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ABSTRACT. The new concept of an irrationality measure of sequences is introduced
in this paper by means of the related irrational sequences. The main results are two
criteria characterising lower bounds for the irrationality measures of certain sequences.
Applications and several examples are included.

1. Introduction

The concept of irrationality is very important in Diophantine approx-
imations. There are several criteria for the irrationality of numbers, see for
example, Erdés and Strauss [6], [7], Han¢l and Rucki [14], Borwein [1], [2] or
Borwein and Zhou [3]. Some interesting results concerning the Cantor series
can be found in the paper of Tijdeman and Pingzhi Yuan [17]. Let us mention
the book of Nishioka [16] which contains a nice survey of Mahler theory
including many results on irrationality. If we want to approximate a real
number by rationals then it is appropriate to introduce the so-called irratio-
nality measure of numbers.

DerINITION 1. Let & be an irrational number. Then the number

» -1
=4
q

is called the irrationality measure of the number &.

lim sup log, | min
g— 0 pGN

Let us note that for such a measure we have the following theorem.

THEOREM 1. Any irrational number has an irrationality measure greater or
equal to 2.

The proof of Theorem 1 can be found in the book of Hardy and Wright in
[15]. The result concerning the lower bound for the irrationality measure of
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the sum of infinite series which consist of terms of rational numbers is included
in the paper of Duverney [4] for instance. In 1975 Erdds [5] defined irrational
sequences in the following way.

DErINITION 2. Let {a,},_, be a sequence of positive real numbers. If for

every sequence {c,},_, of positive integers the sum of the series

= 1

Z AnCn

n=1

is an irrational number, then the sequence {a,},., is called irrational. 1f
{a,},_, is not an irrational sequence, then it is a rational sequence.

Erdés [5] also proved that the sequence {22}7, is irrational. Some

generalizations and similar criteria can be found in [8], [9], [11] or [12]. To
each irrational sequence {a,},_; we can associate the sums of infinite series
{fo: lﬁ,cn e N} which are all irrational numbers. If we want to ap-
proximate such a ‘set by rationals then it is suitable to introduce the so-called
irrationality measure of sequences in the following way.

DEerINITION 3. Let {a,},_; be an irrational sequence. Let € be the set of
all sequences of positive integers, € = {{c¢,},_,,¢, € N}. Then the number

;

is called the irrationality measure of the sequence {a,},_;.

> oot
n=1

ancn q

inf  limsup logq min
ee]
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Unfortunately it is impossible to find a version of Duverney’s criterion (see [4])
for irrationality measure in the case of irrational sequences. We now introduce
Theorem 2 and Theorem 3 which are new criteria.

2. Main result

THEOREM 2. Let ¢, ¢ and S be three positive real numbers such that

81<1+"3 (1)

and

S >

1—81.
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Assume that {a,},._, and {b,},_, are two sequences of positive integers such that
{an},_, is nondecreasing, and that

limsup a!/+D" > 1; 3)

n—w
by = Olay,); (4)

and for every sufficiently large positive integer n
a, > n'e, (3)

o0
Then the sequence {Z—”} 1 is irrational and has the irrationality measure greater
n ) p=
than or equal to max(2,S(1 — ¢&)).

THEOREM 3. Let & and S be two positive real numbers with S > 1.
Assume that {a,},._, and {b,},_, are two sequences of positive integers, such that
{a,},_, is nondecreasing, (3) and (5) for every sufficiently large positive integer n
hold, and that for every positive real number f

b, = o(d?). (6)

n

o0
Then the sequence {Z—”} is irrational and has the irrationality measure greater
"Jn

=1
than or equal to max(2,S).

3. Proofs

LeMMmA 1. Let & be a positive real number such that ¢y < 1. Assume that
{an},_, and {b,},_, are two sequences of positive integers with {a,},_, non-
decreasing, such that

by = O(ay;)) (7)
and
an, > 2" (8)

for every sufficiently large n. Then for every & with ¢ > ¢& and sufficiently
large n

o0
PR )

R 1—& °

j=0 Anj an ?

ProoF (of Lemma 1). Let n be a sufficiently large positive integer such
that (8) holds. From equation (7) we obtain that there exists a positive real
number K which does not depend on n and such that
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b, < Ka}'. (10)
Inequality (10) implies that

o0

0 Ka61 0 K

bn+jSZ n+j:Z -
. —¢1

=0 Aptj = Ap4j 0 Ausj

K K
= > P Y T (11)

n<n+j<log,a, “n+j n+j>log, a, an+j

Now we will estimate the both sums on the right hand side of inequality (11).
For the first sum of (11), we obtain that

Z K <Klog2an. (12)

l—¢ — 1—¢
n<n+j<log,a, “n+j an

For the second sum of (11), inequality (8) yields

K K
Y. oS D 2 a)

n+j>log, a, “n+j n+j>log, a,

K
(1781)

1 L
2]‘(1781) = al—al’ (13)

n

0
<
an j=0

where L is a suitable positive real constant which does not depend on n. From
(11), (12) and (13) we obtain that for every & with & > ¢ and for every
sufficiently large positive integer n

0

bA
Yoo oy By B

—0 Gt n<n+j<log, ay In+j n+j>log, ay ntj

J=0

<K10g2an+L < 1

arllfsl - a}lﬁ?z

Thus (9) holds. The proof of Lemma 1 is complete. O

LEMMA 2. Let S, e, {an},_, and {b,},._, satisfy all conditions in Theorem
2. Then there exists a positive real number o such that for every sufficiently
large n

oo ot 1
< = (14)

. o
j=0 Qnvj a,
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Proor (of Lemma 2). From (4) we obtain that there exists a positive real
constant K, such that

by < Ka®. (15)

Inequality (15) implies

0 0 é1 0
bn+j Ka)1+j K
< = E s
=0 dni =g Gt G

= Z fsl + Z lliel : ( 16)

a ¢ va. ¢
n<ntj<al/) “ntj ntj> a0 Cntj

Now we will estimate the both sums on the right hand side of inequality (16).
For the first sum, we obtain that

K _Ka/" Kk K a7
e anlJ:;l - 61,11781 611,_1/(1_‘—6)_61 a;,l/(l+r,)—sl ’

n<n+j<a,

For the second sum, inequality (5) implies that there exist positive real
constants ¥ and R not depending on n, such that

K < K
l—g — (1 1-
ntj>ay/ 0 a”+;l ntj>ay/ (I’l + ])( )
- *® V dx R 18
Vv xUo(—a) = o/(4o—a " (18)
a, ap

From (16), (17) and (18) we obtain that

o0
= bn+j K K
Yhio oy Kooy K
j=0 / n<ntj<al/0t9 “ntj ntj>al/0F0 ety
K R K+ R
S v T re-a = o(io-a" (19)
ap T ay Toa T

Let o :%(1%8—81). Then inequality (1) implies that o > 0. This and (19)

yield that for every sufficiently large n

PA

LT oo
j=0 Un+j a,

Thus (14) holds. The proof of Lemma 2 is complete. O
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PrOOF (of Theorem 2). Let {c¢,},_, be a sequence of positive integers.
Then there exists a bijection ¢: N — N such that for every neN, 4, =
ay(n)Co(ny and the sequence {4, },_, is nondrecreasing. From this description of
a bijection ¢ and from the fact that {a,},_, is a nondecreasing sequence of
positive integers we obtain that for every ne N

An = Ay C4n) = an- (20)

Let B, denote by, for all neN. This and (20) imply that the sequences
{A4,},_, and {B,},_, satisfy all asumptions of Theorem 2 too. From this fact,
(2) and Theorem 1 we obtain that to prove Theorem 2 it is sufficient to prove
that for every real number S; with

S > &S, (1)
and with S| — ¢S sufficiently small we have
L S Y
mlgf(rg a,,) ,;/a_n =0. (22)

Inequality (21) implies that there is a positive real number & with & > ¢ and
such that S} > &S. Let us put

S1— &S
o= %
Then 0 > 0 and we have
82+S_S1 1 _S1 —&eS—0+4+¢&od
S—90 S—0
Si—&8
—1- %4_;25 (23)
Inequality (3) implies that
limsup al/SH1=0" = o, (24)
n—oo

Let 4 be a sufficiently large positive real number. From (24) we obtain that
there exists a positive integer n such that

a;/(s+1—a‘)" >4
Assume that o is a positive real number which satisfies condition (14) in

Lemma 2. Let for every positive integer k > max(ay,3), wi denote the least
positive integer such that
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a‘l‘{((S+l —0)" S 2/, (25)
Suppose that 7; is the greatest positive integer less than wy such that

n < k' (26)
Let v, be the least positive integer greater than 7; such that

1/(S+1 —0)" > k. (27)

From the description of sequences {#};_, , {vx};_y» {Wk}i_, and from (25),
(26) and (27) we obtain that

e < v < Wy, (28)
lim v, = oo
k— o0 k

and for every positive integers r and s with vy <r <wy and 1 < s < vg
ar > k" >2" (29)
and

ay < kSH0, (30)

The fact that the sequence {a,},—, of positive integers is nondecreasing and
inequality (26) imply that

173
[Jan<al <k’ (31)

From (28) and (30) we obtain

J(SHLI=0)% S (S=0)((S+1-0) %" 4(S+1-0) % -t1)

_ (S—0) =1 (S—9) (S—0)
=<H ) =) (i)
=1 n=1

This fact, (28) and (31) yield

netl NS \(5-9)
S+1 —0)"
ay a
(M) (fe)

=1 (5-9) sl (S-9)
> (H an> k(570 > (H a,,) kUk(S=0), (32)
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Inequality (32) implies that
ve—1 (S*S])
(H a,,) < k((5=81)/(5-0))(S+1-0) "k +(S=S1)o} (33)
n=1

From (27), (29) and Lemma 1 we obtain the fact that

by _ 1 1
Z_ = = k(1=e2)(S+1-0)% (34)

n=uvy n Ay

Inequality (25), the fact that the sequence {a,},_, is nondecreasing and Lemma
2 yield

0
b, 1 1 1
2 < < — < - (35)
=0 = a S (Stlo)*
nma1 Ayt Ay k2 )

Since 2 > 1—¢, then, (28), (34) and (35) imply that for every sufficiently
large k

0 Wy e
DA LN .
n=vg n n=vg an n=wi+1""

1 1 2
< J(1=e2)(S+1-0) +k2(s+1—(>‘)“'k = J(=e2)(S+1-0)% *

From (33) and (36) we obtain that for every sufficiently large vy

v—1 (=81 o
(i_[ a,,) Z ﬁ < k(S*SI)UAZ»*(I*(QHS*SI)/(S*‘»))(S?Ll*é)bk. (37)
n=1

a
n=y; "

Inequality (23) yields that 1 — (sz +%) > 0. From this fact and (37) we
obtain the fact that

a
n=v "

ve—1 S=81 b
i (1) 5220

This implies (22). The proof of Theorem 2 is now complete. O

[ @ :
ProOOF (of Theorem 3). Suppose that the sequence {E}n:] has an ir-

rationality measure less than S. Then there exists a positive real number

S <min(S— 1,t%) such that the irrationality measure of the sequence
{‘b’—} 1 is less than S —S|. Let ¢ :%. Then (6) implies that b, = o(a?}).

Hence b, = O(af'). From this and Theorem 2 we obtain that the sequence
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»
{Z—} 1 is irrational and has irrationality measure greater than or equal to

n ) p=
max(2; S(1 —¢;)). This is a contradiction since S(1 —¢;) =S5 —Se; =S5 —S).
]

4. Examples and comments

COROLLARY 1. Let ¢ and S be positive real numbers such that
S(1 —&)>2. Assume that {a,},_, and {b,},., are two sequences of positive
integers such that {a,},_, is nondecreasing, with

limsup a!/+D" > 1
n—oo

and
by, = O(al).

n

o0
Then the sequence {2—} ] has irrationality measure greater than or equal to
S(l — 81). "=

Corollary 1 is an immediate consequence of Theorem 2.
ExampLE 1. Corollary 1 implies that the sequence
33" )"
2% —|—I’15 n=1
(log, 3—1)

. . . 4
has irrationality measure greater than or equal to oz, 3

ExampLE 2. Let K be a positive integer with K(l — 1) >2. Denote

log, e
that lem(x;,x2,...,x,) is the least common multiple of the numbers
X1,X2,...,X,. Then Corollary 1 yields that irrationality measure of the
sequence

lem(1,2,...,(K+ 1" +n)”
2(K+1)”_|_n2

n=1

is greater than or equal to K (1 -t )

log, e

COROLLARY 2. Let S be a positive real number with S > 2. Assume that
{an},_, and {b,}, | are two sequences of positive integers, that {a,}, , is
nondecreasing, that

limsup a/+D" > 1
n—oo

with
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b, = o(a?)

n

.
or every positive real number . Then the sequence % has irrationalit
4 q B . 84
measure greater than or equal to S. "

Corollary 2 is an immediate consequence of Theorem 3.

ExampPLE 3. Corollary 2 yields that the sequence

ez
33" + 5" n=1
has irrationality measure greater than or equal to 3.

ExaMPLE 4. Let S be a positive real number with S > 2. Assume that
7(x) is the number of primes less than or equal to x. As an immediate
consequence of Corollary 2 we obtain that the sequence

{=((S+ 1"+ 1},
has irrational measure greater than or equal to S.

ExaMPLE 5. Let K be a positive integer such that K > 3. Also let [x] be
the greatest integer less than or equal to x. Then Theorem 2 implies that the
sequence

22[10g2 log, 1] 0
2n+3(K+1) 4 n2

5 sllog logy n]

21+(K+1)- +n n=1

has irrationality measure greater than or equal to %

ExampLE 6. Let K be a positive real number such that K > 2. Then
Theorem 3 yields that the sequence

22[10);2 logy n) 0
n+(K+1) +n

72[10g2 logy ]

2a((K+1)° ) + pn

n=1
has irrationality measure greater than or equal to K.

DerFiNiTION 4. Let x be an irrational number. If the irrationality
measure of the number x is infinity then x is called Liouville number. Let
{a,},_, be a sequence of positive real numbers. If for every sequence {c,},_,
of positive integers, the sum of the series >.° —L-is a Liouville number, then

n=1 a,c,
the sequence {a,},_, is called Liouville.
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COROLLARY 3. Let ¢ and & be two positive real numbers with ¢ < T
Assume that {a,},_, and {b,},_, are two sequences of positive integers, that
{an},_, is nondecreasing, and that

with, for every positive real number S,

/s"

. 1 _
limsup a,/> = o

n—aoo

and for every sufficiently large positive integer n, a, > n'*. Then the sequence

o0
{%} is Liouville.
") n=1

Corollary 3 is an immediate consequence of Theorem 2 and Definition 4.

ExamPLE 7. As an immediate consequence of Corollary 3 we obtain that
the sequences
{22n! + n}w {2311” + ]}:’O
EY TR and CYTIES
2% +nl), 27"+ 1,

COROLLARY 4. Let ¢ be a positive real number. ~ Assume that {a,},._, and
{bn}le are two sequences of positive integers. Suppose that {a,,}flo:1 is non-
decreasing, and that for every positive real number 8

are Liouville.

by = o(aP).
Finally assume that for every positive real number S,

. I/SW
limsup a,

n—oo

=

and for every sufficiently large positive integer n, a, > n'*. Then the sequence
o0
{%} is Liouville.
") n=1
Corollary 4 is an immediate consequence of Corollary 3.

ExamPLE 8. As an immediate consequence of Corollary 4 we obtain that

the sequences
n" +1 o0 d 2(n+1)! +1 o
{2"! + 1}n1 o { 27 +1 }nl

are Liouville.
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REmMARK 1. In either Corollary 3 or Corollary 4 choose b, =1 for every
neN. Then we obtain Erdds theorem which states the following. Let {a,},.,
be a sequence of positive integers such that for every positive integer S,

: 1/8"
limsup a,

n— o0

= 0.

Let also ¢ be a positive real number such that for every sufficiently large positive
integer n, a, > n'**. Then the sum of the series y_," X is a Liouville number.
For more details see (5] or [10], for instance.

OPEN PrOBLEM. We do not know if the sequence {4*'},, has the ir-
rationality measure greater than 3.
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