Normal Gorenstein del Pezzo surfaces with quasi-lines

Mitsuhiro Yamasaki

Abstract

In this paper, we give a classification of normal del Pezzo surfaces X with at most three quasi-lines and determine the geometric structure of the complement of quasi-lines on X. Moreover, we give the complete list of compactifications X of \mathbf{C}^{2} with quasi-lines as boundaries.

1. Introduction

A normal projective Gorenstein surface X over \mathbf{C} is called a normal del Pezzo surface if the anti-canonical divisor $-K_{X}$ is ample. We assume that $\operatorname{Sing}(X) \neq \varnothing$.

Let $\varphi: M \rightarrow X$ be the minimal resolution of X with the exceptional set $\Delta=\bigcup_{i} \Delta_{i}=\varphi^{-1}(\operatorname{Sing}(X))$, where each Δ_{i} is an irreducible component of Δ.

Then Brenton [2] and Hidaka-Watanabe [4] proved the following:
Proposition 1.1. Let X and M be as above. Then one of the following two cases occurs.
(i) M is a rational surface and $\operatorname{Sing}(X)$ consists of rational double points and each Δ_{i} is a (-2)-curve. In particular, $K_{M} \sim \varphi^{*} K_{X}$.
(ii) M is a \mathbf{P}^{1}-bundle over an elliptic curve \mathbf{T} with the negative section $\Delta=\varphi^{-1}(\operatorname{Sing}(X)) \simeq \mathbf{T}$. In particular, $\operatorname{Sing}(X)=\left\{x_{1}\right\}$ (one point) and $K_{M} \sim \varphi^{*} K_{X}-\Delta$.

By using the above proposition, we can obtain the following:
Lemma 1.2. Assume that M is a rational surface. Then an irreducible curve C on M with $\left(C^{2}\right)<0$ is either a (-1)-curve or a (-2)-curve. Moreover, each (-2)-curve on M is an irreducible component of Δ.

An irreducible curve ℓ on X is called a quasi-line if its proper transform on M is a (-1)-curve. From Proposition 1.1, we can easily see that M is a rational surface if X contains quasi-lines. We remark that $\left(K_{X} \cdot \ell\right)=-1$ for any quasi-line ℓ on X. Let N_{X} be the number of quasi-lines on X. Our aim is to give a complete classification of normal del Pezzo surface X with quasilines and determine the geometric structure of the complement of $N\left(\leq N_{X}\right)$ -

2000 Mathematics Subject Classification. 14R10, 14J17, $14 J 26$.
Key words and phrases. Compactification, rational, surface.
quasi-lines on X for the case of $1 \leq N_{X} \leq 3$. Our main results are on as follows:

Theorem 1.3. Let X be a normal del Pezzo surface over \mathbf{C} of degree d. We assume that $\operatorname{Sing}(X) \neq \varnothing$ and $1 \leq N_{X} \leq 3$. Let $\varphi: M \rightarrow X$ be the minimal resolution of X with the exceptional set $\Delta=\bigcup_{i} \Delta_{i}$, where each Δ_{i} is an irreducible component. Then $\operatorname{Sing}(X)$ consists of rational double points and we have the following: Here we denote the singularities of X by the types of the corresponding Dynkin diagrams.
(I) If X has only one quasi-line ℓ, then we have $1 \leq d \leq 6$, and the types of singularities are uniquely determined up to deformation as follows:
(1) $d=1 \Rightarrow \operatorname{Sing}(X)=E_{8}$,
(2) $d=2 \Rightarrow \operatorname{Sing}(X)=E_{7}$,
(3) $d=3 \Rightarrow \operatorname{Sing}(X)=E_{6}$,
(4) $d=4 \Rightarrow \operatorname{Sing}(X)=D_{5}$,
(5) $d=5 \Rightarrow \operatorname{Sing}(X)=A_{4}$,
(6) $d=6 \Rightarrow \operatorname{Sing}(X)=A_{1}+A_{2}$.

The configurations of curves $\hat{\ell} \cup \Delta$ on M are as in Table I , where $\hat{\ell}$ is the proper transform of ℓ. In particular, we obtain that $X-\ell \simeq \mathbf{C}^{2}$.
(II) If X has exactly two distinct quasi-lines ℓ_{1}, ℓ_{2}, then we have $1 \leq d \leq 7$, and the types of singularities are uniquely determined up to deformation as follows:
(1) $d=1 \Rightarrow \operatorname{Sing}(X)=D_{8}$,
(2) $d=2 \Rightarrow \operatorname{Sing}(X)=A_{7}$ or $A_{1}+D_{6}$,
(3) $d=3 \Rightarrow \operatorname{Sing}(X)=A_{1}+A_{5}$,
(4) $d=4 \Rightarrow \operatorname{Sing}(X)=D_{4}$ or $2 A_{1}+A_{3}$,
(5) $d=5 \Rightarrow \operatorname{Sing}(X)=A_{3}$,
(6) $d=6 \Rightarrow \operatorname{Sing}(X)=A_{2}$ or $2 A_{1}$,
(7) $d=7 \Rightarrow \operatorname{Sing}(X)=A_{1}$.

The configurations of curves $\widehat{\ell}_{1} \cup \widehat{\ell}_{2} \cup \Delta$ on M are as in Table II, where $\widehat{\ell}_{1}$ and $\widehat{\ell}_{2}$ are the proper transforms of ℓ_{1} and ℓ_{2}, respectively. In particular, $X-\left(\ell_{1} \cup \ell_{2}\right) \simeq \mathbf{C}^{2}$ or $\mathbf{C} \times \mathbf{C}^{*}$. In Table II, the first and second columns are the lists of X such that $\left(X, \ell_{1} \cup \ell_{2}\right)$ is the compactification of \mathbf{C}^{2} and $\mathbf{C} \times \mathbf{C}^{*}$, respectively.

Table I (Compactification of \mathbf{C}^{2})

Table II (The type of singularities on X and the corresponding dual graph)

d	Compactification of \mathbf{C}^{2}	Compactification of $\mathbf{C} \times \mathbf{C}^{*}$
1		$D_{8} \quad \text { O-O-O-O-O-O. }$
2		A_{7}
		$A_{1}+D_{6} \quad$-¢-0-0-0-
3		$A_{1}+A_{5} \quad \stackrel{\bullet}{0} 0-0-0$
4	$\mathrm{D}_{4} \stackrel{\text { - }}{ }$	$2 A_{1}+A_{3} \bigcirc \bigcirc \bigcirc 0-0-\bigcirc$
5	A_{3}	
6	A_{2}	
	$2 A_{1} \bullet \bigcirc \bigcirc$	
7	$A_{1} \bigcirc \bullet \bullet$	

(III) If X has exactly three distinct quasi-lines $\ell_{1}, \ell_{2}, \ell_{3}$, then we have $1 \leq d \leq 6$, and the types of singularities are uniquely determined up to deformation as follows:
(1) $d=1 \Rightarrow \operatorname{Sing}(X)=A_{8}$ or $A_{1}+E_{7}$,
(2) $d=2 \Rightarrow \operatorname{Sing}(X)=D_{6}$ or $A_{2}+A_{5}$,
(3) $d=3 \Rightarrow \operatorname{Sing}(X)=A_{5}, D_{5}$ or $3 A_{2}$,
(4) $d=4 \Rightarrow \operatorname{Sing}(X)=A_{4}$ or $A_{1}+A_{3}$,
(5) $d=5 \Rightarrow \operatorname{Sing}(X)=A_{1}+A_{2}$,
(6) $d=6 \Rightarrow \operatorname{Sing}(X)=A_{1}$.

The configurations of curves $\widehat{\ell}_{1} \cup \widehat{\ell}_{2} \cup \widehat{\ell}_{3} \cup \Delta$ on M except of the type $A_{1}+E_{7}$ are as in Table III, where $\widehat{\ell}_{1}, \widehat{\ell}_{2}$ and $\widehat{\ell}_{3}$ are the proper transforms of ℓ_{1}, ℓ_{2} and ℓ_{3}, respectively. In particular, $X-\bigcup_{i=1}^{3} \ell_{i} \simeq \mathbf{C}^{2}, \mathbf{C} \times \mathbf{C}^{*}$ or $\left(\mathbf{C}^{*}\right)^{2}$. In Table III, the first, second and third columns are the lists of X such that $\left(X, \bigcup_{i=1}^{3} \ell_{i}\right)$ is the compactification of $\mathbf{C}^{2}, \mathbf{C} \times \mathbf{C}^{*}$ and $\left(\mathbf{C}^{*}\right)^{2}$, respectively. The configuration of curves $\widehat{\ell}_{1} \cup \widehat{\ell}_{2} \cup \widehat{\ell}_{3} \cup \Delta$ on M of the type $A_{1}+E_{7}$ is as in Table IV.

Table III (The type of singularities on X and the corresponding dual graph)

d	Compactification of \mathbf{C}^{2}	Compactification of $\mathbf{C} \times \mathbf{C}^{*}$	Compactification of $\left(\mathbf{C}^{*}\right)^{2}$
1			
2		D_{6} - - 0 - 0 -	$A_{2}+A_{5} \quad$ -
3		$A_{5} \bullet-0-0$	$3 A_{2} \xrightarrow{\text { O-C-O-O}}$
		$D_{5} \bullet \bullet$ - $0-0-$	
4			
		$A_{1}+A_{3}$	
5		$A_{1}+A_{2} \bullet \bullet-\bigcirc \bigcirc \bigcirc$	
6	A_{1}		

Table IV

In this paper, the circle • (resp. o) denotes a (-1)-curve (resp. a (-2)curve). Two components are joined by a straight line, double lines and double lines with a symbol t if the corresponding two curves meet at a point, at two distinct points and tangentially at a point, respectively.

Theorem 1.4. Let X be a normal del Pezzo surface with $\operatorname{Sing}(X) \neq \varnothing$. Let $\ell_{1}, \ldots, \ell_{N}$ be quasi-lines on X such that $X-\bigcup_{i=1}^{N} \ell_{i}$ is biholomorphic to \mathbf{C}^{2}. Then $b_{2}(X)=N$ and $N \leq 3$.

This paper is organized as follows. In Section 2, we give several preliminaries which will be used in Sections 3 and 4. In Section 3, we study a normal del Pezzo surface X with at most three quasi-lines. In Section 4, we determine the geometric structure of the complement of quasi-lines on X.

Notation

Throughtout this paper, we use the following symbols.
$\operatorname{Sing}(X)$: the singular locus of X
$K_{X}:=\overline{K_{X-\operatorname{Sing}(X)}}$: the canonical divisor on X
K_{M} : the canonical divisor on M
$d:=\left(K_{X}\right)^{2}$: the degree of X
N_{X} : the number of quasi-lines on X
\sim : the linear equivalence of divisors
$b_{2}(*)$: the second Betti number of $*$
$\left(z_{0}: z_{1}: z_{2}\right)$: the homogeneous coordinate system of \mathbf{P}^{2}.

Acknowledgement

The author would like to express his hearty thanks to Professor Mikio Furushima for his invaluable advice and helpful discussions.

2. Preliminaries

In this section, we use the notations as in Section 1. We assume that $\operatorname{Sing}(X) \neq \varnothing$ and $1 \leq N_{X} \leq 3$. Then M is a rational surface. We remark that $M \not \not \not \mathbf{P}^{2}, \mathbf{P}^{1} \times \mathbf{P}^{1}, \mathbf{F}_{1}$ or \mathbf{F}_{2}. By Demazure [3] and Hidaka-Watanabe [4], we get the following:

Proposition 2.1. There exists a set $\Sigma_{r}=\left\{P_{1}, \ldots, P_{r}\right\}$ of $r(\leq 8)$-points on \mathbf{P}^{2} which are in almost general position (See Definition 3.2 of Hidaka-Watanabe [4]) such that M is isomorphic to $V\left(\Sigma_{r}\right)$, where $V\left(\Sigma_{r}\right)$ is the rational surface obtained by the blowing-up of \mathbf{P}^{2} with center Σ_{r}.

Proposition 2.2. There exists a smooth cubic curve Γ on \mathbf{P}^{2} which passes through all points of Σ_{r}.

Now, we put $\Sigma_{j}:=\left\{P_{1}, \ldots, P_{j}\right\} \subset \Sigma_{r}(j \leq r)$. Let $\gamma_{j}: V\left(\Sigma_{j}\right) \rightarrow \mathbf{P}^{2}$ be the blowing-up of \mathbf{P}^{2} with center Σ_{j}. Then we have a map $\pi_{j}: V\left(\Sigma_{j}\right) \rightarrow V\left(\Sigma_{j-1}\right)$ such that $\gamma_{j}=\gamma_{j-1} \circ \pi_{j}(2 \leq j \leq r)$. Thus we obtain the sequence of blowingups

$$
M=V\left(\Sigma_{r}\right) \xrightarrow{\pi_{r}} V\left(\Sigma_{r-1}\right) \xrightarrow{\pi_{r-1}} \cdots \xrightarrow{\pi_{2}} V\left(\Sigma_{1}\right) \xrightarrow{\pi_{1}} \mathbf{P}^{2}
$$

where $\pi_{1}=\gamma_{1}$. We put $\pi:=\pi_{1} \circ \cdots \circ \pi_{r}$. The map $\pi: M \rightarrow \mathbf{P}^{2}$ is called the blowing-up of \mathbf{P}^{2} with center Σ_{r}.

Then we can show the following:
Corollary 2.3. $K_{M} \sim-\tilde{\Gamma}$, where $\tilde{\Gamma}$ is the proper transform of Γ on M. In particular, $\tilde{\Gamma}$ is an elliptic curve on M.

Corollary 2.4. $\quad \tilde{\Gamma}^{2}=9-r>0$. In particular, we have $1 \leq r \leq 8$.
The following is due to Brenton [1].
Proposition 2.5. $b_{2}(M)=b_{2}(X)+b_{2}(\Delta)$, where $b_{2}(\Delta)$ is equal to the number of irreducible components of Δ, that is, the number of (-2)-curves on M.

Then we have the following:
Lemma 2.6. $b_{2}(\Delta) \leq r$.
Proof. By using $b_{2}(M)=b_{2}\left(V\left(\Sigma_{r}\right)\right)=b_{2}\left(\mathbf{P}^{2}\right)+r=1+r$, we have $b_{2}(X)$ $=1+r-b_{2}(\Delta)$. Since $b_{2}(X) \geq 1$, we have the assertion.

Lemma 2.7. Let Σ_{r} be a set of $r(\leq 8)$-points on \mathbf{P}^{2} which is allowed to contain infinitely near points and $\pi: V\left(\Sigma_{r}\right) \rightarrow \mathbf{P}^{2}$ the blowing-up of \mathbf{P}^{2} with center Σ_{r}.
(1) If C is a (-1)-curve on $V\left(\Sigma_{r}\right)$ and the image $\pi(C)=: C_{0}$ is a curve on \mathbf{P}^{2}, then C_{0} is one of the following:
(i) a line passing through two points of Σ_{r}, where $r \geq 2$,
(ii) a conic passing through five points of Σ_{r}, where $r \geq 5$,
(iii) a cubic passing through seven points of Σ_{r} such that one of them is a double point, where $r \geq 7$,
(iv) a quartic passing through all points of Σ_{8} such that three of them are double points,
(v) a quintic passing through all points of Σ_{8} such that six of them are double points,
(vi) a sextic passing through all points of Σ_{8} such that seven of them are double points and one is a triple point.
(2) If C is a (-2)-curve on $V\left(\Sigma_{r}\right)$ and the image $\pi(C)=: C_{0}$ is a curve on \mathbf{P}^{2}, then C_{0} is one of the following:
(i) a line passing through three points of Σ_{r}, where $r \geq 3$,
(ii) a conic passing through six points of Σ_{r}, where $r \geq 6$,
(iii) a cubic passing through all points of Σ_{8} such that one of them is a double point.

Proof. We denote the degree of C_{0} by $\delta(\geq 1)$. Let $m_{i}=\operatorname{mult}_{P_{i}} C_{0} \geq 0$ be the multiplicity of C_{0} at P_{i}, where $m_{i}=0$ means that $P_{i} \notin C_{0}$. We remark that $m_{i} \geq m_{j}$ if P_{j} is an infinitely near point of P_{i}. By the genus formula on the rational plane curve, we have

$$
\frac{\delta^{2}-3 \delta+2}{2}=\sum_{i=1}^{r} \frac{m_{i}\left(m_{i}-1\right)}{2},
$$

that is, $\delta^{2}-3 \delta+2=\sum_{i=1}^{r} m_{i}^{2}-\sum_{i=1}^{r} m_{i}$. If C is a (-1)-curve, then

$$
-1=C^{2}=C_{0}^{2}-\sum_{i=1}^{r} m_{i}^{2}=\delta^{2}-\sum_{i=1}^{r} m_{i}^{2} .
$$

Thus we have the system of equations

$$
\begin{equation*}
\sum_{i=1}^{r} m_{i}^{2}=\delta^{2}+1 \quad \text { and } \quad \sum_{i=1}^{r} m_{i}=3 \delta-1 \tag{1}
\end{equation*}
$$

On the other hand, if C is a (-2 -curve, then

$$
-2=C^{2}=C_{0}^{2}-\sum_{i=1}^{r} m_{i}^{2}=\delta^{2}-\sum_{i=1}^{r} m_{i}^{2} .
$$

Thus we also have the system of equations

$$
\begin{equation*}
\sum_{i=1}^{r} m_{i}^{2}=\delta^{2}+2 \quad \text { and } \quad \sum_{i=1}^{r} m_{i}=3 \delta \tag{2}
\end{equation*}
$$

Hence it comes down to a question of the solutions for the systems of equations (1) and (2).

Now, we may assume that $m_{1} \geq m_{2} \geq \cdots \geq m_{k} \geq 1$ and $m_{k+1}=\cdots=$ $m_{r}=0$ without loss of generality, where $k \leq r$.

First, we shall solve the system of equations (1). If $\delta=1$, then $\sum_{i=1}^{k} m_{i}^{2}=$ 2 and $\sum_{i=1}^{k} m_{i}=2$. Hence $k=2$ and $m_{1}=m_{2}=1$. If $\delta=2$, then $\sum_{i=1}^{k} m_{i}^{2}=$ 5 and $\sum_{i=1}^{k} m_{i}=5$. Hence $k=5$ and $m_{1}=\cdots=m_{5}=1$. If $\delta \geq 3$, we have

$$
\begin{equation*}
k\left(\sum_{i=1}^{k} m_{i}^{2}\right)-\left(\sum_{i=1}^{k} m_{i}\right)^{2}=\sum_{1 \leq i<j \leq k}\left(m_{i}-m_{j}\right)^{2} \tag{3}
\end{equation*}
$$

we have

$$
k\left(\delta^{2}+1\right)-(3 \delta-1)^{2}=(k-9) \delta^{2}+6 \delta+(k-1)=\sum_{1 \leq i<j \leq k}\left(m_{i}-m_{j}\right)^{2} \geq 0,
$$

that is,

$$
3 \leq \delta \leq \frac{3+\sqrt{k(10-k)}}{9-k}
$$

From this inequality, we see $k=7$ or 8 .
If $k=7$, then $\delta=3$. Since $\sum_{i=1}^{7} m_{i}^{2}=10$ and $\sum_{i=1}^{7} m_{i}=8$, we have $m_{1}=2, m_{2}=\cdots=m_{7}=1$.

In the case $k=8$, then $3 \leq \delta \leq 7$. (i) If $\delta=7$, since $\sum_{i=1}^{8} m_{i}^{2}=50$ and $\sum_{i=1}^{8} m_{i}=20$, we have $\sum_{1 \leq i<j \leq 8}\left(m_{i}-m_{j}\right)^{2}=8 \cdot 50-20^{2}=0$, that is, $m_{1}=\cdots$ $=m_{8}=5 / 2$. This leads to a contradiction. (ii) If $\delta=6$, then $\sum_{i=1}^{8} m_{i}^{2}=37$ and $\sum_{i=1}^{8} m_{i}=17$. Moreover, $\sum_{1 \leq i<j \leq 8}\left(m_{i}-m_{j}\right)^{2}=8 \cdot 37-17^{2}=7$. Since $\sum_{i=1}^{8} m_{i} \geq 8 m_{8}, m_{8}=1$ or 2. If $m_{8}=1, \sum_{i=1}^{7} m_{i}^{2}=36$ and $\sum_{i=1}^{7} m_{i}=16$. Then $\sum_{1 \leq i<j \leq 7}\left(m_{i}-m_{j}\right)^{2}=7 \cdot 36-16^{2}=-4$, which leads to a contradiction. If $m_{8}=2, \sum_{i=1}^{7} m_{i}^{2}=33$ and $\sum_{i=1}^{7} m_{i}=15$. Then $\sum_{1 \leq i<j \leq 7}\left(m_{i}-m_{j}\right)^{2}=$ $7 \cdot 33-15^{2}=6$. Hence we have $\sum_{1 \leq i \leq 7}\left(m_{i}-1\right)^{2}=\sum_{1 \leq i<j \leq 8}\left(m_{i}-m_{j}\right)^{2}-$ $\sum_{1 \leq i<j \leq 7}\left(m_{i}-m_{j}\right)^{2}=1$, that is, $m_{1}=3, m_{2}=\cdots=m_{7}=2$. (iii) If $\delta=5$, then $\sum_{i=1}^{8} m_{i}^{2}=26$ and $\sum_{i=1}^{8} m_{i}=14$. From $\sum_{i=1}^{8} m_{i} \geq 8 m_{8}$, we have $m_{8}=1$. Then $\sum_{i=1}^{7} m_{i}^{2}=25$ and $\sum_{i=1}^{7} m_{i}=13$. Moreover, from $\sum_{i=1}^{7} m_{i} \geq 7 m_{7}$, we have $m_{7}=1$, which implies $\sum_{i=1}^{6} m_{i}^{2}=24$ and $\sum_{i=1}^{6} m_{i}=12$. Hence we have $\sum_{1 \leq i<j \leq 6}\left(m_{i}-m_{j}\right)^{2}=6 \cdot 24-12^{2}=0$, that is, $m_{1}=\cdots=m_{6}=2$. (iv) If $\delta=4$, then $\sum_{i=1}^{8} m_{i}^{2}=17$ and $\sum_{i=1}^{8} m_{i}=11$. If $m_{4} \geq 2$, then $\sum_{i=1}^{8} m_{i} \geq$ $4 \cdot 2+4=12$. This leads to a contradiction. Thus we have $m_{4}=\cdots=m_{8}$ $=1$. Then $\sum_{i=1}^{3} m_{i}^{2}=12$ and $\sum_{i=1}^{3} m_{i}=6$. Hence we have $m_{1}=m_{2}=m_{3}$ $=2$. (v) If $\delta=3$, then $\sum_{i=1}^{8} m_{i}^{2}=10$ and $\sum_{i=1}^{8} m_{i}=8$. There are no solutions for this system of equations.

Therefore all solutions of the system of equations (1) are obtained as follows up to all possible permutations of the m_{i} 's:

$$
\begin{aligned}
& \delta=1 \text { and } m_{1}=m_{2}=1, m_{3}=\cdots=m_{r}=0 \text { for } r \geq 2, \\
& \delta=2 \text { and } m_{1}=\cdots=m_{5}=1, m_{6}=\cdots=m_{r}=0 \text { for } r \geq 5, \\
& \delta=3 \text { and } m_{1}=2, m_{2}=\cdots=m_{7}=1, m_{8}=0 \text { for } r \geq 7, \\
& \delta=4 \text { and } m_{1}=m_{2}=m_{3}=2, m_{4}=\cdots=m_{8}=1 \text { for } r=8, \\
& \delta=5 \text { and } m_{1}=\cdots=m_{6}=2, m_{7}=m_{8}=1 \text { for } r=8, \\
& \delta=6 \text { and } m_{1}=3, m_{2}=\cdots=m_{8}=2 \text { for } r=8 .
\end{aligned}
$$

By the argument similar to the above, all solutions for the system of equations (2) are obtained as follows up to all possible permutations of the m_{i} 's:

$$
\begin{aligned}
& \delta=1 \text { and } m_{1}=m_{2}=m_{3}=1, m_{4}=\cdots=m_{r}=0, \text { for } r \geq 3, \\
& \delta=2 \text { and } m_{1}=\cdots=m_{6}=1, m_{7}=m_{8}=0 \text { for } r \geq 6, \\
& \delta=3 \text { and } m_{1}=2, m_{2}=\cdots=m_{7}=m_{8}=1 \text { for } r=8 .
\end{aligned}
$$

Thus the lemma holds.
By an elementary calculation, we can obtain the following:

Lemma 2.8. Let Σ_{r} be a set of r-points on \mathbf{P}^{2} which is allowed to contain infinitely near points. Then we have the following:
(1) Let $\left\{P_{1}, P_{2}, P_{3}\right\}$ be a set of three points of Σ_{r} for $r \geq 3$. If all points of them are on a line L, then
(i) no line except L passes through two of the points P_{i},
(ii) no conic passes through all of the points P_{i},
(iii) no cubic passes through all of the points P_{i} such that one of them is a double point,
(iv) no quartic passes through all of the points P_{i} such that two of them are double points,
(v) no quintic passes through all of the points P_{i} such that all of them are double points,
(vi) no sextic passes through all of the points P_{i} such that two of them are double points and one is a triple point.
(2) Let $\left\{P_{1}, \ldots, P_{6}\right\}$ be a set of six points of Σ_{r} for $r \geq 6$. If all points of them are on a smooth conic C, then
(i) no line passes through three of the points P_{i},
(ii) no conic other than C passes through five of the points P_{i},
(iii) no cubic passes through all of the points P_{i} such that one of them is a double point,
(iv) no quartic passes through all of the points P_{i} such that three of them are double points,
(v) no quintic passes through all of the points P_{i} such that five of them are double points,
(vi) no sextic passes through all of the points P_{i} such that five of the points P_{i} are double points and one is a triple point.
(3) If all points of $\Sigma_{8}=\left\{P_{1}, \ldots, P_{8}\right\}$ are on an irreducible cubic C with P_{1} as a double point, then
(i) no line passes through P_{1} and other two of the points P_{i},
(ii) no conic passes through P_{1} and other five of the points P_{i},
(iii) no cubic other than C passes through P_{1} and other six of the points P_{i} such that P_{1} is a double point,
(iv) no cubic other than C passes through all of the points P_{i} such that one of them is a double point,
(v) no quartic passes through all of the points P_{i} such that P_{1} and other two of them are double points,
(vi) no quintic passes through all of the points P_{i} such that P_{1} and other five of them are double points,
(vii) no sextic passes through all of the points P_{i} such that seven of them are double points and one is a triple point.

Proof. (1) (iii) Let $\left\{P_{1}, P_{2}, P_{3}\right\}$ be a set of three points of Σ_{r} and L be a line which passes through all of points of them. Then we have the sequence of blowings-up

$$
V\left(\Sigma_{3}\right) \xrightarrow{\pi_{3}} V\left(\Sigma_{2}\right) \xrightarrow{\pi_{2}} V\left(\Sigma_{1}\right) \xrightarrow{\pi_{1}} \mathbf{P}^{2},
$$

where $V\left(\Sigma_{1}\right)$ is the blowing up of \mathbf{P}^{2} with center P_{1} in \mathbf{P}^{2} and $V\left(\Sigma_{j+1}\right)$ is the blowing up of $V\left(\Sigma_{j}\right)$ with center P_{j+1} in $V\left(\Sigma_{j}\right)$. We set $E_{j}:=\pi_{j}^{-1}\left(P_{j}\right)$ in $V\left(\Sigma_{j}\right)$. Assume that there exists a cubic D which passes through all of the points P_{i} such that P_{1} is a double point. We denote the proper transform of L and D on $V\left(\Sigma_{j}\right)$ by $L^{(j)}$ and $D^{(j)}$, respectively. Then

$$
\left(L^{(1)}, D^{(1)}\right)=\left(\pi_{1}^{*} L, \pi_{1}^{*} D\right)+2 E_{1}^{2}=(L, D)+2 E_{1}^{2}=3-2=1
$$

on $V\left(\Sigma_{1}\right)$ since $L^{(1)} \sim \pi_{1}^{*} L-E_{1}$ and $D^{(1)} \sim \pi_{1}^{*} D-2 E_{1}$,

$$
\left(L^{(2)}, D^{(2)}\right)=\left(\pi_{2}^{*} L^{(1)}, \pi_{2}^{*} D^{(1)}\right)+E_{2}^{2}=\left(L^{(1)}, D^{(1)}\right)+E_{2}^{2}=1-1=0
$$

on $V\left(\Sigma_{2}\right)$ since $L^{(2)} \sim \pi_{2}^{*} L^{(1)}-E_{2}$ and $D^{(2)} \sim \pi_{2}^{*} D^{(1)}-E_{2}$. This implies that $L^{(2)} \cap D^{(2)}=\varnothing$, that is, $P_{3} \notin D^{(2)}$ on $V\left(\Sigma_{2}\right)$, which is a contradiction. Similar arguments show the assertions (2), (3).

3. Classification of normal del Pezzo surfaces with at most three quasi-lines

Let us retain the above notations. Now, we fix the set Σ_{r} of r-points $(1 \leq r \leq 8)$ on \mathbf{P}^{2} which are in almost general position. Let Γ be an elliptic curve passing through all points of Σ_{r}. We put $\Sigma_{0} \subset \mathbf{P}^{2}$ the set of points of Σ_{r} which are not infinitely near points, that is, $\Sigma_{0}=\Sigma_{r}-\{$ infinitely near points $\}$. From the relation

$$
\begin{aligned}
N_{X} & :=\text { the number of quasi-lines on } X \\
& =\text { the number of }(-1) \text {-curves on } M \\
& \geq \text { the number of points of } \Sigma_{0} \\
& =:\left|\Sigma_{0}\right|,
\end{aligned}
$$

we have the following:
(1) $N_{X}=1 \Rightarrow\left|\Sigma_{0}\right|=1$.
(2) $N_{X}=2 \Rightarrow\left|\Sigma_{0}\right| \leq 2$.
(3) $N_{X}=3 \Rightarrow\left|\Sigma_{0}\right| \leq 3$.

Case 1. The case $\left|\Sigma_{0}\right|=1$
In this case, Σ_{r} consists of a point P_{1} on \mathbf{P}^{2} and its infinitely near points P_{2}, \ldots, P_{r}. Let E_{i} be the exceptional curve of the first kind associated with
the blowing-up with center P_{i}, where $P_{i+1} \in E_{i}(1 \leq i \leq r-1)$. We denote the proper transform of E_{i} on M by the same notation E_{i}. Then E_{i} 's $(1 \leq i \leq r-1)$ and E_{r} are (-2)-curves and a (-1)-curve on M, respectively. Let L be the tangent line to Γ at P_{1} and put \tilde{L} the proper transform of L on M.

Case 1.1. The case of $N_{X}=1$
In this case, there exists only one (-1)-curve on M. If $r=2$, then $N_{X} \neq 1$ since \tilde{L} is a (-1)-curve on M. In case of $r \geq 3, P_{1}$ is a flex point of Γ. If it is not so, then \tilde{L} is a (-1)-curve on M, that is, $N_{X} \neq 1$. From Lemma 2.6, we obtain that $E_{1}, \ldots, E_{r-1}, \tilde{L}$ are all of (-2)-curves on M. Moreover, by Lemma 2.7, we observe that there exist no (-1)-curves on M except for E_{r}. Hence, the types of singularities of X with $N_{X}=1$ are determined as follows:

$$
\begin{aligned}
& r=3 \Rightarrow \operatorname{Sing}(X)=A_{1}+A_{2}, \\
& r=4 \Rightarrow \operatorname{Sing}(X)=A_{4}, \\
& r=5 \Rightarrow \operatorname{Sing}(X)=D_{5}, \\
& r=6 \Rightarrow \operatorname{Sing}(X)=E_{6}, \\
& r=7 \Rightarrow \operatorname{Sing}(X)=E_{7}, \\
& r=8 \Rightarrow \operatorname{Sing}(X)=E_{8} .
\end{aligned}
$$

Remark 3.1. All normal del Pezzo surfaces with $\operatorname{Sing}(X) \neq \varnothing$ and $N_{X}=1$ are the six listed in Table I.

Case 1.2. The case of $N_{X}=2$
In this case, there exist exactly two (-1)-curves on M. If $r=2$, then $N_{X}=2$ since \tilde{L} is a (-1)-curve on M. In case of $r \geq 3$, by the result in Case 1.1, P_{1} is not a flex point of Γ and hence \tilde{L} is a (-1)-curve on M. If $r=3,4$, from Lemma 2.7 and Lemma 2.8, it follows that E_{1}, \ldots, E_{r-1} (resp. $\left.E_{r}, \tilde{L}\right)$ are all of (-2)-curves (resp. (-1)-curves) on M. In case of $r \geq 5$, there exists a unique smooth conic C passing through five points P_{1}, \ldots, P_{5}. We denote by \tilde{C} the proper transform of C on M. If $r=5$, then $N_{X} \neq 2$ since \tilde{C} is a (-1)curve on M. In case of $r \geq 6, C$ must pass through the point P_{6} and then \tilde{C} is a (-2)-curve on M. From Lemma 2.6 , we obtain that $E_{1}, \ldots, E_{r-1}, \tilde{C}$ are all of (-2)-curves on M. Moreover, by Lemma 2.7 and Lemma 2.8, we have that there exist no (-1)-curves on M except for E_{r}, \tilde{L}. Hence, the types of singularities of X are determined as follows:

$$
\begin{aligned}
& r=2 \Rightarrow \operatorname{Sing}(X)=A_{1}, \\
& r=3 \Rightarrow \operatorname{Sing}(X)=A_{2}, \\
& r=4 \Rightarrow \operatorname{Sing}(X)=A_{3}, \\
& r=6 \Rightarrow \operatorname{Sing}(X)=A_{1}+A_{5}, \\
& r=7 \Rightarrow \operatorname{Sing}(X)=A_{7}, \\
& r=8 \Rightarrow \operatorname{Sing}(X)=D_{8} .
\end{aligned}
$$

For example, the configurations of $\left\{P_{1}, L, C\right\}$ on \mathbf{P}^{2} are given by

$$
\left\{\begin{array}{l}
P_{1}=(0: 0: 1) \\
L=\left\{z_{1}=0\right\} \\
C=\left\{z_{0}^{2}-z_{1} z_{2}=0\right\}
\end{array}\right.
$$

Case 1.3. The case of $N_{X}=3$
In this case, there exist exactly three (-1)-curves on M. By the results in Case 1.1 and Case 1.2 , we may consider the case where P_{1} is not a flex point of Γ and $r \geq 5$. Then \tilde{L} is a (-1)-curve on M. There exists a unique smooth conic C passing through five points P_{1}, \ldots, P_{5}. We put \tilde{C} the proper transform of C on M. If $r=5$, then \tilde{C} is a (-1)-curve on M. Therefore, from Lemma 2.7, we obtain that there exist no (-2 -curves on M except for E_{1}, \ldots, E_{4} and no (-1)-curves on M except for $E_{5}, \tilde{L}, \tilde{C}$. Hence, $N_{X}=3$. In case of $r \geq 6$, C does not pass through the point P_{6} and then \tilde{C} is a (-1)-curve on M. If $r=6$, from Lemma 2.7, it follows that E_{1}, \ldots, E_{5} (resp. E_{6}, \tilde{L}, and \tilde{C}) exhaust all of (-2)-curves (resp. (-1)-curves) on M. Hence, $N_{X}=3$. In case of $r \geq 7$, there exists uniquely an irreducible cubic D passing through seven points P_{1}, \ldots, P_{7} such that P_{1} is a double point. We denote by \tilde{D} the proper transform of D on M. We remark that the irreducible cubic D has P_{1} as a node since Σ_{r} is in almost general position on \mathbf{P}^{2}. If $r=7$, then $N_{X} \neq 3$ since \tilde{D} is a (-1)-curve on M. If $r=8$, then D passes through the point P_{8}, so \tilde{D} is a (-2)-curve on M. From Lemma 2.6, we obtain that there exist no (-2)curves on M except for $E_{1}, \ldots, E_{7}, \tilde{D}$. Furthermore, by Lemma 2.7 and Lemma 2.8, we have that there exist no (-1)-curves on M except for E_{8}, \tilde{L}, \tilde{C}, that is, $N_{X}=3$. Hence, the types of singularities of X are determined as follows:

$$
\begin{aligned}
& r=5 \Rightarrow \operatorname{Sing}(X)=A_{4}, \\
& r=6 \Rightarrow \operatorname{Sing}(X)=A_{5}, \\
& r=8 \Rightarrow \operatorname{Sing}(X)=A_{8}
\end{aligned}
$$

For example, the configurations of $\left\{P_{1}, L, C, D\right\}$ on \mathbf{P}^{2} are given by

$$
\left\{\begin{array}{l}
P_{1}=(0: 0: 1) \\
L=\left\{z_{1}=0\right\} \\
C=\left\{z_{0}^{2}+\frac{1}{2} z_{1}^{2}+\frac{1}{\sqrt{2}} z_{0} z_{1}+\sqrt{2} z_{1} z_{2}=0\right\} \\
D=\left\{z_{0}^{3}+\sqrt{2} z_{0} z_{1} z_{2}-z_{1}^{2} z_{2}=0\right\}
\end{array}\right.
$$

Case 2. The case of $\left|\Sigma_{0}\right|=2$
Now, we assume that Σ_{r} consists of (distinct) two points $P_{1}\left(=P_{1}^{1}\right)$ and $P_{2}\left(=P_{2}^{1}\right)$ on \mathbf{P}^{2} and their infinitely near points $P_{1}^{2}, \ldots, P_{1}^{r_{1}}$ and $P_{2}^{2}, \ldots, P_{2}^{r_{2}}$, respectively, where $r=r_{1}+r_{2}$. Let E_{i}^{j} be the exceptional curve of the first kind associated with the blowing-up with center P_{i}^{j}, where $P_{i}^{j+1} \in E_{i}^{j}$ $\left(1 \leq i \leq 2,1 \leq j \leq r_{i}-1\right)$. We denote the proper transform of E_{i}^{j} on M by the same notation E_{i}^{j}. Then E_{i}^{j},s $\left(1 \leq i \leq 2,1 \leq j \leq r_{i}-1\right)$ and $E_{1}^{r_{1}}, E_{2}^{r_{2}}$ are respectively (-2)-curves and (-1)-curves on M. Let L_{0} be the line passing through two points P_{1} and P_{2}. We put $\widetilde{L_{0}}$ the proper transform of L_{0} on M. If $r=2$, namely, $\left(r_{1}, r_{2}\right)=(1,1)$, there exist no (-2)-curves on M. This implies that X is smooth. Thus we may consider the case of $r \geq 3$.

Case 2.1. The case of $N_{X}=2$
In this case, there exist exactly two (-1)-curves on M. Hence L_{0} must be a tangent line to Γ, that is, $P_{1}^{2} \in L_{0}$ or $P_{2}^{2} \in L_{0}$. Then $\widetilde{L_{0}}$ is a (-2)-curve on M. Now, we may assume that $P_{2}^{2} \in L_{0}$. Let L_{1} be a tangent line to Γ at P_{1} and put \widetilde{L}_{1} the proper transform of L_{1} on M.
(1) The case of $r_{1}=1$. In case of $2 \leq r_{2} \leq 4$, from Lemma 2.7 and Lemma 2.8, we obtain that $E_{2}^{1}, \ldots, E_{2}^{r_{2}-1}$, and $\widetilde{L_{0}}$ (resp. E_{1}^{1} and $E_{2}^{r_{2}}$) exhaust all of (-2)-curves (resp. (-1 -curves) on M. In case of $r_{2} \geq 5$, there exists uniquely a smooth conic C passing through five points $P_{2}^{1}, \ldots, P_{2}^{5}$. We denote by \tilde{C} the proper transform of C on M. If $r_{2}=5$, then \tilde{C} is a (-1)-curve on M, that is, $N_{X} \neq 2$. In case of $r_{2} \geq 6, C$ must pass through the point P_{2}^{6}. Then \tilde{C} is a (-2)-curve on M. By Lemma 2.6, one sees that there exist no (-2)-curves on M except for $E_{2}^{1}, \ldots, E_{2}^{r_{2}-1}, \widetilde{L_{0}}, \tilde{C}$. Furthermore, from Lemma 2.7 and Lemma 2.8, we obtain that there exist no (-1)-curves on M except for $E_{1}^{1}, E_{2}^{r_{2}}$, that is, $N_{X}=2$. Hence, the types of singularities of X are determined as follows:

$$
\begin{aligned}
& \left(r_{1}, r_{2}\right)=(1,2) \Rightarrow \operatorname{Sing}(X)=2 A_{1} \\
& \left(r_{1}, r_{2}\right)=(1,3) \Rightarrow \operatorname{Sing}(X)=A_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \left(r_{1}, r_{2}\right)=(1,4) \Rightarrow \operatorname{Sing}(X)=D_{4} \\
& \left(r_{1}, r_{2}\right)=(1,6) \Rightarrow \operatorname{Sing}(X)=A_{1}+D_{6} \\
& \left(r_{1}, r_{2}\right)=(1,7) \Rightarrow \operatorname{Sing}(X)=D_{8}
\end{aligned}
$$

For example, the configurations of $\left\{P_{1}, P_{2}, L_{0}, C\right\}$ on \mathbf{P}^{2} are given by

$$
\left\{\begin{array}{l}
P_{1}=(0: 0: 1), \\
P_{2}=(1: 0: 0), \\
L_{0}=\left\{z_{1}=0\right\}, \\
C=\left\{z_{0}^{2}-z_{1} z_{2}=0\right\}
\end{array}\right.
$$

(2) The case of $r_{1}=2$. In this case, $N_{X} \neq 2$ since $\widetilde{L_{1}}$ is a (-1)-curve on M.

In case of $r_{1} \geq 3, P_{1}$ must be a flex point of Γ and then $\widetilde{L_{1}}$ is a (-2 -curve on M. From Lemma 2.6, we have that $E_{1}^{1}, \ldots, E_{1}^{r_{1}-1}, E_{2}^{1}, \ldots, E_{2}^{r_{2}-1}, \widetilde{L_{0}}$, and $\widetilde{L_{1}}$ exhaust all of (-2)-curves on M.
(3) The case of $r_{1}=3$. In case of $2 \leq r_{2} \leq 4$, by Lemma 2.7 and Lemma 2.8, it follows that there exist no (-1)-curves on M except for $E_{1}^{3}, E_{2}^{r_{2}}$, that is, $N_{X}=2$. If $r_{2}=5$, then there exists uniquely a smooth conic C passing through five points $P_{2}^{1}, \ldots, P_{2}^{5}$. We denote by \tilde{C} the proper transform of C on M. Then we have $N_{X} \neq 2$ since \tilde{C} is a (-1)-curve on M. Therefore, the types of singularities of X are determined as follows:

$$
\begin{aligned}
& \left(r_{1}, r_{2}\right)=(3,2) \Rightarrow \operatorname{Sing}(X)=2 A_{1}+A_{3}, \\
& \left(r_{1}, r_{2}\right)=(3,3) \Rightarrow \operatorname{Sing}(X)=A_{1}+A_{5}, \\
& \left(r_{1}, r_{2}\right)=(3,4) \Rightarrow \operatorname{Sing}(X)=A_{1}+D_{6} .
\end{aligned}
$$

(4) The case of $r_{1}=4$. Then since $2 \leq r_{2} \leq 4$, by Lemma 2.7 and Lemma 2.8, we obtain that there exist no (-1)-curves on M except for $E_{1}^{4}, E_{2}^{r_{2}}$. Hence, we have $N_{X}=2$ and the types of singularities of X are determined as follows:

$$
\begin{aligned}
& \left(r_{1}, r_{2}\right)=(4,2) \Rightarrow \operatorname{Sing}(X)=A_{1}+A_{5}, \\
& \left(r_{1}, r_{2}\right)=(4,3) \Rightarrow \operatorname{Sing}(X)=A_{7}, \\
& \left(r_{1}, r_{2}\right)=(4,4) \Rightarrow \operatorname{Sing}(X)=D_{8} .
\end{aligned}
$$

(5) The case of $r_{1}=5$. Then since $2 \leq r_{2} \leq 3$, by Lemma 2.7 and Lemma 2.8, one can show that there exist no (-1)-curves on M except for $E_{1}^{5}, E_{2}^{r_{2}}$. Hence, we have $N_{X}=2$ and the types of singularities of X are determined as follows:

$$
\begin{aligned}
& \left(r_{1}, r_{2}\right)=(5,2) \Rightarrow \operatorname{Sing}(X)=A_{1}+D_{6}, \\
& \left(r_{1}, r_{2}\right)=(5,3) \Rightarrow \operatorname{Sing}(X)=D_{8} .
\end{aligned}
$$

(6) The case of $r_{1}=6$. In this case, there exists a unique irreducible cubic D passing through seven points $P_{1}^{1}, \ldots, P_{1}^{6}, P_{2}^{1}$ such that P_{2} is a double point. We set \tilde{D} the proper transform of D on M. Then we see $N_{X} \neq 2$ since \tilde{D} is a (-1)-curve.

Case 2.2. The case of $N_{X}=3$
(1) The case where $\widetilde{L_{0}}$ is a (-2)-curve on M. In this case, since L_{0} is a tangent line to Γ, we may assume that $r_{2} \geq 2$ and $P_{2}^{2} \in L_{0}$. Let L_{1} be the tangent line to Γ at P_{1} and put $\widetilde{L_{1}}$ the proper transform of L_{1} on M.
(1-1) The case of $r_{1}=1$. In case of $2 \leq r_{2} \leq 4$, one has $N_{X}=2$ by the result in (1) of Case 2.1. In case of $r_{2} \geq 5$, there exists uniquely a smooth conic C passing through five points $P_{2}^{1}, \ldots, P_{2}^{5}$. We denote by \tilde{C} the proper transform of C on M. If $r_{2}=5$, then \tilde{C} is a (-1)-curve on M. By Lemma 2.7 and Lemma 2.8, it follows that the curves $E_{2}^{1}, \ldots, E_{2}^{4}, \tilde{C}$ (resp. $E_{1}^{1}, E_{2}^{5}, \widetilde{L_{0}}$) exhaust all of (-2)-curves (resp. (-1)-curves) on M. Thus we have $N_{X}=3$. In case of $r_{2} \geq 6$, by the result in (1) of Case 2.1, C must not pass through the point P_{2}^{6}. Then \tilde{C} is a (-1)-curve on M. If $r_{2}=6$, by Lemma 2.7 and Lemma 2.8, we obtain that the curves $E_{2}^{1}, \ldots, E_{2}^{5}, \widetilde{L_{0}}$ (resp. $E_{1}^{1}, E_{2}^{6}, \tilde{C}$) exhaust all of (-2)curves (resp. (-1)-curves) on M. Hence we see $N_{X}=3$. If $r_{2}=7$, then there exists a unique irreducible cubic D passing through seven points $P_{2}^{1}, \ldots, P_{2}^{7}$ such that P_{2}^{1} is a double point. We set \tilde{D} the proper transform of D on M. Then we have $N_{X} \neq 3$ since \tilde{D} is a (-1)-curve on M. Therefore the types of singularities of X are determined as follows:

$$
\begin{aligned}
& \left(r_{1}, r_{2}\right)=(1,5) \Rightarrow \operatorname{Sing}(X)=D_{5}, \\
& \left(r_{1}, r_{2}\right)=(1,6) \Rightarrow \operatorname{Sing}(X)=D_{6} .
\end{aligned}
$$

(1-2) The case of $r_{1}=2$. In this case, $\widetilde{L_{1}}$ is a (-1)-curve on M. In case of $2 \leq r_{2} \leq 4$, by Lemma 2.7 and Lemma 2.8, we obtain that there exist no (-1)curves and no (-2)-curves on M except for $E_{1}^{2}, E_{2}^{r_{2}}, \widetilde{L_{1}}$ and $E_{1}^{1}, E_{2}^{1}, \ldots, E_{2}^{r_{2}-1}$, $\widetilde{L_{0}}$, respectively. Then we see $N_{X}=3$. In case of $r_{2} \geq 5$, there exists a unique smooth conic C passing through five points $P_{2}^{1}, \ldots, P_{2}^{5}$. We put \tilde{C} the proper transform of C on M. If $r_{2}=5$, then $N_{X} \neq 3$ since \tilde{C} is a (-1)-curve on M. If $r_{2}=6$ and C passes through the point P_{2}^{6}, then \tilde{C} is a (-2)-curve on M. From Lemma 2.6, it follows that $E_{1}^{1}, E_{2}^{1}, \ldots, E_{2}^{5}, \widetilde{L_{0}}$ and \tilde{C} exhaust all of (-2)curves on M. Moreover, from Lemma 2.7 and Lemma 2.8, we obtain that
there exist no (-1)-curves on M except for $E_{2}^{2}, E_{2}^{6}, \widetilde{L_{1}}$, that is, $N_{X}=3$. Hence, the types of singularities on X are determined as follows:

$$
\begin{aligned}
& \left(r_{1}, r_{2}\right)=(2,2) \Rightarrow \operatorname{Sing}(X)=A_{1}+A_{2} \\
& \left(r_{1}, r_{2}\right)=(2,3) \Rightarrow \operatorname{Sing}(X)=A_{4}, \\
& \left(r_{1}, r_{2}\right)=(2,4) \Rightarrow \operatorname{Sing}(X)=D_{5}, \\
& \left(r_{1}, r_{2}\right)=(2,6) \Rightarrow \operatorname{Sing}(X)=A_{1}+E_{7} .
\end{aligned}
$$

For example, the configurations of $\left\{P_{1}, P_{2}, L_{0}, L_{1}, C\right\}$ on \mathbf{P}^{2} are given by

$$
\left\{\begin{array}{l}
P_{1}=(0: 0: 1) \\
P_{2}=(0: 1: 0) \\
L_{0}=\left\{z_{0}=0\right\} \\
L_{1}=\left\{z_{1}=0\right\} \\
C=\left\{z_{0}^{2}+z_{0} z_{2}-z_{1} z_{2}=0\right\} \text { or }\left\{z_{0}^{2}-z_{1} z_{2}=0\right\}
\end{array}\right.
$$

(1-3) The case of $r_{1}=3$. First, we consider the case where P_{1}^{1} is a flex point of Γ. In this case, $\widetilde{L_{1}}$ is a (-2)-curve on M. By Lemma 2.6, we obtain that there exist no (-2)-curves on M except for $E_{1}^{1}, E_{1}^{2}, E_{2}^{1}, \ldots, E_{2}^{r_{2}-1}, \widetilde{L_{0}}, \widetilde{L_{1}}$. In case of $2 \leq r_{2} \leq 4, N_{X}=2$ by the result in (3) of Case 2.1. If $r_{2}=5$, then there exists a unique smooth conic C passing through five points $P_{2}^{1}, \ldots, P_{2}^{5}$. We denote by \tilde{C} the proper transform of C on M. Then \tilde{C} is a (-1)-curve on M. From Lemma 2.7 and Lemma 2.8, we obtain that there exist no (-1) curves on M except for $E_{2}^{3}, E_{2}^{5}, \tilde{C}$, that is, $N_{X}=3$. Hence, the types of singularities of X are determined as follows:

$$
\left(r_{1}, r_{2}\right)=(3,5) \Rightarrow \operatorname{Sing}(X)=A_{1}+E_{7} .
$$

For example, the configurations of $\left\{P_{1}, P_{2}, L_{0}, L_{1}, C\right\}$ on \mathbf{P}^{2} are given by

$$
\left\{\begin{array}{l}
P_{1}=(0: 0: 1), \\
P_{2}=(0: 1: 0) \\
L_{0}=\left\{z_{0}=0\right\} \\
L_{1}=\left\{z_{1}=0\right\} \\
C=\left\{z_{0}^{2}+z_{0} z_{2}-z_{1} z_{2}=0\right\} \text { or }\left\{z_{0}^{2}-z_{1} z_{2}=0\right\}
\end{array}\right.
$$

Next, we consider the case where P_{1}^{1} is not a flex point of Γ. In this case, $\widetilde{L_{1}}$ is a (-1)-curve on M. In case of $2 \leq r_{2} \leq 4$, from Lemma 2.7 and Lemma 2.8, we have that $E_{1}^{1}, E_{1}^{2}, E_{2}^{1}, \ldots, E_{2}^{r_{2}-1}$ and $\widetilde{L_{0}}$ (resp. $E_{1}^{3}, E_{2}^{r_{2}}$ and $\widetilde{L_{1}}$) exhaust all of (-2)-curves (resp. (-1)-curves) on M. Hence, $N_{X}=3$. If $r_{2}=5$, then there exists a unique smooth conic C passing through five points $P_{2}^{1}, \ldots, P_{2}^{5}$. We set \tilde{C} the proper transform of C on M. Then $N_{X} \neq 3$ since \tilde{C} is a (-1) curve on M. Thus the types of singularities of X are determined as follows:

$$
\begin{aligned}
& \left(r_{1}, r_{2}\right)=(3,2) \Rightarrow \operatorname{Sing}(X)=A_{1}+A_{3}, \\
& \left(r_{1}, r_{2}\right)=(3,3) \Rightarrow \operatorname{Sing}(X)=A_{5}, \\
& \left(r_{1}, r_{2}\right)=(3,4) \Rightarrow \operatorname{Sing}(X)=D_{6} .
\end{aligned}
$$

(1-4) The case of $r_{1}=4$. First, we consider the case where P_{1}^{1} is a flex point of Γ. In this case, one has $N_{X}=2$ by the result in (4) of Case 2.1. Next, we consider the case where P_{1}^{1} is not a flex point of Γ. In this case, $\widetilde{L_{1}}$ is a (-1)-curve on M. Moveover, there exists uniquely a smooth conic C passing through five points $P_{1}^{1}, \ldots, P_{1}^{4}, P_{2}^{1}$. We put \tilde{C} the proper transform of C on M. Then we have $N_{X} \neq 3$ since \tilde{C} is a (-1)-curve on M.
(1-5) The case of $r_{1}=5$. First, we consider the case where P_{1}^{1} is a flex point of Γ. In this case, one has $N_{X}=2$ by the result in (5) of Case 2.1. Next, we consider the case where P_{1}^{1} is not a flex point of Γ. In this case, $\widetilde{L_{1}}$ is a (-1) curve on M. Furthermore, there exists uniquely a smooth conic C passing through five points $P_{1}^{1}, \ldots, P_{1}^{4}, P_{2}^{1}$. We denote by \tilde{C} the proper transform of C on M. Then C must pass through the point P_{1}^{5} and hence \tilde{C} is a (-2)curve on M. From Lemma 2.6, we observe that $E_{1}^{1}, \ldots, E_{1}^{4}, E_{2}^{1}, \ldots, E_{2}^{r_{2}-1}, \widetilde{L_{0}}$ and \tilde{C} exhaust all of (-2)-curves on M. Moreover, by Lemma 2.7 and Lemma 2.8 , it follows that there exist no (-1)-curves on M except for $E_{1}^{5}, E_{2}^{r_{2}}, \widetilde{L_{1}}$, that is, $N_{X}=3$. Hence, the types of singularities of X are determined as follows:

$$
\begin{aligned}
& \left(r_{1}, r_{2}\right)=(5,2) \Rightarrow \operatorname{Sing}(X)=A_{2}+A_{5} . \\
& \left(r_{1}, r_{2}\right)=(5,3) \Rightarrow \operatorname{Sing}(X)=A_{8} .
\end{aligned}
$$

For example, the configurations of $\left\{P_{1}, P_{2}, L_{0}, L_{1}, C\right\}$ on \mathbf{P}^{2} are given by

$$
\left\{\begin{array}{l}
P_{1}=(0: 0: 1), \\
P_{2}=(0: 1: 0), \\
L_{0}=\left\{z_{0}=0\right\}, \\
L_{1}=\left\{z_{1}=0\right\}, \\
C=\left\{z_{0}^{2}+z_{0} z_{1}-z_{1} z_{2}=0\right\}
\end{array}\right.
$$

(1-6) The case of $r_{1}=6$. First, we consider the case where P_{1}^{1} is a flex point of Γ. In this case, $\widetilde{L_{1}}$ is a (-2)-curve on M. Furthermore, there exists a unique irreducible cubic D passing through seven points $P_{1}^{1}, \ldots, P_{1}^{6}, P_{2}^{1}$ such that P_{2}^{1} is a double point. We denote by \tilde{D} the proper transform of D on M. From Lemma 2.6, it follows that $E_{1}^{1}, \ldots, E_{1}^{5}, E_{2}^{1}, \widetilde{L_{0}}$ and $\widetilde{L_{1}}$ exhaust all of (-2)-curves on M. Moreover, by Lemma 2.7 and Lemma 2.8, we observe that there exist no (-1)-curves on M except for $E_{1}^{6}, E_{2}^{2}, \tilde{D}$, that is, $N_{X}=3$. Hence, the types of singularities of X are determined as follows:

$$
\left(r_{1}, r_{2}\right)=(6,2) \Rightarrow \operatorname{Sing}(X)=A_{1}+E_{7} .
$$

For example, the configurations of $\left\{P_{1}, P_{2}, L_{0}, L_{1}, D\right\}$ on \mathbf{P}^{2} are given by

$$
\left\{\begin{array}{l}
P_{1}=(0: 0: 1), \\
P_{2}=(0: 1: 0) \\
L_{0}=\left\{z_{0}=0\right\} \\
L_{1}=\left\{z_{1}=0\right\} \\
D=\left\{z_{0}^{3}-z_{1} z_{2}^{2}+z_{0} z_{1} z_{2}=0\right\}, \text { or }\left\{z_{0}^{3}-z_{0}^{2} z_{1}-z_{1} z_{2}^{2}+2 z_{0} z_{1} z_{2}=0\right\}
\end{array}\right.
$$

Next, we consider the case where P_{1}^{1} is not a flex point of Γ. In this case, $\widetilde{L_{1}}$ is a (-1)-curve on M. Then there exists uniquely a smooth conic C passing through five points $P_{1}^{1}, \ldots, P_{1}^{4}, P_{2}^{1}$. We set \tilde{C} the proper transform of C on M. Then C must pass through the point P_{1}^{5}, and hence \tilde{C} is a (-2)-curve on M. From Lemma 2.6, it follows that $E_{1}^{1}, \ldots, E_{1}^{5}, E_{2}^{1}, \widetilde{L_{0}}$ and \tilde{C} exhaust all of (-2)-curves on M. Furthermore, by Lemma 2.7 and Lemma 2.8, we see that there exist no (-1)-curves on M except for $E_{2}^{6}, E_{2}^{2}, \widetilde{L_{1}}$, that is, $N_{X}=3$. Hence, the types of singularities of X are determined as follows:

$$
\left(r_{1}, r_{2}\right)=(6,2) \Rightarrow \operatorname{Sing}(X)=A_{8}
$$

For example, the configurations of $\left\{P_{1}, P_{2}, L_{0}, L_{1}, C\right\}$ on \mathbf{P}^{2} are given by

$$
\left\{\begin{array}{l}
P_{1}=(0: 0: 1), \\
P_{2}=(0: 1: 0), \\
L_{0}=\left\{z_{0}=0\right\} \\
L_{1}=\left\{z_{1}=0\right\}, \\
C=\left\{z_{0}^{2}-z_{1} z_{2}=0\right\}
\end{array}\right.
$$

(2) The case where $\widetilde{L_{0}}$ is a (-1)-curve on M. Then it follows that L_{0} is not a tangent line to Γ at P_{1}^{1}. Let L_{1} be the tangent line to Γ at P_{1}^{1}.
(2-1) The case of $r_{2}=1$. In this case, it follows that $r_{1} \geq 3$ and P_{1}^{1} is a flex point of Γ. Then \widetilde{L}_{1} is a (-2)-curve on M. In case of $3 \leq r_{1} \leq 5$, by Lemma 2.7 and Lemma 2.8, we obtain that $E_{1}^{1}, \ldots, E_{1}^{r_{1}-1}$ and $\widetilde{L_{1}}$ (resp. $E_{1}^{r_{1}}, E_{2}^{1}$ and $\widetilde{L_{0}}$) exhaust all of (-2 -curves (resp. (-1)-curves) on M. Thus we have $N_{X}=3$. In case of $r_{1} \geq 6$, there exists a unique irreducible cubic D passing through seven points $P_{1}^{1}, \ldots, P_{1}^{6}, P_{2}^{1}$ such that P_{2}^{1} is a double point. We denote by \tilde{D} the proper transform of D on M. If $r_{1}=6$, then we have $N_{X} \neq 3$ since \tilde{D} is a (-1)-curve on M. If $r_{1}=7, D$ must pass through the point P_{2}^{7} and hence \tilde{D} is a (-2)-curve on M. From Lemma 2.6, we observe that the (-2)-curves on M are eight curves $E_{1}^{1}, \ldots, E_{1}^{6}, \widetilde{L_{1}}, \tilde{D}$. Furthermore, by Lemma 2.7 and Lemma 2.8 , it follows that there exist no (-1)-curves on M except for $E_{1}^{7}, E_{2}^{1}, \widetilde{L_{0}}$, that is, $N_{X}=3$. Hence, the types of singularities of X are determined as follows:

$$
\begin{aligned}
& \left(r_{1}, r_{2}\right)=(3,1) \Rightarrow \operatorname{Sing}(X)=A_{1}+A_{2}, \\
& \left(r_{1}, r_{2}\right)=(4,1) \Rightarrow \operatorname{Sing}(X)=A_{4}, \\
& \left(r_{1}, r_{2}\right)=(5,1) \Rightarrow \operatorname{Sing}(X)=D_{5}, \\
& \left(r_{1}, r_{2}\right)=(7,1) \Rightarrow \operatorname{Sing}(X)=A_{1}+E_{7} .
\end{aligned}
$$

For example, the configurations of $\left\{P_{1}, P_{2}, L_{0}, L_{1}, D\right\}$ on \mathbf{P}^{2} are given by

$$
\left\{\begin{array}{l}
P_{1}=(1: 0: 0), \\
P_{2}=(0: 1: 0) \\
L_{0}=\left\{z_{2}=0\right\} \\
L_{1}=\left\{z_{1}=0\right\} \\
D=\left\{z_{2}^{3}-z_{0}^{2} z_{1}+z_{0} z_{1} z_{2}=0\right\}, \text { or }\left\{z_{2}^{3}-z_{0}^{2} z_{1}-z_{1} z_{2}^{2}+2 z_{0} z_{1} z_{2}=0\right\}
\end{array}\right.
$$

Next, we assume that $r_{2} \geq 2$. Then L_{0} is not the tangent line to Γ. Let L_{1} and L_{2} be the tangent lines to Γ at P_{1}^{1} and P_{2}^{1}, respectively. We put $\widetilde{L_{1}}$ and $\widetilde{L_{2}}$ the proper transforms on M of L_{1} and L_{2}, respectively. We may assume that $r_{1} \geq r_{2}$.
(2-2) The case of $r_{2}=2$. In this case, $N_{X} \neq 3$ since $\widetilde{L_{2}}$ is a (-1)-curve on M.

In case of $r_{2} \geq 3$, it follows that both P_{1}^{1} and P_{2}^{1} must be flexes on Γ and $r_{1} \geq 3$. Then $\widetilde{L_{1}}$ and $\widetilde{L_{2}}$ are (-2)-curves on M. By Lemma 2.6 , we obtain that $E_{1}^{1}, \ldots, E_{1}^{r_{1}-1}, E_{2}^{1}, \ldots, E_{2}^{r_{2}-1}, \widetilde{L_{1}}$ and $\widetilde{L_{2}}$ exhaust all of (-2)-curves on M.
(2-3) The case of $r_{2}=3$. In case of $3 \leq r_{1} \leq 4$, from Lemma 2.7 and Lemma 2.8 , we observe that there exist no (-1)-curves on M except for $E_{1}^{r_{1}}, E_{2}^{3}, \widetilde{L_{0}}$, that is, $N_{X}=3$. If $r_{1}=5$, then there exists a unique irreducible cubic D passing through seven points $P_{1}^{1}, \ldots, P_{1}^{5}, P_{2}^{1}, P_{2}^{2}$ such that P_{2}^{1} is a double point. We put \tilde{D} the proper transform of D on M. Then $N_{X} \neq 3$ since \tilde{D} is a (-1)-curve on M. Hence, the types of singularities of X are determined as follows:

$$
\begin{aligned}
& \left(r_{1}, r_{2}\right)=(3,3) \Rightarrow \operatorname{Sing}(X)=3 A_{2}, \\
& \left(r_{1}, r_{2}\right)=(4,3) \Rightarrow \operatorname{Sing}(X)=A_{2}+A_{5} .
\end{aligned}
$$

(2-4) The case of $r_{2}=4$. In this case, by Lemma 2.7 and Lemma 2.8, we have that there exist no (-1)-curves on M except for $E_{1}^{4}, E_{2}^{4}, \widetilde{L_{0}}$, that is, $N_{X}=3$. Hence, the types of singularities of X are determined as follows:

$$
\left(r_{1}, r_{2}\right)=(4,4) \Rightarrow \operatorname{Sing}(X)=A_{8}
$$

Case 3. The case of $\left|\Sigma_{0}\right|=3$
Now, we may assume that Σ_{r} consists of (distinct) three points $P_{1}\left(=P_{1}^{1}\right)$, $P_{2}\left(=P_{2}^{1}\right)$ and $P_{3}\left(=P_{3}^{1}\right)$ on \mathbf{P}^{2} and their infinitely near points $\left\{P_{1}^{2}, \ldots, P_{1}^{r_{1}}\right\}$, $\left\{P_{2}^{2}, \ldots, P_{2}^{r_{2}}\right\}$ and $\left\{P_{3}^{2}, \ldots, P_{3}^{r_{3}}\right\}$, respectively, where $r=r_{1}+r_{2}+r_{3}$. Let E_{i}^{j} be the exceptional curve of the first kind associated with the blowing-up with center P_{i}^{j}, where $P_{i}^{j+1} \in E_{i}^{j}\left(1 \leq i \leq 3,1 \leq j \leq r_{i}-1\right)$. We denote the proper transform of E_{i}^{j} on M by the same notation E_{i}^{j}. Then E_{i}^{j},s $(1 \leq i \leq 3$, $\left.1 \leq j \leq r_{i}-1\right)$ are (-2 -curves on M and $\left\{E_{1}^{r_{1}}, E_{2}^{r_{2}}, E_{3}^{r_{3}}\right\}$ are (-1)-curves on M.

Case 3.1. The case where there exists a line passing through three points

$$
P_{1}, P_{2}, P_{3}
$$

In this case, let L_{0} be the line passing through three points P_{1}, P_{2}, P_{3} and put $\widetilde{L_{0}}$ the proper transform of L_{0} on M, which implies that $\widetilde{L_{0}}$ is a (-2)-curve on M. We may assume that $r_{1} \geq r_{2} \geq r_{3}$. Let L_{1}, L_{2} and L_{3} be tangent lines to Γ at P_{1}, P_{2} and P_{3}, respectively. We denote by $\widetilde{L_{1}}, \widetilde{L_{2}}$ and $\widetilde{L_{3}}$ the proper transforms on M of L_{1}, L_{2} and L_{3}, respectively. Then it turns out $r_{i}=1$ or $r_{i} \geq 3$ for each i. Moreover, P_{i} is a flex point of Γ if $r_{i} \geq 3$, which implies that $\widetilde{L_{i}}$ is a (-2)-curve on M.
(1) The case of $r_{1}=1$. In this case, we have $N_{X}=3$ and the types of singularities of X are determined as follows:

$$
\left(r_{1}, r_{2}, r_{3}\right)=(1,1,1) \Rightarrow \operatorname{Sing}(X)=A_{1}
$$

(2) The case of $r_{1} \geq 3, r_{2}=r_{3}=1$. In this case, $\widetilde{L_{1}}$ is a (-2 -curve on M. In case of $3 \leq r_{1} \leq 5$, by Lemma 2.7 and Lemma 2.8, we observe that all of (-2)-curves (resp. (-1)-curves) on M are $E_{1}^{1}, \ldots, E_{1}^{r_{1}-1}, \widetilde{L_{0}}, \widetilde{L_{1}}$ (resp. $E_{1}^{r_{1}}, E_{2}^{1}$, $\left.E_{3}^{1}\right)$. If $r_{1}=6$, then there exists a unique irreducible cubic C passing through seven points $P_{1}^{1}, \ldots, P_{1}^{6}, P_{2}^{1}$ such that P_{2}^{1} is a double point. We put \tilde{C} the proper transform of C on M. Then $N_{X} \neq 3$ since \tilde{C} is a (-1)-curve on M. Hence the types of singularities of X are determined as follows:

$$
\begin{aligned}
& \left(r_{1}, r_{2}, r_{3}\right)=(3,1,1) \Rightarrow \operatorname{Sing}(X)=A_{1}+A_{3}, \\
& \left(r_{1}, r_{2}, r_{3}\right)=(4,1,1) \Rightarrow \operatorname{Sing}(X)=A_{5}, \\
& \left(r_{1}, r_{2}, r_{3}\right)=(5,1,1) \Rightarrow \operatorname{Sing}(X)=D_{6} .
\end{aligned}
$$

(3) The case of $r_{1} \geq 3, r_{2}=3, r_{3}=1$. In this case, $\widetilde{L_{1}}$ and $\widetilde{L_{2}}$ are (-2)curves on M. From Lemma 2.6 , it follows that $E_{1}^{1}, \ldots, E_{1}^{r_{1}-1}, E_{2}^{1}, E_{2}^{2}, \widetilde{L_{0}}, \widetilde{L_{1}}$ and $\widetilde{L_{2}}$ exhaust all of (-2)-curves on M. Moreover, by Lemma 2.7 and Lemma 2.8, it follows that there exist no (-1)-curves on M except for $E_{1}^{r_{1}}, E_{2}^{3}$,
E_{3}^{1}, that is, $N_{X}=3$. Hence, the types of singularities on X are determined as follows:

$$
\begin{aligned}
& \left(r_{1}, r_{2}, r_{3}\right)=(3,3,1) \Rightarrow \operatorname{Sing}(X)=A_{1}+A_{5}, \\
& \left(r_{1}, r_{2}, r_{3}\right)=(4,3,1) \Rightarrow \operatorname{Sing}(X)=A_{8} .
\end{aligned}
$$

Case 3.2. The case where there exist no lines passing through three points P_{1}, P_{2}, P_{3}

Now, let L_{1}, L_{2} and L_{3} be lines passing through two points $\left\{P_{1}, P_{2}\right\}$, $\left\{P_{2}, P_{3}\right\}$ and $\left\{P_{1}, P_{3}\right\}$, respectively. We put $\widetilde{L_{1}}, \widetilde{L_{2}}$ and $\widetilde{L_{3}}$ the proper transforms on M of L_{1}, L_{2} and L_{3}, respectively. Then, for each i, it follows that $r_{i} \geq 2$ and L_{i} is the tangent line to Γ. Thus each $\widetilde{L_{i}}$ is a (-2 -curve on M.

We may assume that L_{1}, L_{2} and L_{3} are tangent to Γ at P_{1}, P_{2} and P_{3}, respectively. So we consider four cases $\left(r_{1}, r_{2}, r_{3}\right)=(2,2,2),(3,2,2),(3,3,2)$, $(4,2,2)$.

In cases of $\left(r_{1}, r_{2}, r_{3}\right)=(2,2,2),(3,2,2),(3,3,2)$, by Lemma 2.7 and Lemma 2.8, we observe that there exist no (-1)-curves on M except for $E_{1}^{r_{1}}$, $E_{2}^{r_{2}}, E_{3}^{r_{3}}$. In case of $(4,2,2)$, there exists uniquely a smooth conic C passing through five points $P_{1}^{1}, \ldots, P_{1}^{4}, P_{2}^{1}$. We denote by \tilde{C} the proper transform of C on M. Thus $N_{X} \neq 3$ since C is a (-1)-curve on M. Therefore, the types of singularities of X are determined as follows:

$$
\begin{aligned}
& \left(r_{1}, r_{2}, r_{3}\right)=(2,2,2) \Rightarrow \operatorname{Sing}(X)=3 A_{2}, \\
& \left(r_{1}, r_{2}, r_{3}\right)=(3,2,2) \Rightarrow \operatorname{Sing}(X)=A_{2}+A_{5}, \\
& \left(r_{1}, r_{2}, r_{3}\right)=(3,3,2) \Rightarrow \operatorname{Sing}(X)=A_{8} .
\end{aligned}
$$

Finally, if two normal del Pezzo surfaces X and X^{\prime} with at most three quasi-lines have the same degree and type of singularities, we can see that their minimal resolutions M and M^{\prime} have the same configuration of (-1)-curves and (-2)-curves.

Thus the assertions concerning the types of singularities on X and the configurations of $\hat{\ell} \cup \Delta$ in Theorem 1.3 are proved.

4. The structure of the complement of quasi-lines

Let X be a normal del Pezzo surface with $\operatorname{Sing}(X) \neq \varnothing$ and $N_{X} \geq 1$. We put $\ell:=\bigcup_{j=1}^{N_{X}} \ell_{j}$, where each ℓ_{j} is a quasi-line on X. We assume that $X-\ell$ is biholomorphic to a two-dimensional affine variety $V=\mathbf{C}^{2}, \mathbf{C} \times \mathbf{C}^{*}$ or $\mathbf{C}^{*} \times \mathbf{C}^{*}$. Let $\varphi: M \rightarrow X$ be the minimal resolution of X and $\Delta=\bigcup_{i=1}^{s} \Delta_{i}=\varphi^{-1}(\operatorname{Sing}(X))$ the exceptional set, where each Δ_{i} is an irreducible component. We set $\hat{\ell}:=$ $\bigcup_{j=1}^{N_{X}} \hat{\ell}_{j}$, where each $\hat{\ell}_{j}$ is the proper transform of ℓ_{j}. Now, we can see that
each singular point x_{i} of X lies on ℓ, which implies $M-(\hat{\ell} \cup \Delta) \stackrel{Q}{\simeq} X-\ell \simeq$ V. Moreover, we observe that the curves on M with negative self-intersection numbers consist of the components of $\hat{\ell} \cup \Delta$. In particular, if $N_{X} \leq 3$, by successive applications of birational transformations of M, which are biregular on $M-(\hat{\ell} \cup \Delta)$, the pair $(M, \hat{\ell} \cup \Delta)$ except of the type $A_{1}+E_{7}$ can be transformed into that of one of minimal normal compactifications of V in Morrow [5] and Suzuki [6]. This completes the proof of our Theorem 1.3.

Let us consider the case $V=\mathbf{C}^{2}$. We put $C:=\hat{\ell} \cup \Delta$. Then the pair (M, C) is a compactification of \mathbf{C}^{2}. Then we have the following:

Lemma 4.1. $b_{2}(X)=b_{2}(\hat{\ell})=N_{X}$.
Proof. First we shall prove that $H^{2}(M ; \mathbf{Z}) \simeq H^{2}(C ; \mathbf{Z})$. Let us consider the following exact sequence of cohomology groups over \mathbf{Z} for pair (M, C)

$$
\cdots \rightarrow H^{i}(M, C ; \mathbf{Z}) \rightarrow H^{i}(M ; \mathbf{Z}) \rightarrow H^{i}(C ; \mathbf{Z}) \rightarrow H^{i+1}(M, C ; \mathbf{Z}) \rightarrow \cdots
$$

By Poincaré duality,

$$
H^{i}(M, C ; \mathbf{Z}) \simeq H_{i}(M-C ; \mathbf{Z}) \simeq H_{i}\left(\mathbf{C}^{2} ; \mathbf{Z}\right) \simeq \begin{cases}\mathbf{Z} & (i=0) \\ 0 & (1 \leq i \leq 4)\end{cases}
$$

Thus we have $H^{2}(M ; \mathbf{Z}) \simeq H^{2}(C ; \mathbf{Z})$. Therefore, we have $b_{2}(M)=b_{2}(C)$.
Next we shall show that $b_{2}(C)=b_{2}(\hat{\ell} \cup \Delta)=b_{2}(\hat{\ell})+b_{2}(\Delta)$. Let us consider the following Mayer-Vietoris exact sequence
$\rightarrow H_{i}(\hat{\ell} \cap \Delta ; \mathbf{Z}) \rightarrow H_{i}(\hat{\ell} ; \mathbf{Z}) \oplus H_{i}(\Delta ; \mathbf{Z}) \rightarrow H_{i}(\hat{\ell} \cup \Delta ; \mathbf{Z}) \rightarrow H_{i-1}(\hat{\ell} \cap \Delta ; \mathbf{Z}) \rightarrow \cdots$.
Since $\hat{\ell} \cap \Delta$ consists of a finite set of points, we have $H_{i}(\hat{\ell} \cap \Delta ; \mathbf{Z})=0$ for $i>0$. Thus we observe $b_{2}(C)=b_{2}(\hat{\ell})+b_{2}(\Delta)$. On the other hand, from Proposition 2.5, $b_{2}(M)=b_{2}(X)+b_{2}(\Delta)$. Hence it follows $b_{2}(X)=b_{2}(\hat{\ell})=N_{X}$.

Next we prove $N_{X} \leq 3$. For all $x_{i} \in \operatorname{Sing}(X)$, there exists a quasi-line ℓ_{j} on X such that $x_{i} \in \ell_{j}$. The negative curves on M, that is, (-1)-curves and (-2)-curves on M are components of $\Delta \cup \hat{\ell}$. Assume that $M-(\Delta \cup \hat{\ell}) \cong$ $X-\ell \cong \mathbf{C}^{2}$. Let $\pi: M \rightarrow \mathbf{P}^{2}$ be the blowing-down of (-1)-curves. Then $\pi(\Delta \cup \hat{\ell})$ is a line L on \mathbf{P}^{2}. It follows that $\pi: M \rightarrow \mathbf{P}^{2}$ is a blowing-up with center at most three points on L. If $N_{X} \geq 4$, it implies that there exists a curve $C \neq L$ on \mathbf{P}^{2} such that its proper transform of M is a component of $\hat{\ell}$, which is a contradiction. Therefore we have $N_{X} \leq 3$.

This proves our Theorem 1.4.

References

[1] L. Brenton, Some algebraicity criteria for singular surfaces, Invent. math. 41 no. 2 (1977), 129-147.
[2] L. Brenton, On singular complex surfaces with negative canonical bundle with applications to singular compactifications of \mathbf{C}^{2} and to 3-dimensional rational singularities, Math. Ann. 148 no. 2 (1980), 117-124.
[3] M. Demazure, Surfaces de Del Pezzo, Lecture Notes in Math., 777, Séminaire sur les Singularités des Surfaces, Springer-Verlag, 1980.
[4] F. Hidaka, K. Watanabe, Normal Gorenstein surfaces with ample anti-canonical divisor, Tokyo J. Math. Vol. 4, No. 2 (1981), 319-330.
[5] J. Morrow, Minimal normal compactifications of \mathbf{C}^{2}, Proceedings of the Conference of Complex Analysis, Rice Univ. Studies No. 59 (1973), 97-112.
[6] M. Suzuki, Compactifications of $\mathbf{C} \times \mathbf{C}^{*}$ and $\left(\mathbf{C}^{*}\right)^{2}$, Tohoku Math. J. 31 (1979) 453-468.

Mitsuhiro Yamasaki
Department of General Education
Kumamoto National College of Technology
2659-2 Suya, Koshi, Kumamoto 861-1102, Japan
E-mail: yamasaki@ge.knct.ac.jp

