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Normal Gorenstein del Pezzo surfaces with quasi-lines

Mitsuhiro Yamasaki

Abstract. In this paper, we give a classification of normal del Pezzo surfaces X with

at most three quasi-lines and determine the geometric structure of the complement of

quasi-lines on X . Moreover, we give the complete list of compactifications X of C2

with quasi-lines as boundaries.

1. Introduction

A normal projective Gorenstein surface X over C is called a normal del

Pezzo surface if the anti-canonical divisor �KX is ample. We assume that

SingðXÞ0q.

Let j : M ! X be the minimal resolution of X with the exceptional set

D ¼ 6
i
Di ¼ j�1ðSingðXÞÞ, where each Di is an irreducible component of D.

Then Brenton [2] and Hidaka-Watanabe [4] proved the following:

Proposition 1.1. Let X and M be as above. Then one of the following

two cases occurs.

( i ) M is a rational surface and SingðX Þ consists of rational double points

and each Di is a ð�2Þ-curve. In particular, KM @ j�KX .

(ii) M is a P1-bundle over an elliptic curve T with the negative section

D ¼ j�1ðSingðXÞÞFT. In particular, SingðXÞ ¼ fx1g (one point) and

KM @ j�KX � D.

By using the above proposition, we can obtain the following:

Lemma 1.2. Assume that M is a rational surface. Then an irreducible

curve C on M with ðC2Þ < 0 is either a ð�1Þ-curve or a ð�2Þ-curve. Moreover,

each ð�2Þ-curve on M is an irreducible component of D.

An irreducible curve l on X is called a quasi-line if its proper transform

on M is a ð�1Þ-curve. From Proposition 1.1, we can easily see that M is a

rational surface if X contains quasi-lines. We remark that ðKX � lÞ ¼ �1 for

any quasi-line l on X . Let NX be the number of quasi-lines on X . Our aim

is to give a complete classification of normal del Pezzo surface X with quasi-

lines and determine the geometric structure of the complement of NðaNX Þ-
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quasi-lines on X for the case of 1aNX a 3. Our main results are on as

follows:

Theorem 1.3. Let X be a normal del Pezzo surface over C of degree d.

We assume that SingðXÞ0q and 1aNX a 3. Let j : M ! X be the minimal

resolution of X with the exceptional set D ¼ 6
i
Di, where each Di is an irre-

ducible component. Then SingðXÞ consists of rational double points and we

have the following: Here we denote the singularities of X by the types of the

corresponding Dynkin diagrams.

( I ) If X has only one quasi-line l, then we have 1a da 6, and the types of

singularities are uniquely determined up to deformation as follows:

(1) d ¼ 1 ) SingðX Þ ¼ E8,

(2) d ¼ 2 ) SingðX Þ ¼ E7,

(3) d ¼ 3 ) SingðX Þ ¼ E6,

(4) d ¼ 4 ) SingðX Þ ¼ D5,

(5) d ¼ 5 ) SingðX Þ ¼ A4,

(6) d ¼ 6 ) SingðX Þ ¼ A1 þ A2.

The configurations of curves l̂lUD on M are as in Table I, where l̂l is the

proper transform of l. In particular, we obtain that X � lFC2.

( II ) If X has exactly two distinct quasi-lines l1, l2, then we have 1a da 7,

and the types of singularities are uniquely determined up to deformation as

follows:

(1) d ¼ 1 ) SingðX Þ ¼ D8,

(2) d ¼ 2 ) SingðX Þ ¼ A7 or A1 þD6,

(3) d ¼ 3 ) SingðX Þ ¼ A1 þ A5,

(4) d ¼ 4 ) SingðX Þ ¼ D4 or 2A1 þ A3,

(5) d ¼ 5 ) SingðX Þ ¼ A3,

(6) d ¼ 6 ) SingðX Þ ¼ A2 or 2A1,

(7) d ¼ 7 ) SingðX Þ ¼ A1.

The configurations of curves bl1l1 U bl2l2 UD on M are as in Table II, where bl1l1
and bl2l2 are the proper transforms of l1 and l2, respectively. In particular,

X � ðl1 U l2ÞFC2 or C� C�. In Table II, the first and second columns

are the lists of X such that ðX ; l1 U l2Þ is the compactification of C2 and

C� C�, respectively.

Table I (Compactification of C2)

E8 E7 E6

D5 A4 A1 þ A2
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(III) If X has exactly three distinct quasi-lines l1, l2, l3, then we have

1a da 6, and the types of singularities are uniquely determined up to

deformation as follows:

(1) d ¼ 1 ) SingðX Þ ¼ A8 or A1 þ E7,

(2) d ¼ 2 ) SingðX Þ ¼ D6 or A2 þ A5,

(3) d ¼ 3 ) SingðX Þ ¼ A5, D5 or 3A2,

(4) d ¼ 4 ) SingðX Þ ¼ A4 or A1 þ A3,

(5) d ¼ 5 ) SingðX Þ ¼ A1 þ A2,

(6) d ¼ 6 ) SingðX Þ ¼ A1.

The configurations of curves bl1l1 U bl2l2 U bl3l3 UD on M except of the type

A1 þ E7 are as in Table III, where bl1l1, bl2l2 and bl3l3 are the proper transforms

of l1, l2 and l3, respectively. In particular, X �63

i¼1
li FC2, C� C� or

ðC�Þ2. In Table III, the first, second and third columns are the lists of

X such that ðX ;63

i¼1
liÞ is the compactification of C2, C� C� and ðC�Þ2,

respectively. The configuration of curves bl1l1 U bl2l2 U bl3l3 UD on M of the type

A1 þ E7 is as in Table IV.

Table II (The type of singularities on X and the corresponding dual graph)

d Compactification of C2 Compactification of C� C�

1 D8

2 A7

A1 þD6

3 A1 þ A5

4 D4 2A1 þ A3

5 A3

6 A2

2A1

7 A1
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In this paper, the circle � (resp. �) denotes a ð�1Þ-curve (resp. a ð�2Þ-
curve). Two components are joined by a straight line, double lines and double

lines with a symbol t if the corresponding two curves meet at a point, at two

distinct points and tangentially at a point, respectively.

Theorem 1.4. Let X be a normal del Pezzo surface with SingðXÞ0q.

Let l1; . . . ; lN be quasi-lines on X such that X �6N

i¼1
li is biholomorphic to

C2. Then b2ðXÞ ¼ N and Na 3.

This paper is organized as follows. In Section 2, we give several pre-

liminaries which will be used in Sections 3 and 4. In Section 3, we study a

normal del Pezzo surface X with at most three quasi-lines. In Section 4, we

determine the geometric structure of the complement of quasi-lines on X .

Table III (The type of singularities on X and the corresponding dual graph)

d

Compactification

of C2 Compactification of C� C� Compactification of ðC�Þ2

1 A8

2 D6 A2 þ A5

3 A5 3A2

D5

4 A4

A1 þ A3

5 A1 þ A2

6 A1

Table IV

A1 þ E7
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Notation

Throughtout this paper, we use the following symbols.

SingðX Þ: the singular locus of X

KX :¼ KX�SingðXÞ: the canonical divisor on X

KM : the canonical divisor on M

d :¼ ðKX Þ2: the degree of X

NX : the number of quasi-lines on X

@: the linear equivalence of divisors

b2ð�Þ: the second Betti number of �
ðz0 : z1 : z2Þ: the homogeneous coordinate system of P2.
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2. Preliminaries

In this section, we use the notations as in Section 1. We assume that

SingðXÞ0q and 1aNX a 3. Then M is a rational surface. We remark

that MVP2, P1 � P1, F1 or F2. By Demazure [3] and Hidaka-Watanabe [4],

we get the following:

Proposition 2.1. There exists a set Sr ¼ fP1; . . . ;Prg of rða8Þ-points on

P2 which are in almost general position (See Definition 3.2 of Hidaka-Watanabe

[4]) such that M is isomorphic to VðSrÞ, where VðSrÞ is the rational surface ob-

tained by the blowing-up of P2 with center Sr.

Proposition 2.2. There exists a smooth cubic curve G on P2 which passes

through all points of Sr.

Now, we put Sj :¼ fP1; . . . ;PjgHSr ð ja rÞ. Let gj : VðSjÞ ! P2 be the

blowing-up of P2 with center Sj . Then we have a map pj : VðSjÞ ! VðSj�1Þ
such that gj ¼ gj�1 � pj ð2a ja rÞ. Thus we obtain the sequence of blowing-

ups

M ¼ VðSrÞ �!
pr

VðSr�1Þ �!
pr�1 � � � �!p2 VðS1Þ �!

p1
P2;

where p1 ¼ g1. We put p :¼ p1 � � � � � pr. The map p : M ! P2 is called the

blowing-up of P2 with center Sr.

Then we can show the following:

Corollary 2.3. KM @� ~GG , where ~GG is the proper transform of G on M.

In particular, ~GG is an elliptic curve on M.
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Corollary 2.4. ~GG 2 ¼ 9� r > 0. In particular, we have 1a ra 8.

The following is due to Brenton [1].

Proposition 2.5. b2ðMÞ ¼ b2ðX Þ þ b2ðDÞ, where b2ðDÞ is equal to the

number of irreducible components of D, that is, the number of ð�2Þ-curves on M.

Then we have the following:

Lemma 2.6. b2ðDÞa r.

Proof. By using b2ðMÞ ¼ b2ðVðSrÞÞ ¼ b2ðP2Þ þ r ¼ 1þ r, we have b2ðXÞ
¼ 1þ r� b2ðDÞ. Since b2ðXÞb 1, we have the assertion. r

Lemma 2.7. Let Sr be a set of rða 8Þ-points on P2 which is allowed to

contain infinitely near points and p : VðSrÞ ! P2 the blowing-up of P2 with

center Sr.

(1) If C is a ð�1Þ-curve on VðSrÞ and the image pðCÞ ¼: C0 is a curve on

P2, then C0 is one of the following:

( i ) a line passing through two points of Sr, where rb 2,

( ii ) a conic passing through five points of Sr, where rb 5,

(iii) a cubic passing through seven points of Sr such that one of them is a

double point, where rb 7,

(iv) a quartic passing through all points of S8 such that three of them are

double points,

( v ) a quintic passing through all points of S8 such that six of them are

double points,

(vi) a sextic passing through all points of S8 such that seven of them are

double points and one is a triple point.

(2) If C is a ð�2Þ-curve on VðSrÞ and the image pðCÞ ¼: C0 is a curve on

P2, then C0 is one of the following:

( i ) a line passing through three points of Sr, where rb 3,

( ii ) a conic passing through six points of Sr, where rb 6,

(iii) a cubic passing through all points of S8 such that one of them is a

double point.

Proof. We denote the degree of C0 by dðb1Þ. Let mi ¼ multPi
C0 b 0

be the multiplicity of C0 at Pi, where mi ¼ 0 means that Pi B C0. We remark

that mi bmj if Pj is an infinitely near point of Pi. By the genus formula on

the rational plane curve, we have

d2 � 3dþ 2

2
¼
Xr
i¼1

miðmi � 1Þ
2

;
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that is, d2 � 3dþ 2 ¼
Pr

i¼1 m
2
i �

Pr
i¼1 mi. If C is a ð�1Þ-curve, then

�1 ¼ C2 ¼ C2
0 �

Xr
i¼1

m2
i ¼ d2 �

Xr
i¼1

m2
i :

Thus we have the system of equations

Xr
i¼1

m2
i ¼ d2 þ 1 and

Xr
i¼1

mi ¼ 3d� 1:ð1Þ

On the other hand, if C is a ð�2Þ-curve, then

�2 ¼ C2 ¼ C2
0 �

Xr
i¼1

m2
i ¼ d2 �

Xr
i¼1

m2
i :

Thus we also have the system of equations

Xr
i¼1

m2
i ¼ d2 þ 2 and

Xr
i¼1

mi ¼ 3d:ð2Þ

Hence it comes down to a question of the solutions for the systems of

equations (1) and (2).

Now, we may assume that m1 bm2 b � � �bmk b 1 and mkþ1 ¼ � � � ¼
mr ¼ 0 without loss of generality, where ka r.

First, we shall solve the system of equations (1). If d ¼ 1, then
Pk

i¼1 m
2
i ¼

2 and
Pk

i¼1 mi ¼ 2. Hence k ¼ 2 and m1 ¼ m2 ¼ 1. If d ¼ 2, then
Pk

i¼1 m
2
i ¼

5 and
Pk

i¼1 mi ¼ 5. Hence k ¼ 5 and m1 ¼ � � � ¼ m5 ¼ 1. If db 3, we have

k
Xk
i¼1

m2
i

 !
�

Xk
i¼1

mi

 !2

¼
X

1ai<jak

ðmi �mjÞ2;ð3Þ

we have

kðd2 þ 1Þ � ð3d� 1Þ2 ¼ ðk � 9Þd2 þ 6dþ ðk � 1Þ ¼
X

1ai<jak

ðmi �mjÞ2 b 0;

that is,

3a da
3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð10� kÞ

p
9� k

:

From this inequality, we see k ¼ 7 or 8.

If k ¼ 7, then d ¼ 3. Since
P7

i¼1 m
2
i ¼ 10 and

P7
i¼1 mi ¼ 8, we have

m1 ¼ 2, m2 ¼ � � � ¼ m7 ¼ 1.
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In the case k ¼ 8, then 3a da 7. (i) If d ¼ 7, since
P8

i¼1 m
2
i ¼ 50 andP8

i¼1 mi ¼ 20, we have
P

1ai<ja8ðmi �mjÞ2 ¼ 8 � 50� 202 ¼ 0, that is, m1 ¼ � � �
¼ m8 ¼ 5=2. This leads to a contradiction. (ii) If d ¼ 6, then

P8
i¼1 m

2
i ¼ 37

and
P8

i¼1 mi ¼ 17. Moreover,
P

1ai<ja8ðmi �mjÞ2 ¼ 8 � 37� 172 ¼ 7. SinceP8
i¼1 mi b 8m8, m8 ¼ 1 or 2. If m8 ¼ 1,

P7
i¼1 m

2
i ¼ 36 and

P7
i¼1 mi ¼ 16.

Then
P

1ai<ja7ðmi �mjÞ2 ¼ 7 � 36� 162 ¼ �4, which leads to a contradiction.

If m8 ¼ 2,
P7

i¼1 m
2
i ¼ 33 and

P7
i¼1 mi ¼ 15. Then

P
1ai<ja7ðmi �mjÞ2 ¼

7 � 33� 152 ¼ 6. Hence we have
P

1aia7ðmi � 1Þ2 ¼
P

1ai<ja8ðmi �mjÞ2 �P
1ai<ja7ðmi �mjÞ2 ¼ 1, that is, m1 ¼ 3, m2 ¼ � � � ¼ m7 ¼ 2. (iii) If d ¼ 5,

then
P8

i¼1 m
2
i ¼ 26 and

P8
i¼1 mi ¼ 14. From

P8
i¼1 mi b 8m8, we have m8 ¼ 1.

Then
P7

i¼1 m
2
i ¼ 25 and

P7
i¼1 mi ¼ 13. Moreover, from

P7
i¼1 mi b 7m7, we

have m7 ¼ 1, which implies
P6

i¼1 m
2
i ¼ 24 and

P6
i¼1 mi ¼ 12. Hence we haveP

1ai<ja6ðmi �mjÞ2 ¼ 6 � 24� 122 ¼ 0, that is, m1 ¼ � � � ¼ m6 ¼ 2. (iv) If

d ¼ 4, then
P8

i¼1 m
2
i ¼ 17 and

P8
i¼1 mi ¼ 11. If m4 b 2, then

P8
i¼1 mi b

4 � 2þ 4 ¼ 12. This leads to a contradiction. Thus we have m4 ¼ � � � ¼ m8

¼ 1. Then
P3

i¼1 m
2
i ¼ 12 and

P3
i¼1 mi ¼ 6. Hence we have m1 ¼ m2 ¼ m3

¼ 2. (v) If d ¼ 3, then
P8

i¼1 m
2
i ¼ 10 and

P8
i¼1 mi ¼ 8. There are no solu-

tions for this system of equations.

Therefore all solutions of the system of equations (1) are obtained as

follows up to all possible permutations of the mi’s:

d ¼ 1 and m1 ¼ m2 ¼ 1; m3 ¼ � � � ¼ mr ¼ 0 for rb 2;

d ¼ 2 and m1 ¼ � � � ¼ m5 ¼ 1; m6 ¼ � � � ¼ mr ¼ 0 for rb 5;

d ¼ 3 and m1 ¼ 2; m2 ¼ � � � ¼ m7 ¼ 1; m8 ¼ 0 for rb 7;

d ¼ 4 and m1 ¼ m2 ¼ m3 ¼ 2; m4 ¼ � � � ¼ m8 ¼ 1 for r ¼ 8;

d ¼ 5 and m1 ¼ � � � ¼ m6 ¼ 2; m7 ¼ m8 ¼ 1 for r ¼ 8;

d ¼ 6 and m1 ¼ 3; m2 ¼ � � � ¼ m8 ¼ 2 for r ¼ 8:

By the argument similar to the above, all solutions for the system of

equations (2) are obtained as follows up to all possible permutations of the

mi’s:

d ¼ 1 and m1 ¼ m2 ¼ m3 ¼ 1; m4 ¼ � � � ¼ mr ¼ 0; for rb 3;

d ¼ 2 and m1 ¼ � � � ¼ m6 ¼ 1; m7 ¼ m8 ¼ 0 for rb 6;

d ¼ 3 and m1 ¼ 2; m2 ¼ � � � ¼ m7 ¼ m8 ¼ 1 for r ¼ 8:

Thus the lemma holds. r

By an elementary calculation, we can obtain the following:
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Lemma 2.8. Let Sr be a set of r-points on P2 which is allowed to contain

infinitely near points. Then we have the following:

(1) Let fP1;P2;P3g be a set of three points of Sr for rb 3. If all points

of them are on a line L, then

( i ) no line except L passes through two of the points Pi,

( ii ) no conic passes through all of the points Pi,

(iii) no cubic passes through all of the points Pi such that one of them

is a double point,

(iv) no quartic passes through all of the points Pi such that two of

them are double points,

( v ) no quintic passes through all of the points Pi such that all of them

are double points,

(vi) no sextic passes through all of the points Pi such that two of them

are double points and one is a triple point.

(2) Let fP1; . . . ;P6g be a set of six points of Sr for rb 6. If all points of

them are on a smooth conic C, then

( i ) no line passes through three of the points Pi,

( ii ) no conic other than C passes through five of the points Pi,

(iii) no cubic passes through all of the points Pi such that one of them

is a double point,

(iv) no quartic passes through all of the points Pi such that three of

them are double points,

( v ) no quintic passes through all of the points Pi such that five of

them are double points,

(vi) no sextic passes through all of the points Pi such that five of the

points Pi are double points and one is a triple point.

(3) If all points of S8 ¼ fP1; . . . ;P8g are on an irreducible cubic C with P1

as a double point, then

( i ) no line passes through P1 and other two of the points Pi,

( ii ) no conic passes through P1 and other five of the points Pi,

( iii ) no cubic other than C passes through P1 and other six of the

points Pi such that P1 is a double point,

( iv ) no cubic other than C passes through all of the points Pi such

that one of them is a double point,

( v ) no quartic passes through all of the points Pi such that P1 and

other two of them are double points,

( vi ) no quintic passes through all of the points Pi such that P1 and

other five of them are double points,

(vii) no sextic passes through all of the points Pi such that

seven of them are double points and one is a triple

point.
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Proof. (1) (iii) Let fP1;P2;P3g be a set of three points of Sr and L be a

line which passes through all of points of them. Then we have the sequence of

blowings-up

VðS3Þ !
p3

VðS2Þ !
p2

VðS1Þ !
p1

P2;

where VðS1Þ is the blowing up of P2 with center P1 in P2 and VðSjþ1Þ is

the blowing up of VðSjÞ with center Pjþ1 in VðSjÞ. We set Ej :¼ p�1
j ðPjÞ in

VðSjÞ. Assume that there exists a cubic D which passes through all of the

points Pi such that P1 is a double point. We denote the proper transform of L

and D on VðSjÞ by Lð jÞ and Dð jÞ, respectively. Then

ðLð1Þ;Dð1ÞÞ ¼ ðp�
1L; p

�
1DÞ þ 2E 2

1 ¼ ðL;DÞ þ 2E2
1 ¼ 3� 2 ¼ 1

on VðS1Þ since Lð1Þ @ p�
1L� E1 and Dð1Þ @ p�

1D� 2E1,

ðLð2Þ;Dð2ÞÞ ¼ ðp�
2L

ð1Þ; p�
2D

ð1ÞÞ þ E 2
2 ¼ ðLð1Þ;Dð1ÞÞ þ E2

2 ¼ 1� 1 ¼ 0

on VðS2Þ since Lð2Þ @ p�
2L

ð1Þ � E2 and Dð2Þ @ p�
2D

ð1Þ � E2. This implies that

Lð2Þ VDð2Þ ¼ q, that is, P3 B Dð2Þ on VðS2Þ, which is a contradiction. Similar

arguments show the assertions (2), (3). r

3. Classification of normal del Pezzo surfaces with at most three quasi-lines

Let us retain the above notations. Now, we fix the set Sr of r-points

ð1a ra 8Þ on P2 which are in almost general position. Let G be an elliptic

curve passing through all points of Sr. We put S0 HP2 the set of points of Sr

which are not infinitely near points, that is, S0 ¼ Sr � finfinitely near pointsg.
From the relation

NX :¼ the number of quasi-lines on X

¼ the number of ð�1Þ-curves on M

b the number of points of S0

¼: jS0j;

we have the following:

(1) NX ¼ 1 ) jS0j ¼ 1.

(2) NX ¼ 2 ) jS0ja 2.

(3) NX ¼ 3 ) jS0ja 3.

Case 1. The case jS0j ¼ 1

In this case, Sr consists of a point P1 on P2 and its infinitely near points

P2; . . . ;Pr. Let Ei be the exceptional curve of the first kind associated with

262 Mitsuhiro Yamasaki



the blowing-up with center Pi, where Piþ1 A Ei ð1a ia r� 1Þ. We denote

the proper transform of Ei on M by the same notation Ei. Then Ei’s

ð1a ia r� 1Þ and Er are ð�2Þ-curves and a ð�1Þ-curve on M, respectively.

Let L be the tangent line to G at P1 and put ~LL the proper transform of L

on M.

Case 1.1. The case of NX ¼ 1

In this case, there exists only one ð�1Þ-curve on M. If r ¼ 2, then

NX 0 1 since ~LL is a ð�1Þ-curve on M. In case of rb 3, P1 is a flex point of

G. If it is not so, then ~LL is a ð�1Þ-curve on M, that is, NX 0 1. From

Lemma 2.6, we obtain that E1; . . . ;Er�1, ~LL are all of ð�2Þ-curves on M.

Moreover, by Lemma 2.7, we observe that there exist no ð�1Þ-curves on M

except for Er. Hence, the types of singularities of X with NX ¼ 1 are de-

termined as follows:

r ¼ 3 ) SingðX Þ ¼ A1 þ A2;

r ¼ 4 ) SingðX Þ ¼ A4;

r ¼ 5 ) SingðX Þ ¼ D5;

r ¼ 6 ) SingðX Þ ¼ E6;

r ¼ 7 ) SingðX Þ ¼ E7;

r ¼ 8 ) SingðX Þ ¼ E8:

Remark 3.1. All normal del Pezzo surfaces with SingðXÞ0q and NX ¼ 1

are the six listed in Table I.

Case 1.2. The case of NX ¼ 2

In this case, there exist exactly two ð�1Þ-curves on M. If r ¼ 2, then

NX ¼ 2 since ~LL is a ð�1Þ-curve on M. In case of rb 3, by the result in Case

1.1, P1 is not a flex point of G and hence ~LL is a ð�1Þ-curve on M. If r ¼ 3; 4,

from Lemma 2.7 and Lemma 2.8, it follows that E1; . . . ;Er�1 (resp. Er, ~LL) are

all of ð�2Þ-curves (resp. ð�1Þ-curves) on M. In case of rb 5, there exists a

unique smooth conic C passing through five points P1; . . . ;P5. We denote by
~CC the proper transform of C on M. If r ¼ 5, then NX 0 2 since ~CC is a ð�1Þ-
curve on M. In case of rb 6, C must pass through the point P6 and then ~CC

is a ð�2Þ-curve on M. From Lemma 2.6, we obtain that E1; . . . ;Er�1, ~CC are

all of ð�2Þ-curves on M. Moreover, by Lemma 2.7 and Lemma 2.8, we have

that there exist no ð�1Þ-curves on M except for Er, ~LL. Hence, the types of

singularities of X are determined as follows:
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r ¼ 2 ) SingðX Þ ¼ A1;

r ¼ 3 ) SingðX Þ ¼ A2;

r ¼ 4 ) SingðX Þ ¼ A3;

r ¼ 6 ) SingðX Þ ¼ A1 þ A5;

r ¼ 7 ) SingðX Þ ¼ A7;

r ¼ 8 ) SingðX Þ ¼ D8:

For example, the configurations of fP1;L;Cg on P2 are given by

P1 ¼ ð0 : 0 : 1Þ;
L ¼ fz1 ¼ 0g;
C ¼ fz20 � z1z2 ¼ 0g:

8><>:
Case 1.3. The case of NX ¼ 3

In this case, there exist exactly three ð�1Þ-curves on M. By the results in

Case 1.1 and Case 1.2, we may consider the case where P1 is not a flex point of

G and rb 5. Then ~LL is a ð�1Þ-curve on M. There exists a unique smooth

conic C passing through five points P1; . . . ;P5. We put ~CC the proper transform

of C on M. If r ¼ 5, then ~CC is a ð�1Þ-curve on M. Therefore, from Lemma

2.7, we obtain that there exist no ð�2Þ-curves on M except for E1; . . . ;E4 and

no ð�1Þ-curves on M except for E5, ~LL, ~CC. Hence, NX ¼ 3. In case of rb 6,

C does not pass through the point P6 and then ~CC is a ð�1Þ-curve on M. If

r ¼ 6, from Lemma 2.7, it follows that E1; . . . ;E5 (resp. E6, ~LL, and ~CC) exhaust

all of ð�2Þ-curves (resp. ð�1Þ-curves) on M. Hence, NX ¼ 3. In case of

rb 7, there exists uniquely an irreducible cubic D passing through seven points

P1; . . . ;P7 such that P1 is a double point. We denote by ~DD the proper

transform of D on M. We remark that the irreducible cubic D has P1 as a

node since Sr is in almost general position on P2. If r ¼ 7, then NX 0 3 since
~DD is a ð�1Þ-curve on M. If r ¼ 8, then D passes through the point P8, so ~DD is

a ð�2Þ-curve on M. From Lemma 2.6, we obtain that there exist no ð�2Þ-
curves on M except for E1; . . . ;E7, ~DD. Furthermore, by Lemma 2.7 and

Lemma 2.8, we have that there exist no ð�1Þ-curves on M except for E8, ~LL,
~CC, that is, NX ¼ 3. Hence, the types of singularities of X are determined as

follows:

r ¼ 5 ) SingðXÞ ¼ A4;

r ¼ 6 ) SingðXÞ ¼ A5;

r ¼ 8 ) SingðXÞ ¼ A8:
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For example, the configurations of fP1;L;C;Dg on P2 are given by

P1 ¼ ð0 : 0 : 1Þ;
L ¼ fz1 ¼ 0g;

C ¼ z20 þ
1

2
z21 þ

1ffiffiffi
2

p z0z1 þ
ffiffiffi
2

p
z1z2 ¼ 0

� �
;

D ¼ fz30 þ
ffiffiffi
2

p
z0z1z2 � z21z2 ¼ 0g:

8>>>>>>><>>>>>>>:
Case 2. The case of jS0j ¼ 2

Now, we assume that Sr consists of (distinct) two points P1ð¼ P1
1Þ and

P2ð¼ P1
2Þ on P2 and their infinitely near points P2

1 ; . . . ;P
r1
1 and P2

2 ; . . . ;P
r2
2 ,

respectively, where r ¼ r1 þ r2. Let E
j
i be the exceptional curve of the

first kind associated with the blowing-up with center P
j
i , where P

jþ1
i A E

j
i

ð1a ia 2; 1a ja ri � 1Þ. We denote the proper transform of E
j
i on M by

the same notation E
j
i . Then E

j
i ’s ð1a ia 2; 1a ja ri � 1Þ and Er1

1 , Er2
2 are

respectively ð�2Þ-curves and ð�1Þ-curves on M. Let L0 be the line passing

through two points P1 and P2. We put fL0L0 the proper transform of L0 on

M. If r ¼ 2, namely, ðr1; r2Þ ¼ ð1; 1Þ, there exist no ð�2Þ-curves on M. This

implies that X is smooth. Thus we may consider the case of rb 3.

Case 2.1. The case of NX ¼ 2

In this case, there exist exactly two ð�1Þ-curves on M. Hence L0 must be

a tangent line to G , that is, P2
1 A L0 or P2

2 A L0. Then fL0L0 is a ð�2Þ-curve on

M. Now, we may assume that P2
2 A L0. Let L1 be a tangent line to G at P1

and put fL1L1 the proper transform of L1 on M.

(1) The case of r1 ¼ 1. In case of 2a r2 a 4, from Lemma 2.7 and Lemma

2.8, we obtain that E1
2 ; . . . ;E

r2�1
2 , and fL0L0 (resp. E1

1 and Er2
2 ) exhaust all of

ð�2Þ-curves (resp. ð�1Þ-curves) on M. In case of r2 b 5, there exists uniquely

a smooth conic C passing through five points P1
2 ; . . . ;P

5
2 . We denote by ~CC the

proper transform of C on M. If r2 ¼ 5, then ~CC is a ð�1Þ-curve on M, that is,

NX 0 2. In case of r2 b 6, C must pass through the point P6
2 . Then ~CC is a

ð�2Þ-curve on M. By Lemma 2.6, one sees that there exist no ð�2Þ-curves on
M except for E1

2 ; . . . ;E
r2�1
2 , fL0L0, ~CC. Furthermore, from Lemma 2.7 and Lemma

2.8, we obtain that there exist no ð�1Þ-curves on M except for E1
1 , E

r2
2 , that is,

NX ¼ 2. Hence, the types of singularities of X are determined as follows:

ðr1; r2Þ ¼ ð1; 2Þ ) SingðXÞ ¼ 2A1;

ðr1; r2Þ ¼ ð1; 3Þ ) SingðXÞ ¼ A3;
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ðr1; r2Þ ¼ ð1; 4Þ ) SingðXÞ ¼ D4;

ðr1; r2Þ ¼ ð1; 6Þ ) SingðXÞ ¼ A1 þD6;

ðr1; r2Þ ¼ ð1; 7Þ ) SingðXÞ ¼ D8:

For example, the configurations of fP1;P2;L0;Cg on P2 are given by

P1 ¼ ð0 : 0 : 1Þ;
P2 ¼ ð1 : 0 : 0Þ;
L0 ¼ fz1 ¼ 0g;
C ¼ fz20 � z1z2 ¼ 0g:

8>>><>>>:
(2) The case of r1 ¼ 2. In this case, NX 0 2 since fL1L1 is a ð�1Þ-curve on

M.

In case of r1 b 3, P1 must be a flex point of G and then fL1L1 is a ð�2Þ-curve
on M. From Lemma 2.6, we have that E1

1 ; . . . ;E
r1�1
1 , E1

2 ; . . . ;E
r2�1
2 , fL0L0, andfL1L1 exhaust all of ð�2Þ-curves on M.

(3) The case of r1 ¼ 3. In case of 2a r2 a 4, by Lemma 2.7 and Lemma 2.8,

it follows that there exist no ð�1Þ-curves on M except for E3
1 , Er2

2 , that is,

NX ¼ 2. If r2 ¼ 5, then there exists uniquely a smooth conic C passing through

five points P1
2 ; . . . ;P

5
2 . We denote by ~CC the proper transform of C on M.

Then we have NX 0 2 since ~CC is a ð�1Þ-curve on M. Therefore, the types of

singularities of X are determined as follows:

ðr1; r2Þ ¼ ð3; 2Þ ) SingðX Þ ¼ 2A1 þ A3;

ðr1; r2Þ ¼ ð3; 3Þ ) SingðX Þ ¼ A1 þ A5;

ðr1; r2Þ ¼ ð3; 4Þ ) SingðX Þ ¼ A1 þD6:

(4) The case of r1 ¼ 4. Then since 2a r2 a 4, by Lemma 2.7 and Lemma

2.8, we obtain that there exist no ð�1Þ-curves on M except for E4
1 , Er2

2 .

Hence, we have NX ¼ 2 and the types of singularities of X are determined as

follows:

ðr1; r2Þ ¼ ð4; 2Þ ) SingðX Þ ¼ A1 þ A5;

ðr1; r2Þ ¼ ð4; 3Þ ) SingðX Þ ¼ A7;

ðr1; r2Þ ¼ ð4; 4Þ ) SingðX Þ ¼ D8:

(5) The case of r1 ¼ 5. Then since 2a r2 a 3, by Lemma 2.7 and Lemma 2.8,

one can show that there exist no ð�1Þ-curves on M except for E5
1 , E

r2
2 . Hence,

we have NX ¼ 2 and the types of singularities of X are determined as follows:
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ðr1; r2Þ ¼ ð5; 2Þ ) SingðXÞ ¼ A1 þD6;

ðr1; r2Þ ¼ ð5; 3Þ ) SingðXÞ ¼ D8:

(6) The case of r1 ¼ 6. In this case, there exists a unique irreducible cubic

D passing through seven points P1
1 ; . . . ;P

6
1 , P

1
2 such that P2 is a double point.

We set ~DD the proper transform of D on M. Then we see NX 0 2 since ~DD is a

ð�1Þ-curve.

Case 2.2. The case of NX ¼ 3

(1) The case where fL0L0 is a ð�2Þ-curve on M. In this case, since L0 is a

tangent line to G , we may assume that r2 b 2 and P2
2 A L0. Let L1 be the

tangent line to G at P1 and put fL1L1 the proper transform of L1 on M.

(1-1) The case of r1 ¼ 1. In case of 2a r2 a 4, one has NX ¼ 2 by the result

in (1) of Case 2.1. In case of r2 b 5, there exists uniquely a smooth conic C

passing through five points P1
2 ; . . . ;P

5
2 . We denote by ~CC the proper transform

of C on M. If r2 ¼ 5, then ~CC is a ð�1Þ-curve on M. By Lemma 2.7 and

Lemma 2.8, it follows that the curves E1
2 ; . . . ;E

4
2 ,

~CC (resp. E 1
1 , E

5
2 ,
fL0L0) exhaust

all of ð�2Þ-curves (resp. ð�1Þ-curves) on M. Thus we have NX ¼ 3. In case

of r2 b 6, by the result in (1) of Case 2.1, C must not pass through the point

P6
2 . Then ~CC is a ð�1Þ-curve on M. If r2 ¼ 6, by Lemma 2.7 and Lemma 2.8,

we obtain that the curves E1
2 ; . . . ;E

5
2 ,
fL0L0 (resp. E1

1 , E
6
2 ,

~CC) exhaust all of ð�2Þ-
curves (resp. ð�1Þ-curves) on M. Hence we see NX ¼ 3. If r2 ¼ 7, then there

exists a unique irreducible cubic D passing through seven points P1
2 ; . . . ;P

7
2

such that P1
2 is a double point. We set ~DD the proper transform of D on M.

Then we have NX 0 3 since ~DD is a ð�1Þ-curve on M. Therefore the types of

singularities of X are determined as follows:

ðr1; r2Þ ¼ ð1; 5Þ ) SingðX Þ ¼ D5;

ðr1; r2Þ ¼ ð1; 6Þ ) SingðX Þ ¼ D6:

(1-2) The case of r1 ¼ 2. In this case, fL1L1 is a ð�1Þ-curve on M. In case of

2a r2 a 4, by Lemma 2.7 and Lemma 2.8, we obtain that there exist no ð�1Þ-
curves and no ð�2Þ-curves on M except for E 2

1 , E
r2
2 , fL1L1 and E1

1 , E
1
2 ; . . . ;E

r2�1
2 ,fL0L0, respectively. Then we see NX ¼ 3. In case of r2 b 5, there exists a unique

smooth conic C passing through five points P1
2 ; . . . ;P

5
2 . We put ~CC the proper

transform of C on M. If r2 ¼ 5, then NX 0 3 since ~CC is a ð�1Þ-curve on M.

If r2 ¼ 6 and C passes through the point P6
2 , then

~CC is a ð�2Þ-curve on M.

From Lemma 2.6, it follows that E1
1 , E

1
2 ; . . . ;E

5
2 ,
fL0L0 and ~CC exhaust all of ð�2Þ-

curves on M. Moreover, from Lemma 2.7 and Lemma 2.8, we obtain that
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there exist no ð�1Þ-curves on M except for E2
2 , E6

2 ,
fL1L1, that is, NX ¼ 3.

Hence, the types of singularities on X are determined as follows:

ðr1; r2Þ ¼ ð2; 2Þ ) SingðX Þ ¼ A1 þ A2;

ðr1; r2Þ ¼ ð2; 3Þ ) SingðX Þ ¼ A4;

ðr1; r2Þ ¼ ð2; 4Þ ) SingðX Þ ¼ D5;

ðr1; r2Þ ¼ ð2; 6Þ ) SingðX Þ ¼ A1 þ E7:

For example, the configurations of fP1;P2;L0;L1;Cg on P2 are given by

P1 ¼ ð0 : 0 : 1Þ;
P2 ¼ ð0 : 1 : 0Þ;
L0 ¼ fz0 ¼ 0g;
L1 ¼ fz1 ¼ 0g;
C ¼ fz20 þ z0z2 � z1z2 ¼ 0g or fz20 � z1z2 ¼ 0g:

8>>>>><>>>>>:
(1-3) The case of r1 ¼ 3. First, we consider the case where P1

1 is a flex point

of G. In this case, fL1L1 is a ð�2Þ-curve on M. By Lemma 2.6, we obtain that

there exist no ð�2Þ-curves on M except for E1
1 , E

2
1 , E

1
2 ; . . . ;E

r2�1
2 , fL0L0, fL1L1. In

case of 2a r2 a 4, NX ¼ 2 by the result in (3) of Case 2.1. If r2 ¼ 5, then

there exists a unique smooth conic C passing through five points P1
2 ; . . . ;P

5
2 .

We denote by ~CC the proper transform of C on M. Then ~CC is a ð�1Þ-curve
on M. From Lemma 2.7 and Lemma 2.8, we obtain that there exist no ð�1Þ-
curves on M except for E3

2 , E5
2 ,

~CC, that is, NX ¼ 3. Hence, the types of

singularities of X are determined as follows:

ðr1; r2Þ ¼ ð3; 5Þ ) SingðXÞ ¼ A1 þ E7:

For example, the configurations of fP1;P2;L0;L1;Cg on P2 are given by

P1 ¼ ð0 : 0 : 1Þ;
P2 ¼ ð0 : 1 : 0Þ;
L0 ¼ fz0 ¼ 0g;
L1 ¼ fz1 ¼ 0g;
C ¼ fz20 þ z0z2 � z1z2 ¼ 0g or fz20 � z1z2 ¼ 0g:

8>>>>><>>>>>:
Next, we consider the case where P1

1 is not a flex point of G . In this case,fL1L1 is a ð�1Þ-curve on M. In case of 2a r2 a 4, from Lemma 2.7 and Lemma

2.8, we have that E 1
1 , E

2
1 , E

1
2 ; . . . ;E

r2�1
2 and fL0L0 (resp. E3

1 , E
r2
2 and fL1L1) exhaust

all of ð�2Þ-curves (resp. ð�1Þ-curves) on M. Hence, NX ¼ 3. If r2 ¼ 5, then

there exists a unique smooth conic C passing through five points P1
2 ; . . . ;P

5
2 .

We set ~CC the proper transform of C on M. Then NX 0 3 since ~CC is a ð�1Þ-
curve on M. Thus the types of singularities of X are determined as follows:
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ðr1; r2Þ ¼ ð3; 2Þ ) SingðX Þ ¼ A1 þ A3;

ðr1; r2Þ ¼ ð3; 3Þ ) SingðX Þ ¼ A5;

ðr1; r2Þ ¼ ð3; 4Þ ) SingðX Þ ¼ D6:

(1-4) The case of r1 ¼ 4. First, we consider the case where P1
1 is a flex point

of G . In this case, one has NX ¼ 2 by the result in (4) of Case 2.1. Next,

we consider the case where P1
1 is not a flex point of G . In this case, fL1L1 is a

ð�1Þ-curve on M. Moveover, there exists uniquely a smooth conic C passing

through five points P1
1 ; . . . ;P

4
1 , P

1
2 . We put ~CC the proper transform of C on

M. Then we have NX 0 3 since ~CC is a ð�1Þ-curve on M.

(1-5) The case of r1 ¼ 5. First, we consider the case where P1
1 is a flex point

of G . In this case, one has NX ¼ 2 by the result in (5) of Case 2.1. Next, we

consider the case where P1
1 is not a flex point of G . In this case, fL1L1 is a ð�1Þ-

curve on M. Furthermore, there exists uniquely a smooth conic C passing

through five points P1
1 ; . . . ;P

4
1 , P

1
2 . We denote by ~CC the proper transform of

C on M. Then C must pass through the point P5
1 and hence ~CC is a ð�2Þ-

curve on M. From Lemma 2.6, we observe that E1
1 ; . . . ;E

4
1 , E

1
2 ; . . . ;E

r2�1
2 , fL0L0

and ~CC exhaust all of ð�2Þ-curves on M. Moreover, by Lemma 2.7 and Lemma

2.8, it follows that there exist no ð�1Þ-curves on M except for E5
1 , E

r2
2 , fL1L1, that

is, NX ¼ 3. Hence, the types of singularities of X are determined as follows:

ðr1; r2Þ ¼ ð5; 2Þ ) SingðX Þ ¼ A2 þ A5:

ðr1; r2Þ ¼ ð5; 3Þ ) SingðX Þ ¼ A8:

For example, the configurations of fP1;P2;L0;L1;Cg on P2 are given by

P1 ¼ ð0 : 0 : 1Þ;
P2 ¼ ð0 : 1 : 0Þ;
L0 ¼ fz0 ¼ 0g;
L1 ¼ fz1 ¼ 0g;
C ¼ fz20 þ z0z1 � z1z2 ¼ 0g:

8>>>>><>>>>>:
(1-6) The case of r1 ¼ 6. First, we consider the case where P1

1 is a flex point

of G . In this case, fL1L1 is a ð�2Þ-curve on M. Furthermore, there exists a

unique irreducible cubic D passing through seven points P1
1 ; . . . ;P

6
1 , P1

2 such

that P1
2 is a double point. We denote by ~DD the proper transform of D on

M. From Lemma 2.6, it follows that E1
1 ; . . . ;E

5
1 , E

1
2 ,
fL0L0 and fL1L1 exhaust all

of ð�2Þ-curves on M. Moreover, by Lemma 2.7 and Lemma 2.8, we observe

that there exist no ð�1Þ-curves on M except for E 6
1 , E

2
2 ,

~DD, that is, NX ¼ 3.

Hence, the types of singularities of X are determined as follows:

269Del Pezzo surfaces with quasi-lines



ðr1; r2Þ ¼ ð6; 2Þ ) SingðXÞ ¼ A1 þ E7:

For example, the configurations of fP1;P2;L0;L1;Dg on P2 are given by

P1 ¼ ð0 : 0 : 1Þ;
P2 ¼ ð0 : 1 : 0Þ;
L0 ¼ fz0 ¼ 0g;
L1 ¼ fz1 ¼ 0g;
D ¼ fz30 � z1z

2
2 þ z0z1z2 ¼ 0g; or fz30 � z20z1 � z1z

2
2 þ 2z0z1z2 ¼ 0g:

8>>>>><>>>>>:
Next, we consider the case where P1

1 is not a flex point of G . In this case,fL1L1 is a ð�1Þ-curve on M. Then there exists uniquely a smooth conic C passing

through five points P1
1 ; . . . ;P

4
1 , P

1
2 . We set ~CC the proper transform of C on

M. Then C must pass through the point P5
1 , and hence ~CC is a ð�2Þ-curve on

M. From Lemma 2.6, it follows that E1
1 ; . . . ;E

5
1 , E

1
2 ,
fL0L0 and ~CC exhaust all of

ð�2Þ-curves on M. Furthermore, by Lemma 2.7 and Lemma 2.8, we see that

there exist no ð�1Þ-curves on M except for E6
2 , E2

2 ,
fL1L1, that is, NX ¼ 3.

Hence, the types of singularities of X are determined as follows:

ðr1; r2Þ ¼ ð6; 2Þ ) SingðXÞ ¼ A8:

For example, the configurations of fP1;P2;L0;L1;Cg on P2 are given by

P1 ¼ ð0 : 0 : 1Þ;
P2 ¼ ð0 : 1 : 0Þ;
L0 ¼ fz0 ¼ 0g;
L1 ¼ fz1 ¼ 0g;
C ¼ fz20 � z1z2 ¼ 0g:

8>>>>><>>>>>:
(2) The case where fL0L0 is a ð�1Þ-curve on M. Then it follows that L0 is not a

tangent line to G at P1
1 . Let L1 be the tangent line to G at P1

1 .

(2-1) The case of r2 ¼ 1. In this case, it follows that r1 b 3 and P1
1 is a flex

point of G. Then fL1L1 is a ð�2Þ-curve on M. In case of 3a r1 a 5, by Lemma

2.7 and Lemma 2.8, we obtain that E1
1 ; . . . ;E

r1�1
1 and fL1L1 (resp. Er1

1 , E 1
2 and fL0L0)

exhaust all of ð�2Þ-curves (resp. ð�1Þ-curves) on M. Thus we have NX ¼ 3.

In case of r1 b 6, there exists a unique irreducible cubic D passing through

seven points P1
1 ; . . . ;P

6
1 , P

1
2 such that P1

2 is a double point. We denote by ~DD

the proper transform of D on M. If r1 ¼ 6, then we have NX 0 3 since ~DD is a

ð�1Þ-curve on M. If r1 ¼ 7, D must pass through the point P7
2 and hence ~DD is

a ð�2Þ-curve on M. From Lemma 2.6, we observe that the ð�2Þ-curves on M

are eight curves E1
1 ; . . . ;E

6
1 ,
fL1L1, ~DD. Furthermore, by Lemma 2.7 and Lemma

2.8, it follows that there exist no ð�1Þ-curves on M except for E7
1 , E

1
2 ,
fL0L0, that

is, NX ¼ 3. Hence, the types of singularities of X are determined as follows:
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ðr1; r2Þ ¼ ð3; 1Þ ) SingðX Þ ¼ A1 þ A2;

ðr1; r2Þ ¼ ð4; 1Þ ) SingðX Þ ¼ A4;

ðr1; r2Þ ¼ ð5; 1Þ ) SingðX Þ ¼ D5;

ðr1; r2Þ ¼ ð7; 1Þ ) SingðX Þ ¼ A1 þ E7:

For example, the configurations of fP1;P2;L0;L1;Dg on P2 are given

by

P1 ¼ ð1 : 0 : 0Þ;
P2 ¼ ð0 : 1 : 0Þ;
L0 ¼ fz2 ¼ 0g;
L1 ¼ fz1 ¼ 0g;
D ¼ fz32 � z20z1 þ z0z1z2 ¼ 0g; or fz32 � z20z1 � z1z

2
2 þ 2z0z1z2 ¼ 0g:

8>>>>><>>>>>:
Next, we assume that r2 b 2. Then L0 is not the tangent line to G. Let

L1 and L2 be the tangent lines to G at P1
1 and P1

2 , respectively. We put fL1L1

and fL2L2 the proper transforms on M of L1 and L2, respectively. We may

assume that r1 b r2.

(2-2) The case of r2 ¼ 2. In this case, NX 0 3 since fL2L2 is a ð�1Þ-curve on

M.

In case of r2 b 3, it follows that both P1
1 and P1

2 must be flexes on G and

r1 b 3. Then fL1L1 and fL2L2 are ð�2Þ-curves on M. By Lemma 2.6, we obtain

that E1
1 ; . . . ;E

r1�1
1 , E1

2 ; . . . ;E
r2�1
2 , fL1L1 and fL2L2 exhaust all of ð�2Þ-curves on M.

(2-3) The case of r2 ¼ 3. In case of 3a r1 a 4, from Lemma 2.7 and Lemma

2.8, we observe that there exist no ð�1Þ-curves on M except for Er1
1 , E3

2 ,
fL0L0,

that is, NX ¼ 3. If r1 ¼ 5, then there exists a unique irreducible cubic D

passing through seven points P1
1 ; . . . ;P

5
1 , P1

2 , P2
2 such that P1

2 is a double

point. We put ~DD the proper transform of D on M. Then NX 0 3 since ~DD is

a ð�1Þ-curve on M. Hence, the types of singularities of X are determined as

follows:

ðr1; r2Þ ¼ ð3; 3Þ ) SingðX Þ ¼ 3A2;

ðr1; r2Þ ¼ ð4; 3Þ ) SingðX Þ ¼ A2 þ A5:

(2-4) The case of r2 ¼ 4. In this case, by Lemma 2.7 and Lemma 2.8, we

have that there exist no ð�1Þ-curves on M except for E4
1 , E4

2 ,
fL0L0, that is,

NX ¼ 3. Hence, the types of singularities of X are determined as follows:

ðr1; r2Þ ¼ ð4; 4Þ ) SingðXÞ ¼ A8:
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Case 3. The case of jS0j ¼ 3

Now, we may assume that Sr consists of (distinct) three points P1ð¼ P1
1Þ,

P2ð¼ P1
2Þ and P3ð¼ P1

3Þ on P2 and their infinitely near points fP2
1 ; . . . ;P

r1
1 g,

fP2
2 ; . . . ;P

r2
2 g and fP2

3 ; . . . ;P
r3
3 g, respectively, where r ¼ r1 þ r2 þ r3. Let E j

i be

the exceptional curve of the first kind associated with the blowing-up with

center P
j
i , where P

jþ1
i A E

j
i ð1a ia 3; 1a ja ri � 1Þ. We denote the proper

transform of E
j
i on M by the same notation E

j
i . Then E

j
i ’s ð1a ia 3;

1a ja ri � 1Þ are ð�2Þ-curves on M and fEr1
1 ;Er2

2 ;Er3
3 g are ð�1Þ-curves on

M.

Case 3.1. The case where there exists a line passing through three points

P1, P2, P3

In this case, let L0 be the line passing through three points P1, P2, P3 and

put fL0L0 the proper transform of L0 on M, which implies that fL0L0 is a ð�2Þ-curve
on M. We may assume that r1 b r2 b r3. Let L1, L2 and L3 be tangent lines

to G at P1, P2 and P3, respectively. We denote by fL1L1, fL2L2 and fL3L3 the proper

transforms on M of L1, L2 and L3, respectively. Then it turns out ri ¼ 1 or

ri b 3 for each i. Moreover, Pi is a flex point of G if ri b 3, which implies

that eLiLi is a ð�2Þ-curve on M.

(1) The case of r1 ¼ 1. In this case, we have NX ¼ 3 and the types of

singularities of X are determined as follows:

ðr1; r2; r3Þ ¼ ð1; 1; 1Þ ) SingðXÞ ¼ A1:

(2) The case of r1 b 3, r2 ¼ r3 ¼ 1. In this case, fL1L1 is a ð�2Þ-curve on M.

In case of 3a r1 a 5, by Lemma 2.7 and Lemma 2.8, we observe that all of

ð�2Þ-curves (resp. ð�1Þ-curves) on M are E1
1 ; . . . ;E

r1�1
1 , fL0L0, fL1L1 (resp. Er1

1 , E1
2 ,

E1
3 ). If r1 ¼ 6, then there exists a unique irreducible cubic C passing through

seven points P1
1 ; . . . ;P

6
1 , P1

2 such that P1
2 is a double point. We put ~CC the

proper transform of C on M. Then NX 0 3 since ~CC is a ð�1Þ-curve on M.

Hence the types of singularities of X are determined as follows:

ðr1; r2; r3Þ ¼ ð3; 1; 1Þ ) SingðXÞ ¼ A1 þ A3;

ðr1; r2; r3Þ ¼ ð4; 1; 1Þ ) SingðXÞ ¼ A5;

ðr1; r2; r3Þ ¼ ð5; 1; 1Þ ) SingðXÞ ¼ D6:

(3) The case of r1 b 3, r2 ¼ 3, r3 ¼ 1. In this case, fL1L1 and fL2L2 are ð�2Þ-
curves on M. From Lemma 2.6, it follows that E1

1 ; . . . ;E
r1�1
1 , E1

2 , E
2
2 ,
fL0L0, fL1L1

and fL2L2 exhaust all of ð�2Þ-curves on M. Moreover, by Lemma 2.7 and

Lemma 2.8, it follows that there exist no ð�1Þ-curves on M except for Er1
1 , E3

2 ,
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E1
3 , that is, NX ¼ 3. Hence, the types of singularities on X are determined as

follows:

ðr1; r2; r3Þ ¼ ð3; 3; 1Þ ) SingðXÞ ¼ A1 þ A5;

ðr1; r2; r3Þ ¼ ð4; 3; 1Þ ) SingðXÞ ¼ A8:

Case 3.2. The case where there exist no lines passing through three points

P1, P2, P3

Now, let L1, L2 and L3 be lines passing through two points fP1;P2g,
fP2;P3g and fP1;P3g, respectively. We put fL1L1, fL2L2 and fL3L3 the proper trans-

forms on M of L1, L2 and L3, respectively. Then, for each i, it follows that

ri b 2 and Li is the tangent line to G . Thus each eLiLi is a ð�2Þ-curve on M.

We may assume that L1, L2 and L3 are tangent to G at P1, P2 and P3,

respectively. So we consider four cases ðr1; r2; r3Þ ¼ ð2; 2; 2Þ; ð3; 2; 2Þ; ð3; 3; 2Þ;
ð4; 2; 2Þ.

In cases of ðr1; r2; r3Þ ¼ ð2; 2; 2Þ; ð3; 2; 2Þ; ð3; 3; 2Þ, by Lemma 2.7 and

Lemma 2.8, we observe that there exist no ð�1Þ-curves on M except for Er1
1 ,

Er2
2 , Er3

3 . In case of ð4; 2; 2Þ, there exists uniquely a smooth conic C passing

through five points P1
1 ; . . . ;P

4
1 , P

1
2 . We denote by ~CC the proper transform of

C on M. Thus NX 0 3 since ~CC is a ð�1Þ-curve on M. Therefore, the types

of singularities of X are determined as follows:

ðr1; r2; r3Þ ¼ ð2; 2; 2Þ ) SingðXÞ ¼ 3A2;

ðr1; r2; r3Þ ¼ ð3; 2; 2Þ ) SingðXÞ ¼ A2 þ A5;

ðr1; r2; r3Þ ¼ ð3; 3; 2Þ ) SingðXÞ ¼ A8:

Finally, if two normal del Pezzo surfaces X and X 0 with at most three

quasi-lines have the same degree and type of singularities, we can see that their

minimal resolutions M and M 0 have the same configuration of ð�1Þ-curves and
ð�2Þ-curves.

Thus the assertions concerning the types of singularities on X and the

configurations of l̂lUD in Theorem 1.3 are proved.

4. The structure of the complement of quasi-lines

Let X be a normal del Pezzo surface with SingðX Þ0q and NX b 1. We

put l :¼ 6NX

j¼1
lj, where each lj is a quasi-line on X . We assume that X � l is

biholomorphic to a two-dimensional a‰ne variety V ¼ C2, C� C� or C� � C�.

Let j : M ! X be the minimal resolution of X and D ¼ 6 s

i¼1
Di ¼ j�1ðSingðX ÞÞ

the exceptional set, where each Di is an irreducible component. We set l̂l :¼
6NX

j¼1
l̂lj , where each l̂lj is the proper transform of lj. Now, we can see that
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each singular point xi of X lies on l, which implies M � ðl̂lUDÞ Fj X � lF
V . Moreover, we observe that the curves on M with negative self-intersection

numbers consist of the components of l̂lUD. In particular, if NX a 3, by

successive applications of birational transformations of M, which are biregular

on M � ðl̂lUDÞ, the pair ðM; l̂lUDÞ except of the type A1 þ E7 can be trans-

formed into that of one of minimal normal compactifications of V in Morrow

[5] and Suzuki [6]. This completes the proof of our Theorem 1.3.

Let us consider the case V ¼ C2. We put C :¼ l̂lUD. Then the pair

ðM;CÞ is a compactification of C2. Then we have the following:

Lemma 4.1. b2ðXÞ ¼ b2ðl̂lÞ ¼ NX .

Proof. First we shall prove that H 2ðM;ZÞFH 2ðC;ZÞ. Let us consider

the following exact sequence of cohomology groups over Z for pair ðM;CÞ

� � � ! HiðM;C;ZÞ ! HiðM;ZÞ ! HiðC;ZÞ ! Hiþ1ðM;C;ZÞ ! � � � :

By Poincaré duality,

HiðM;C;ZÞFHiðM � C;ZÞFHiðC2;ZÞF Z ði ¼ 0Þ
0 ð1a ia 4Þ

�
:

Thus we have H 2ðM;ZÞFH 2ðC;ZÞ. Therefore, we have b2ðMÞ ¼ b2ðCÞ.
Next we shall show that b2ðCÞ ¼ b2ðl̂lUDÞ ¼ b2ðl̂lÞ þ b2ðDÞ. Let us con-

sider the following Mayer-Vietoris exact sequence

! Hiðl̂lVD;ZÞ ! Hiðl̂l;ZÞlHiðD;ZÞ ! Hiðl̂lUD;ZÞ ! Hi�1ðl̂lVD;ZÞ ! � � � :

Since l̂lVD consists of a finite set of points, we have Hiðl̂lVD;ZÞ ¼ 0 for i > 0.

Thus we observe b2ðCÞ ¼ b2ðl̂lÞ þ b2ðDÞ. On the other hand, from Proposition

2.5, b2ðMÞ ¼ b2ðX Þ þ b2ðDÞ. Hence it follows b2ðX Þ ¼ b2ðl̂lÞ ¼ NX . r

Next we prove NX a 3. For all xi A SingðX Þ, there exists a quasi-line lj
on X such that xi A lj. The negative curves on M, that is, ð�1Þ-curves and

ð�2Þ-curves on M are components of DU l̂l. Assume that M � ðDU l̂lÞG
X � lGC2. Let p : M ! P2 be the blowing-down of ð�1Þ-curves. Then

pðDU l̂lÞ is a line L on P2. It follows that p : M ! P2 is a blowing-up with

center at most three points on L. If NX b 4, it implies that there exists a

curve C0L on P2 such that its proper transform of M is a component of l̂l,

which is a contradiction. Therefore we have NX a 3.

This proves our Theorem 1.4. r
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