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ABSTRACT. This paper deals with Lindelof type theorems for monotone Sobolev
functions on a uniform domain.

1. Introduction

A continuous function u on an open set D in the n-dimensional Euclidean
space R", n > 2, is called monotone in the sense of Lebesgue (see [6]) if the
equalities

max u# = max u and min ¥ = min u
G oG G oG
hold whenever G is a domain with compact closure G< D. If u is a
monotone Sobolev function on D and p >n— 1, then

1/p
(1.1) lu(x) — u(x')| < C(n, pyr' =" (J IVu(y)”dy>

B(z,r)
whenever x,x’ € B(z,r/2) with B(z,r) = D, where B(z,r) is the open ball
centered at z with radius r and C(n, p) is a positive constant depending only on
n and p (see [11, Chapter 8] and [13, Section 16]). Using this inequality (1.1),
we proved Lindelof theorems for monotone Sobolev functions on the half space
of R" in [1]. For related results, see Koskela-Manfredi-Villamor [5], Manfredi-
Villamor [7, 8] and Mizuta [10]. In this paper we will generalize this result to
a uniform domain in a metric space.

Let X be a metric space with a metric d and x4 be a Borel measure on
X which is positive and finite on balls. We denote by B(x,r) the open ball
centered at xe€ X with radius r >0 and set AB= B(x,Ar) for each ball
B =B(x,r) and 2> 0. A domain D in X with 0D # J is a uniform domain
if there exists a constant 4 > 1 such that each pair of points x, y € D can be
joined by a curve y in D for which
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(1.2) /(y) < Ad(x, y),
(1.3) Op(z) = A ' min{/(y(x,2)),/(y(y,2))} for all z €y,

where /(y),0p(z) and y(x,z) denote the length of y, the distance from z to D
and the subarc of y connecting x and z, respectively (see [9] and [12]). Here a
curve means simple curve.

Our first aim in this paper is to deal with Lindelof type theorems for
functions # on a uniform domain D for which there exist a nonnegative Borel
function g e L? (D;u), p> 1, constants M >0 and 0 < A <1 such that

loc

1/p
(1.4) |wm—u@w3Aw<{ mw%mwo

B(z,r)

whenever x,x’ € B(z, Ar) with B(z,r) = D and

(1.5) memwwww<w

for some real number o. Here we used the standard notation

1
up = ud :—J ud
r ][F a WF) JF a

for a measurable set F with 0 < u(F) < oo. For this purpose we assume that
there exists a constant C; > 1 such that

(1.6) u(2B) < Ciu(B)

for all balls B. We further assume that there exist constants Q > 1 and C, > 0
such that

w(B) diam B\
(1.7) ﬂ(B()) = C2 (diam B()>

for all balls B and By with B <= By. For &€ dD and a > 1, consider the set
Ip(&a)={xeD:d(x,¢&) < adp(x)}.

A function u defined on D is said to have a nontangential limit L at & € 0D if
for every a > 1, lim._¢ .c ;e q) u(z) = L. The main result of this paper is the
following theorem.

THEOREM 1. Let D be a uniform domain in X. Let u be a function on D

with g > 0 satisfying (1.4) and (1.5). Suppose p > Q+o—1 and set

p—0
_ oD : li - s *d 0.
E {ée D H?f(}lpu(B(é,r))JB@,,-)ng(y) p(y) du(y) > }
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If £ € OD\E and there exists a curve y in D tending to & along which u has a
finite limit L, then u has a nontangential limit L at &.

REMARK 1. If g satisfies (1.5), then #¢"* 7(E) =0, where #* denotes
the s-dimensional Hausdorff measure.

COROLLARY 1. Let u be a monotone Sobolev function on a uniform domain

D in R" satisfying

jD V() P3p(y) dy < oo,

where p >max{n—1,n—1+0a}. Set
E = {ée&D: lim sup r”_“_”J Vu(y)|"op(y)*dy > 0}.
r—0 B(EnND

If £ € OD\E' and there exists a curve y in D tending to & along which u has a
finite limit L, then u has a nontangential limit L at &.

2. Proof of Theorem 1

Throughout this paper, let M denote various constants independent of the
variables in question.
For a proof of Theorem 1, we need the following Lemmas.

LemMmA 1. Let D be a uniform domain. Then, for each & € 0D, there exists
a curve y; in D ending at & such that

(2.1) Op(z) = A (ye(&,2))  for all z ey,
where A; = 2543,

Proor. Fix & e dD. For each j sufficiently large (say j=> jy), take a
point w; e DNAB(E,27). Further, take a curve y; in D joining w;-; and
wiy1 satisfying (1.2) and (1.3), and take a point z €y;NdB(£,27). Since
/(y;(wis1,2)) = 277" and /(y;(w;-1,2)) =27/, we have by (1.3)

(SD(ZJ‘) S

Let §; be a curve in D joining z; and z;;; satisfying (1.2) and (1.3). Then
/(7;) < A27! and dp(z) > 47227773 for all zej,. Set

Ve = Vjo T Vjort T Pjgs2 + -

Then it is not difficult to construct a simple curve y: from j: satisfying (2.1)
with A = 2543, L
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For each 7 € R, consider the function

r 1-1/p
Kelriora) = ( J (1=2-0)/(p-1) d,)

L
for 0 <r; <.

LemMmA 2 (cf. [2, Lemma 3]). Let u be a function on D with g >0
satisfying (1.4) and T e R. Then

0 I/p
lu(x) — u(y)| < Mic.(5p(x),84 max op(z)) (MTJJ( )g(z)PéD(z)fd,u(z)>
B(y

zey (w,r))
whenever x and y can be joined by a rectifiable curve y in D such that
(2.2) op(z) = A7 (y(x,2))  for all zey
and B(y) = )., B(z,0p(2)/2) = B(w,r), where M is a positive constant inde-

pendent of x, )j,eyy and B(w,r).

PrOOF. Let y be a curve in D joining x and y satisfying (2.2) and
#A(y) < B(w,r). We can take a finite chain of balls By, By,..., By with the
following properties:

(i) B; = B(z;,0p(z;)/2) with z; €y, zo =x and y € ABy;

(ii) AB;NABj # & for all 0 < j < N;

(iii) For small ¢>0, the number of z; such that f<dp(z) <2t is

bounded by (24 + 4)/4;
(iv) Z/ 18 < Cs, where Cj is a positive constant depending only on C
and /;
see [1, Proof of Theorem 1] and [2, Lemma 2.2].

Pick xj11 € AB;NAB;y1 for 0 < j < N:set xo = x and xy41 = y. By (1.4),

we see that

1/p
g(Z)’W(Z))

for 0 < j<N. Then we have by (1.7), Holder’s inequality and (iv)
u(x) — u(y)|

o) = u(xy1)| < Moz (}

5

N 1/p 1/p
W r —1/p . 1—1/p lu(B(W? V)) z P z T z
< Mu(BOnn) "> S00(5) () (ij V76n(z) du ))

N PN lr
< Mp(BO) S i) () (j g<z>”5D<z>fdﬂ<z>>

Jj=0

N 1-1/p 1/p
< Mrpu(B(w,r) " (Z 5D<zj><f”‘~’)/<f">> (L( ) g(z)f’aD(z)fdu(z)) :
j=0 B(y
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Further, since (24) '0p(x) < 0p(zj) < max.c, dp(z), we see from (iii) that

N r/(p—1)
> " op(z) PO < M(K, <6D(x), 84 max 5,)(2))) .

= zey

Thus the proof is completed. O
A sequence {x;} is called regular at ¢ if x; — ¢ and
d(& xj41) < d(&,x;) < ed (&, Xj41)
for some constant ¢ > 1.

LemMa 3 (cf. [1, Lemma 1]). Let u,g,D and E be as in Theorem
1. Suppose there exists a regular sequence {x;} at &€ OD\E such that x; € y;
and lim;_, u(x;) = L, where y: is as in Lemma 1. Then u has a nontangential
limit L at &.

Proor. Set r; =d(&,x;). Since {x;} is regular at &, there exists a
constant ¢ > 1 such that rjy <r; <crjy. Fix xelIp(&a)NB(E ). Then
there exists an integer j such that r; <d(& x) <rj—;. Let y be a curve in
D joining x and x; with (1.2) and (1.3), and take yey such that
((y(x,»)) =£((x;,»)); Set yp =p(x,p) and y, = p(x;, p). Then y; satisfies
(2.2) fori=1,2 and d(&,z) < ¢r; for all z € p, where ¢; = (c+1)4 + 1. Since
Op(x) = a 'y, op(x;) = A7'r; and %(y;) = B(&,2¢1r;) N D, we see from Lemma
2 with 7 =« that

u(x) = u(x)] < |u(x) = u(p)] + |u(y) — u(x)]

2e117)?
< Mry(a”"r;,84c1r)) (ﬂ(l(?(?igzw))

1/p
| g<z>”5D<z>“du<z>>
B(n)

y @eir)? vs oy )
+ M, (A;'r;,84ci1)) (,u(B(f,%lrj))L(yz) g(2)7op(z2) dﬂ(Z))
rjp—oc , ) 1/p
< M(m L(é’zmijQ(z) op(z) dﬂ(2)> .
Since ¢ ¢ E, this implies that # has a nontangential limit L at &. O

Now we can prove Theorem 1.

PROOF OF THEOREM 1. Suppose u(z) tends to L as z — ¢ along y. Let y;
be as in Lemma 1. For r > 0 sufficiently small, take x;(r) € yN0B(&,r) and
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x2(r) € p: NOB(E,r).  Then xi(r) and x,(r) can be connected by a curve y, in D
with (1.2) and (1.3). Set y; = yo(x1(r), ¥(r)) and y, = yy(x2(r), y(r)) with a
point y(r) € y, such that /(y,) =/(y,). Then

op(z) = A7 (y(xi(r), 2)) for all zevy,, i=1,2.
Note that dp(x2(r)) > A7'r, d(&,2) < cor for all z ey, and
Ir—d(&,2)] < d(z, (1) < exdol2)

for all z e %(y,), where c; =24+ 1. By Lemma 2 with 7 =«, we see that

r 1] /p
uxa(7) =y )] < Moy (A 84 (}% . g(z)”éD(z)adu)

P

1/p
M| ———=—— rs 2 .
} <’U(B(é’ 2¢ar)) JB(é,zczr)ﬂD 9(2)"0n(2) ﬂ)

Since p>Q+a—1 by our assumption, there exists >0 such that
Q+a—p<pf<1. We have by Lemma 2 with t=a—f

|u(x1(r)) — u(y(r))]

oo 1] 1/p
< MKO(_/;(O, 8Acyr) (ﬂ(éigz)cﬂ‘)) Jﬂ(yl) g(z)pép(z) ﬁﬂd[u(Z))

rp7“+ﬁ 175 o d 7ﬂd 1/p
5M</‘(’B(572QV))J3<¢,CZ,.>HDQ(Z) p(z)"|r —d(&,z)| ﬂ(2)> .

Hence we have

(23)  fuCxi(r)) = u(x2(r))I”
pp+h

TUR(E D)) 2Pop(2)*lr —d Z_ﬂdz_
) M'u(B(f’zczr))JB(E,zczr)ﬂDg( )"on(2)"Ir (&.2) "du(z)

Moreover, since 0 < f < 1, we see that

27
(2.4) J r—d(& z)| Pdr < M270P),

2-j-1

Hence it follows from (2.3) and (2.4) that
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inf Ju(x1(r)) — u(x2(r))|”

291 <r<27

2 pp=th dr
_— Pop(2)%|r —d(&,2)| Pd —
= ML—H (lu(B(chzr)) JB(é,zczr)mD 9(2)"op(z)"Ir (&2 ,u(z)> r

v crontey ([ r-dte o ar)aute)
_ z z r— ,Z r z
U(B(E, e227)) B(é,z‘zz*/“)ﬂDg P 2-j-1 K
2-j(p—a) J
<M —F
(B(E, 2277)) ) g, er2i+1ynp

IA

9(2)"0p(2)"du(2).

Since & ¢ E, we can find a sequence {r;} such that 27/~! <r; <27/ and

lim u(x2(r;)) = L.
J— 0
Thus u has a nontangential limit L at ¢ by Lemma 3. O

3. A, weights

Let w be a Muckenhoupt A4, weight, that is, a nonnegative measurable
functions on R” satisfying

(3.1) sup (][B w(x)dx) (][B w(x)”““”abc)q1 < o,

where the supremum is taken over all balls B in R" (see [4]). Let u be a
monotone function on a uniform domain D in R” in the sense of Lebesgue
which satisfies

(3.2) J [Vu(x)|"w(x)dx < co.
D
Suppose 1 < ¢ < p/(n—1). Since p; = p/g >n—1, then

1/p1
ju(x) — u(x')| < Mr'=r/" <J |Vu(y)|p'dy>

B(z,r)
whenever x,x’ € B(z,r/2) with B(z,r) < D.

Hence we derive the following extension of a result by Manfredi-Villamor
[8] to a uniform domain (see also [1]).

COROLLARY 2. Let 1 <q < p/(n—1) and w be a Muckenhoupt A, weight.

Suppose u is a monotone function on a uniform domain D in R" satisfying
(3.2).  Set
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rp
E ={&edD:limsu 7J Vu(p)|Pw(y)dy >0,
| { nSup ) B(ile NPw(y)dy
where w(B(&,r)) = fB(@r) w(y)dy. 1If &€ OD\E| and there exists a curve y in D
tending to & along which u has a finite limit L, then u has a nontangential limit L
at ¢&.

Proor. Set

E, = {f € 0D : limsup r'™"

j V()| dy > o},
r—0 B(¢,r)ND

where p; = p/q. Using Hoélder inequality and (3.1), we see that E, < Ej.
Thus Corollary 2 follows from Theorem 1 with p and u replaced by p; and the
n-dimensional Lebesgue measure. OJ

4. Generalizations of Lindelof theorems

In this section, we give a generalization of Theorem 1 in case X = R”".
Let m be an integer such that 1 <m < n. We say that I" is an m-approach set
at & with 4; > 1 and 4, > 0, if there exist a sequence of positive numbers {r;}
tending to zero and a sequence of contraction maps P; from R” to R” such that
ripl <1< ﬂ]VjJrl and

(4.1) A" (PN (B(E,r)\B(E,1741)))) = Aar"

THEOREM 2. Let D be a uniform domain in R". Let u be a function on D
with g > 0 satisfying (1.4) and (1.5). Suppose p > Q+ o —m and set

r—0 ﬂ(B(é7 r))

If £ € OD\E and there exists an m-approach set I' = D at & along which u has a
finite limit L at &, then u has a nontangential limit L at &.

p—o
E= {feaD:limsuprJ g(»)’op(y)*du(y) > 0}~
B(&,ND

Proor. Let rj, P;, A1 and A, be retained from the definition of m-approach
set I" at & and set

Gy = I'0(B(Er)\B(S rj11))-

For we Pi(G)), take xi(w)e G; and set r=|{— xj(w)|. Let y: be as in
Lemma 1 and take xa(w)ey:NdB(E,r). By our assumption, we can take
f >0 such that 0+ o — p < f <m. Since |Pi(z) — w| < |z — x1(®)|, in view of
the estimate (2.3) in the proof of Theorem 1, we obtain
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Ju(x1(@)) = u(xa(w))|”

rp71+/j
<M

B ILWZCZV))JB(“ P )ﬂDg(Z)p(SD(Z)a|P/(Z) - w‘iﬂdﬂ(z).

Further, since P;(G;) = B(P;(¢),r;))(cR"™) and 0 < f < m, we see that

| i@ -oltaar@ s | B - ol faa ) < .
(@) B(B(&), 1) :

Hence we have by (4.1)

p—o

1 _ 4 rl— P o
welngj)Mxl(w)) uxa(@))] SMﬂ(B(f,%giflr_/))Js(g,zczr,)mbg(z) o0() du(z).

From & ¢ E, we can find a sequence {w;} such that w; € P;(G;) and

lim u(x>(w;)) = L.
J=o0

Since {x>(w;)} is regular at &, we can show that u has a nontangential limit L
at ¢ by Lemma 3. O
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