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ABSTRACT. The purpose of this paper is to study the stable extendibility of the m-times
Whitney sum mz, of the tangent bundle 7, = t(RP") of the n-dimensional real pro-
jective space RP". We determine the dimension N for which mrz, is stably extendible to
RPV but is not stably extendible to RPN*! for m < 10.

1. Introduction

Let X be a space and 4 its subspace. A t-dimensional real vector bundle
{ over A is said to be extendible (respectively stably extendible) to X, if there is
a t-dimensional real vector bundle over X whose restriction to A is equivalent
(respectively stably equivalent) to {, that is, { is equivalent (respectively stably
equivalent) to the induced bundle iy of a s-dimensional real vector bundle #
over X under the inclusion map i: 4 — X (cf. [10, p. 20] and [3, p. 273]). Let
RP" denote the n-dimensional real projective space. For a real vector bundle {
over RP”, define an integer s({) by

s(¢) = max{m|m > n and { is stably extendible to RP"},

where we put s({) = oo if { is stably extendible to RP™ for every m > n.
The following theorem is known.

THEOREM 1 ([7, Theorem 4.2]). For the tangent bundle t, = t(RP") of
RP",

s(ty) =00 if n=1,3 or T, and s(ty)=n if n#1,3,7.

The purpose of this paper is to study s(mz,) for m > 2. Our main results
are as follows.
We write simply s(m,n) instead of s(mt,).

Tueorem 2. (1) If 1 <n <8, then s(2,n) = 0.
(2) If n=9, then s(2,n) =2n+ 1.
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TueoreM 3. (1) If 1 <n <8, then s(3,n) = oo.
(2) If n=9, then

(@) s(3,n) =3n for n=0,1 mod 4,

(b) s(3,n) =3n+1 for n=2 mod 4,

() s(3,n) =3n+2 for n=3 mod 4.

THEOREM 4. (1) If 1 <n <9, then s(4,n) = 0.
(2) If n =10, then s(4,n) =4n+3.

THEOREM 5. (1) If 1 <n <9, then s(5,n) = co.
(2) If n =10, then

(@) s(5,n) =5n for n=0,2,3,5 mod 8
(b) s(5,n) =5n+1 for n=6 mod 8
() s(5,n)=5n+2 for n=1 mod 8
(d) s(5,n)=5n+3 for n=4 mod 8§
(e) s(5,n)=5n+4 for n="7 mod 8

THEOREM 6. (1) If 1 <n <11, then s(6,n) = oo.
(2) If n=12, then
(@) s(6,n)=6n+1 for n=0,1 mod 4,
(b) s(6,n) =6n+3 for n=2 mod 4,
() s(6,n) =6n+5 for n=3 mod 4.
(

THEOREM 7. (1) If 1 <n <11, then s(7,n) = co.
(2) If n>=12, then

(@) s(7,n)=7n for n=0,1 mod 8,

(b) s(7,n)=Tn+i—1 for n=i mod 8 with 2<i<7.
THEOREM 8. (1) If 1 <n <11 or n=15, then s(8,n) = co.
(2) If n=12,13,14 or n = 16, then s(8,n) =8n—+17.

THEOREM 9. (1) If 1 <n <11, n=14 or 15, then s(9,n) = oo.
(2) If n=12,13 or n =16, then
(@) s(9,n) =9n for n=0,2,4,6,7,9,11,13 mod 16,

(
(b) s(9,n) =9+ 1 for n=14 mod 16,
() s(9,n)=9n+2 for n=5 mod 16,
(d) s(9,n) =9n+3 for n =12 mod 16,
(e) s(9,n)=9n+4 for n=3 mod 16,
() s(9,n)=9n+5 for n=10 mod 16,
(g) s(9,n)=9n+6 for n=1 mod 16,
(h) s(9,n) =9n+7 for n=8 mod 16,
1) s(9,n) =9n+8 for n =15 mod 16.
THeoreM 10. (1) If 1 <n <15, then s(10,n) = oo.

(2) If n>=16, then



Stable extendibility of mit, over real projective spaces 473

(@) s(10,n) =10n+1 for n=0,2,3,5 mod 8,
(b) s(10,n) =10n+3 for n =4,6,7,14 mod 16,
() s(10,n) =10n+4 for n=1 mod 16,
(d) s(10,n) =10n+5 for n=9 mod 16,
(e) s(10,n) =10n+7 for n =12 mod 16,

(

(f) s(10,n) =10n+9 for n =15 mod 16.

This paper is arranged as follows. In §2 we state some known theorems
that are used to prove Theorems 2—-10. In §3 we state some applications. In
§4 we study on mrt,. In §5 we prove Theorem 10. In §6 and §7 we prove
Theorems 2-9.

2. Some known theorems
Let &, denote the canonical real line bundle over RP”.

THEOREM 2.1 ([1, Theorem 7.4]). (1) The reduced KO-group KNO(RP") is
isomorphic to the cyclic group Z /2", generated by &, — 1, where ¢(n) is the
number of integers s such that 0 <s<n and s=0,1,2 or 4 mod 8.

Q) (E)3(=¢&,®E,) =1, where ® denotes the tensor product.

For a real vector bundle {, we denote by Span { the maximum number of
linearly independent cross-sections of (.

THEOREM 2.2 ([5, Theorem 1]). Let I, n and t be integers with t >0 and
0<t+1<2 and let ¢ be a t-dimensional real vector bundle over RP" which
is stably equivalent to (t+1)&,. Then the following hold.

(1) s({)=o0 if and only if | <0.

(2) Let [>=1 and m=n Then, s({)=m if and only if

Span(a2?™) + t + )&, > a2?™ 41 for some integer a > 0.

For a non-negative integer ¢ and a positive integer /, define an integer

&(t,1) as follows.
(e, 1) :min{j t <j and (tj_—l) =1 mod 2},

) denotes the binomial coefficient n!/(rl(n — r)!). Clearly ¢ < &(z,1) <

n

r

where (
t+1.

THEOREM 2.3 ([6, Theorem 2]). Let { be a t-dimensional real vector bundle
over RP" and assume that there is a positive integer | satisfying the following
properties:

(1) ¢ is stably equivalent to (t+1)¢E,,

(2) t+1<290,

Then n < &(t,1) and s({) < &(¢,1).

The following theorems are useful.
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THEOREM 2.4 ([12, Theorem 2.4], [4, (1.1) and Section 4]). Let n+1=
(2b + 1)2¢%4 \vhere b, ¢, d are non-negative integers and 0 < c¢ <3. Then
Span(n + 1)&, = 2¢ 4 84.

THEOREM 2.5 ([9, Theorem 1.1]). Let k=8/+p, n=8m+q, where
0<m<! and 0< p,q<7. If the binomial coefficient (’L) is odd, then
Span k&, = (k —n) + j, with j given by Table 1 below:

TaBLE 1

plOf1 |23 45|67
q
0 0]1]0(0]0O]O|O]O]O
1 r{fofrjoj1f{of1r|o
2 211(0j0]2|1]0]0
3 3121103 ]2|1]0
4 4(13(2|1[0[0]0]|O
5 514 |13(2]1]0|1]0
6 615413211010
7 716514312110

THEOREM 2.6 ([9, Theorem 3.1]). (A) Let k =8]+ p, n=8m+ q, where
l<m<1I and ()) is even. Then for 0<p <6 and 1 <q <7, Spank¢, >

!
m

(k—n)+ j, with j given by Table 11 below:

TasLE 11

plOf{1]2]|3|4[5]6
q
1 314133433
2 315144543
3 4165|5654
4 51413 |5(5]4]3
5 6151435413
6 7165|4654
7 817165433
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(B) Furthermore, if (1) =2 mod4, then Spanké&, = (k—n)+j except
when (p,q) = (3,4).

Tueorem 2.7 ([11, Lemma 2.6, p. 5]). Let a= a2’ +a;2' +---+ a2’
and b= by2° +b12' + -+ 52" (0 <a;,b; <2). Then

(Z) =0 mod 2 if and only if a;=0 and b; =1 for some i.

The following theorem may be well-known. For completeness, we give a
proof.
! i
TueorREM 2.8. Let a= Y. a?2" and b= b2" (0 <a;b; <2). Then

i=0 i=0
(4)=2 mod 4 if ({) can be described as follows:

a\ (m+2rT 40+
b) \ n+0+20+s5 )’
where m,n =0 mod 22; 22 > r,s >0, (7),()) =1 mod 2.

Proor. For a positive integer N, let v(N) denote the non-negative in-
teger such that N = (2¢g 4 1)2""), where ¢ is a non-negative integer. Clearly,
N=1mod2 if and only if w(N)=0, and N =2 mod4 if and only if
v(N)=1. It is known that (cf. [2, Lemma 4.8]), for a positive integer M,

v(M") = M — a(M), where a(M) is the number of the non-zero terms in the
2-adic expansion of M. Hence we have

v(g) = o(a — b) + a(b) — a(a).

Thus (§)=1 mod2 if and only if a(a—b)+ a(b) —a(a) =0, and (j) =2
mod 4 if and only if a(a — b) + a(b) — a(a) = 1. Therefore, if () is described
as in the theorem, we see that v(§)=1. O

3. Some applications

ProrosITION 3.1. Let { be a t-dimensional real vector bundle over RP™.
Then

s(0) = s({ ® &)

Proor. If { is stably extendible to RP™ (m >n), then there is a t-
dimensional real vector bundle o over RP™ such that { is stably equivalent
to i*a, where i : RP" — RP™ is the standard inclusion. Since { ® &, is stably
equivalent to o ®¢&, =i (a®¢&,), (®E, is stably extendible to RP”™
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(m >n). On the other hand, by using Theorem 2.1(2) and the above result,
we see that { = ((® &,) ® ¢, is stably extendible to RP™ (m >n) if (® &, is
stably extendible to RP™. O

In the same way as the above proof, we have the following.

REmARK. Let { be a r-dimensional real vector bundle over RP". Then, {
is extendible to RP” (m >n) if and only if {® &, is extendible to RP™.

For a non-negative integer ¢ and a positive integer /, we define an integer
w(t,l;n) as the maximum of integers m satisfying

t+l=m+1=02b+1)2*>n  and 2°+8d =1,

where b, ¢ and d are non-negative integers with 0 < ¢ < 3. We remark that
the above u(t,/;n) does not necessarily exist, even if 1+ /> n.

ProrosiTION 3.2. Let { be a t-dimensional real vector bundle over RP" and
assume that there is a positive integer | satisfying the following properties:
(1) C is stably equivalent to (t+1)¢E,,
(2) t+1<290,
If moreover u(t,l;n) exists, then u(t,l;n) < s(0).

Proor. Put w(t,/;n) =m. Then, Span(t+ /)&, > Span(m + 1), =2+
8d > I by the definition and Theorem 2.4. Therefore, by using Theorem 2.2(2),
we have s({) > m. O

PROPOSITION 3.3, Let t >0, [>1 and t+1< 2", Then
e(t,]) = e(£,2°" — 1 —1).

PrOOF. We put 2¢0) — [ =29 4 2% ... £ 20 (q1 > qy > -+ > g = 0),
e=e(t,]) and &= g(¢,29") — 1 —1).

The proof is given by induction on 2. When ¢ = 0, by Theorem 2.7 we see
that ¢ = & = 2% and hence the proposition holds. Now we may assume that
e =¢ for all ¢ with 0 < ¢’ < ¢, and consider the case for ¢ by putting ¢ = 27 + s,
where p >0 and 0 <5 < 27.

Now in order to apply Theorem 2.7 more easily, we put &(h k)=
e(k,h — k), that is

h
eo(h, k) min{j' ( > =1 mod 2 and j>k}.
J
(1) Let ¢y > p. Then (29 + -+ 429 2P 4 5) = 29 by Theorem 2.7.

And (29 — 20 — ... —24n 4 2P 4 5 2P 4 5) = 2% by Theorem 2.7. Hence
e=E¢.



Stable extendibility of mit, over real projective spaces 477

(2) Let gy, =p. Then m=>=2 and ¢g(29 +--- 4291 4 2m 2 4 5) =

201 And (290 — 20 — ... —2dn1 4 5 20 4 5) =201 Hence &= e.
(3) Letg;>p>qiv1 (1 <i<m—1). Then g% +--- 42 27 45) =
24¢i And go(200) — 20 — .. 20 L 2P 24t . Dm 4§ DP 4 g) = 2,

Hence ¢ =¢.

(4 Let p=¢q; (1 <i<m-—1). If 29 ... 429 < then i >2 and
eo(29 4 - -+ 4297 29 4 5) =291, And 80(2(15(”) 20 .. D4t _ Dixl ...
—20m 45,29 +5) =291, Hence ¢ =&.

If 29+ 4 ... 429 > 5 then 80(2‘71 + e 24m 24 S) =24 4 80(2‘71 + .-

+29n 5).  And (2900 — 241 — ... 24t D41 ... 2dm 45 D 4 g5) =24 4

80(2¢(n) — 20— 20 D0 2dn g ) = 29 4 80(2¢(n) 2% ...

29m +5,5). Hence we see that ¢ = & by using the assumption of induction.
]

THEOREM 3.4. Let { be a t-dimensional real vector bundle over RP" and
assume that there is a positive integer | satisfying the following properties:
(1) ¢ is stably equivalent to (t+1)&,,
(2) t+1<290,
If moreover u(t,l;n) exists, then u(t,l;n) < s({) < e&(t,1) = &(t,29" — ¢ —1).

Proor. The proof follows from Theorem 2.3 and Propositions 3.2 and
3.3. O

4. Study on mrt,

LemMmA 4.1. Let mt, be the m-times Whitney sum of the tangent bundle
7, = 7(RP") of RP". Then the equality
mt, =m(n+1)¢, —m
holds in KO(RP").

Proor. Since 7, @ 1 is equivalent to (n+ 1)&,, the equality holds. [J
PROPOSITION 4.2, If m > 29" s(mz,) = 0.

PrROOF. Let m = 29" 4y where f> 1 and 0 < y < 2¢™. Then Lemma
4.1 implies mt, = (20 4+ 9)(n + 1)&, — (22" 4 9) in KO(RP"). So, we see
that mrz, is stably equivalent to y(n + 1)&, by using Theorem 2.1. Then, since
y(n+ 1) < mn, we see that s(mt,) = oo by using Theorem 2.2(1). ]

PROPOSITION 4.3, Let 0 <m < 2", Then s(mt,) = o if and only if
2000 < m(n+1).

PrOOF. Since mt, =m(n+1)¢, —m holds in KO(RP"), we see that
mt, ® &, is stably equivalent to (2¢0) —m)&, by using Theorem 2.1. Now
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0 < 2?0 —m <29 by the assumption. Hence, by Theorem 2.2(1), 240" —
m—mn <0 if and only if s(mz,) = s(mz, ® &,) = 0. 0

ProrosiTiON 4.4.

s(mty,) = mn

ProoF. Propositions 4.2 and 4.3 imply that s(mz,) = oo if m(n+1) >
26(n)

Let m(n+1) <297, Then, since Span(mn+m)é,, = (mn+m)—mn =
m, we see that s(mt,) > mn by using Theorem 2.2(2). O

5. Proof of Theorem 10

In this section we give a proof of Theorem 10. Before proving the
theorem, we prepare two lemmas.

LemMa 5.1. ¢(10n,10) = 10n+2 for n=0,2,3,5 mod 8, = 10n+4 for
n=6 mod8, =10n+6 for n=1mod8 =10m+8 for n=4 modS8,
=10n+ 10 for n =7 mod 8.

Proor. The results follow from the definition of ¢(10n,10) and Theorem
2.17. O

Lemma 5.2, w(10n,10;n) > 10n+5 for n=9 mod 16, >10n+7 for
n=12 mod 16, > 10n+9 for n =15 mod 16.

ProOF. Let n=16k+9 (k>1) and put 10n+6(=25(5k+3)) =
(2b+1)2¢%% (0 < ¢ < 3). Then we see 2+ 8d >10. So we get u(10n, 10;
n) > 10n+ 5 by the definition of w(10n, 10;n).

For n=12,15 mod 16, by putting 10n 48, 10n + 10 = (2b + 1)2¢+4 re-
spectively, we obtain the results similarly. O

ProOF OF THEOREM 10. We recall the following
107, = (10n + 10)¢, — 10 € KO(RP").

(1) Since 10>2%" for 1 <n <7, s(10t,) = co for 1 <n <7 by Prop-
osition 4.2. And since 10 < 2™ and 2%V —10—10n <0 for 8§ <n < 15,
5(107,) = o for 8 <n <15 by Proposition 4.3.

(2) Letn>16. Then 0 < 10n4 10 < 2% and 107, is stably equivalent
to (10n + 10)¢,.

(a) Let n=0,2,3,5 mod 8. Since 10n+ 10 is even and 10n + 1 is odd,
we have Span(10n + 10)¢,,1 = (10n 4 10) — (10n+ 1) + 1 = 10 by Theorems
2.5 and 2.6(A). Hence, by Theorem 2.2(2), s(107,) > 10n+ 1. On the other
hand, we see &(10n,10) = 10n + 2 by Lemma 5.1. Hence s(107,) < 10n + 2 by
Theorem 2.3. Therefore s(107,) = 10n + 1.
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(b) Let n=16k+4 (k>1). We see 10n+10=8(20k+6)+2 and
10n + 3 = 8(20k + 5) + 3. Here (%g’zig) =0 mod 2. So, by Theorem 2.6(A),
we see Span(10n + 10)&g,.3 > 10n+ 10— 10n —3+5=12 > 10. Hence, by
using Theorem 2.2(2), we obtain s(107,) > 10n + 3. On the other hand, we see
a2 4+ 10n 4 10 = 8(a2?1%+49-3 £ 20k 4+ 6) +2 and 10n + 4 = 8(20k + 5) +

4. Here, by Theorem 2.8, (“zﬂmigﬁgz‘)k*(’) =2 mod 4 for any a > 0. Hence,

by Theorem 2.6(B), Span(a2?™ + 101 + 10)&g, 4 = a2?™ + 10n + 10 — 10n —
443 <a2? +10 for any a>0. So we obtain s(107,) < 10n +4 by using
Theorem 2.2(2). Therefore we have s(107,) = 10n + 3.

Let n=8k+6 (k>2). We see 10n+10=28(10k+8)+6 and

10n+3 =8(10k +7) + 7. Here Ggif;) =0 mod2. So, by Theorem

2.6(A), we see Span(10n+ 10)&p,y3 = 10n+ 10— 10n — 3 +3 =10. Hence
we obtain s(107,) > 10n+3. On the other hand, we see ¢(10m,10) =
10n+4 by Lemma 5.1. Hence s(107,) < 10n+4. Therefore we have
s(107,) = 10n + 3.

Let n=16k+7 (k>1). We see 10n+ 10 = 8(20k + 10) and 10n+ 3 =

8(20k +9)+ 1. Here (220(5‘};190) =0 mod 2. So, by Theorem 2.6(A), we see

Span(10n + 10)&;9,.3 > 10n+ 10 — 10n — 34+ 3 = 10. Hence we obtain s(107,)
>10n+3. On the other hand, we see a2/ + 10n+ 10 = §(a2¢16k+7)=3
+20k+10) and 10n+4=8(20k+9)+2. Here, by Theorem 2.8,

“ﬂ(lék;&;@zo"*m) =2 mod 4 for any a > 0. Hence, by using Theorem 2.6(B),

Span(a2?™ + 101 + 10)&1,04 = a2 + 10n + 10 — 10n — 4 + 3 < a2?™ 4+ 10
for any ¢ > 0. So we obtain s5(107,) < 10n 4+ 4. Therefore we have s(107,) =
10n + 3.

() Let n=16k+1 (k>=1). We see 10n+10=28(20k+2)+4 and

107+ 4 = 8(20k+ 1) +6. Here (37) =0 mod 2. So, by Theorem 2.6(A),

we see Span(10n + 10)&g,4 = 10n+ 10— 10n —4+ 6 =12 > 10. Hence we
obtain s(107,) > 10n+4. On the other hand, we see a2%") +10n+ 10 =
8(a2#1k+1)=3 1 20k +2) +4 and 10n+5=8(20k + 1) +7. Here, by Theo-

P(16k+1)-3
rem 2.8, ("7, +T20k+2) =2 mod4 for any a>0. Hence, by Theorem

2.6(B), Span(a2?™ + 10n 4 10)&g,45 = 2% + 10n 4 10 — 10n — 5+ 4 < a2¢®)
+10 for any @ >0. So we obtain s(107,) < 10n+5. Therefore we have
s(107,) = 10n + 4.

(d) Let n=16k+9 (k>1). Then ¢10n,10) = 10n+ 6 by Lemma 5.1.
Hence s(107,) < 10n + 6 by Theorem 2.3. And we get x(10n,10;n) > 10n+ 5
by Lemma 5.2. Therefore, by Proposition 3.2, s(107,) > 10n + 5.

() Let n=16k+12 (k>1). Then ¢(10n,10)=10n+8 by Lemma
5.1. Hence s(107,) < 10n+8. And we get x(10n,10;7) > 10n + 7 by Lemma
5.2. Therefore s(107,) > 10n + 7.
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(f) Let n=16k+15 (k>1). Then &(10n,10) = 10n+ 10 by Lemma
5.1. Hence s(107,) < 10n+10. And we get u(10n,10;n) > 10n+9 by
Lemma 5.2. Therefore s(107,) > 10n + 9. O

6. Proof of Theorem 6

In this section we prove Theorem 6, since the method of the proofs of
Theorems 2-5, 7-9 is simpler than and similar to that of Theorem 6.

ProOF OF THEOREM 6. We recall the following
67, = (6bn+6)¢, — 6 € KO(RP").

(1) Since 6 >2" for 1 <n <3, s(6t,) =co for 1 <n <3 by Propo-
sition 4.2.  And since 6 < 2¢" and 20" —6 — 6n < 0 for 4 <n < 11, s(61,) =
oo for 4 <n <11 by Proposition 4.3.

(2) Let n>12. Then 0 <6n+6 < 2?" and 67, is stably equivalent to
(6n+6)<,.

(@) Let n=0,1 mod4. We use the method similar to the proof
of Theorem 10(a). Since 6rn+6 is even and 6n+1 is odd, we have
Span(6n + 6)&g,1 = (6n+6) — (6n+ 1)+ 1 =6 by Theorems 2.5 and 2.6(A).
Hence, by Theorem 2.2(2), s(67,) = 6n+ 1. On the other hand, &(6n,6)=
6n+2 by Theorem 2.7. Hence s(67,) < 6n+ 2 by Theorem 2.3. Therefore
s(6t,) =6n+ 1.

(b) We use the method similar to the proof of Theorem 10(2)(d). Let
n=4k+2 (k>3). Then ¢(6n,6)=6n+4. Hence s(67,) < 6n+4 by The-
orem 2.3. Also putting 6n+4 =233k +2) = (2b+1)2¢"% (0 < ¢ <3), we
see 2°+8d >6. So we get u(6n,6;n)>6n+3. Therefore, by Proposition
3.2, s(61,) = 6n+ 3.

(c) Let n=4k+3 (k>3). Then ¢&(6n,6)=6n+6. Hence s(61,) <
6n+ 6. Putting 6n+ 6 =233k +3) = (2b+ 1)2¢% (0 < ¢ < 3), we see 2¢+
8d >6. So we get u(6n,6;n) > 6n+5. Therefore s(6t7,) = 6n+ 5. O

7. Proofs of Theorems 2-5, 7-9

In this section we give an outline of the proofs of Theorems 2-5, 7-9 in
the way similar to the proofs of Theorem 6(1) and Theorem 6(2)(b) by using
Theorem 2.3, Propositions 3.2, 4.2-4.4.

ProOF OoF THEOREM 2. We recall the following

27, = 2n+2)¢, — 2 € KO(RP").
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(1) Since 2>2M for n=1, s(2t,) = o for n=1 by Proposition
4.2. And since 2 < 2#" and 2" —2 —2n <0 for 2 <n <8, s(27,) = oo for
2 <n <8 by Proposition 4.3.

(2) Let n=9. Then 0 <2n+2<2%" and 21, is stably equivalent to
(2n 4 2)¢,.

We use the method similar to the proof of Theorem 6(2)(b). Now
¢(2n,2) =2n+2. Hence s(27,) < 2n+ 2 by Theorem 2.3. Also putting 2n +
2(=2(n+1)) = (2b+1)2¢% (0 <c<3), we see 2°+8d>2. So we get
1(2n,2;n) = 2n+ 1. Therefore, by Proposition 3.2, s(27,) > 2n+ 1. O

ProoF ofF THEOREM 3. We recall the following
31, = (3n+3)¢, — 3 € KO(RP").

(1) Since 3 > 2" for n=1, s(31,) = © for n=1. And since 3 < 24"
and 290 —3 —3n <0 for 2<n<8, s(3t,) = 0 for 2<n<8.

(2) Let n>9. Then 0 <3n+3<2%" and 37, is stably equivalent to
(3n+3)¢,.

(a) Let n=0,1 mod4. Then &(3n,3) =3n+1. Hence s(37,) <3n+1
by Theorem 2.3. And we get s(3t,) > 3n by Proposition 4.4.

(b), (¢) Now &(3n,3)=3n+2 for n=2 mod4, =3n+3 for n=3
mod 4. Hence s(37,) <3n+2 for n=2 mod4, <3n+3 for n=3 mod4.
Also let n=4k+2 (k>2) and put 3n+2(=2%(3k+2)) = (2b 4 1)2¢+4
(0<c¢<3). Then we see 2°4+8d >3. So u(3n,3;n) >3n+1. For n=3
mod 4, we see similarly u(3n,3;n) =3n+2. Therefore s(37,) =3n+1 for
n=2mod4, >3n-+2 for n=3 mod 4. O

ProOOF OF THEOREM 4. We recall the following
4t, = (4n+4)¢, — 4 € KO(RP").

(1) Since 4 > 2" for 1 <n <3, s(4r,) = o for 1 <n<3. And since
4 <29 and 290 —4 —dn <0 for 4 <n <9, s(dr,) = o for 4 <n<9.

(2) Let n>10. Then 0 <4n+4 < 2?" and 4z, is stably equivalent to
(4n+4)¢,.

Now ¢(4n,4) =4n+4. Also we get u(4n,4;n) > 4n+ 3. O

ProOF OF THEOREM 5. We recall the following
51, = (5n+5)¢, — 5 € KO(RP™).

(1) Since 5=2¢" for 1 <n <3, s(57,) = for 1 <n<3. And since
5< 290 and 29" —5 - 52 <0 for 4 <n<9, 5(51,) = o for 4 <n<9.

(2) Let n>10. Then 0 < 57+ 5 < 2?" and 57, is stably equivalent to
(5n+5)¢,.
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(a) Letn=0,2,3,5 mod8. Then ¢(5n,5)=5n+1. And we get s(57,)
> 5n by Proposition 4.4.

(b), (c), (d), (¢) Now &(5n,5)=5n+2 for n=6 mod8, =5n+3 for
n=1mod8 =5n+4 forn=4 mod8, =5n+5 for n=7 modS8. Also we
get u(5n,5;n) >5n+1 for n=6 mod8, >5n+2 for n=1 mod 8, > 5n+3
for n=4 modS8, >5n+4 for n =7 mod 8. O

Proor ofF THEOREM 7. We recall the following
Tty = (Tn+7)&, — 7€ KO(RP").

(1) Since 7>2%" for 1 <n <3, s(7t,) = oo for 1 <n<3. And since
7 <29 and 290 —7 -7Tn <0 for 4 <n <11, s(7t,) = o for 4 <n < 11.

(2) Let n>12. Then 0 <7n+7 < 2" and 7z, is stably equivalent to
(Tn+T)¢,.
(@) Let n=0,1 mod8. Then ¢(7n,7) =7n+1. Also we get s(7z,) =
7n by Proposition 4.4.

(b) Now ¢(7n,7) =Tn+i for n=i mod 8 with 2 <i<7. Also we get
w(Tn,7;n) > Tn+i—1 for n=i mod 8 with 2 <i<7. O

ProorF ofF THEOREM 8. We recall the following
87, = (8n+ 8)¢, — 8 e KO(RP").

(1) Since 8 = 2" for 1 <n <7, s(8t,) =0 for 1 <n<7. And since
8 <2/ and 29" —8—-8n<0 for 8<n<1l or n=15 s(8t,) = o0 for
8§<n<1l or n=15.

(2) Let n=12,13,14 or n>16. Then 0 <8n+8 < 2% and 87, is
stably equivalent to (8n+ 8)¢,.

Now ¢(81,8) =8n+8. Also we get u(8n,8;n) > 8n+7. O

ProOF OF THEOREM 9. We recall the following
97, = n+9)¢, — 9 € KO(RP").

(1) Since 9 >2%" for 1 <n <7, s(97,) =0 for 1 <n<7. And since
9 <290 and 29 —9 —9n <0 for 8 <n <11, n=14 or 15, 5(97,) = co for
8§<n<l1l, n=14 or 15.

(2) Let n=12,13 or n>16. Then 0 <91+ 9 < 2% and 9z, is stably
equivalent to (91 + 9)¢,.

(a) Let n=0,2,4,6,7,9,11,13 mod 16. Then &(91,9)=9n+ 1. Also
we get $(97,) > 9n by Proposition 4.4.

(b), (c), (d), (e), (), (g), (h), i) Now &(9n,9) =9n+ 2 for n = 14 mod 16,
=9 +3 for n=5 mod 16, =9n+4 for n=12 mod 16, =9n+5 for n=3
mod 16, =91+ 6 for n =10 mod 16, =9n+ 7 for n =1 mod 16, = 9n + 8 for
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n=8 mod 16, =91 +9 for n =15 mod 16. Also we get x(9n,9;n) > 9n + 1
for n =14 mod 16, >9n+2 for n=5 mod 16, > 9n + 3 for n =12 mod 16,
>9n+4 for n=3 mod 16, >+ 5 for n=10 mod 16, >9n+6 for n=1
mod 16, > 9+ 7 for n=8 mod 16, > 9n+ 8 for n =15 mod 16. O

REMARK. According to Theorem 2.2 of [8], mz, is extendible to RPY if
and only if mrt, is stably extendible to RPY, provided n>1 and m > 1.
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