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Abstract. In this paper we consider a multivariate parallel profile model with poly-

nomial growth curves. The covariance structure based on a random e¤ects model is

assumed. The maximum likelihood estimators (MLE’s) are obtained under the random

e¤ects covariance structure. The e‰ciency of the MLE is discussed.

1. Introduction

Suppose that m response variables x1; . . . ; xm have been measured at p

di¤erent occasions on each of N individuals, and each individual belongs to

one of k groups or treatments. Let x
ðgÞ
j be an mp-vector of measurements on

the j-th individual in the g-th group arranged as

x
ðgÞ
j ¼ ðxðgÞ11j ; . . . ; x

ðgÞ
1mj ; . . . . . . ; x

ðgÞ
p1j; . . . ; x

ðgÞ
pmjÞ

0;

and assume that x
ðgÞ
j ’s are independently distributed as NmpðmðgÞ;WÞ, where W

is an unknown mp�mp positive definite matrix, j ¼ 1; . . . ;Ng, g ¼ 1; . . . ; k.

Further, we assume that mean profiles of k groups are parallel polynomial

growth curves, i.e.,

mðgÞ ¼ ð1p n ImÞxðgÞ þ ðB 0 n ImÞx2; g ¼ 1; . . . ; k;ð1:1Þ

where 1p is a p-vector of ones, ð1p n ImÞ defines the Kronecker product of 1p
and the m�m identity matrix,

B ¼ 1 0
p

B2

� �
¼

1 � � � � � � 1

t1 � � � � � � tp

..

. ..
.

t
q�1
1 � � � � � � tq�1

p

2
666664

3
777775

ð1:2Þ

is a q� p within-individuals design matrix of rank q ða pÞ, xðgÞ : m� 1 and
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x2 : mq� 1 are vectors of unknown parameters. Yokoyama [7] considered a

multivariate parallel profile model with

mðgÞ ¼ ð1p n ImÞxðgÞ þ m; g ¼ 1; . . . ; k:

Therefore, the model (1.1) means that m has a linear structure. Without loss

of generality, we may assume that xðkÞ ¼ 0. In the following we shall do this.

Let

X ¼ ½xð1Þ1 ; . . . ; x
ð1Þ
N1
; . . . . . . ; x

ðkÞ
1 ; . . . ; x

ðkÞ
Nk
� 0; N ¼ N1 þ � � � þNk:

Then the model of X can be written as

X @NN�mpðA1X1ð1 0
p n ImÞ þ 1Nx

0
2ðBn ImÞ;Wn INÞ;ð1:3Þ

where

A1 ¼

1N1
0

. .
.

0 1Nk�1

� � �
0

2
66666664

3
77777775

is an N � ðk � 1Þ between-individuals design matrix of rank k � 1 ðaN �
p� 1Þ, X1 ¼ ½xð1Þ; . . . ; xðk�1Þ� 0 is an unknown ðk � 1Þ �m parameter matrix.

The model (1.3) may be called the multivariate parallel growth curve model.

The model (1.3) with B ¼ Ip is a special case of mixed MANOVA-GMANOVA

models considered by Chinchilli and Elswick [2], Kshirsagar and Smith [4,

p. 85], etc. The mean structure of (1.3) can be written as

EðX Þ ¼ ½A1 1N �
X11 0

x 0
21 x 0

22

� �
ðBn ImÞ;ð1:4Þ

where X1 ¼ X11 and x 0
2 ¼ ½x 0

21 x 0
22�. We note that the model (1.3) is the

multivariate growth curve model (Reinsel [5]) with a linear restriction on mean

parameters.

Chinchilli and Carter [1] discussed the LR test for a patterned covariance

structure

W ¼ ð1p n ImÞSlð1 0
p n ImÞ þ ðW n ImÞStðW 0 n ImÞ þ Ip nSe;

in a multivariate GMANOVA model, where W is a known p� ðp� 1Þ matrix

of rank p� 1 such that 1 0
pW ¼ 0, St is an arbitrary mðp� 1Þ �mðp� 1Þ

positive semi-definite matrix, Sl and Se are arbitrary m�m positive semi-

definite and positive definite matrices, respectively. We are now interested in a

multivariate random e¤ects covariance structure
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W ¼ ð1p n ImÞSlð1 0
p n ImÞ þ Ip nSe:ð1:5Þ

The covariance structure (1.5) is based on the following model:

x
ðgÞ
j ¼ ð1p n ImÞðxðgÞ þ l

ðgÞ
j Þ þ ðB 0 n ImÞx2 þ e

ðgÞ
j ;ð1:6Þ

where l
ðgÞ
j ’s and e

ðgÞ
j ’s are independently distributed as Nmð0;SlÞ and

Nmpð0; Ip nSe), respectively. From (1.6), we have

VarðxðgÞj Þ ¼ W ¼ ð1p n ImÞSlð1 0
p n ImÞ þ Ip nSe:

Therefore, the model of X with random e¤ects can be written as

X @NN�mpðA1X1ð1 0
p n ImÞ þ 1Nx

0
2ðBn ImÞ;ð1:7Þ

ðð1p n ImÞSlð1 0
p n ImÞ þ Ip nSeÞn INÞ:

Fujikoshi and Satoh [3] obtained the MLE’s in the growth curve model with

two di¤erent within-individuals design matrices when the covariance matrix has

no structures, i.e., is any unknown positive definite. In this paper we consider

the problems of estimating unknown mean parameters X1 and x2 when W

has the structure (1.5). By making this stronger assumption about W, we can

expect to have more e‰cient estimators. In § 2 we obtain the MLE’s of X1

and x2 in the model (1.7), using a canonical form of (1.7). In § 3 it is shown

how much gains can be obtained for the maximum likelihood estimation of X1

by assuming a multivariate random e¤ects covariance structure.

2. The MLE’s

First we reduce the model (1.7) to a canonical form. Let H ¼
½H1 N�1=21N H3� be an orthogonal matrix of order N such that

½A1 1N � ¼ ½H1 N�1=21N �
L11 0

l 021 N 1=2

� �

¼ Hð2ÞL;

where H1 : N � ðk � 1Þ, and L11 : ðk � 1Þ � ðk � 1Þ is a lower triangular matrix.

Similarly, let Q ¼ ½ p�1=21p Q 0
2 Q 0

3�
0 be an orthogonal matrix of order p such

that

1 0
p n Im

B2 n Im

� �
¼ p1=2Im 0

R21 R22

� �
p�1=21 0

p n Im

Q2 n Im

� �

¼ RQð2Þ;
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where Q2 : ðq� 1Þ � p, and R22 : mðq� 1Þ �mðq� 1Þ is a lower triangular

matrix. Then the mean structure of (1.7) can be written as

A1X1ð1 0
p n ImÞ þ 1Nx

0
2ðBn ImÞ ¼ p�1=2H1Y1ð1 0

p n ImÞ þN�1=21Ny
0
2Qð2Þ;ð2:1Þ

where

Y1 ¼ p1=2L11X1; y 0
2 ¼ N 1=2x 0

2Rþ l 021½X1 0�R:

Here we note that ðX1; x2Þ is an invertible function of ðY1; y2Þ. In fact, X1

and x2 can be expressed in terms of Y1 and y2 as

X1 ¼ p�1=2L�1
11 Y1; x 0

2 ¼ N�1=2y 0
2R

�1 �N�1=2l 021½ p�1=2L�1
11 Y1 0�:ð2:2Þ

Using the above transformation, we can write a canonical form of (1.7)

as

Y ¼ H 0XðQ 0 n ImÞ ¼
Y11 Y12 Y13

y 0
21 y 0

22 y 0
23

Y31 Y32 Y33

2
64

3
75@NN�mpðEðY Þ;Cn INÞ;ð2:3Þ

where the mean EðYÞ and the covariance matrix C are given by

EðY Þ ¼
Y11 0 0

y 0
21 y 0

22 0 0

0 0 0

2
64

3
75; Y11 0

y 0
21 y 0

22

� �
¼ L

X11 0

x 0
21 x 0

22

� �
R;ð2:4Þ

Y1 ¼ Y11; y 0
2 ¼ ½y 0

21 y 0
22�; Y11 : ðk � 1Þ �m; y21 :m� 1; y22 :mðq� 1Þ � 1;

C ¼ ðQn ImÞWðQ 0 n ImÞ ¼
pSl þ Se 0

0 Ip�1 nSe

� �
;ð2:5Þ

pSl þ Se : m�m; Ip�1 nSe : mðp� 1Þ �mðp� 1Þ:

From (2.3), it is easy to see that the MLE’s of Y1 and y2 are given by

ŶY1 ¼ Y11; ŷy 0
2 ¼ y 0

2ð12Þ;

where y 0
2ð12Þ ¼ ½y 0

21 y 0
22�. Hence the MLE’s of X1 and x2 are given by

X̂X1 ¼ p�1=2L�1
11 Y11; x̂x 0

2 ¼ N�1=2 y 0
2ð12ÞR

�1 �N�1=2l 021½ p�1=2L�1
11 Y11 0�:ð2:6Þ

Now we express the MLE’s given in (2.6) in terms of the original obser-

vations. Let

~AA1 ¼ IN � 1

N
1N1

0
N

� �
A1; ~BB2 ¼ B2 Ip �

1

p
1p1

0
p

� �
:ð2:7Þ

Then, from the definitions of L and R it is seen that
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H1 ¼ ~AA1L
�1
11 ; l 021 ¼ 1ffiffiffiffiffi

N
p 1 0

NA1;

Q2 n Im ¼ R�1
22 ð ~BB2 n ImÞ; R21 ¼ 1ffiffiffi

p
p ðB21p n ImÞ:

Using these results, we have the following theorem.

Theorem 2.1. The MLE’s of X1 and x2 in the multivariate parallel profile

model (1.7) are given as follows:

X̂X1 ¼ 1

p
ð ~AA 0

1
~AA1Þ�1 ~AA 0

1Xð1p n ImÞ;

x̂x 0
21 ¼ 1

p

�
x 0fðIp � ~BB 0

2ð ~BB2
~BB 0

2Þ
�1
B2Þn Img

� 1

N
1 0
NA1ð ~AA 0

1
~AA1Þ�1 ~AA 0

1X

�
ð1p n ImÞ;

x̂x 0
22 ¼ x 0fð ~BB 0

2ð ~BB2
~BB 0

2Þ
�1Þn Img;

where ~AA1 and ~BB2 are given by (2.7), and x is the sample mean vector of

observations of all the groups.

We note that the MLE’s of unknown variance parameters Sl and Se in

the model (1.7) are complicated and impractical. The MLE’s of Sl and Se in

the model (1.7) are the same ones as in the model of Yokoyama [7], in which m

has no structures. For a detailed discussion of the MLE’s of these parameters,

see Yokoyama [7].

3. E‰ciency of X̂X1

In this section we consider the e‰ciency of the MLE for X1 in the case

when the covariance structure (1.5) is assumed. Let Sw be the matrix of the

sums of squares and products due to the within variation, i.e.,

Sw ¼ X 0H3H
0
3X ¼

Xk

g¼1

XNg

j¼1

ðxðgÞj � xðgÞÞðxðgÞj � xðgÞÞ0;

where xðgÞ is the sample mean vector of observations of the g-th group. When

no special assumptions about W are made, the MLE of X1 is given by

~XX1 ¼ ð ~AA 0
1
~AA1Þ�1 ~AA 0

1XS
�1
w ð1p n ImÞfð1 0

p n ImÞS�1
w ð1p n ImÞg�1ð3:1Þ
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(see, e.g., Srivastava [6]). The estimators X̂X1 and ~XX1 have the following

properties.

Theorem 3.1. In the multivariate parallel profile model (1.7) it holds that

both the estimators X̂X1 and ~XX1 are unbiased, and

VarðvecðX̂X1ÞÞ ¼
1

p
ðpSl þ SeÞn ð ~AA 0

1
~AA1Þ�1;

Varðvecð ~XX1ÞÞ ¼
1

p
1 þ mðp� 1Þ

N � k �mðp� 1Þ � 1

� �
ðpSl þ SeÞn ð ~AA 0

1
~AA1Þ�1;

where ~AA1 is given by (2.7).

Proof. From (2.2), (2.6) and ~AA 0
1
~AA1 ¼ L 0

11L11, we obtain the result on X̂X1.

It can be shown that for any positive definite covariance matrix W,

Eð ~XX1Þ ¼ X1

and

Varðvecð ~XX1ÞÞ

¼ 1 þ mðp� 1Þ
N � k �mðp� 1Þ � 1

� �
fð1 0

p n ImÞW�1ð1p n ImÞg�1 n ð ~AA 0
1
~AA1Þ�1

(see, e.g., Fujikoshi and Satoh [3], Yokoyama [7]). Under the assumption that

W ¼ ð1p n ImÞSlð1 0
p n ImÞ þ Ip nSe;

it holds that

fð1 0
p n ImÞW�1ð1p n ImÞg�1 ¼ 1

p
ðpSl þ SeÞ;

which proves the desired result on ~XX1.

From Theorem 3.1, we obtain

Varðvecð ~XX1ÞÞ � VarðvecðX̂X1ÞÞð3:2Þ

¼ mðp� 1Þ
pfN � k �mðp� 1Þ � 1g ðpSl þ SeÞn ð ~AA 0

1
~AA1Þ�1 > 0;

which implies that X̂X1 is more e‰cient than ~XX1 in the model (1.7). This shows

that we can get a more e‰cient estimator for X1 by assuming a multivariate

random e¤ects covariance structure. Especially, when p is large relative to N,

we can obtain greater gains. It is not simple and is left as a future problem
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how much gains can be obtained for the maximum likelihood estimation of x2

by assuming the covariance structure (1.5).
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