
Hiroshima Math. J.

37 (2007), 409–429

An index of an enhanced state of a virtual link diagram and

Miyazawa polynomials

Naoko Kamada

(Received September 6, 2006)

(Revised December 8, 2006)

Abstract. We construct a polynomial invariant of a virtual magnetic graph diagram

by defining an index of an enhanced state. For a virtual link diagram, it equals the

Miyazawa polynomial and then the maximal degree on t of the polynomials not only

gives a lower bound of the real crossing number but also that of the virtual crossing

number. Moreover, by definition we can calculate the polynomial for a link in a

thickened surface or a Gauss chord diagram directly without transforming it into a

virtual link diagram.

1. Introduction

Virtual knot theory is introduced by Kau¤man [9] which is a general-

ization of knot theory. A virtual link diagram is a link diagram in R2 possibly

with some encircled crossings without over/under information, called virtual

crossings. A virtual link is the equivalence class of such a diagram by

generalized Reidemeister moves (Reidemeister moves of type I, of type II,

of type III and virtual Reidemeister moves of type I, of type II, of type III, and

of type IV depicted in Figure 1).

Virtual links are abstracted from link diagrams on a surface. They are

stable Reidemeister equivalence classes of link diagrams on closed oriented

surfaces [1, 6, 9, 10]. Invariants of virtual links are invariants of links in

thickened surfaces.

A lot of invariants of virtual links are defined with disregard to virtual

crossings. In [9], Kau¤man defined a polynomial invariant fLðAÞ A Z½A2;A�2�
for a virtual link L, which we call the Jones-Kau¤man polynomial. It is

defined through Kau¤man’s bracket in the same manner as that of a classical

link, namely considering states by smoothing real crossings of L. For a
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classical link L, it is the Jones polynomial VLðtÞ after substituting
ffiffi
t

p
for

A�2. Sawollek [12] applied an invariant of a link in a thickened surface

defined by Jaeger, Kau¤man and Saleur [5] to a virtual link. It is the

determinant of a matrix derived from the information of real crossings. Silver

and Williams [13] defined an invariant of a virtual link without any reference to

virtual crossings and so do Bartholomew, Budden, Fenn, Jordan and Kau¤man

[2, 3, 4]. On the other hand, the Miyazawa polynomial is defined by use of

virtual writhe obtained from virtual crossings. It is not calculated for a link

diagram on a surface unless it is described as a virtual link diagram. The

Miyazawa polynomial is introduced as an invariant of a virtual magnetic graph

diagram, which is a generalization of a virtual link.

In this paper we define a polynomial invariant, XDðA; tÞ, of a virtual

magnetic graph diagram by introducing an index of an enhanced state, without

use of any information on virtual crossings. If the diagram is a virtual link

diagram, the index of a state is equal to the virtual writhe in the sense of

Miyazawa (Theorem 3). Hence for a virtual link, our invariant coincides with

the Miyazawa polynomial. It means that we give an alternative definition of

the Miyazawa polynomial of a virtual link. Since our definition does not use

virtual crossings, we can calculate the polynomial for a link in a thickened

surface or a Gauss chord diagram directly without transforming it into a virtual

Fig. 1
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link diagram. Also we see that the maximal degree on t of the polynomial

gives a lower bound of the real crossing number and the virtual crossing

number.

In Section 2, we introduce our invariant XDðA; tÞ, after recalling the

Miyazawa polynomial YDðA; tÞ for a virtual magnetic diagram. A relationship

between them is given. In Sections 3 and 4, we give proofs of Theorem 2 and

Lemma 4, respectively. In Sections 5, we show some features of the invari-

ants. We introduce the notion of a double flype and show that our invariant

and the Miyazawa polynomial are preserved under this move.

The author would like to thank Atsushi Ishii for his helpful comment to

improve the proof of Lemma 4.

2. The invariants XD and YD

A magnetic graph is a 2-valent graph whose edges are oriented alternately

around vertices as in Figure 2. It may have some components consisting of

closed edges without vertices.

A virtual magnetic graph diagram, which is written as VMG diagram for

short, is a magnetic graph immersed in R2 generically such that some crossings

have over/under information, called real crossings, and the other crossings are

encircled without over/under information, called virtual crossings. See Figure

3, for example.

If two VMG diagrams are related by a finite sequence of generalized

Reidemeister moves (Figure 1), they are said to be equivalent. (We do not

allow the moves in Figure 4.) Note that virtual link diagrams are VMG

diagrams without vertices, and that two virtual link diagrams represent the

same virtual link if and only if they are equivalent as VMG diagrams.

Fig. 2

Fig. 3
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First we recall the Miyazawa polynomial. Let D be a VMG diagram,

and let p be a real crossing. By applying A-splice (or B-splice) at p, we mean

the local replacement about p depicted in Figure 5.

A state of D is a diagram obtained from D by applying A-splice or B-

splice at each real crossing, or an assignment of A-splice or B-splice to each

real crossing. It is a VMG diagram without real crossings such that some

vertices are connected by dashed arcs. (Our states correspond to oriented

states in [8].) Let S be a state of a VMG diagram of D. A weight map s of

S is a map from the set of edges of S to fþ1;�1g such that sðeÞ0 sðe 0Þ for

adjacent edges e and e 0 of S. An enhanced state means a pair ðS; sÞ of a state

S and a weight map s of S. The set of enhanced states of D is denoted by

sðDÞ.
Let ðS; sÞ be an enhanced state of a VMG diagram D. For a virtual

crossing v of S on edges e and e 0 as depicted in Figure 6 (1), the sign of v is

defined by

Fig. 4

Fig. 5

Fig. 6

412 Naoko Kamada



sðeÞ � sðe 0Þ
2

:

See Figure 6 (2), where edges assigned þ1 by the weight map s are drawn

thickly. The virtual writhe, ovðS; sÞ, of ðS; sÞ is defined to be the sum of signs

of all virtual crossings.

For a VMG diagram D, we define 5D6Y A Q½A;A�1; t; t�1� by

5D6Y ¼
X

ðS;sÞ A sðDÞ
A\S �A2 � A�2

2

� �aS

to
vðS;sÞ;

where \S is the number of A-splices minus that of B-splices used to obtain S

from D, and aS is the number of components of S (ignoring the dashed

arcs). The Miyazawa polynomial of D, which we denote by YDðA; tÞ, is

defined by

YDðA; tÞ ¼ ð�A3Þ�oðDÞ5D6Y ;

where oðDÞ, called the writhe, is the number of positive crossings minus that of

negative crossings of D.

Theorem 1 (Y. Miyazawa [11]). The Miyazawa polynomial YDðA; tÞ is an

invariant of the equivalence class of a VMG diagram.

Remark. (1) The Miyazawa polynomial YDðA; tÞ is a generalization of

the invariant introduced in [7]. Refer to [11] for details. (2) Let hDi and

fDðAÞ be the bracket polynomial and the Jones-Kau¤man polynomial defined

in [9] for a virtual link diagram D. Then by definition we have hDi ¼
ð�A2 � A�2Þ�15D6Y jt¼1 and fDðAÞ ¼ ð�A2 � A�2Þ�1

YDðA; 1Þ.

Let D be a VMG diagram and ðS; sÞ an enhanced state of D. If two

vertices of S originate from a real crossing of D, a pair of them is called a

c-pair of S. They are connected by a dashed arc in the state. Let c be a

c-pair, and let ek ðk ¼ 1; 2; 3; 4Þ be the edges around c as depicted in Figure 7

(1). The sign of c of S with respect to a weight map s is defined as

Fig. 7
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sðe1Þ � sðe2Þ
2

or
sðe3Þ � sðe4Þ

2

� �
:

See Figure 7 (2), where edges assigned þ1 by the weight map s, are drawn

thickly.

The index, iðS; sÞ, of an enhanced state ðS; sÞ is the sum of signs of all

c-pairs. For a VMG diagram D, we define 5D6X A Q½A;A�1; t; t�1� by

5D6X ¼
X

ðS;sÞ A sðDÞ
A\S �A2 � A�2

2

� �aS

t iðS;sÞ;

and define XDðA; tÞ by XDðA; tÞ ¼ ð�A3Þ�oðDÞ5D6X .

Theorem 2. The polynomial XDðA; tÞ is an invariant of the equivalence

class of a VMG diagram.

For VMG diagrams, our invariants are not equal to the Miyazawa

polynomials in general. For example, let D be the diagram in Figure 8

(1). Then XDðA; tÞ ¼ �A2 � A�2 and YDðA; tÞ ¼ ð�A2 � A�2Þðt1 þ t�1Þ=2.
Let D be the diagram in Figure 8 (2). Then XDðA; tÞ ¼ �A�3ð�A2 � A�2Þ �
f2ðA� A�3Þ � ðAþ A�3Þðtþ t�1Þg=4 and YDðA; tÞ ¼ A�6ð�A2 � A�2Þ.

Theorem 3. If D is a virtual link diagram, then XDðA; tÞ coincides with

YDðA; tÞ.

This theorem shows that the definition of our invariant XDðA; tÞ is an

alternate definition of the Miyazawa polynomial YDðA; tÞ for a virtual link

diagram D. It comes from the following lemma, which is our key lemma.

Lemma 4. Let D be a virtual link diagram, and let ðS; sÞ be an enhanced

state of D. Then

ovðS; sÞ ¼ iðS; sÞ:

We prove Theorem 2 and Lemma 4 in Sections 3 and 4, respectively.

Fig. 8
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For a virtual link L, the real crossing number and the virtual crossing

number of L mean the minimal number of real crossings and that of virtual

crossings, respectively, among all diagrams representing L. By the definition

of YDðA; tÞ we have the following.

Proposition 5 (Y. Miyazawa [11]). Let L be a virtual link, represented by

a diagram D. The virtual crossing number of L is equal to or greater than the

maximal degree on t of YDðA; tÞ (¼ XDðA; tÞ).

By the definition of XDðA; tÞ, we have the following.

Proposition 6. Let L be a virtual link, represented by a diagram D. The

real crossing number of L is equal to or greater than the maximal degree on t of

XDðA; tÞ (¼ YDðA; tÞ).

For the virtual link diagram D in Figure 9 (1), XDðA; tÞ is

ð�A2 � A�2Þð�A�2 þ A�4ðtþ t�1Þ=2Þ. Thus we see that the real crossing

number and the virtual crossing number of the virtual link represented by

D are one. For the virtual link diagram D in Figure 9 (2), XDðA; tÞ is

ð�A2 � A�2Þ2ðtþ t�1Þ2=4. Thus the real crossing number and the virtual

crossing number of the virtual link represented by D are two.

For a VMG diagram D, we denote by Da the VMG diagram obtained

from D by replacing all positive (or negative) crossings of D with negative (or

positive) ones, and by D� the VMG diagram which is symmetric to D with

respect to a line in R2.

Lemma 7. For a VMG diagram D, we have

XDðA; tÞ ¼ XDaðA�1; tÞ ¼ XD� ðA�1; tÞ and

YDðA; tÞ ¼ YDaðA�1; tÞ ¼ YD� ðA�1; tÞ:

Proof. This is obvious from the definition. r

Fig. 9
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3. Proof of Theorem 2

Let B2 be a 2-disk in R2 and let E be R2nB2. Let D and D 0 be VMG

diagrams such that DVE ¼ D 0 VE. For enhanced states ðS; sÞ and ðS 0; s 0Þ of

D and D 0 respectively, we denote by ðS; sÞjE ¼ ðS 0; s 0ÞjE if S VE ¼ S 0 VE and

the restriction of s to S VE is equal to that of s 0 to S 0 VE.

Proof of Theorem 2. Let D and D 0 be VMG diagrams such that they

are related by a Reidemeister move of type I in a 2-disk B2, as depicted in

Figure 10. (The other cases of a Reidemeister move of type I follow from this

case by Lemma 7.)

There is a three-to-one correspondence, fðS1; s1Þ; ðS2; s2Þ; ðS3; s3Þg $
ðS 0; s 0Þ, between sðDÞ and sðD 0Þ such that ðSi; siÞjE ¼ ðS 0; s 0ÞjE for i ¼ 1; 2; 3.

We assume that S1 ¼ S2 and they are A-splices at the real crossing of DVB2 as

depicted in Figure 11.

Then

\S1 ¼ \S2 ¼ \S 0 þ 1; \S3 ¼ \S 0 � 1; aS1 ¼aS2 ¼aS 0 þ 1;

aS3 ¼aS 0; and iðSi; siÞ ¼ iðS 0; s 0Þ for i ¼ 1; 2; 3:

Thus we have

X3

i¼1

A\Si
�A2 � A�2

2

� �aSi

t iðSi ;siÞ ¼ ð�A3Þ � A\S 0 �A2 � A�2

2

� �aS 0

t iðS
0;s 0Þ:

Hence we have XDðA; tÞ ¼ XD 0 ðA; tÞ, since oðDÞ ¼ oðD 0Þ þ 1.

Fig. 10

Fig. 11
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Let D and D 0 be VMG diagrams such that they are related by a

Reidemeister move of type II in a 2-disk B2 depicted in Figure 12 (1) (or

(2)). (The other cases of a Reidemeister move of type II follow from these

cases by Lemma 7.)

For l1; l2 A fA;Bg, let sl1l2ðDÞ be the subset of sðDÞ consisting of

enhanced states such that the assignment of the splices at the real crossings

of D in B2 are l1 and l2 as depicted in Figure 13 or Figure 14, when D and D 0

are as in Figure 12 (1) or in Figure 12 (2), respectively.

Note that sðDÞ ¼ sABðDÞ q sAAðDÞ q sBBðDÞ q sBAðDÞ. First we show

X
ðS;sÞ A sAAðDÞqsBBðDÞqsBAðDÞ

A\S �A2 � A�2

2

� �aS

t iðS;sÞ ¼ 0:ð1Þ

Fig. 12

Fig. 13

Fig. 14

417An index of an enhanced state of a virtual link diagram



There is a one-to-one-to-two correspondence, ðS1; s1Þ $ ðS2; s2Þ $
fðS3; s3Þ; ðS4; s4Þg, among sAAðDÞ, sBBðDÞ, and sBAðDÞ such that ðSi; siÞjE ¼
ðSj; sjÞjE for i; j ¼ 1; 2; 3; 4, where ðS1; s1Þ A sAAðDÞ, ðS2; s2Þ A sBBðDÞ, and

ðS3; s3Þ; ðS4; s4Þ A sBAðDÞ.
Then

\S2 ¼ \S1 � 4; \S3 ¼ \S4 ¼ \S1 � 2; aS2 ¼aS1;

aS3 ¼aS4 ¼aS1 þ 1; and iðSi; siÞ ¼ iðSj; sjÞ for i; j ¼ 1; 2; 3; 4:

So we have

X4

i¼1

A\Si
�A2 � A�2

2

� �aSi

t iðSi ;siÞ ¼ 0;

which implies the equality (1).

On the other hand, it is easily seen that there is a one-to-one correspon-

dence between sABðDÞ and sðD 0Þ, and this correspondence preserves \, a, and

i. Thus we have XDðA; tÞ ¼ XD 0 ðA; tÞ.
Let D and D 0 be VMG diagrams such that they are related by a

Reidemeister move type of III in a 2-disk B2 as depicted in Figure 15.

(The other cases of a Reidemeister move of type III follow from this case by

Lemma 7 and by Reidemeister moves of type II.)

For l1; l2; l3 A fA;Bg, let sl1l2l3ðDÞ (or sl1l2l3ðD 0Þ) be the subset of sðDÞ
(or sðD 0Þ) consisting of enhanced states such that the assignment of the splices

at the real crossings of D (or D 0) in B2, are l1, l2 and l3 as depicted in Figure

16.

First we show

X
ðS;sÞ A sAABðDÞqsABBðDÞqsBBBðDÞ

A\S �A2 � A�2

2

� �aS

t iðS;sÞ ¼ 0:ð2Þ

There is a one-to-two-to-one correspondence, ðS1; s1Þ $ fðS2; s2Þ; ðS3; s3Þg
$ ðS4; s4Þ, among sAABðDÞ, sABBðDÞ, and sBBBðDÞ such that ðSi; siÞjE ¼

Fig. 15
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ðSj; sjÞjE for i; j ¼ 1; 2; 3; 4, where ðS1; s1Þ A sAABðDÞ, ðS2; s2Þ; ðS3; s3Þ A sABBðDÞ,
and ðS4; s4Þ A sBBBðDÞ.

Then

\S2 ¼ \S3 ¼ \S1 � 2; \S4 ¼ \S1 � 4; aS2 ¼aS3 ¼aS1 þ 1;

aS4 ¼aS1; and iðSi; siÞ ¼ iðSj; sjÞ for i; j ¼ 1; 2; 3; 4:

So we have

X4

i¼1

A\Si
�A2 � A�2

2

� �aSi

t iðSi ;siÞ ¼ 0;

which implies the equality (2).

Similarly we have

X
ðS 0;s 0Þ A sAABðD 0ÞqsABBðD 0ÞqsBBBðD 0Þ

A\S 0 �A2 � A�2

2

� �aS 0

t iðS
0;s 0Þ ¼ 0:

On the other hand, it is easily seen that, for each ðl1; l2; l3Þ ¼
ðA;A;AÞ; ðB;A;AÞ; ðA;B;AÞ; ðB;B;AÞ and ðB;A;BÞ, there is a one-to-one

correspondence between sl1l2l3ðDÞ and sl1l2l3ðD 0Þ, and this correspondence

preserves \, a, and i. Thus we have XDðA; tÞ ¼ XD 0 ðA; tÞ.
If D and D 0 are VMG diagrams such that they are related by one of

virtual Reidemeister moves of type I, of type II and of type III, it is obvious

that XDðA; tÞ ¼ XD 0 ðA; tÞ.
Let D and D 0 be VMG diagrams such that they are related by a virtual

Reidemeister move of type IV in a 2-disk B2 as depicted in Figure 17. (The

other cases of a virtual Reidemeister move of type IV follow from this case by

Lemma 7 and by virtual Reidemeister moves of type II.)

For l A fA;Bg, let slðDÞ (or slðD 0Þ) be the subset of sðDÞ (or sðD 0Þ)
consisting of enhanced states such that the assignment of the splice at the real

crossing of D (or D 0) in B2 is l (see Figure 18).

Fig. 17
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For l A fA;Bg, there is a one-to-one correspondence between slðDÞ and

slðD 0Þ which preserves \, a and i. Thus we have 5D6X ¼ 5D 06X , and

XDðA; tÞ ¼ XD 0 ðA; tÞ since oðDÞ ¼ oðD 0Þ. r

4. Proof of Lemma 4

Let D be a virtual link diagram and let ðS; sÞ be an enhanced state.

Remove all c-pairs of S by replacing them as in Figure 19, where edges

assigned þ1 by the weight map s, are drawn thickly. Let D 0 be the result.

The diagram D 0 consists of immersed circles in R2, with each circle

assigned þ1 or �1. Let D 0
þ and D 0

� be the union of circles of D 0 whose signs

are þ1 and �1, respectively.

Let a1, a2, a3 and a4 be the numbers of crossings of D 0 as in Figure 20 (1),

(2), (3) and (4), respectively. Since the algebraic intersection number of D 0
þ

Fig. 18

Fig. 19

Fig. 20
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and D 0
� is zero, we see that a1 � a2 þ a3 � a4 ¼ 0. Noting that the crossings as

in Figure 20 (1) and (2) come from c-pairs as in Figure 19, by definition of

iðS; sÞ, we have

a1 � a2 ¼ �iðS; sÞ:

On the other hand, by definition of ovðS; sÞ, we have

a3 � a4 ¼ ovðS; sÞ:

Therefore we have

iðS; sÞ ¼ ovðS; sÞ:

5. Some features of the invariants

The operation on virtual link diagrams depicted in Figure 21 (1) is called

Kau¤man’s flype. Jones-Kau¤man polynomials are preserved under Kau¤-

man’s flype. Our invariants and Miyazawa polynomials are not preserved

under Kau¤man’s flype. (For example, Kishino’s knot has a non-trivial

Miyazawa polynomial [11], although it turns into a trivial diagram by

Kau¤man’s flype.)

We introduce an operation which preserves our invariant and the Miya-

zawa polynomial.

Let us call the operations depicted in Figure 22 (1) and (2) double flypes.

In terms of Gauss chord diagrams, Kau¤man’s flype is expressed as in

Figure 21 (2), and the double flypes are as in Figure 22 (3) and (4). This is the

reason why we call them double flypes.

Theorem 8. For VMG diagrams, double flypes preserve XDðA; tÞ and

YDðA; tÞ.

Proof. Let D and D 0 be VMG diagrams which di¤er as in Figure 22

(1). For l1; l2 A fA;Bg, let sl1l2ðDÞ (or sl1l2ðD 0Þ) be the subset of sðDÞ (or

sðD 0Þ) consisting of enhanced states such that the assignment of the splices at

two real crossings in B2 are l1 and l2 as in Figure 23.

Fig. 21
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For each l1 and l2 ðl1; l2 A fA;BgÞ, there is a one-to-one correspondence,

ðS; sÞ $ ðS 0; s 0Þ, between sl1l2ðDÞ and sl1l2ðD 0Þ such that ðS; sÞjE ¼ ðS 0; s 0ÞjE
and

\S ¼ \S 0; aS ¼aS 0; iðS; sÞ ¼ iðS 0; s 0Þ and ovðS; sÞ ¼ ovðS 0; s 0Þ:

Hence we have XDðA; tÞ ¼ XD 0 ðA; tÞ and YDðA; tÞ ¼ YD 0 ðA; tÞ.

Fig. 22

Fig. 23
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If D and D 0 di¤er as in Figure 22 (2), we have the conclusion by Lemma

7. r

The two virtual link diagrams in Figure 24 are related by a

double flype. Their Miyazawa polynomials are ððA�6 � A�10 þ A�14 � A�18Þ �
ðtþ t�1Þ=2þ A�4 � A�8 þ A�12Þð�A2 � A�2Þ. They are not equivalent

since the invariant defined in Sawollek [12] of the virtual link diagram

on the left is y�1ðx� 1Þðxþ 1Þðyþ 1Þðxþ yÞ and that on the right is

2y�1ðx� 1Þðyþ 1Þðxþ yÞ.
We do not call the operations in Figure 25 (1) and (2) double flypes.

These operations do not preserve XDðA; tÞ and YDðA; tÞ.
The two virtual link diagrams in Figure 26 are related by the operation of

Figure 25 (1). The polynomial XDðA; tÞ ð¼ YDðA; tÞÞ of the virtual link

Fig. 24

Fig. 25
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diagram on the left is ððA�12 � A�16Þðt2 þ t�2Þ=2þ ðA�10 � A�14Þðtþ t�1Þ=2þ
A�8Þð�A2 � A�2Þ and that on the right is ððA�10 � A�14Þðtþ t�1Þ=2þ A�8 þ
A�12 � A�16Þð�A2 � A�2Þ.

Theorem 9. Let D1, D2, D3, Dþ, D0 and Dv be VMG diagrams such that

they di¤er as in Figure 27 in B2 and they are identical outside B2. Then we

have

2A6ðXD1 þ XD3 � ðA2 � A�2ÞA�2XD2Þ

¼ dððA2 � A�2ÞA�1ðtþ t�1ÞðAXDþ þ A�1XD0Þ � 2XDvÞ;

where d ¼ �A2 � A�2, and the same equality holds for YD’s.

In what follows, let d denote �A2 � A�2. For a VMG diagram D and a

set of enhanced states of D, say s 0, we define XDjs 0 by

Fig. 26

Fig. 27
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XDjs 0 ¼ ð�A3Þ�oðDÞ X
ðS;sÞ A s 0

A\S d

2

� �aS

t iðS;sÞ:

It is obvious that XDjs 0 ¼ XDðA; tÞ if s 0 ¼ sðDÞ, the set of all enhanced states of

D.

Proof. For l1; l2 A fA;Bg and l A f1; 2; 3g, let sl1l2ðDlÞ be the subset of

sðDlÞ consisting of enhanced states such that the assignment of the splices at

the real crossings of Dl in B2 are l1 and l2 as in Figure 28. For l A fA;Bg,
let slðDþÞ be the subset of sðDþÞ consisting of enhanced states such that the

assignment of the splice at the real crossing of Dþ in B2 is l as in Figure 28.

All enhanced states for D1, D2, D3, Dþ, D0 and Dv belong to the

following families;
� sAAðD1Þ, sAAðD2Þ, sAAðD3Þ and sðDvÞ
� sABðD1Þ, sBAðD1Þ, sABðD2Þ and sBBðD1Þ
� sABðD3Þ, sBAðD3Þ, sBAðD2Þ and sBBðD3Þ
� sBBðD2Þ and sBðDþÞ
� sðD0Þ and sAðDþÞ
There is a one-to-one-to-one-to-one correspondence, ðS1; s1Þ $ ðS2; s2Þ $

ðS3; s3Þ $ ðSv; svÞ, among sAAðD1Þ, sAAðD2Þ, sAAðD3Þ and sðDvÞ such that

ðSi; siÞjE ¼ ðSv; svÞjE for i ¼ 1; 2; 3. Then

\Si ¼ \Sv þ 2; aSi ¼aSv; and iðSi; siÞ ¼ iðSv; svÞ;

for i ¼ 1; 2; 3. Hence we have

A\S1
d

2

� �aS1

t iðS1;s1Þ þ A\S3
d

2

� �aS3

t iðS3;s3Þ

� ðA2 � A�2ÞA�2A\S2
d

2

� �aS2

t iðS2;s2Þ ¼ �dA\Sv
d

2

� �aSv

t iðSv;svÞ:

This implies that

2A6ðXD1 jsAAðD1Þ þ XD3 jsAAðD3Þ � ðA2 � A�2ÞA�2XD2 jsAAðD2ÞÞ ¼ �2dXDv :

There is a one-to-one-to-two-to-one correspondence, ðS4; s4Þ $ ðS5; s5Þ $
fðS6; s6Þ; ðS7; s7Þg $ ðS8; s8Þ, among sABðD1Þ, sBAðD1Þ, sBBðD1Þ and sABðD2Þ
such that ðSi; siÞjE ¼ ðSj; sjÞjE for i; j ¼ 4; 5; 6; 7; 8. Then

\S5 ¼ \S4; \S6 ¼ \S7 ¼ \S4 � 2; \S8 ¼ \S4;

aS5 ¼aS4; aS6 ¼aS7 ¼aS4 þ 1; aS8 ¼aS4; and

iðSi; siÞ ¼ iðSj; sjÞ; for i; j ¼ 4; 5; 6; 7; 8:
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Hence we obtain

X7

i¼4

A\Si
d

2

� �aSi

t iðSi ;siÞ � ðA2 � A�2ÞA�2A\S8
d

2

� �aS8

t iðS8;s8Þ ¼ 0:

This implies that

Fig. 28
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2A6ðXD1 jsABðD1ÞqsBAðD1ÞqsBBðD1Þ � ðA2 � A�2ÞA�2XD2 jsABðD2ÞÞ ¼ 0:

Similarly we have

2A6ðXD3 jsABðD3ÞqsBAðD3ÞqsBBðD3Þ � ðA2 � A�2ÞA�2XD2 jsBAðD2ÞÞ ¼ 0:

There is a two-to-one correspondence, fðS9; s9Þ; ðS10; s10Þg $ ðSþ; sþÞ,
between sBBðD2Þ and sBðDþÞ such that ðSi; siÞjE ¼ ðSþ; sþÞjE for i ¼ 9; 10.

Then

\Si ¼ \Sþ � 1; aSi ¼aSþ þ 1 and iðSi; siÞ ¼ iðSþ; sþÞ þ ð�1Þ i;

for i ¼ 9; 10. Thus we have

X10
i¼9

A\Si
d

2

� �aSi

t iðSi ;siÞ ¼ tþ t�1

2
dA�1A\Sþ d

2

� �aSþ

t iðS
þ;sþÞ:

This implies that

2A4ðA2 � A�2ÞXD2 jsBBðD2Þ ¼ �ðtþ t�1ÞðA2 � A�2ÞdXDþ jsBðDþÞ:

There is a one-to-one correspondence, ðS0; s0Þ $ ðSþ; sþÞ, between sðD0Þ and

sAðDþÞ such that ðS0; s0ÞjE ¼ ðSþ; sþÞjE . Then we have

A\Sþ d

2

� �aSþ

t iðS
þ;sþÞ ¼ AA\S 0 d

2

� �aS 0

t iðS
0;s0Þ:

This implies that

XDþ jsAðDþÞ ¼ �A�2XD0 :

So we have XDþ jsBðDþÞ ¼ XDþ � XDþ jsAðDþÞ ¼ XDþ þ A�2XD0 . Therefore we

have the desired equality for XD’s. Similarly we have the conclusion for YD’s.

r

By Lemma 7, we have

2A�6ðXD1a þ XD3a � ðA�2 � A2ÞA2XD2aÞ

¼ dððA�2 � A2ÞAðtþ t�1ÞðA�1XDþa þ AXD0aÞ � 2XDvaÞ:

Similarly we have the same equality for YD’s.
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