relate these
orthogonal foliations with the dualistic structure {D,D',g).

Let M, M be two leaves of J^, and (M,D,g),(M,D,g) two statistical
submanifolds of (Ω,D,g). We denote by E the vector field on Ωo defined in
§2, and by z, ϊ the restriction of ϊ to M, M, respectively. Non-degenerate affine
immersions (x,E),(x,E) realize (M,D,g),(M,t),g) in Art+1, where x,x are
canonical immersions of M, M into Ω, respectively.

Then i is the conormal immersion for x. In fact, denoting by <α, b} a
pairing of <z eA*+1 and beAn+ι, we have

<i(/0, YP> = 0 for Yp e TPM, <ι(p),Ep) = 1

for p e M, considering TpA
n+ι with AΛ+1. Moreover, / satisfies that

and
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for X,Y e X(M), where D' is the dual connection of D and g' the second
fundamental form. Since g is non-degenerate, an immersion / : M —>
A*+1 — {0} is a centro-affine hypersurface. Similarly a conormal immersion
i: M —> A*+1 — {0} for x is also a centro-affine hypersurface [11].

We set (eλ)(p) = eλ^ for peM and the function λ on M such that
eλ(ph(p) e ϊ(M). We define a mapping π : M —> M by

ion = eλι.

We denote by D' an affine connection on M defined by

π*(5^r) = ^ m π * ( F ) for X, Y e

and by g a Riemannian metric on M such that

r ) = eλg(X, Y). (2)

THEOREM 3.1. For affine connections D',Df on M, we have
(i) Dr and D1 are projectively equivalent.
(ii) (M,D',g) and (M,D',g) are (-l)-conformally equivalent.

PROOF. By definition of π, D' is the connection on M induced by
eλι. Since D' is induced by i, from a property of centro-affine hypersurfaces, it
follows (cf. [11]) that

D'x Y = D'x Y + dλ(X) Y + dλ{ Y)X. (3)

Thus (i) holds.
Statistical manifolds (M,D',g) and (M,D',g) are by definition (—1)-

conformally equivalent if they satisfy (2) and (3). Thus (ii) holds. •

We denote by D an affine connection on M defined by

for X,Ye X{M).

From duality of D and D', D is the dual connection of Df on M. Then the
next theorem holds.

THEOREM 3.2. For affine connections D,D on M, we have
(i) D and D are dual-projectively equivalent.
(ii) (M,D,g) and (M,D,g) are \-conformally equivalent.

PROOF. We have

gφx r , Z) = g(Dx 7, Z) - dλ(Z)g(X, Y) (4)

which is equivalent to that (3) holds [7]. Affine connections D and D are by
definition dual-projectively equivalent if g(Dx Y, Z) = g(Dx F, Z) — κ(Z)g(X, Y)
for some 1-form K [5]. Thus (i) holds.
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Statistical manifolds (M,D,g) and (M,D,g) are 1-conformally equivalent

if they satisfy (2) and (4). Thus (ii) holds. •

For ^ ± , we have:

PROPOSITION 3.3. Every leaf of the foliation 2FL in the introduction is a

D1-geodesic on Ωo under a certain parametrization.

PROOF. It suffices to see that any integral curve of E is a /^-geodesic.

To see it, we consider the flow defined by

d~^ = Ei ( i = l , . . . , » + l ) , (5)

where Ex,... ,En+ι are functions on Ω such that E = E^d/dx1). By definition

we have Eι = gij(δφ/dxJ), where gtj = g(d/dx\ d/dχi) and (gij) is the in-

verse matrix of (g^). Since x\ — -dφ/ΰx\ we have dxιjdt = —giJXp i.e.,

—gij(dxj/dt) = x[. Moreover gtj = d2φ/dxιdxj implies g^ = —dx'Jdxj and

Thus, for an initial point x'(Q) = {*{(()),... ,xf

n+ι(0)} e Ωo, the integral curve of

the flow (5) is described by

x\{t) = e'x',(0).

Hence the integral curve of E is a straight line with respect to an affine

coordinate {*(,... , ^ + i } , and the image of the integral curve is a Z)'-geodesic

on Ωo under a certain parametrization. •

In [1] orthogonal foliations are constructed only by flat submanifolds, and

we extended to the case of 1-conformally flat statistical submanifolds. From

the proof of Proposition 3.3, we can obtain a leaf of ^ ± by a dilation of a

position vector of a point in Ω* = ϊ(Ω).

COROLLARY 3.4. For p e Le ^ L we have

ϊ(L) = {e'ϊ(p)\teR}nΩ*.

4. Divergences and orthogonal foliations

First we define divergences of statistical manifolds.

DEFINITION 4.1. ([1]) The divergence p of a flat statistical manifold

(Ω,D,g) is defined by
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w+1

P(P, q) = <P(P) + φ*(Kq)) + Σ*' '(/0*ί (?) f o r />>« e fl>

where ςo* is the Legendre transform of φ.

DEFINITION 4.2. ([7]) Let (N,V,h) be a 1-conformally flat statistical

manifold realized by a non-degenerate affine immersion (v,ξ) into Aw + 1, and w

the conormal immersion for v. Then the divergence p c o n f of (N,V,h) is

defined by

pconf(p> q) = <w(i)i V(P) - »(q)> f o r p,qeN

The definition of ρcon{ is independent of the choice of a realization of (N,V,h).

It is known that an arbitrary statistical manifold is induced by a contrast

function [9]. These divergences are contrast functions of a flat statistical

manifold and of a 1-conformally flat statistical manifold.

For M e f , we denote by pconί the divergence of (M, D, g) induced by a

non-degenerate equiaίfine immersion (x, is) by Definition 4.2. Since (M, D, #)

is a submanifold of (Ω,D,g = Ddφ), we can define the divergence ρsub of

(M, Z>, gf) by the restriction of the divergence of (f2, Z), gf) defined by Definition

4.1, i.e., ρsub(p,q) =p(p,q). Then we obtain:

THEOREM 4.3. For a l-conformally flat statistical submanifold (M,D,g) of

(Ω,D,g), two divergences /?conf and psub coincide each other.

For p e Ω and q e M, we set p(p,q) = O(q)iχ(p) — χ(q)}> where i is the

conormal immersion for x. The function /?(/?, •) is called the affine distance

function for (x,E) from p. For the proof of Theorem 4.3, we describe the

divergence p by the affine distance function p.

LEMMA 4.4. we have

p(P, q) = ΨiP) ~ <P(q) + P(P, q) for peΩ,qe M.

PROOF. Since φ*(ι(q)) = - Σ ^ 1 xi{q)x'ί{q) - φ(q), it follows that

) = φ(p) ~ φ{q) + Y^xf

i{q)(xi(p) - *'(?)). (6)
ι = l

Equations Σ,EΪ *'M)(χi(p) ~ χi(q)) = <ι{q)Λp) ~ *(q)> = P(P, ί)
Lemma 4.4. Π

PROOF of THEOREM 4.3. For p,qeM, φ(p) = φ(q) holds. Since

Psub(P,q) =p(P,q) a n d / W ( / ^ ) =P(P,q), by Lemma 4.4 we have

) = Pconf (p,q)- •
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Let us denote both psuh and /?conf by the same notation p.

We can apply Lemma 4.4 to a point q e Ωo. For a point r e Ω such that

dφr = 0, xl(r) = 0 holds, and thus we have φ*{ι{r)) = —φ{r) by the definition of

the Legendre transform. Hence we have by Definition 4.1:

COROLLARY 4.5. For p e Ω and r e Ω such that dφr = 0, we have

p(p,r) =

5. Projection by the minimum divergence

We shall describe the decomposition of the divergence of a flat statistical

manifold (Ω,D,g) with respect to orthogonal foliations 3F and 3FL.

THEOREM 5.1. Let (M,D,g) be a l-conformally flat statistical submanifold

of an (n + 1)-dimensional Hessian domain (Ω,D,g = Ddφ), where M is an

n-dίmensional level surface of φ, and let p,q e M, r e Ω. If a tangent vector

at q, of the D'-geodesic through q and r, is perpendicular to TqM with respect to

g, we have

p(p, r) = μp(p, q) + p(q, r), (7)

where ϊ is the gradient mapping of φ defined by (1) in §2 and ϊ(r) = μϊ(q), μeR.

PROOF. Recall that i is the restriction of ϊ to M, and using x = x* o ϊ and

Definition 4.1, we have

w+l

= Ψ(P) - ψ{r) + | > ; ( r ) -
Ϊ = 1 1 = 1

= φ(p) - <p(r) + <?W - MΛ4) - X(P)> + <*M >*(/>) - ^W>

By Lemma 4.4, p(p,r) — φ(p) — φ(r) + (ϊ(r),x(p) — x(r)} holds. Thus we get

p(Pir) = P(P, q) + P(q, r) + <ί(r) - ί(q),x{p) - x{q)>.

F r o m Corollary 3.4 the trajectory C e Ω of the Z>;-geodesic, through q,r and

perpendicular to TqM, satisfies that

{e%q)\teR}ΠΩ* cί(C).

Thus there exists a real number μ such that ι(r) = μί(q). Since p(p,q) =

<ϊ(q),x(p)-x(q)>, we have

<ί(r) - Γ(^),x(/7) - x(^)> = (μ- \)p{p,q).

Thus, we obtain Theorem 5.1. •
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By this decomposition we can obtain the projection of a point in Ωo to

M e& along a leaf of &L.

COROLLARY 5.2. Let M be an arbitrary leaf of 3F and r in Ωo =

{p € Ω I dφp Φ 0}. Then the unique minίmizer of a function p(-^r) on M is the

intersection point of Lr and M, where Lr is the leaf of ^ L including r.

PROOF. Let q be the intersection of Lr and M. Since both q and r are in

Lr, there exists a positive number μ which satisfies (7). From positivity of

divergences the point q is the unique minimizer of a function p( ,r). •

We denote by p' the divergence of the dual statistical manifold\Ω,D',g)

of (Ω,D,g). Then p(p,q) = ρ'{q,p) holds. Therefore, on the same as-

sumption of Theorem 5.1, it follows that

p'(r,p) =p'(r,q)+μp'(q,p).

Recalling that divergences are contrast functions, by virtue of Corollary 5.2, we

can call leaves of 3FL minimum contrast leaves with respect to the dual

divergence p' [2].

Finally, we give examples of the gradient flow along geodesies relative to

the dual connection.

On dynamical systems constrained to flat submanifolds, Fujiwara and

Amari showed the following theorem and its applications to engineering.

THEOREM 5.3. ([4, Theorem 2]) Let N = {pξ\ξ e Ξ a Rn} be a sub-

manifold embedded in a flat manifold N with respect to a dualistic structure

(y,V',h), and (V,V\h) the induced dualistic structure on N. If N is V-

autoparallel, then for r e N the gradient flow defined by

converges to a unique stationary point independent of the initial point along aV'-

geodesic, where ζ = (ξι,..., ξn) is a V-affine coordinate such that Vχ(d/dξJ) = 0

for Xe^(N), htj = h{d/dζ\ d/dξj), (h") = {hy)~\ and p is the divergence of

(N,V,h). Then the stationary point qeM is the unique one such that

p(P,r) =p(p,q)+p(q,r).

A 7-autoparallel statistical submanifold of a flat statistical manifold

(N,V,h) is flat, and its divergence coincides with the restriction of the di-

vergence of (N,V,h) [1]. These facts imply Theorem 5.3.

We shall investigate a dynamical system constrained to a 1-conformally

flat statistical submanifold. Let (M,D,g) be a 1-conformally flat statisti-
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cal submanifold of an (n + 1)-dimensional Hessian domain (Ω,D,g = Ddφ),

where M is an ^-dimensional level surface of φ. We assume that (M,D,g)

is 1-conformally equivalent to a flat statistical manifold (M,D,g), and that

a function φ on an open subset U of M satisfies that

g(Dx 7, Z) = g(Dx 7, Z) - dφ(Z)g(X, Y)

for X,Y,Ze %(U). We treat an affine coordinate system {x\... ,xw} on t/

such that Ddx1 = 0 for / = 1,...,«. Let r be a point in a leaf Lq for q e U.

We consider /?( ,r) as a function on U of variables jc1,...,Jc/ l and denote by

p(Px,r) its value at p e U, where p is the divergence of (Ω,D,g). We set

gij=g(d/dxi,d/dxJ) for ι , y = l , . . . , / ι and (gij) = (Sij)'1 on C/, and then we

obtain:

COROLLARY 5.4. 77ze gradient flow defined by

^Γ=-ΈSij-^jP(p,,r) ( / = 1 , . . . , « ) (8)
7=1

converges to the point q following a Dr-geodesic, if U includes the trajectory of

the D'-geodesic from an initial point to q.

PROOF. Let μ be the positive number such that ϊ(r) = μϊ(q). By Theorem

5.1, p(p,r) = μp(p,q) + p(q,r) holds. Denoting by p the divergence of

(M,D,g), we have ρ{p,q) =eφ^p(p,q) by [7]. Thus the gradient flow (8) is

equivalent to

7=1

Let D' be the dual affine connection of Z), and {x[,...,x'n} the dual affine

coordinate system of {x1,... ,xn}. Since gij = dx[/dxj, we have

^ q ) (i = 1 «).

Considering the proof of Theorem 5.3 (see [4]), we have

Setting 4̂ = / / e ~ ^ > 0, we obtain
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where po e U is an initial point of (8). Thus the flow (8) converges to q

following a straight line with respect to a coordinate system {3cJ,... ,x'n}.

Since D' is flat and D1dx\ — 0, the line is a pseudo-geodesic with respect to D'.

From projective equivalence with D' and Df, a pseudo-geodesic with respect to

D' is one with respect to D'. Hence the flow (8) converges to q following a

Z>'-geodesic, independent of an initial point. •
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