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Abstract. This paper deals with Lindelöf type theorems for monotone Sobolev

functions on a uniform domain.

1. Introduction

A continuous function u on an open set D in the n-dimensional Euclidean

space Rn, nb 2, is called monotone in the sense of Lebesgue (see [6]) if the

equalities

max
G

u ¼ max
qG

u and min
G

u ¼ min
qG

u

hold whenever G is a domain with compact closure GHD. If u is a

monotone Sobolev function on D and p > n� 1, then

juðxÞ � uðx 0ÞjaCðn; pÞr1�n=p

ð
Bðz; rÞ

j‘uðyÞjpdy
 !1=p

ð1:1Þ

whenever x; x 0 A Bðz; r=2Þ with Bðz; rÞHD, where Bðz; rÞ is the open ball

centered at z with radius r and Cðn; pÞ is a positive constant depending only on

n and p (see [11, Chapter 8] and [13, Section 16]). Using this inequality (1.1),

we proved Lindelöf theorems for monotone Sobolev functions on the half space

of Rn in [1]. For related results, see Koskela-Manfredi-Villamor [5], Manfredi-

Villamor [7, 8] and Mizuta [10]. In this paper we will generalize this result to

a uniform domain in a metric space.

Let X be a metric space with a metric d and m be a Borel measure on

X which is positive and finite on balls. We denote by Bðx; rÞ the open ball

centered at x A X with radius r > 0 and set lB ¼ Bðx; lrÞ for each ball

B ¼ Bðx; rÞ and l > 0. A domain D in X with qD0q is a uniform domain

if there exists a constant Ab 1 such that each pair of points x; y A D can be

joined by a curve g in D for which

2000 Mathematics Subject Classification. Primary 31B25 (46E35)

Key words and phrases. monotone Sobolev functions, Lindelöf theorem, uniform domain,
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lðgÞaAdðx; yÞ;ð1:2Þ

dDðzÞbA�1 minflðgðx; zÞÞ; lðgðy; zÞÞg for all z 2 g;ð1:3Þ

where lðgÞ; dDðzÞ and gðx; zÞ denote the length of g, the distance from z to qD

and the subarc of g connecting x and z, respectively (see [9] and [12]). Here a

curve means simple curve.

Our first aim in this paper is to deal with Lindelöf type theorems for

functions u on a uniform domain D for which there exist a nonnegative Borel

function g A L
p
locðD; mÞ, p > 1, constants M > 0 and 0 < la 1 such that

juðxÞ � uðx 0ÞjaMr

ð
Bðz; rÞ

gðyÞpdmðyÞ
 !1=p

ð1:4Þ

whenever x; x 0 A Bðz; lrÞ with Bðz; rÞHD andð
D

gðyÞpdDðyÞadmðyÞ < yð1:5Þ

for some real number a. Here we used the standard notation

uF ¼
ð
F

u dm ¼ 1

mðFÞ

ð
F

u dm

for a measurable set F with 0 < mðF Þ < y. For this purpose we assume that

there exists a constant C1 b 1 such that

mð2BÞaC1mðBÞð1:6Þ

for all balls B. We further assume that there exist constants Qb 1 and C2 > 0

such that

mðBÞ
mðB0Þ

bC2
diam B

diam B0

� �Q
ð1:7Þ

for all balls B and B0 with BHB0. For x A qD and a > 1, consider the set

GDðx; aÞ ¼ fx A D : dðx; xÞ < adDðxÞg:

A function u defined on D is said to have a nontangential limit L at x A qD if

for every a > 1, limz!x; z AGDðx;aÞ uðzÞ ¼ L. The main result of this paper is the

following theorem.

Theorem 1. Let D be a uniform domain in X. Let u be a function on D

with gb 0 satisfying (1.4) and (1.5). Suppose p > Qþ a� 1 and set

E ¼ x A qD : lim sup
r!0

rp�a

mðBðx; rÞÞ

ð
Bðx; rÞVD

gðyÞpdDðyÞadmðyÞ > 0

( )
:
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If x A qDnE and there exists a curve g in D tending to x along which u has a

finite limit L, then u has a nontangential limit L at x.

Remark 1. If g satisfies (1.5), then HQþa�pðEÞ ¼ 0, where Hs denotes

the s-dimensional Hausdor¤ measure.

Corollary 1. Let u be a monotone Sobolev function on a uniform domain

D in Rn satisfying ð
D

j‘uðyÞjpdDðyÞady < y;

where p > maxfn� 1; n� 1þ ag. Set

E 0 ¼ x A qD : lim sup
r!0

rp�a�n

ð
Bðx; rÞVD

j‘uðyÞjpdDðyÞady > 0

( )
:

If x A qDnE 0 and there exists a curve g in D tending to x along which u has a

finite limit L, then u has a nontangential limit L at x:

2. Proof of Theorem 1

Throughout this paper, let M denote various constants independent of the

variables in question.

For a proof of Theorem 1, we need the following Lemmas.

Lemma 1. Let D be a uniform domain. Then, for each x A qD, there exists

a curve gx in D ending at x such that

dDðzÞbA�1
1 lðgxðx; zÞÞ for all z A gx;ð2:1Þ

where A1 ¼ 25A3.

Proof. Fix x A qD. For each j su‰ciently large (say jb j0), take a

point wj A DV qBðx; 2�jÞ. Further, take a curve gj in D joining wj�1 and

wjþ1 satisfying (1.2) and (1.3), and take a point zj A gj V qBðx; 2�jÞ. Since

lðgjðwjþ1; zjÞÞb 2�j�1 and lðgjðwj�1; zjÞÞb 2�j , we have by (1.3)

dDðzjÞbA�12�j�1:

Let ĝgj be a curve in D joining zj and zjþ1 satisfying (1.2) and (1.3). Then

lðĝgjÞaA2�jþ1 and dDðzÞbA�22�j�3 for all z A ĝgj. Set

ĝgx ¼ ĝgj0 þ ĝgj0þ1 þ ĝgj0þ2 þ � � �

Then it is not di‰cult to construct a simple curve gx from ĝgx satisfying (2.1)

with A1 ¼ 25A3. r
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For each t A R, consider the function

ktðr1; r2Þ ¼
ð r2
r1

tð1�t�QÞ=ðp�1Þ dt

� �1�1=p

for 0a r1 < r2.

Lemma 2 (cf. [2, Lemma 3]). Let u be a function on D with gb 0

satisfying (1.4) and t A R. Then

juðxÞ � uðyÞjaMktðdDðxÞ; 8A max
z A g

dDðzÞÞ
rQ

mðBðw; rÞÞ

ð
BðgÞ

gðzÞpdDðzÞtdmðzÞ
 !1=p

whenever x and y can be joined by a rectifiable curve g in D such that

dDðzÞbA�1lðgðx; zÞÞ for all z A gð2:2Þ
and BðgÞ ¼ 6

z A g Bðz; dDðzÞ=2ÞHBðw; rÞ, where M is a positive constant inde-

pendent of x; y; g and Bðw; rÞ.

Proof. Let g be a curve in D joining x and y satisfying (2.2) and

BðgÞHBðw; rÞ. We can take a finite chain of balls B0;B1; . . . ;BN with the

following properties:

( i ) Bj ¼ Bðzj; dDðzjÞ=2Þ with zj A g, z0 ¼ x and y A lBN ;

( ii ) lBj V lBjþ1 0q for all 0a j < N;

(iii) For small t > 0, the number of zj such that t < dDðzjÞa 2t is

bounded by ð2Aþ lÞ=l;
(iv)

P
j wBj

aC3, where C3 is a positive constant depending only on C1

and l;

see [1, Proof of Theorem 1] and [2, Lemma 2.2].

Pick xjþ1 A lBj V lBjþ1 for 0a j < N: set x0 ¼ x and xNþ1 ¼ y. By (1.4),

we see that

juðxjÞ � uðxjþ1ÞjaMdDðzjÞ
ð
Bj

gðzÞpdmðzÞ
 !1=p

for 0a jaN. Then we have by (1.7), Hölder’s inequality and (iv)

juðxÞ � uðyÞj

aMmðBðw; rÞÞ�1=p
XN
j¼0

dDðzjÞ1�t=p mðBðw; rÞÞ
mðBjÞ

� �1=p ð
Bj

gðzÞpdDðzÞtdmðzÞ
 !1=p

aMmðBðw; rÞÞ�1=p
XN
j¼0

dDðzjÞ1�t=p r

dDðzjÞ

� �Q=p ð
Bj

gðzÞpdDðzÞtdmðzÞ
 !1=p

aMrQ=pmðBðw; rÞÞ�1=p
XN
j¼0

dDðzjÞðp�t�QÞ=ðp�1Þ
 !1�1=p ð

BðgÞ
gðzÞpdDðzÞtdmðzÞ

 !1=p
:
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Further, since ð2AÞ�1dDðxÞa dDðzjÞamaxz A g dDðzÞ, we see from (iii) that

XN
j¼0

dDðzjÞðp�t�QÞ=ðp�1Þ
aM kt dDðxÞ; 8A max

z A g
dDðzÞ

� �� �p=ðp�1Þ
:

Thus the proof is completed. r

A sequence fxjg is called regular at x if xj ! x and

dðx; xjþ1Þa dðx; xjÞa cdðx; xjþ1Þ

for some constant c > 1.

Lemma 3 (cf. [1, Lemma 1]). Let u; g;D and E be as in Theorem

1. Suppose there exists a regular sequence fxjg at x A qDnE such that xj A gx
and lim j!y uðxjÞ ¼ L, where gx is as in Lemma 1. Then u has a nontangential

limit L at x.

Proof. Set rj ¼ dðx; xjÞ. Since fxjg is regular at x, there exists a

constant c > 1 such that rjþ1 a rj a crjþ1. Fix x A GDðx; aÞVBðx; r1Þ. Then

there exists an integer j such that rj a dðx; xÞ < rj�1. Let g be a curve in

D joining x and xj with (1.2) and (1.3), and take y A g such that

lðgðx; yÞÞ ¼ lðgðxj ; yÞÞ; Set g1 ¼ gðx; yÞ and g2 ¼ gðxj; yÞ. Then gi satisfies

(2.2) for i ¼ 1; 2 and dðx; zÞa c1rj for all z A g, where c1 ¼ ðcþ 1ÞAþ 1. Since

dDðxÞb a�1rj, dDðxjÞbA�1
1 rj and BðgiÞHBðx; 2c1rjÞVD, we see from Lemma

2 with t ¼ a that

juðxÞ � uðxjÞja juðxÞ � uðyÞj þ juðyÞ � uðxjÞj

aMkaða�1rj; 8Ac1rjÞ
ð2c1rjÞQ

mðBðx; 2c1rjÞÞ

ð
Bðg1Þ

gðzÞpdDðzÞadmðzÞ
 !1=p

þMkaðA�1
1 rj; 8Ac1rjÞ

ð2c1rjÞQ

mðBðx; 2c1rjÞÞ

ð
Bðg2Þ

gðzÞpdDðzÞadmðzÞ
 !1=p

aM
r
p�a
j

mðBðx; 2c1rjÞÞ

ð
Bðx;2c1rjÞVD

gðzÞpdDðzÞadmðzÞ
 !1=p

:

Since x B E, this implies that u has a nontangential limit L at x. r

Now we can prove Theorem 1.

Proof of Theorem 1. Suppose uðzÞ tends to L as z ! x along g. Let gx
be as in Lemma 1. For r > 0 su‰ciently small, take x1ðrÞ A gV qBðx; rÞ and
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x2ðrÞ A gx V qBðx; rÞ. Then x1ðrÞ and x2ðrÞ can be connected by a curve g0 in D

with (1.2) and (1.3). Set g1 ¼ g0ðx1ðrÞ; yðrÞÞ and g2 ¼ g0ðx2ðrÞ; yðrÞÞ with a

point yðrÞ A g0 such that lðg1Þ ¼ lðg2Þ. Then

dDðzÞbA�1lðgiðxiðrÞ; zÞÞ for all z A gi; i ¼ 1; 2:

Note that dDðx2ðrÞÞbA�1
1 r, dðx; zÞa c2r for all z A g0 and

jr� dðx; zÞja dðz; x1ðrÞÞa c2dDðzÞ

for all z A Bðg1Þ, where c2 ¼ 2Aþ 1. By Lemma 2 with t ¼ a, we see that

juðx2ðrÞÞ � uðyðrÞÞjaMkaðA�1
1 r; 8Ac2rÞ

ð2c2rÞQ

mðBðx; 2c2rÞÞ

ð
Bðg2Þ

gðzÞpdDðzÞadm
 !1=p

aM
rp�a

mðBðx; 2c2rÞÞ

ð
Bðx;2c2rÞVD

gðzÞpdDðzÞadm
 !1=p

:

Since p > Qþ a� 1 by our assumption, there exists b > 0 such that

Qþ a� p < b < 1. We have by Lemma 2 with t ¼ a� b

juðx1ðrÞÞ � uðyðrÞÞj

aMka�bð0; 8Ac2rÞ
ð2c2rÞQ

mðBðx; 2c2rÞÞ

ð
Bðg1Þ

gðzÞpdDðzÞa�b
dmðzÞ

 !1=p

aM
rp�aþb

mðBðx; 2c2rÞÞ

ð
Bðx; c2rÞVD

gðzÞpdDðzÞajr� dðx; zÞj�b
dmðzÞ

 !1=p
:

Hence we have

juðx1ðrÞÞ � uðx2ðrÞÞjpð2:3Þ

aM
rp�aþb

mðBðx; 2c2rÞÞ

ð
Bðx;2c2rÞVD

gðzÞpdDðzÞajr� dðx; zÞj�b
dmðzÞ:

Moreover, since 0 < b < 1, we see that

ð2�j

2�j�1

jr� dðx; zÞj�b
draM2�jð1�bÞ:ð2:4Þ

Hence it follows from (2.3) and (2.4) that

Toshihide Futamura418



inf
2�j�1ara2�j

juðx1ðrÞÞ � uðx2ðrÞÞjp

aM

ð2�j

2�j�1

rp�aþb

mðBðx; 2c2rÞÞ

ð
Bðx;2c2rÞVD

gðzÞpdDðzÞajr� dðx; zÞj�b
dmðzÞ

 !
dr

r

aM
2�jðp�aþb�1Þ

mðBðx; c22�jÞÞ

ð
Bðx; c22�jþ1ÞVD

gðzÞpdDðzÞa
ð2�j

2�j�1

jr� dðx; zÞj�b
dr

 !
dmðzÞ

aM
2�jðp�aÞ

mðBðx; c22�jÞÞ

ð
Bðx; c22�jþ1ÞVD

gðzÞpdDðzÞadmðzÞ:

Since x B E, we can find a sequence frjg such that 2�j�1 < rj a 2�j and

lim
j!y

uðx2ðrjÞÞ ¼ L:

Thus u has a nontangential limit L at x by Lemma 3. r

3. Aq weights

Let w be a Muckenhoupt Aq weight, that is, a nonnegative measurable

functions on Rn satisfying

sup

ð
B

wðxÞdx
� � ð

B

wðxÞ1=ð1�qÞ
dx

� �q�1

< y;ð3:1Þ

where the supremum is taken over all balls B in Rn (see [4]). Let u be a

monotone function on a uniform domain D in Rn in the sense of Lebesgue

which satisfies ð
D

j‘uðxÞjpwðxÞdx < y:ð3:2Þ

Suppose 1a q < p=ðn� 1Þ. Since p1 ¼ p=q > n� 1, then

juðxÞ � uðx 0ÞjaMr1�p1=n

ð
Bðz; rÞ

j‘uðyÞjp1dy
 !1=p1

whenever x; x 0 A Bðz; r=2Þ with Bðz; rÞHD.

Hence we derive the following extension of a result by Manfredi-Villamor

[8] to a uniform domain (see also [1]).

Corollary 2. Let 1a q < p=ðn� 1Þ and w be a Muckenhoupt Aq weight.

Suppose u is a monotone function on a uniform domain D in Rn satisfying

(3.2). Set
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E1 ¼ x A qD : lim sup
r!0

rp

wðBðx; rÞÞ

ð
Bðx; rÞVD

j‘uðyÞjpwðyÞdy > 0

( )
;

where wðBðx; rÞÞ ¼
Ð
Bðx; rÞ wðyÞdy. If x A qDnE1 and there exists a curve g in D

tending to x along which u has a finite limit L, then u has a nontangential limit L

at x.

Proof. Set

E2 ¼ x A qD : lim sup
r!0

rp1�n

ð
Bðx; rÞVD

j‘uðyÞjp1dy > 0

( )
;

where p1 ¼ p=q. Using Hölder inequality and (3.1), we see that E2 HE1.

Thus Corollary 2 follows from Theorem 1 with p and m replaced by p1 and the

n-dimensional Lebesgue measure. r

4. Generalizations of Lindelöf theorems

In this section, we give a generalization of Theorem 1 in case X ¼ Rn.

Let m be an integer such that 1am < n. We say that G is an m-approach set

at x with l1 > 1 and l2 > 0, if there exist a sequence of positive numbers frjg
tending to zero and a sequence of contraction maps Pj from Rn to Rm such that

rjþ1 a rj a l1rjþ1 and

HmðPjðG V ðBðx; rjÞnBðx; rjþ1ÞÞÞÞb l2r
m
j :ð4:1Þ

Theorem 2. Let D be a uniform domain in Rn. Let u be a function on D

with gb 0 satisfying (1.4) and (1.5). Suppose p > Qþ a�m and set

E ¼ x A qD : lim sup
r!0

rp�a

mðBðx; rÞÞ

ð
Bðx; rÞVD

gðyÞpdDðyÞadmðyÞ > 0

( )
:

If x A qDnE and there exists an m-approach set G HD at x along which u has a

finite limit L at x, then u has a nontangential limit L at x.

Proof. Let rj;Pj; l1 and l2 be retained from the definition of m-approach

set G at x, and set

Gj ¼ G V ðBðx; rjÞnBðx; rjþ1ÞÞ:

For o A PjðGjÞ, take x1ðoÞ A Gj and set r ¼ jx� x1ðoÞj. Let gx be as in

Lemma 1 and take x2ðoÞ A gx V qBðx; rÞ. By our assumption, we can take

b > 0 such that Qþ a� p < b < m. Since jPjðzÞ � oja jz� x1ðoÞj, in view of

the estimate (2.3) in the proof of Theorem 1, we obtain
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juðx1ðoÞÞ � uðx2ðoÞÞjp

aM
rp�aþb

mðBðx; 2c2rÞÞ

ð
Bðx;2c2rÞVD

gðzÞpdDðzÞajPjðzÞ � oj�b
dmðzÞ:

Further, since PjðGjÞHBðPjðxÞ; rjÞðHRmÞ and 0 < b < m, we see that

ð
PjðGjÞ

jPjðzÞ � oj�b
dHmðoÞa

ð
BðPjðxÞ; rjÞ

jPjðzÞ � oj�b
dHmðoÞaMr

m�b
j :

Hence we have by (4.1)

inf
o APjðGjÞ

juðx1ðoÞÞ�uðx2ðoÞÞjpaM
r
p�a
j

mðBðx; 2c2l�1
1 rjÞÞ

ð
Bðx;2c2rjÞVD

gðzÞpdDðzÞadmðzÞ:

From x B E, we can find a sequence fojg such that oj A PjðGjÞ and

lim
j!y

uðx2ðojÞÞ ¼ L:

Since fx2ðojÞg is regular at x, we can show that u has a nontangential limit L

at x by Lemma 3. r
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[ 4 ] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear potential theory of degenerate elliptic

equations, Oxford Univ. Press, 1993.

[ 5 ] P. Koskela, J. J. Manfredi and E. Villamor, Regularity theory and traces of A-harmonic

functions, Trans. Amer. Math. Soc. 348 (1996), 755–766.

[ 6 ] H. Lebesgue, Sur le problème de Dirichlet, Rend. Cir. Mat. Palermo 24 (1907), 371–402.

[ 7 ] J. J. Manfredi and E. Villamor, Traces of monotone Sobolev functions, J. Geom. Anal. 6

(1996), 433–444.
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