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Abstract
In this paper we present the Sweedler cohomology for a

cocommutative weak Hopf algebra H. We show that the sec-
ond cohomology group classifies completely weak crossed prod-
ucts, having a common preunit, of H with a commutative left
H-module algebra A.

1. Introduction

In [15] Sweedler introduced the cohomology of a cocommutative Hopf algebra
H with coefficients in a commutative H-module algebra A. We will denote it as
Sweedler cohomology HϕA

(H•, A), where ϕA is a fixed action of H over A. Two
interesting examples are the following: If H is the group algebra kG of a group G and
A is an admissible kG-module, the Sweedler cohomology H•

ϕA
(kG,A) is canonically

isomorphic to the group cohomology of G in the multiplicative group of invertible
elements of A. If H is the enveloping algebra UL of a Lie algebra L, for i > 1, the
Sweedler cohomology Hi

ϕA
(UL,A) is canonically isomorphic to the Lie cohomology

of L in the underlying vector space of A. Also, in [15] we can find an interesting
interpretation of H2

ϕA
(H,A) in terms of extensions: this cohomology group classifies

the group of equivalence classes of cleft extensions, i.e., classes of equivalent crossed
products determined by a 2-cocycle. This result was extended by Doi [5], proving
that, in the non-commutative case, there exists a bijection between the isomorphism
classes of H-cleft extensions B of A and equivalence classes of crossed systems for
H over A. If H is cocommutative, the equivalence is described by H2

ϕZ(A)
(H,Z(A)),

where Z(A) is the center of A.

With the recent rise of weak Hopf algebras, introduced by Böhm, Nill, and Szla-
chányi [3], the notion of crossed product can be adapted to the weak setting. In
the Hopf algebra world, crossed products appear as a generalization of semi-direct
products of groups to the context of Hopf algebras and are closely connected with
cleft extensions and Galois extensions of Hopf algebras [2]. In [4] Brzeziński gave an
interesting approach that generalizes several types of crossed products, even the ones
given for braided Hopf algebras by Majid [12] and Guccione and Guccione [8]. On the
other hand, in [10] we can find a general and categorical theory, the theory of wreath
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products, which contains as a particular instance the crossed structures presented by
Brzeziński.

The key to extending the crossed product constructions presented in the previous
paragraph to the weak setting is the use of idempotent morphisms combined with the
ideas given in [4]. In [1] the authors defined a product on A⊗ V , for an algebra A
and an object V both living in a strict monoidal category C where every idempotent
splits. In order to obtain that product we must consider two morphisms ψA

V : V ⊗
A→ A⊗ V and σA

V : V ⊗ V → A⊗ V that satisfy some twisted-like and cocycle-like
conditions. Associated to these morphisms it is possible to define an idempotent
morphism ∇A⊗V : A⊗ V → A⊗ V and the image of ∇A⊗V inherits the associative
product from A⊗ V . In order to define a unit for Im(∇A⊗V ), and hence to obtain
an algebra structure, we require the existence of a preunit ν : K → A⊗ V . In [6] we
can find a characterization of weak crossed products with a preunit as associative
products on A⊗ V that are morphisms of left A-modules with preunit. Finally, it
is convenient to observe that, if the preunit is a unit, the idempotent becomes the
identity and we recover the classical examples of the Hopf algebra setting. The theory
presented in [1, 6] contains as a particular instance the one developed by Brzeziński
in [4]. There are many other examples of this theory, such as the theory of wreath
products presented in [10] and the weak crossed products for weak bialgebras given
in [14]. Recently, in [7] we proved that partial crossed products [13] are particular
instances of weak crossed products.

Then, if in the Hopf algebra setting the second cohomology group classifies crossed
products ofH with a commutative leftH-module algebra A, what about the weak set-
ting? The answer to this question is the main motivation of this paper. More precisely,
we show that if H is a cocommutative weak Hopf algebra and A is a commutative left
H-module algebra, all the weak crossed products defined in A⊗H with a common
preunit can be described by the second cohomology group of a new cohomology that
we call the Sweedler cohomology of a weak Hopf algebra with coefficients in A.

The paper is organized as follows: In Section 2, after recalling the basic properties of
weak Hopf algebras, we introduce the notion of weakH-module algebra and define the
cosimplicial complex RegϕA

(H•, A) for a cocommutative weak Hopf algebra H and a
commutative left H-module algebra A. Then, we introduce the Sweedler cohomology
of H with coefficients in A as the one defined by the associated cochain complex. In
section 3 we present the results about the characterization of weak crossed products
induced by morphisms σ ∈ RegϕA

(H2, A), proving that the twisted and the cocycle
conditions of the general theory of weak crossed products can be reduced to twisted
2-cocycle conditions for the morphism σ. Also, in this section we introduce the normal
condition that permits us to obtain a preunit in the weak crossed product induced
by the morphism σ. Finally, in section 4 we obtain the main result of this paper that
assures the following: There is a bijective correspondence between H2

ϕA
(H,A) and

the equivalence classes of weak crossed products of A⊗α H, where α : H ⊗H → A
satisfies the 2-cocycle and the normal conditions.

2. The Sweedler cohomology in a weak setting

From now on C denotes a strict symmetric category with tensor product denoted by
⊗ and unit objectK. With c we will denote the natural isomorphism of symmetry, and
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we also assume that C has equalizers. Then, under these conditions, every idempotent
morphism q : Y → Y splits, i.e., there exist an object Z and morphisms i : Z → Y and
p : Y → Z such that q = i ◦ p and p ◦ i = idZ . We denote the class of objects of C by
|C|, and for each object M ∈ |C|, we denote the identity morphism by idM :M →M .
For simplicity of notation, given objects M , N , P in C and a morphism f :M → N ,
we write P ⊗ f for idP ⊗ f and f ⊗ P for f ⊗ idP .

We want to point out that there is no loss of generality in assuming that C is strict,
because by Theorem 3.5 of [9] (this result implies Mac Lane’s coherence theorem) we
know that every monoidal category is monoidally equivalent to a strict one usually
denoted by Cstr. Then the results proved in this paper hold for every non-strict
monoidal category with equalizers.

We assume that the reader is familiar with the notion of algebra, coalgebra, mod-
ule, and comodule in a monoidal setting. For an algebra in C, A = (A, ηA, µA),
ηA : K → A denotes the unit and µA : A⊗A→ A the product. If A, B are alge-
bras in C, the object A⊗B is an algebra in C where ηA⊗B = ηA ⊗ ηB and µA⊗B =
(µA ⊗ µB) ◦ (A⊗ cB,A ⊗B). Similarly, for a coalgebra D = (D, εD, δD), εD : D → K
denotes the counit and δD : D → D ⊗D the coproduct. When D, E are coalgebras
in C, δD⊗E = (D ⊗ cD,E ⊗ E) ◦ (δD ⊗ δE) is the coproduct of the coalgebra D ⊗ E
and εD⊗E = εD ⊗ εE its counit. In this paper all algebras are associative and all
coalgebras coassociative.

If A is an algebra, B is a coalgebra, and α : B → A, β : B → A are morphisms, we
define the convolution product by α ∧ β = µA ◦ (α⊗ β) ◦ δB .

By weak Hopf algebras we understand the objects introduced in [3] as a general-
ization of ordinary Hopf algebras. Here we recall the definition of these objects in the
symmetric monoidal setting.

Definition 2.1. A weak Hopf algebra H is an object in C with an algebra structure
(H, ηH , µH) and a coalgebra structure (H, εH , δH) such that the following axioms
hold:

(a1) δH ◦ µH = (µH ⊗ µH) ◦ δH⊗H .

(a2) εH ◦ µH ◦ (µH ⊗H) = (εH ⊗ εH) ◦ (µH ⊗ µH) ◦ (H ⊗ δH ⊗H)
= (εH ⊗ εH) ◦ (µH ⊗ µH) ◦ (H ⊗ (cH,H ◦ δH)⊗H).

(a3) (δH ⊗H) ◦ δH ◦ ηH = (H ⊗ µH ⊗H) ◦ (δH ⊗ δH) ◦ (ηH ⊗ ηH)
= (H ⊗ (µH ◦ cH,H)⊗H) ◦ (δH ⊗ δH) ◦ (ηH ⊗ ηH).

(a4) There exists a morphism λH : H → H in C (called the antipode of H) satisfying

(a4-1) idH ∧ λH = ((εH ◦ µH)⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗H),
(a4-2) λH ∧ idH = (H ⊗ (εH ◦ µH)) ◦ (cH,H ⊗H) ◦ (H ⊗ (δH ◦ ηH)),
(a4-3) λH ∧ idH ∧ λH = λH .

Remark 2.2. If H is a weak Hopf algebra in C, the antipode λH is unique, antimulti-
plicative, and anticomultiplicative, and leaves the unit and the counit invariant:

λH ◦ µH = µH ◦ (λH ⊗ λH) ◦ cH,H , δH ◦ λH = cH,H ◦ (λH ⊗ λH) ◦ δH , (1)

λH ◦ ηH = ηH , εH ◦ λH = εH . (2)

If we define the morphisms ΠL
H (target), ΠR

H (source), Π
L

H , and Π
R

H by

ΠL
H = ((εH ◦ µH)⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗H),
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ΠR
H = (H ⊗ (εH ◦ µH)) ◦ (cH,H ⊗H) ◦ (H ⊗ (δH ◦ ηH)),

Π
L

H = (H ⊗ (εH ◦ µH)) ◦ ((δH ◦ ηH)⊗H),

Π
R

H = ((εH ◦ µH)⊗H) ◦ (H ⊗ (δH ◦ ηH)),

it is straightforward to show (see [3]) that they are idempotent and ΠL
H , ΠR

H satisfy
the equalities

ΠL
H = idH ∧ λH , ΠR

H = λH ∧ idH , ΠL
H ∧ΠL

H = ΠL
H , ΠR

H ∧ΠR
H = ΠR

H . (3)

Moreover,

ΠL
H ◦ΠL

H = ΠL
H , ΠL

H ◦ΠR

H = Π
R

H , ΠR
H ◦ΠL

H = Π
L

H , ΠR
H ◦ΠR

H = ΠR
H , (4)

Π
L

H ◦ΠL
H = Π

L

H , Π
L

H ◦ΠR
H = ΠR

H , Π
R

H ◦ΠL
H = ΠL

H , Π
R

H ◦ΠR
H = Π

R

H . (5)

For the target and source morphisms we have the following identities:

ΠL
H ◦ µH ◦ (H ⊗ΠL

H) = ΠL
H ◦ µH , ΠR

H ◦ µH ◦ (ΠR
H ⊗H) = ΠR

H ◦ µH , (6)

(H ⊗ΠL
H) ◦ δH ◦ΠL

H = δH ◦ΠL
H , (ΠR

H ⊗H) ◦ δH ◦ΠR
H = δH ◦ΠR

H , (7)

µH ◦ (H ⊗ΠL
H) = ((εH ◦ µH)⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H), (8)

(H ⊗ΠL
H) ◦ δH = (µH ⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗H), (9)

µH ◦ (ΠR
H ⊗H) = (H ⊗ (εH ◦ µH)) ◦ (cH,H ⊗H) ◦ (H ⊗ δH) (10)

(ΠR
H ⊗H) ◦ δH = (H ⊗ µH) ◦ (cH,H ⊗H) ◦ (H ⊗ (δH ◦ ηH)) (11)

µH ◦ (ΠR

H ⊗H) = ((εH ◦ µH)⊗H) ◦ (H ⊗ δH), (12)

µH ◦ (H ⊗Π
L

H) = (H ⊗ (εH ◦ µH)) ◦ (δH ⊗H), (13)

(Π
L

H ⊗H) ◦ δH = (H ⊗ µH) ◦ ((δH ◦ ηH)⊗H), (14)

(H ⊗Π
R

H) ◦ δH = (µH ⊗H) ◦ (H ⊗ (δH ◦ ηH)), (15)

Finally, ifH is (co)commutative we have that λH is an isomorphism and λ−1
H = λH .

Example 2.3. As group algebras and their duals are natural examples of Hopf alge-
bras, groupoid algebras and their duals provide examples of weak Hopf algebras.
Recall that a groupoid G is simply a small category in which every morphism is an
isomorphism. In this example, we consider finite groupoids, i.e., groupoids with a
finite number of objects. The set of objects of G will be denoted by G0 and the set of
morphisms by G1. The identity morphism on x ∈ G0 will also be denoted by idx, and
for a morphism σ : x→ y in G1 we write s(σ) and t(σ), respectively, for the source
and the target of σ.
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Let G be a groupoid, and let R be a commutative ring. The groupoid algebra is
the direct product

RG =
⊕
σ∈G1

Rσ,

with the product of two morphisms being equal to their composition if the latter is
defined and 0 otherwise, i.e., σ.τ = σ ◦ τ if s(σ) = t(τ) and σ.τ = 0 if s(σ) 6= t(τ).
The unit element is 1RG =

∑
x∈G0

idx. Then RG is a cocommutative weak Hopf
algebra, with coproduct δRG, counit εRG, and antipode λRG given by the formulas
δRG(σ) = σ ⊗ σ, εRG(σ) = 1, and λRG(σ) = σ−̇1. For the weak Hopf algebra RG the
target and source morphisms are, respectively, ΠL

RG(σ) = idt(σ), Π
R
RG(σ) = ids(σ).

Definition 2.4. Let H be a weak Hopf algebra. We will say that A is a weak left
H-module algebra if there exists a morphism ϕA : H ⊗A→ A satisfying.

(b1) ϕA ◦ (ηH ⊗A) = idA,

(b2) ϕA ◦ (H ⊗ µA) = µA ◦ (ϕA ⊗ ϕA) ◦ (H ⊗ cH,A ⊗A) ◦ (δH ⊗A⊗A),

(b3) ϕA ◦ (µH ⊗ ηA) = ϕA ◦ (H ⊗ (ϕA ◦ (H ⊗ ηA))),

and any of the following equivalent conditions holds:

(b4) ϕA ◦ (ΠL
H ⊗A) = µA ◦ ((ϕA ◦ (H ⊗ ηA)⊗A).

(b5) ϕA ◦ (ΠL

H ⊗A) = µA ◦ cA,A ◦ ((ϕA ◦ (H ⊗ ηA)⊗A).

(b6) ϕA ◦ (ΠL
H ⊗ ηA) = ϕA ◦ (H ⊗ ηA).

(b7) ϕA ◦ (ΠL

H ⊗ ηA) = ϕA ◦ (H ⊗ ηA).

If we replace (b3) by
(b3-1) ϕA ◦ (µH ⊗A) = ϕA ◦ (H ⊗ ϕA),
we will say that (A,ϕA) is a left H-module algebra.

Remark 2.5. Let H be a weak Hopf algebra. For n > 1, we denote by Hn the n-fold
tensor power H ⊗ · · · ⊗H. By H0 we denote the unit object of C, i.e., H0 = K.

If n > 2, mn
H denotes the morphism mn

H : Hn → H defined by m2
H = µH and by

m3
H = m2

H ◦ (H ⊗ µH), · · · ,mn
H = mn−1

H ◦ (Hn−2 ⊗ µH) for k > 2. Note that by the
associativity of µH we have mn

H = mn−1
H ◦ (µH ⊗Hn−2).

Let (A,ϕA) be a weak left H-module algebra and n > 1. With ϕn
A we will denote

the morphism ϕn
A : Hn ⊗A→ A defined as ϕ1

A = ϕA and ϕn
A = ϕA ◦ (H ⊗ ϕn−1

A ).
If n > 1, we have that ϕA ◦ (mn

H ⊗ ηA) = ϕn−1
A ◦ (Hn−1 ⊗ (ϕA ◦ (H ⊗ ηA)) holds. In

what follows, we denote the morphism ϕA ◦ (mn
H ⊗ ηA) by un and the morphism

ϕA ◦ (H ⊗ ηA) by u1. Note that, by (b3) of Definition 2.4, for n > 2, the equality
un = ϕn−1

A ◦ (Hn−1 ⊗ u1) holds.
Finally, with δHn we denote the coproduct defined for the coalgebra Hn. Then

δHn = δHk⊗Hn−k = δHn−k⊗Hk , for k ∈ {1, . . . , n− 1}.

Proposition 2.6. Let H be a cocommutative weak Hopf algebra. The following iden-
tities hold:

(i) δH ◦ΠI
H = (ΠI

H ⊗ΠI
H) ◦ δH for I ∈ {L,R}.

(ii) (ΠI
H ⊗H) ◦ δH ◦ΠJ

H = (H ⊗ΠI
H) ◦ δH ◦ΠJ

H = δH ◦ΠJ
H , for I, J ∈ {L,R}.

(iii) (ΠL
H ⊗H) ◦ δH ◦ µH = (ΠL

H ⊗ µH) ◦ (δH ⊗H).
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(iv) (H ⊗ΠR
H) ◦ δH ◦ µH = (µH ⊗ΠR

H) ◦ (H ⊗ δH).

Proof. First note that if H is cocommutative, ΠI
H = Π

I

H for I ∈ {L,R}. The proof
for (i) with I = L follows by

δH ◦ΠL
H = µH⊗H ◦ (δH ⊗ (δH ◦ λH)) ◦ δH

= µH⊗H ◦ (δH ⊗ (cH,H ◦ (λH ⊗ λH) ◦ δH)) ◦ δH
= (ΠL

H ⊗ΠL
H) ◦ δH

where the first equality follows by (a1) of Definition 2.1, the second by the anti-
multiplicative property of λH , and the third one relies on the naturality of c, the
coassociativity of δH , and the cocommutativity of H.

The proof for I = R is similar.
Note that, by (i) and the idempotent property of ΠI

H , we have (ii) for I = J . If
I = L and J = R, by (4) we have

(ΠL
H ⊗H) ◦ δH ◦ΠR

H = ((ΠL
H ◦ΠR

H)⊗ΠR
H) ◦ δH = ((ΠL

H ◦ΠR

H)⊗ΠR
H) ◦ δH

= (Π
R

H ⊗ΠR
H) ◦ δH = (ΠR

H ⊗ΠR
H) ◦ δH = δH ◦ΠR

H .

The proof for I = R and J = L is similar. On the other hand, by the usual argu-
ments, we get (iii):

(ΠL
H ⊗H) ◦ δH ◦ µH = (Π

L

H ⊗H) ◦ δH ◦ µH = (H ⊗ µH) ◦ ((δH ◦ ηH)⊗ µH)

= (Π
L

H ⊗ µH) ◦ (δH ⊗H) = (ΠL
H ⊗ µH) ◦ (δH ⊗H).

The proof of equality (iv) follows a similar pattern and we leave the details to the
reader.

Proposition 2.7. Let H be a cocommutative weak Hopf algebra. The following iden-
tities hold:

(i) δH2 ◦ δH = (δH ⊗ δH) ◦ δH .

(ii) δHn+1 ◦ (Hi ⊗ δH ⊗Hn−i−1) = (Hi ⊗ δH ⊗Hn−1 ⊗ δH ⊗Hn−i−1) ◦ δHn

for n > 2 and i ∈ {0, · · · , n− 1}.
(iii) δHn ◦ (Hi ⊗ΠI

H ⊗Hn−i−1) = (Hi ⊗ΠI
H ⊗Hn−1 ⊗ΠI

H ⊗Hn−i−1) ◦ δHn

for I ∈ {L,R}, n > 2 and i ∈ {0, · · · , n− 1}.
(iv) δHn+1 ◦ (Hi ⊗ ((ΠI

H ⊗H) ◦ δH)⊗Hn−i−1)
= (Hi ⊗ ((ΠI

H ⊗H) ◦ δH)⊗Hn−1 ⊗ ((ΠI
H ⊗H) ◦ δH)⊗Hn−i−1) ◦ δHn

for I ∈ {L,R}, n > 2 and i ∈ {0, · · · , n− 1}.
(v) δHn+1 ◦ (Hi ⊗ ((H ⊗ΠI

H) ◦ δH)⊗Hn−i−1)
= (Hi ⊗ ((H ⊗ΠI

H) ◦ δH)⊗Hn−1 ⊗ ((H ⊗ΠI
H) ◦ δH)⊗Hn−i−1) ◦ δHn

for I ∈ {L,R}, n > 2 and i ∈ {0, · · · , n− 1}.

Proof. Assertion (i) follows by the coassociativity of δH and the cocommutativity of
H. The proof for (ii) can be obtained using (i) and mathematical induction. Also, by
this method and Proposition 2.6 we obtain (iii), (iv), and (v).

Remark 2.8. If H is a weak Hopf algebra, we denote by HL the object such that
pL ◦ iL = idHL

, where iL, pL are the injection and the projection associated to the
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target morphism ΠL
H . If H is cocommutative, by Proposition 2.6(i) we have thatHL is

a coalgebra and the morphisms iL, pL are coalgebra morphisms for δHL
= (pL ⊗ pL) ◦

δH ◦ iL and εHL = εH ◦ iL. Therefore, δHL ◦ pL = (pL ⊗ pL) ◦ δH and εHL ◦ pL = εH .

Proposition 2.9. Let H be a weak Hopf algebra. Then if n > 3 the following equality
holds:

(Hi−1⊗µH ⊗Hn−i−1⊗Hi−1⊗µH ⊗Hn−i−1)◦δHn = δHn−1 ◦(Hi−1⊗µH ⊗Hn−i−1),
(16)

for all i ∈ {1, · · · , n− 1}.

Proof. First note that, by (a1) of Definition 2.1, we have that (µH ⊗ µH) ◦ δH2 =
δH ◦ µH . Then, using this identity, we obtain (µH ⊗Hn−2 ⊗ µH ⊗Hn−2) ◦ δHn =
δHn−1 ◦ (µH ⊗Hn−2) and, as a consequence, (16) holds.

Proposition 2.10. Let H be a weak Hopf algebra. The following identity holds for
n > 2:

δH ◦mn
H = (mn

H ⊗mn
H) ◦ δHn . (17)

Proof. As in the previous proposition we proceed by induction. Obviously the equality
(17) holds for n = 2. If we assume that it is true for n = k, so it is for n = k + 1 because

(mk+1
H ⊗mk+1

H ) ◦ δHk+1 = ((µH ◦ (mk
H ⊗H))⊗ (µH ◦ (mk

H ⊗H))) ◦ δHk⊗H

= µH⊗H ◦ (((mk
H ⊗mk

H) ◦ δHk))⊗ δH) = δH ◦ µH ◦ (mk
H ⊗H) = δH ◦mk+1

H .

Proposition 2.11. Let H be a weak Hopf algebra, and let (A,ϕA) be a weak left
H-module algebra. Then, if n > 1, the equality

un ∧ un = un (18)

holds.

Proof. If n > 2, by (17) and (b2) of Definition 2.4 we obtain (18). If n = 1, the
equality follows from (b2).

Definition 2.12. Let H be a cocommutative weak Hopf algebra, and let (A,ϕA)
be a weak left H-module algebra. For n > 1, with RegϕA(H

n, A) we will denote the
set of morphisms σ : Hn → A such that there exists a morphism σ−1 : Hn → A (the
convolution inverse of σ) satisfying the following equalities:

(c1) σ ∧ σ−1 = σ−1 ∧ σ = un.

(c2) σ ∧ σ−1 ∧ σ = σ.

(c3) σ−1 ∧ σ ∧ σ−1 = σ−1.

We denote by RegϕA
(HL, A) the set of morphisms g : HL → A such that there

exists a morphism g−1 : HL → A (the convolution inverse of g) satisfying

g ∧ g−1 = g−1 ∧ g = u0, g ∧ g−1 ∧ g = g, g−1 ∧ g ∧ g−1 = g−1,

where u0 = u1 ◦ iL. Then, by (b7) of the definition of weak H-module algebra, we
have u1 = u0 ◦ pL.
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Proposition 2.13. Let H be a cocommutative weak Hopf algebra and let (A,ϕA) be a
weak left H-module algebra. Then for all σ ∈ RegϕA

(Hn+1, A) the following equalities
hold:

(i) σ ◦ (Hi ⊗ ((ΠL
H ⊗H) ◦ δH)⊗Hn−i−1) = σ ◦ (Hi ⊗ ηH ⊗Hn−i) for all i in the

set {0, . . . , n− 1}.
(ii) σ ◦ (Hn−1 ⊗ ((H ⊗ΠR

H) ◦ δH)) = σ ◦ (Hn ⊗ ηH).

Proof. First note that if σ ∈ RegϕA
(Hn+1, A), by Proposition 2.7(iv) and the equality

ΠL
H ∧ idH = idH , we obtain that

σ ◦ (Hi ⊗ ((ΠL
H ⊗H) ◦ δH)⊗Hn−i−1) ∈ RegϕA(H

n, A)

with inverse σ−1 ◦ (Hi ⊗ ((ΠL
H ⊗H) ◦ δH)⊗Hn−i−1). Moreover, by the naturally of

c and the equality (9), we obtain (i). The proof for (ii) is similar using (11) and we
leave the details to the reader.

Remark 2.14. Let H be a cocommutative weak Hopf algebra, and let (A,ϕA) be
a weak left H-module algebra. Then u0 ∈ RegϕA

(HL, A), un ∈ RegϕA
(Hn, A) and

the sets RegϕA(HL, A), RegϕA(H
n, A) are groups with neutral elements u0 and

un, respectively. Also, if A is commutative, then we have that RegϕA
(HL, A) and

RegϕA(H
n, A) are abelian groups.

If (A,ϕA) is a left H-module algebra, the groups RegϕA
(HL, A), RegϕA

(Hn, A),
n > 1 are the objects of a cosimplicial complex of groups with coface operators defined
by

∂0,i : RegϕA(HL, A) → RegϕA(H,A), i ∈ {0, 1}

∂0,0(g) = ϕA ◦ (H ⊗ (g ◦ pL ◦ΠR
H)) ◦ δH , ∂0,1(g) = g ◦ pL,

∂k−1,i : RegϕA(H
k−1, A) → RegϕA(H

k, A), k > 2, i ∈ {0, 1, · · · , k}

∂k−1,i(σ) =


ϕA ◦ (H ⊗ σ), i = 0

σ ◦ (Hi−1 ⊗ µH ⊗Hk−i−1), i ∈ {1, · · · , k − 1}
σ ◦ (Hk−2 ⊗ (µH ◦ (H ⊗ΠL

H))), i = k,

and codegeneracy operators defined by s1,0 : RegϕA(H,A) → RegϕA(HL, A),

s1,0(h) = h ◦ iL,

and sk+1,i : RegϕA
(Hk+1, A) → RegϕA(H

k, A), k > 1, i ∈ {0, 1, · · · , k}

sk+1,i(σ) = σ ◦ (Hi ⊗ ηH ⊗Hk−i).

The morphism ∂0,0, is a well-defined group morphism because

∂0,0(g) ∧ ∂0,0(f)

= µA ◦ ((ϕA ◦ (H ⊗ (g ◦ pL ◦ΠR
H)))⊗ (ϕA ◦ (H ⊗ (f ◦ pL ◦ΠR

H)))) ◦ δH2 ◦ δH
= ϕA ◦ (H ⊗ ((g ◦ pL ◦ΠR

H) ∧ (f ◦ pL ◦ΠR
H))) ◦ δH

= ϕA ◦ (H ⊗ (((g ◦ pL) ∧ (f ◦ pL)) ◦ΠR
H)) ◦ δH

= ∂0,0(g ∧ f),

where the first equality follows by Proposition 2.7(i), the second one by the naturality
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of c and (b2) of Definition 2.4, the third one by (i) of Proposition 2.6, and in the last
one was used that pL is a coalgebra morphism (see Remark 2.8).

Using that pL is a coalgebra morphism, we obtain that ∂0,1 is a group morphism.
Moreover, by (b2) of Definition 2.4, (a1) of Definition 2.1, Proposition 2.9, and Propo-
sition 2.6(i), we have that ∂k−1,i are well-defined group morphisms for k > 1.

On the other hand, by Proposition 2.6(i) we have that s1,0 is a group morphism, and
by Propositions 2.6 and 2.13 we obtain that sk+1,i are well-defined group morphisms
for k > 1.

We have the cosimplicial identities from the following: For j = 1, by Proposi-
tion 2.6(iv) and the condition of left H-module algebra for A, we have ∂1,1(∂0,0(g)) =

∂1,0(∂0,0(g)). Moreover, if H is cocommutative, ΠL
H = Π

L

H and as a consequence ΠL
H ◦

ΠR
H = ΠL

H . Then by Proposition 2.6(i) and (iv) and the properties of left H-module
algebra we get ∂1,2(∂0,0(g)) = ∂1,0(∂0,1(g)). Also, by (6) we obtain that ∂1,2(∂0,1(g)) =
∂1,1(∂1,0(g)). In a similar way, by the associativity of µH , ∂k,j ◦∂k−1,i = ∂k,i ◦∂k−1,j−1

holds for j > i and k > 1.
On the other hand, trivially sk−1,j ◦ sk,i = sk−1,i ◦ sk,j+1, j > i. Moreover, it is

easy to show that s1,0(∂0,0(g)) = g = s1,0(∂0,1(g)). Also, we have s2,0(∂1,0(h)) = h =
s2,0(∂1,1(h)), s2,0(∂1,2(h)) = h ◦ΠL

H = ∂0,1(s1,0(h)),

s2,1(∂1,0(h)) = ϕA ◦ (H ⊗ (h ◦ΠL
H ◦ΠR

H)) ◦ δH = ∂0,0(s1,0(h)),

and s2,1(∂1,1(h)) = h = s2,1(∂1,2(h)) because ΠL
H ◦ ηH = ηH .

Finally, for k > 2, the identities

sk+1,j ◦ ∂k,i =


∂k−1,i ◦ sk,j−1, i < j

idRegϕA
(Hk,A), i = j, i = j + 1

∂k−1,i−1 ◦ sk,j , i > j + 1

follow as in the Hopf algebra setting.

LetDk
ϕA

= ∂k,0 ∧ ∂−1
k,1 ∧ · · · ∧ ∂(−1)k+1

k,k+1 be the coboundary morphisms of the cochain
complex

RegϕA
(HL, A)

D0
ϕA−→ RegϕA

(H,A)
D1

ϕA−→ RegϕA
(H2, A)

D2
ϕA−→ · · ·

· · ·
Dk−1

ϕA−→ RegϕA
(Hk, A)

Dk
ϕA−→ RegϕA

(Hk+1, A)
Dk+1

ϕA−→ · · ·

associated to the cosimplicial complex RegϕA
(H•, A).

Then, when (A,ϕA) is a commutative leftH-module algebra, (RegϕA
(H•, A), D•

ϕA
)

is a cosimplicial complex in the category of abelian groups that gives the Sweedler
cohomology of H in (A,ϕA). The kth group will be defined by

Ker(Dk
ϕA

)

Im(Dk−1
ϕA )

for k > 1 and Ker(D0
ϕA

) for k = 0. We will denote it by Hk
ϕA

(H,A).
The normalized cochain subcomplex of (RegϕA(H

•, A), D•
ϕA

) is defined by

Reg+ϕA
(Hk+1, A) =

k∩
i=0

Ker(sk+1,i),
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Reg+ϕA
(HL, A) = RegϕA(HL, A)

and Dk+
ϕA

the restriction of Dk
ϕA

to Reg+ϕA
(H•, A).

We have that (Reg+ϕA
(H•, A), D•+

ϕA
) is a subcomplex of (RegϕA

(H•, A), D•
ϕA

) and
the injection map induces an isomorphism of cohomology (see [11] for the dual result).
Note that

Reg+ϕA
(H,A) = Ker(s1,0) = {h ∈ RegϕA(H,A) ; h ◦ iL = u0}

and

Reg+ϕA
(H2, A) = Ker(s2,0) ∩Ker(s2,1)

= {σ ∈ RegϕA(H
2, A) ; σ ◦ (ηH ⊗H) = σ ◦ (H ⊗ ηH) = u1}.

The following proposition gives another characterization of the morphisms in the
group Reg+ϕA

(H,A).

Proposition 2.15. Let H be a weak Hopf algebra, and let (A,ϕA) be a weak left
H-module algebra. If h : H → A is a morphism satisfying

h ∧ h−1 = h−1 ∧ h = u1, h ∧ h−1 ∧ h = h, h−1 ∧ h ∧ h−1 = h−1,

the following equalities are equivalent:

(i) h ◦ ηH = ηA.

(ii) h ◦ΠL
H = u1.

Proof. The assertion (ii) ⇒ (i) follows by h ◦ ηH = h ◦ΠL
H ◦ ηH = u1 ◦ ηH = ηA. Now

we get (i) ⇒ (ii) because

h ◦ΠL
H = (u1 ∧ h) ◦ΠL

H

= µA ◦ (u2 ⊗ h) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗ΠL
H)

= µA ◦ (ϕA ⊗ h) ◦ (H ⊗ cH,A) ◦ ((δH ◦ ηH)⊗ u1)

= µA ◦ (ϕA ⊗ h) ◦ (ΠL

H ⊗ cH,A) ◦ ((δH ◦ ηH)⊗ u1)

= µA ◦ ((µA ◦ cA,A ◦ (u1 ⊗A))⊗ h) ◦ (H ⊗ cH,A) ◦ ((δH ◦ ηH)⊗ u1)

= u1.

The first equality follows by the properties of h, the second one by the naturality of
c and the coassociativity of δH and (8), the third one by (b3) and (b6) of Definition 2.4,
the fourth one by (14), the fifth one by (b5) of Definition 2.4, and the last one by the
properties of h and (ii).

Remark 2.16. Note that as a consequence of Proposition 2.15:

Reg+ϕA
(H,A) = {h ∈ RegϕA

(H,A) ; h ◦ ηH = ηA}.

3. Weak crossed products for weak Hopf algebras

In the first paragraphs of this section we recall some basic facts about the general
theory of weak crossed products in C introduced in [6] particularized for a weak Hopf
algebra H.
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Let A be an algebra, and let H be a weak Hopf algebra in C. Suppose that there
exists a morphism ψA

H : H ⊗A→ A⊗H such that the following equality holds:

(µA ⊗H) ◦ (A⊗ ψA
H) ◦ (ψA

H ⊗A) = ψA
H ◦ (H ⊗ µA). (19)

As a consequence of (19), the morphism ∇A⊗H : A⊗H → A⊗H defined by

∇A⊗H = (µA ⊗H) ◦ (A⊗ ψA
H) ◦ (A⊗H ⊗ ηA) (20)

is idempotent. Moreover, it satisfies ∇A⊗H ◦ (µA ⊗H) = (µA ⊗H) ◦ (A⊗∇A⊗H),
i.e., ∇A⊗H is a left A-module morphism (see Lemma 3.1 of [6]) for the regular action
ϕA⊗H = µA ⊗H. With A×H, iA⊗H : A×H → A⊗H, and pA⊗H : A⊗H → A×
H we denote the object, the injection, and the projection associated to the factoriza-
tion of ∇A⊗H . Finally, if ψA

H satisfies (19), the following identities hold:

(µA ⊗H) ◦ (A⊗ ψA
H) ◦ (∇A⊗H ⊗A) = (µA ⊗H) ◦ (A⊗ ψA

H)

= ∇A⊗H ◦ (µA ⊗H) ◦ (A⊗ ψA
H).

(21)

From now on we consider quadruples AH = (A,H,ψA
H , σ

A
H), where A is an algebra,

H an object, ψA
H : H ⊗A→ A⊗H a morphism satisfiying (19), and σA

H : H ⊗H →
A⊗H a morphism in C.

We say that AH = (A,H,ψA
H , σ

A
H) satisfies the twisted condition if

(µA ⊗H) ◦ (A⊗ ψA
H) ◦ (σA

H ⊗A) = (µA ⊗H) ◦ (A⊗ σA
H) ◦ (ψA

H ⊗H) ◦ (H ⊗ ψA
H)
(22)

and that the cocycle condition holds if

(µA ⊗H) ◦ (A⊗ σA
H) ◦ (σA

H ⊗H) = (µA ⊗H) ◦ (A⊗ σA
H) ◦ (ψA

H ⊗H) ◦ (H ⊗ σA
H).
(23)

Note that, if AH = (A,H,ψA
H , σ

A
H) satisfies the twisted condition, in Proposition

3.4 of [6] we prove that

(µA ⊗H) ◦ (A⊗ σA
H) ◦ (ψA

H ⊗H) ◦ (H ⊗∇A⊗H)

=∇A⊗H ◦ (µA ⊗H) ◦ (A⊗ σA
H) ◦ (ψA

H ⊗H),
(24)

∇A⊗H ◦ (µA ⊗H) ◦ (A⊗ σA
H) ◦ (∇A⊗H ⊗H) = ∇A⊗H ◦ (µA ⊗H) ◦ (A⊗ σA

H).
(25)

Then, if ∇A⊗H ◦ σA
H = σA

H , we obtain

(µA ⊗H) ◦ (A⊗ σA
H) ◦ (ψA

H ⊗H) ◦ (H ⊗∇A⊗H) = (µA ⊗H) ◦ (A⊗ σA
H) ◦ (ψA

H ⊗H),
(26)

(µA ⊗H) ◦ (A⊗ σA
H) ◦ (∇A⊗H ⊗H) = (µA ⊗H) ◦ (A⊗ σA

H). (27)

In what follows, and taking into account (22) and (23), we will consider without
loss of generality that∇A⊗H ◦ σA

H = σA
H holds for all quadruples AH = (A,H,ψA

H , σ
A
H)

(see Proposition 3.7 of [6]).
For AH = (A,H,ψA

H , σ
A
H) define the associated product

µA⊗H = (µA ⊗H) ◦ (µA ⊗ σA
H) ◦ (A⊗ ψA

H ⊗H), (28)

and let µA×H be the restriction of µA⊗H to A×H, i.e.,

µA×H = pA⊗H ◦ µA⊗H ◦ (iA⊗H ⊗ iA⊗H). (29)

If the twisted and the cocycle conditions hold, the product µA⊗H is associative and
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normalized with respect to ∇A⊗H (i.e., ∇A⊗H ◦ µA⊗H = µA⊗H = µA⊗H ◦ (∇A⊗H ⊗
∇A⊗H)) and, by the definition of µA⊗H , the equality µA⊗H ◦ (∇A⊗H ⊗A⊗H) =
µA⊗H holds and therefore µA⊗H ◦ (A⊗H ⊗∇A⊗H) = µA⊗H . Due to the normality
condition, µA×H is associative as well (Proposition 2.5 of [6]). Hence we have the
following definition:

Definition 3.1. If AH = (A,H,ψA
H , σ

A
H) satisfies (22) and (23), we say that the pair

(A⊗H,µA⊗H) is a weak crossed product.

The next natural question that arises at this point is if it is possible to endow
A×H with a unit, and hence with an algebra structure. As we recall in [6], in order
to do that we need to use the notion of preunit to obtain an unit in A×H. In our
setting, if A is an algebra, H an object in C, and mA⊗H is an associative product
defined in A⊗H, a preunit ν : K → A⊗H is a morphism satisfying

mA⊗H ◦ (A⊗H ⊗ ν) =mA⊗H ◦ (ν ⊗A⊗H) =mA⊗H ◦ (A⊗H ⊗ (mA⊗H ◦ (ν ⊗ ν))).
(30)

As we have shown in [6], if (A⊗H,µA⊗H) is a weak crossed product with a preunit
ν such that the equalities

(µA ⊗H) ◦ (A⊗ σA
H) ◦ (ψA

H ⊗H) ◦ (H ⊗ ν) = ∇A⊗H ◦ (ηA ⊗H), (31)

(µA ⊗H) ◦ (A⊗ σA
H) ◦ (ν ⊗H) = ∇A⊗H ◦ (ηA ⊗H), (32)

(µA ⊗H) ◦ (A⊗ ψA
H) ◦ (ν ⊗A) = (µA ⊗H) ◦ (A⊗ ν) (33)

hold, then A×H is an algebra with the product defined in (29) and unit ηA×H =
pA⊗H ◦ ν.

Definition 3.2. Let H be a weak Hopf algebra, let (A,ϕA) be a weak left H-module
algebra, and let σ : H ⊗H → A be a morphism. We define the morphisms ψA

H : H ⊗
A→ A⊗H and σA

H : H ⊗H → A⊗H by ψA
H = (ϕA ⊗H) ◦ (H ⊗ cH,A) ◦ (δH ⊗A)

and σA
H = (σ ⊗ µH) ◦ δH2 .

Proposition 3.3. Let H be a weak Hopf algebra, and let (A,ϕA) be a weak left H-
module algebra. The morphism ψA

H defined above satisfies (19). As a consequence, the
morphism ∇A⊗H , defined in (20), is an idempotent and the following equalities hold:

∇A⊗H = ((µA ◦ (A⊗ u1))⊗H) ◦ (A⊗ δH), (34)

µA ◦ (u1 ⊗ ϕA) ◦ (δH ⊗A) = ϕA, (35)

(µA ⊗H) ◦ (u1 ⊗ ψA
H) ◦ (δH ⊗A) = ψA

H , (36)

(A⊗ εH) ◦ ψA
H ◦ (H ⊗ ηA) = u1, (37)

(µA ⊗H) ◦ (u1 ⊗ cH,A)◦ (δH ⊗A) = (µA ⊗H)◦ (A⊗ cH,A) ◦ ((ψA
H ◦ (H ⊗ ηA))⊗A),

(38)

(A⊗ εH) ◦ ∇A⊗H = µA ◦ (A⊗ u1), (39)

(A⊗ δH) ◦ ∇A⊗H = (∇A⊗H ⊗H) ◦ (A⊗ δH). (40)

Proof. First note that, by the naturality of c, the coassociativity of δH , and (b2)
of Definition (2.4), we obtain that ψA

H satisfies (19). As a consequence, ∇A⊗H is an
idempotent and (34), (37), and (39) follow easily from the definition of ψA

H . On the
other hand, (35) follows by (34) and (b2) of Definition 2.4. Analogously, by (b2) of
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Definition 2.4 we obtain (36). Finally, the equality (40) follows from (34) and the
coassociativity of δH , and (38) is an easy consequence of the naturality of c.

Proposition 3.4. Let H be a weak Hopf algebra, let (A,ϕA) be a weak left H-module
algebra, and let σ : H ⊗H → A be a morphism. The morphism σA

H introduced in
Definition 3.2 satisfies the following identity:

(A⊗ δH) ◦ σA
H = (σA

H ⊗ µH) ◦ δH2 . (41)

Proof. The proof is an easy consequence of (a1) of Definition 2.1, the coassociativity
of δH , and the naturality of c.

Proposition 3.5. Let H be a cocommutative weak Hopf algebra, let (A,ϕA) be a
weak left H-module algebra, and let σ ∈ RegϕA(H

2, A). The morphism σA
H introduced

in Definition 3.2 satisfies the following identities:

(i) ∇A⊗H ◦ σA
H = σA

H .

(ii) (A⊗ εH) ◦ σA
H = σ.

Proof. By Proposition 3.4 and the properties of σ, we have that

∇A⊗H ◦ σA
H = ((µA ◦ (A⊗ u1))⊗H) ◦ (A⊗ δH) ◦ σA

H

= ((µA ◦ (A⊗ u1))⊗H) ◦ (σA
H ⊗ µH) ◦ δH2 = ((σ ∧ σ−1 ∧ σ)⊗ µH) ◦ δH2 = σA

H ,

(ii) follows by (39) and (i) because

(A⊗ εH) ◦ σA
H = (A⊗ εH) ◦ ∇A⊗H ◦ σA

H = µA ◦ (A⊗ u1) ◦ σA
H = σ ∧ u2 = σ.

Remark 3.6. Let H be a cocommutative weak Hopf algebra, let (A,ϕA) be a weak left
H-module algebra, and let σ ∈ RegϕA(H

2, A). Note that, by Propositions 3.3, 3.4,
and 3.5, we have a quadruple AH = (A,H,ψA

H , σ
A
H) such that ψA

H satisfies (19) and
∇A⊗H ◦ σA

H = σA
H .

Definition 3.7. Let H be a cocommutative weak Hopf algebra, let (A,ϕA) be a weak
left H-module algebra, and let σ ∈ RegϕA

(H2, A). We say that σ satisfies the twisted
condition if

µA ◦ ((ϕA ◦ (H ⊗ ϕA))⊗A) ◦ (H ⊗H ⊗ cA,A) ◦ (((H ⊗H ⊗ σ) ◦ δH2)⊗A)
= µA ◦ (A⊗ ϕA) ◦ (σA

H ⊗A).
(42)

If

∂2,3(σ) ∧ ∂2,1(σ) = ∂2,0(σ) ∧ ∂2,2(σ) (43)

holds, we will say that σ satisfies the 2-cocycle condition.

Remark 3.8. For a weak Hopf algebra H, the idempotent morphisms

ΩL
H⊗H = ((εH ◦ µH)⊗H ⊗H) ◦ δH⊗H : H ⊗H → H ⊗H, (44)

ΩR
H⊗H = (H ⊗H ⊗ (εH ◦ µH)) ◦ δH⊗H : H ⊗H → H ⊗H (45)

satisfy the identities

ΩL
H⊗H = ((µH ◦ (H ⊗ΠL

H))⊗H) ◦ (H ⊗ δH), (46)
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ΩR
H⊗H = (H ⊗ (µH ◦ (ΠR

H ⊗H)) ◦ (δH ⊗H). (47)

By (a1) of Definition 2.1 we obtain that

µH ◦ ΩL
H⊗H = µH ◦ ΩR

H⊗H = µH , (48)

and it is easy to show that, if we consider the left-right H-module actions and the left-
right H-comodule coactions ϕH⊗H = µH ⊗H, φH⊗H = H ⊗ µH , %H⊗H = δH ⊗H,
ρH⊗H = H ⊗ δH on H ⊗H, we have that ΩL

H⊗H is a morphism of left and right H-
modules and rightH-comodules and ΩR

H⊗H is a morphism of left and rightH-modules
and left H-comodules. Moreover, if H is cocommutative it is an easy exercise to prove
that ΩL

H⊗H = ΩR
H⊗H and the following equalities hold:

δH⊗H ◦ ΩL
H⊗H = (H ⊗H ⊗ ΩL

H⊗H) ◦ δH⊗H = (ΩL
H⊗H ⊗H ⊗H) ◦ δH⊗H . (49)

As a consequence,

δH⊗H ◦ ΩL
H⊗H = (ΩL

H⊗H ⊗ ΩL
H⊗H) ◦ δH⊗H . (50)

Then, if H is cocommutative, we will denote the morphism ΩL
H⊗H by Ω2

H .

Proposition 3.9. Let H be a cocommutative weak Hopf algebra, let (A,ϕA) be a
weak left H-module algebra, and let σ ∈ RegϕA

(H2, A). The following identities hold:

(i) σ ◦ Ω2
H = σ.

(ii) σA
H ◦ Ω2

H = σA
H .

(iii) (A⊗ Ω2
H) ◦ (σA

H ⊗H) = (σA
H ⊗H) ◦ (H ⊗ Ω2

H).

(iv) ∂2,3(σ) = (σ ⊗ εH) ◦ (H ⊗ Ω2
H).

Proof. To prove (i) we first show that u2 ◦ Ω2
H = u2. Indeed, by (48) we have

u2 ◦ Ω2
H = ϕA ◦ ((µH ◦ Ω2

H)⊗ ηA) = ϕA ◦ (µH ⊗ ηA) = u2.

Then (i) holds because, by (49), we obtain

σ = σ ∧ σ−1 ∧ σ = µA ◦ (u2 ⊗ σ) ◦ δH2 = µA ◦ ((u2 ◦ Ω2
H)⊗ σ) ◦ δH2

= µA ◦ (u2 ⊗ σ) ◦ δH2 ◦ Ω2
H = (σ ∧ σ−1 ∧ σ) ◦ Ω2

H = σ ◦ Ω2
H .

By (49) and the properties of (i) we have σA
H ◦ Ω2

H = ((σ ◦ Ω2
H)⊗ µH) ◦ δH2 = σA

H .
Then (ii) holds.

Using that Ω2
H is a morphism of left H-comodules and H-modules, we obtain (iii).

Finally, (iv) is a consequence of (46).

Proposition 3.10. Let H be a cocommutative weak Hopf algebra, let (A,ϕA) be a
weak left H-module algebra, and let σ ∈ RegϕA

(H2, A). Then σ satisfies the 2-cocycle
condition if and only if the equality

µA ◦ (A⊗ σ) ◦ (σA
H ⊗H) = µA ◦ (A⊗ σ) ◦ (ψA

H ⊗H) ◦ (H ⊗ σA
H) (51)

holds.
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Proof. The proof follows from the following facts: First, note that

∂2,3(σ) ∧ ∂2,1(σ) = µA ◦ (((σ ⊗ εH) ◦ (H ⊗ Ω2
H))⊗ (σ ◦ (µH ⊗H))) ◦ δH3

= µA ◦ (A⊗ σ) ◦ (σA
H ⊗H) ◦ (H ⊗ Ω2

H)

= µA ◦ (A⊗ (σ ◦ Ω2
H)) ◦ (σA

H ⊗H)

= µA ◦ (A⊗ σ) ◦ (σA
H ⊗H),

where the first equality follows by Proposition 3.9(iv), the second one by the properties
of εH and by Proposition 3.9(iii), and the last one by Proposition 3.9(i).

On the other hand, by the naturality of c we obtain that

∂2,0(σ) ∧ ∂2,2(σ) = µA ◦ (A⊗ σ) ◦ (ψA
H ⊗H) ◦ (H ⊗ σA

H),

and this finishes the proof.

Remark 3.11. Note that, if (A,ϕA) is a commutative left H-module algebra, the
2-cocycle condition means that σ ∈ Ker(D2

ϕA
). Also, we have σA

H = cA,H ◦ τAH for

τAH = (µH ⊗ σ) ◦ δH2 . Therefore, if (A,ϕA) is a commutative left H-module algebra,
the twisted condition holds for all σ ∈ RegϕA

(H2, A).

Theorem 3.12. Let H be a cocommutative weak Hopf algebra, let (A,ϕA) be a
weak left H-module algebra, and let σ ∈ RegϕA(H

2, A). The morphism σ satisfies
the twisted condition (42) if and only if AH = (A,H,ψA

H , σ
A
H), where ψA

H , σA
H are

associated to σ as in Definition 3.2, satisfies the twisted condition (22).

Proof. If AH satisfies the twisted condition (22), composing with A⊗ εH and using
Proposition 3.5(ii), we obtain that σ satisfies the twisted condition (42). Conversely,
assume that σ satisfies the twisted condition (42). Then

(µA ⊗H) ◦ (A⊗σA
H) ◦ (ψA

H ⊗H) ◦ (H ⊗ ψA
H)

= (A⊗ µH) ◦ (cH,A ⊗H) ◦ (H ⊗ (µA ◦ (A⊗ ϕA) ◦ (σA
H ⊗A))⊗H)

◦ (H ⊗H ⊗H ⊗ cH,A) ◦ (δH ⊗ δH ⊗A)

= (µA ⊗H) ◦ (A⊗ ψA
H) ◦ (σA

H ⊗A).

The first equality follows by the naturality of c, the cocommutativity of H, the
coassociativity of δH , and by the twisted condition for σ. The second one is a conse-
quence of the naturality of c and (a1) of Definition (2.1). Therefore AH satisfies the
twisted condition (22).

Theorem 3.13. Let H be a cocommutative weak Hopf algebra,let (A,ϕA) be a weak
left H-module algebra, and let σ ∈ RegϕA(H

2, A). The morphism σ satisfies the 2-
cocycle condition (51) if and only if AH = (A,H,ψA

H , σ
A
H), where ψA

H , σA
H are associ-

ated to σ as in Definition 3.2, satisfies the cocycle condition (23).

Proof. If AH satisfies the cocycle condition (23), composing with A⊗ εH , and using
Proposition 3.5(ii), we obtain that σ satisfies the 2-cocycle condition (51). Conversely,
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assume that σ satisfies the 2-cocycle condition (43). Then

(µA ⊗H) ◦ (A⊗ σA
H) ◦ (ψA

H ⊗H) ◦ (H ⊗ σA
H)

= (µA ⊗H) ◦ (A⊗ σ ⊗ µH) ◦ (ψA
H ⊗ cH,H ⊗H) ◦ (H ⊗ cH,A ⊗H ⊗H)

◦ (δH ⊗ ((σA
H ⊗ µH) ◦ δH2))

= ((µA ◦ (A⊗ σ) ◦ (σA
H ⊗H))⊗ (µH ◦ (H ⊗ µH))) ◦ δH3

= (µA ⊗H) ◦ (A⊗ σA
H) ◦ (σA

H ⊗H).

The first equality follows by the naturality of c, the coassociativity of δH , and
Proposition 3.4; the second one follows by the naturality of c, the associativity of µH ,
and by the 2-cocycle condition (51). Finally, the last one follows by the naturality of
c, the associativity of µH , and Proposition 3.4.

Remark 3.14. By Theorems 3.12 and 3.13 and applying the general theory of weak
crossed products, we have the following: If σ ∈ RegϕA(H

2, A) satisfies the twisted con-
dition (42) (equivalently (51)) and the 2-cocycle condition (43), the quadruple AH

defined in Remark 3.6 satisfies the twisted and the cocycle conditions (22) and (23)
and therefore the induced product is associative. Conversely, by Theorem 3.11 of [6],
we obtain that, if the product induced by the quadruple AH defined in Remark 3.6 is
associative, AH satisfies the twisted and the cocycle condition and, by Theorems 3.12
and 3.13, σ satisfies the twisted condition (42) and the 2-cocycle condition (43) (equiv-
alently (51)).

Definition 3.15. Let H be a cocommutative weak Hopf algebra, let (A,ϕA) be a
weak left H-module algebra, and let σ ∈ RegϕA

(H2, A). We say that σ satisfies the
normal condition if

σ ◦ (ηH ⊗H) = σ ◦ (H ⊗ ηH) = u1, (52)

i.e., σ ∈ Reg+ϕA
(H2, A).

Theorem 3.16. Let H be a cocommutative weak Hopf algebra, let (A,ϕA) be a weak
left H-module algebra, and let σ ∈ RegϕA(H

2, A). Let AH = (A,H,ψA
H , σ

A
H) be the

quadruple with ψA
H , let σA

H be defined as in Definition 3.2, and assume that AH satis-
fies the twisted and the cocycle conditions (22) and (23). Then ν = ∇A⊗H ◦ (ηA ⊗ ηH)
is a preunit for the weak crossed product associated to AH if and only if

σA
H ◦ (ηH ⊗H) = σA

H ◦ (H ⊗ ηH) = ∇A⊗H ◦ (ηA ⊗H). (53)

Proof. By Theorem 3.11 of [6], to prove the result we only need to show that (31),
(32), and (33) hold for ν = ∇A⊗H ◦ (ηA ⊗ ηH) if and only if σA

H ◦ (ηH ⊗H) = σA
H ◦

(H ⊗ ηH) = ∇A⊗H ◦ (ηA ⊗H). Indeed, ν satisfies (31) if and only if σA
H ◦ (H ⊗ ηH) =

∇A⊗H ◦ (ηA ⊗H) because

(µA ⊗H) ◦ (A⊗ σA
H) ◦ (ψA

H ⊗H) ◦ (H ⊗ ν)

= (µA ⊗H) ◦ (A⊗ σA
H) ◦ (ψA

H ⊗H) ◦ (H ⊗ (ψA
H ◦ (ηH ⊗ ηA)))

= ∇A⊗H ◦ σA
H ◦ (H ⊗ ηH)

= σA
H ◦ (H ⊗ ηH).

The first equality follows by the definition of ∇A⊗H , the second one by the twisted
condition, and the last one by Proposition 3.5(ii).
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Also, ν satisfies (32) if and only if σA
H ◦ (ηH ⊗H) = ∇A⊗H ◦ (ηA ⊗H) because by

(27) we have (µA ⊗H) ◦ (A⊗ σA
H) ◦ (ν ⊗H) = σA

H ◦ (ηH ⊗H). Finally, (33) is always
true because, by (21), we obtain (µA ⊗H) ◦ (A⊗ ψA

H) ◦ (ν ⊗A) = ψA
H ◦ (ηH ⊗A).

Corollary 3.17. Let H be a cocommutative weak Hopf algebra, let (A,ϕA) be a weak
left H-module algebra, and let σ ∈ RegϕA

(H2, A). Let AH = (A,H,ψA
H , σ

A
H) be the

quadruple with ψA
H , σA

H defined as in Definition 3.2, and assume that AH satisfies
the twisted and the cocycle conditions (22) and (23). Then ν = ∇A⊗H ◦ (ηA ⊗ ηH) is
a preunit for the weak crossed product associated to AH if and only if σ satisfies the
normal condition (52).

Proof. If ν = ∇A⊗H ◦ (ηA ⊗ ηH) is a preunit for the weak crossed product associated
to AH , by Theorem 3.16 we have (53). Then, composing with (A⊗ εH) and using
Proposition 3.5(ii), we obtain (52). Conversely, if (52) holds, by (14) and Proposi-
tion 2.13(i) we have σA

H ◦ (ηH ⊗H) = ∇A⊗H ◦ (ηA ⊗H). On the other hand by (11)
and (ii) of Proposition 2.13 we obtain σA

H ◦ (H ⊗ ηH) = ∇A⊗H ◦ (ηA ⊗H).

Corollary 3.18. Let H be a cocommutative weak Hopf algebra, let (A,ϕA) be a weak
left H-module algebra, and let σ ∈ RegϕA

(H2, A). Let AH = (A,H,ψA
H , σ

A
H) be the

quadruple with ψA
H , σA

H defined as in Definition 3.2, and let µA⊗H be the associated
product defined in (28). Then the following statements are equivalent:

(i) The product µA⊗H is associative with preunit ν = ∇A⊗H ◦ (ηA ⊗ ηH) and nor-
malized with respect to ∇A⊗H .

(ii) The morphism σ satisfies the twisted condition (42), the 2-cocycle condition (43)
(equivalently (51)), and the normal condition (52).

Proof. The proof is an easy consequence of Theorem 3.11 of [6], Theorems 3.12,
and 3.13, and Corollary 3.17.

Remark 3.19. Let H be a cocommutative weak Hopf algebra, and let (A,ϕA) be
a weak left H-module algebra. From now on we will denote by A⊗τ H = (A⊗
H,µA⊗τH) the weak crossed product, with preunit ν = ∇A⊗H ◦ (ηA ⊗ ηH), defined
by a morphism τ in RegϕA

(H2, A) satisfying the twisted condition, the 2-cocycle
condition, and the normal condition. The associated algebra will be denoted by

A×τ H = (A×H, ηA×τH , µA×τH).

Finally, the associated quadruple AH will be denoted by AH,τ and σA
H by σA

H,τ .

Remark 3.20. Let H be a cocommutative weak Hopf algebra, and let (A,ϕA) be
a weak left H-module algebra. Let σ ∈ RegϕA(H

2, A) be a morphism satisfying
the twisted condition (42), the 2-cocycle condition (43), and the normal condition
(52). Then the weak crossed product A⊗σ H = (A⊗H,µA⊗σH) with preunit ν =
∇A⊗H ◦ (ηA ⊗ ηH) defined previously is a particular instance of the weak crossed
products introduced in [6]. Also, it is a particular case of the ones used in [14],
where these crossed structures were studied in a category of modules over a com-
mutative ring without requiring cocommutativity of H and using weak measurings
(see Definition 3.2 of [14]). To prove this assertion we will show that the condi-
tions presented in Lemma 3.8 and Theorem 3.9 of [14] are completely fulfilled. First,
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note that, if (A,ϕA) is a weak left H-module algebra, then ϕA is a weak measuring.
The idempotent morphism ΩA⊗H related with the preunit ν is the morphism ∇A⊗H

because, by (27) and (53), ΩA⊗H = ∇A⊗H . Moreover, in the category of modules
over an associative, commutative, unital ring, the normalized condition implies that
Im(µA⊗σH) ⊂ Im(∇A⊗H).

On the other hand, the left action defined in Lemma 3.8 of [14] is ϕA and the
morphism defined in Lemma 3.8 of [14] is σ. Then the equalities (a) and (b) of
Lemma 3.8 of [14] hold because the first one is the definition of ψA

H and the second
one is a consequence of (27) and the definition of σA

H . Therefore, we have that ρA⊗H ◦
µA⊗σH = (µA⊗σH ⊗H) ◦ ρA⊗H⊗A⊗H holds where ρA⊗H = A⊗ δH and

ρA⊗H⊗A⊗H = (A⊗H ⊗A⊗H ⊗ µH) ◦ (A⊗H ⊗ cH,A⊗H ⊗H) ◦ (ρA⊗H ⊗ ρA⊗H).

Although ρA⊗H⊗A⊗H is not counital, we say that µA⊗σH is H-colinear as in Lemma
3.8 of [14]. Then we obtain that σ satisfies the equality (1) of [14]:

σ ◦ ((µH ◦ (H ⊗ΠR
H))⊗H) = σ ◦ (H ⊗ (µH ◦ (ΠR

H ⊗H))).

Finally, for the preunit ν = ∇A⊗H ◦ (ηA ⊗ ηH), by (34) and (9) the equality

(A⊗ δH) ◦ ν = (A⊗ ((H ⊗ΠL
H) ◦ δH)) ◦ ν

holds (i.e., the equality (4) of [14] is true in our setting).

4. Equivalent weak crossed products and H2
ϕA

(H,A)

The aim of this section is to give necessary and sufficient conditions for two weak
crossed products, A⊗α H andA⊗β H, to be equivalent in the cocommutative setting.
To define a good notion of equivalence we need the definition of right H-comodule
algebra for a weak Hopf algebra H.

Definition 4.1. Let H be a weak bialgebra, and let (B, ρB) be an algebra that is also
a rightH-comodule such that µB⊗H ◦ (ρB ⊗ ρB) = ρB ◦ µB holds. The object (B, ρB)
is called a rightH-comodule algebra if one of the following equivalent conditions holds:

(d1) (ρB ⊗H) ◦ ρB ◦ ηB = (B ⊗ (µH ◦ cH,H)⊗H) ◦ ((ρB ◦ ηB)⊗ (δH ◦ ηH)).

(d2) (ρB ⊗H) ◦ ρB ◦ ηB = (B ⊗ µH ⊗H) ◦ ((ρB ◦ ηB)⊗ (δH ◦ ηH)).

(d3) (B ⊗Π
R

H) ◦ ρB = (µB ⊗H) ◦ (B ⊗ (ρB ◦ ηB)).
(d4) (B ⊗ΠL

H) ◦ ρB = ((µB ◦ cB,B)⊗H) ◦ (B ⊗ (ρB ◦ ηB)).

(d5) (B ⊗Π
R

H) ◦ ρB ◦ ηB = ρB ◦ ηB .
(d6) (B ⊗ΠL

H) ◦ ρB ◦ ηB = ρB ◦ ηB .

Proposition 4.2. Let H be a cocommutative weak Hopf algebra, let (A,ϕA) be a weak
left H-module algebra, and let α ∈ Reg+ϕA

(H2, A) that satisfies the twisted condition
(42) and the 2-cocycle condition (43) (equivalently (51)). Then the algebra A×α H =
(A×H, ηA×αH , µA×αH) is a right H-comodule algebra for the coaction

ρA×αH = (pA⊗H ⊗H) ◦ (A⊗ δH) ◦ iA⊗H .
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Proof. First note that (A×α H, ρA×αH) is a right H-comodule because

(A×H ⊗ εH) ◦ ρA×αH = pA⊗H ◦ iA⊗H = idA×H

and, by (40) and the coassociativity of δH ,

(ρA×αH ⊗H) ◦ ρA×αH = (pA⊗H ⊗H ⊗H) ◦ (A⊗ ((δH ⊗H) ◦ δH)) ◦ iA⊗H

= (A×H ⊗ δH) ◦ ρA×αH .

On the other hand,

µ(A×αH)⊗H ◦ (ρA×αH ⊗ ρA×αH)

= (pA×H ⊗H) ◦ (µA⊗αH ⊗ µH) ◦ (A⊗H ⊗A⊗ cH,H ⊗H)

◦ (A⊗H ⊗ cH,A ⊗H ⊗H) ◦ (((A⊗ δH) ◦ iA⊗H)⊗ ((A⊗ δH) ◦ iA⊗H))

= (pA×H ⊗H) ◦ (µA ⊗H ⊗H) ◦ (µA ⊗ ((A⊗ δH) ◦ σA
H)) ◦ (A⊗ ψA

H ⊗H)

◦ (iA⊗H ⊗ iA⊗H)

= ρA×αH ◦ µA×αH ,

where the first equality follows by the normalized condition for µA⊗αH , the second
one by the naturality of c, by the coassociativity of δH , and by (41), and the last one
by (40).

Finally, by (40) and (9), we obtain that

(A×α H ⊗ΠL
H) ◦ ρA×αH ◦ ηA×αH = (pA×H ⊗ΠL

H) ◦ (ηA ⊗ (δH ◦ ηH))

= (pA×H ⊗H) ◦ (ηA ⊗ (δH ◦ ηH))

= ρA×αH ◦ ηA×αH .

Definition 4.3. Let H be a cocommutative weak Hopf algebra, let (A,ϕA) be a
weak left H-module algebra, and let α, β ∈ Reg+ϕA

(H2, A) that satisfy the twisted
condition (42) and the 2-cocycle condition (43) (equivalently (51)). Let A⊗α H and
A⊗β H be the weak crossed products associated to α and β. We say that A⊗α H
and A⊗β H are equivalent if there is an isomorphism of left A-modules and right
H-comodule algebras ωα,β : A×α H → A×β H.

Remark 4.4. Let H be a weak Hopf algebra, and let (A,ϕA) be a weak left H-
module algebra. Let Γ : A⊗H → A⊗H be a morphism of left A-modules and right
H-comodules for the regular action ϕA⊗H = µA ⊗H and coaction ρA⊗H = A⊗ δH .
Then

Γ ◦ (ηA ⊗H) = (A⊗ εH ⊗H) ◦ ρA⊗H ◦ Γ ◦ (ηA ⊗H) = (fΓ ⊗H) ◦ δH , (54)

where fΓ = (A⊗ εH) ◦ Γ ◦ (ηA ⊗H). As a consequence,

Γ = (µA ⊗H) ◦ (A⊗ (Γ ◦ (ηA ⊗H))) = ((µA ◦ (A⊗ fΓ))⊗H) ◦ (A⊗ δH). (55)

If f : H → A is a morphism and we define Γf : A⊗H → A⊗H by Γf = ((µA ◦
(A⊗ f))⊗H) ◦ (A⊗ δH), it is clear that Γf is a morphism of left A-modules and
right H-comodules such that fΓf

= f . Also, ΓfΓ = Γ and then there is a bijection
Φ : AHom

H
C (A⊗H,A⊗H) → HomC(H,A) defined by Φ(Γ) = fΓ with inverse the

morphism Φ−1(f) = Γf . Note that Φ−1(u1) = Γu1 = ∇A⊗H .
Then it is easy to show that Γ,Γ′ ∈ AHom

H
C (A⊗H,A⊗H) satisfy

(e1) Γ ◦ Γ′ = Γ′ ◦ Γ = ∇A⊗H ,
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(e2) Γ ◦ Γ′ ◦ Γ = Γ, and

(e3) Γ′ ◦ Γ ◦ Γ′ = Γ′,

if and only if for the morphism fΓ there exists a morphism f−1
Γ such that

(i) fΓ ∧ f−1
Γ = f−1

Γ ∧ fΓ = u1,

(ii) fΓ ∧ f−1
Γ ∧ fΓ = fΓ, and

(iii) f−1
Γ ∧ fΓ ∧ f−1

Γ = f−1
Γ .

Indeed, if Γ,Γ′ ∈ AHom
H
C (A⊗H,A⊗H) satisfies (e1)-(e3) define f−1

Γ by f−1
Γ = fΓ′ .

Conversely, if for fΓ we have a morphism f−1
Γ satisfying (i)-(iii), define Γ′ by Γ′ =

Γf−1
Γ

.

As a consequence, if H is cocommutative, Γ ∈ AHom
H
C (A⊗H,A⊗H) satisfies

(e1)–(e3) if and only if Φ(Γ) = fΓ ∈ RegϕA
(H,A). Conversely, f ∈ RegϕA

(H,A) if
and only if Φ−1(f) = Γf satisfies (e1)–(e3).

Theorem 4.5. Let H be a cocommutative weak Hopf algebra, let (A,ϕA) be a weak
left H-module algebra, and let α, β ∈ Reg+ϕA

(H2, A) that satisfy the twisted condition
(42) and the 2-cocycle condition (43) (equivalently (51)). The weak crossed products
associated to α and β are equivalent if and only if there exist multiplicative and
preunit-preserving morphisms Γ,Γ′ ∈ AHom

H
C (A⊗H,A⊗H) satisfying (e1)–(e3).

Proof. Assume that A⊗α H and A⊗β H are equivalent. Thus there exists an isomor-
phism of left A-modules and right H-comodule algebras ωα,β : A×α H → A×β H.
Define Γ and Γ′ by

Γ = iA⊗H ◦ ωα,β ◦ pA⊗H , Γ′ = iA⊗H ◦ ω−1
α,β ◦ pA⊗H .

Then

Γ ◦ Γ′ = iA⊗H ◦ ωα,β ◦ pA⊗H ◦ iA⊗H ◦ ω−1
α,β ◦ pA⊗H = ∇A⊗H ,

and

Γ′ ◦ Γ = iA⊗H ◦ ω−1
α,β ◦ pA⊗H ◦ iA⊗H ◦ ωα,β ◦ pA⊗H = ∇A⊗H .

Also,

Γ ◦ Γ′ ◦ Γ = ∇A⊗H ◦ Γ = Γ, Γ′ ◦ Γ ◦ Γ′ = ∇A⊗H ◦ Γ′ = Γ′,

and therefore (e1)–(e3) hold.

The morphism Γ is multiplicative because ωα,β is an algebra morphism, and, in
a similar way, using that ω−1

α,β is multiplicative, it is possible to prove that Γ′ is
multiplicative.

On the other hand, Γ preserve the preunit because

Γ ◦ ν = iA⊗H ◦ ωα,β ◦ ηA×αH = iA⊗H ◦ ηA×βH = ν.

By the same arguments, we obtain that Γ′ ◦ ν = Γ′.
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Using (e1), (e2), and the left A-linearity of ωα,β , we have

ϕA⊗H ◦ (A⊗ Γ) = ϕA⊗H ◦ (A⊗ (∇A⊗H ◦ Γ))
= ∇A⊗H ◦ (µA ⊗H) ◦ (A⊗ Γ)

= iA⊗H ◦ ϕA×βH ◦ (A⊗ ωα,β) ◦ (A⊗ pA⊗H)

= iA⊗H ◦ ωα,β ◦ ϕA×αH ◦ (A⊗ pA⊗H)

= Γ ◦ (µA ⊗H) ◦ (A⊗∇A⊗H)

= Γ ◦ ∇A⊗H ◦ (µA ⊗H)

= Γ ◦ ϕA⊗H .

Similarly, by (e1), (e3), and the left A-linearity of ω−1
α,β we obtain that Γ′ is a

morphism of left A-modules.

Finally, Γ is a morphism of right H-comodules by (40) and the right H-comodule
morphism property of ωα,β . Indeed,

ρA⊗H ◦ Γ = (iA⊗H ⊗H) ◦ ρA×βH ◦ ωα,β ◦ pA⊗H

= ((iA⊗H ◦ ωα,β)⊗H) ◦ ρA×αH ◦ pA⊗H = (Γ⊗H) ◦ (A⊗ δH) ◦ ∇A⊗H

= ((Γ ◦ ∇A⊗H)⊗H) ◦ (A⊗ δH) = (Γ⊗H) ◦ ρA⊗H .

By a similar calculation we obtain that Γ′ is a morphism of right H-comodules.

Conversely, assume that there exist multiplicative and preunit-preserving mor-
phisms Γ,Γ′ ∈ AHom

H
C (A⊗H,A⊗H) satisfying (e1)–(e3) of the previous remark.

Define

ωα,β = pA⊗H ◦ Γ ◦ iA⊗H , ω−1
α,β = pA⊗H ◦ Γ′ ◦ iA⊗H .

Then, by (e1), (e2), and (e3), we have

ω−1
α,β ◦ ωα,β = pA⊗H ◦ Γ′ ◦ ∇A⊗H ◦ Γ ◦ iA⊗H

= pA⊗H ◦ Γ′ ◦ Γ ◦ iA⊗H = pA⊗H ◦ ∇A⊗H ◦ iA⊗H = idA×H

and

ωα,β ◦ ω−1
α,β = pA⊗H ◦ Γ ◦ ∇A⊗H ◦ Γ′ ◦ iA⊗H

= pA⊗H ◦ Γ ◦ Γ′ ◦ iA⊗H = pA⊗H ◦ ∇A⊗H ◦ iA⊗H = idA×H ,

which proves that ωα,β is an isomorphism.

Moreover, using that Γ preserves the preunit ν = ∇A⊗H ◦ (ηA ⊗ ηH), we have

ωα,β ◦ ηA×αH = pA⊗H ◦ Γ ◦ ν = pA⊗H ◦ ν = ηA×βH

and, by the multiplicative property of Γ, we obtain

µA×βH ◦ (ωα,β ⊗ ωα,β) = pA⊗H ◦ µA⊗βH ◦ (Γ⊗ Γ) ◦ (iA⊗H ⊗ iA⊗H)

= pA⊗H ◦ Γ ◦ µA⊗αH ◦ (iA⊗H ⊗ iA⊗H) = ωα,β ◦ µA×αH .

Therefore, ωα,β is an isomorphism of algebras.

On the other hand, using (e1), (e2), and the property of left A-module morphism
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of Γ, we have

ϕA×βH ◦ (A⊗ ωα,β) = pA⊗H ◦ (µA ⊗H) ◦ (A⊗ (∇A⊗H ◦ Γ ◦ iA⊗H))

= pA⊗H ◦ (µA ⊗H) ◦ (A⊗ (Γ ◦ iA⊗H))

= pA⊗H ◦ Γ ◦ (µA ⊗H) ◦ (A⊗ iA⊗H)

= pA⊗H ◦ Γ ◦ ∇A⊗H ◦ (µA ⊗H) ◦ (A⊗ iA⊗H) = ωα,β ◦ ϕA×αH ,

and this proves that ωα,β is a morphism of left A-modules.
Finally, using similar arguments and the property of right H-comodule morphism

of Γ, we obtain that ωα,β is a morphism of right H-comodules because

ρA×βH ◦ ωα,β = (pA⊗H ⊗H) ◦ (A⊗ δH) ◦ ∇A⊗H ◦ Γ ◦ iA⊗H

= (pA⊗H ⊗H) ◦ ρA⊗βH ◦ Γ ◦ iA⊗H

= (((pA⊗H ◦ Γ)⊗H) ◦ ρA⊗αH ◦ iA⊗H

= (((pA⊗H ◦ Γ ◦ ∇A⊗H)⊗H) ◦ ρA⊗αH ◦ iA⊗H

= (ωα,β ⊗H) ◦ ρA×αH .

Remark 4.6. By the previous theorem, the notion of equivalent crossed products is
the one used in [14] in a category of modules over a commutative ring. Following the
terminology used in [14], the pair of morphisms fΓ and f−1

Γ is an example of gauge
transformation. Also, this notion is a generalization of the one that we can find in
the Hopf algebra world (see [5, 8]).

The following results, Theorem 4.7, and Corollary 4.8 will be used in Theorem 4.9
to obtain the meaning of the notion of equivalence between two weak crossed products
in terms of morphisms of RegϕA(H,A). Note that this characterization is the key to
prove the main result of this section, i.e., Theorem 4.11.

Theorem 4.7. Let Γ and fΓ be as in Remark 4.4 and such that

Γ ◦ ∇A⊗H = ∇A⊗H ◦ Γ = Γ. (56)

Under the hypothesis of Theorem 4.5, Γ is a multiplicative morphism that preserves
the preunit ν = ∇A⊗H ◦ (ηA ⊗ ηH) if and only if the following equalities hold:

pA⊗H ◦ Γ ◦ ν = pA⊗H ◦ ν (57)

µA ◦ (A⊗ fΓ) ◦ ψA
H = µA ◦ (fΓ ⊗ ϕA) ◦ (δH ⊗A) (58)

µA◦ (A⊗fΓ)◦σA
H,α =µA ◦ (µA⊗β)◦ (A⊗ψA

H ⊗H)◦ (((fΓ⊗H)◦δH)⊗ ((fΓ⊗H)◦δH)).
(59)

Moreover, if Γ preserves the preunit, we have that

fΓ ◦ ηH = ηA. (60)

Proof. Assume that Γ is a multiplicative morphism that preserves the preunit. Then
(57) follows easily and, by (56), we have

Γ ◦ (A⊗ ηH) = ∇A⊗H ◦ (A⊗ ηH). (61)

On the other hand, the multiplicative condition for Γ implies that

Γ ◦ µA⊗αH ◦ (ηA ⊗H ⊗A⊗ ηH) = µA⊗βH ◦ (Γ⊗ Γ) ◦ (ηA ⊗H ⊗A⊗ ηH).
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Equivalently,

Γ ◦ (µA ⊗H) ◦ (A⊗ (σA
H,α ◦ (H ⊗ ηH))) ◦ ψA

H

= (µA ⊗H) ◦ (µA ⊗ σA
H,β) ◦ (A⊗ ψA

H ⊗H) ◦ ((Γ ◦ (ηA ⊗H))⊗ (Γ ◦ (A⊗ ηH)).

(62)
By the normal condition for α we have

σA
H,α ◦ (H ⊗ ηH) = ∇A⊗H ◦ (ηA ⊗H), (63)

and then the upper side of (62) is equal to Γ ◦ ψA
H . For the lower side of (62),

(µA ⊗H) ◦ (µA ⊗ σA
H,β) ◦ (A⊗ ψA

H ⊗H) ◦ ((Γ ◦ (ηA ⊗H))⊗ (Γ ◦ (A⊗ ηH))

= (µA ⊗H) ◦ (fΓ ⊗ ((µA ⊗H) ◦ (A⊗ σA
H,β) ◦ (ψA

H ⊗H)

◦ (H ⊗ (∇A⊗H ◦ (A⊗ ηH))))) ◦ (δH ⊗A)

= (µA ⊗H) ◦ (fΓ ⊗ ((µA ⊗H) ◦ (A⊗ σA
H,β) ◦ (ψA

H ⊗H) ◦ (H ⊗A⊗ ηH)))

◦ (δH ⊗A)

= (µA ⊗H) ◦ (fΓ ⊗ ((µA ⊗H) ◦ (A⊗ (∇A⊗H ◦ (ηA ⊗H))))) ◦ (H ⊗ ψA
H)

◦ (δH ⊗A)

= (µA ⊗H) ◦ (fΓ ⊗ ψA
H) ◦ (δH ⊗A),

where the first equality follows by (54) and (61), the second one by (26), the third
one by (63), and the fourth one by the properties of ∇A⊗H .

Thus, (62) is equivalent to

Γ ◦ ψA
H = (µA ⊗H) ◦ (fΓ ⊗ ψA

H) ◦ (δH ⊗A), (64)

and then composing in both sides with A⊗ εH , we get (58).
Also, the multiplicative condition for Γ implies the following:

Γ ◦ µA⊗αH ◦ (ηA ⊗H ⊗ ηA ⊗H) = µA⊗βH ◦ (Γ⊗ Γ) ◦ (ηA ⊗H ⊗ ηA ⊗H).

Equivalently,

Γ ◦ (µA ⊗H) ◦ (A⊗ σA
H,α) ◦ ((∇A⊗H ◦ (ηA ⊗H))⊗H)

= (µA ⊗H) ◦ (µA ⊗ σA
H,β) ◦ (A⊗ ψA

H ⊗H) ◦ ((Γ ◦ (ηA ⊗H))⊗ (Γ ◦ (ηA ⊗H)).

Therefore, by (27) and (54) we obtain that the previous equality is equivalent to

Γ◦σA
H,α = (µA⊗H)◦ (µA⊗σA

H,β)◦ (A⊗ψA
H ⊗H)◦ ((fΓ⊗H)◦δH)⊗ ((fΓ⊗H)◦δH)).

(65)
Composing in both sides with A⊗ εH and using (iii) of Proposition 3.5, we obtain

(59).
Conversely, assume that (57), (58) and (59) hold. Then Γ ◦ ν = ∇A⊗H ◦ Γ ◦ ν =

∇A⊗H ◦ ν = ν and Γ preserves the preunit. Moreover, to prove that Γ is multiplicative
we first show that, if (58) holds, then (64) holds and similarly for (59) and (65).

Indeed:

Γ ◦ ψA
H = ((µA ◦ (A⊗ fΓ))⊗H) ◦ (A⊗ δH) ◦ ψA

H

= ((µA ◦ (A⊗ fΓ) ◦ ψA
H)⊗H) ◦ (H ⊗ cH,A) ◦ (δH ⊗A)

= ((µA ◦ (fΓ ⊗ ϕA) ◦ (δH ⊗A))⊗H) ◦ (H ⊗ cH,A) ◦ (δH ⊗A)

= (µA ⊗H) ◦ (fΓ ⊗ ψA
H) ◦ (δH ⊗A).

The first equality follows by (55), the second and the last ones by the coassociativity
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of δH , and the third one by (58).

Γ ◦ σA
H,α =((µA ◦ (A⊗ fΓ))⊗H) ◦ (A⊗ δH) ◦ σA

H,α

=((µA ◦ (A⊗ fΓ) ◦ σA
H,α)⊗ µH) ◦ δH2

=((µA◦(µA⊗β)◦(A⊗ψA
H ⊗H)◦(((fΓ⊗H)◦δH)⊗ ((fΓ⊗H)◦δH)))⊗µH)◦δH2

=(µA⊗H)◦ (µA⊗σA
H,β)◦ (A⊗ψA

H ⊗H)◦ (((fΓ⊗H)◦δH)⊗ ((fΓ⊗H)◦δH)).

The first equality follows by (55), the second one by (41), the third one by (59)
and the last one by the definition of ψA

H , the naturality of c and the coassociativity
of δH .

Then,

Γ ◦ µA⊗αH = ((µA ◦ (A⊗ fΓ))⊗H) ◦ (µA ⊗ δH) ◦ (µA ⊗ σA
H,α) ◦ (A⊗ ψA

H ⊗H)

= (µA ⊗H) ◦ (µA ⊗ σA
H,β) ◦ (µA ⊗ ((µA ⊗H) ◦ (fΓ ⊗ ψA

H)

◦ (δH ⊗A))⊗H) ◦ (A⊗ ψA
H ⊗ ((fΓ ⊗H) ◦ δH))

= (µA ⊗H) ◦ (µA ⊗ σA
H,β) ◦ (A⊗ (Γ ◦ ((µA ⊗H) ◦ (A⊗ ψA

H)

◦ (ψA
H ⊗A)))⊗H) ◦ (A⊗H ⊗A⊗ ((fΓ ⊗H) ◦ δH))

= (µA ⊗H) ◦ (A⊗ µA ⊗H) ◦ (A⊗A⊗ σA
H,β) ◦ (A⊗ (Γ ◦ ψA

H)⊗H)

◦ (A⊗H ⊗ Γ)

= (µA ⊗H) ◦ (A⊗ µA ⊗H) ◦ (A⊗A⊗ σA
H,β)

◦ (A⊗ ((µA ⊗H) ◦ (fΓ ⊗ ψA
H) ◦ (δH ⊗A))⊗H) ◦ (A⊗H ⊗ Γ)

= µA⊗βH ◦ (Γ⊗ Γ).

The first equality follows by (55), the second one by the associativity of µA and
by (65), the third and the fifth ones by (64) and the left A-linearity of Γ, the fourth
one by (19), and the last one by the associativity of µA.

Finally, (60) follows by

fΓ ◦ ηH = (A⊗ εH) ◦ Γ ◦ (ηA ⊗ ηH) = (A⊗ εH) ◦ Γ ◦ ∇A⊗H ◦ (ηA ⊗ ηH)

= (A⊗ εH) ◦ Γ ◦ ν = (A⊗ εH) ◦ ν = ηA.

Corollary 4.8. Under the hypothesis of Theorem 4.7, if (58) holds, (59) is equivalent
to

µA ◦ (A⊗ fΓ) ◦ σA
H,α = [µA ◦ ((ϕA ◦ (H ⊗ fΓ))⊗ fΓ) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)] ∧ β.

(66)
Then, if fΓ ∈ RegϕA

(H,A), we obtain that (59) is equivalent to

α ∧ ∂1,1(fΓ) = ∂1,0(fΓ) ∧ ∂1,2(fΓ) ∧ β. (67)

Proof. Trivially, if (66) holds, by (58), the naturality of c, and the coassociativity of
δH , we obtain (59). On the other hand, if (58) holds, we have that (64) holds and
then if we assume (59), using (55), the definition of ψA

H , the naturality of c, and the
coassociativity of δH , then

µA ◦ (A⊗fΓ)◦σA
H,α = µA ◦ (µA⊗β)◦ (A⊗ψA

H ⊗H)◦ (((fΓ⊗H)◦δH)⊗ ((fΓ⊗H)◦δH))
= µA ◦ (A⊗ β) ◦ ((Γ ◦ ψA

H)⊗H) ◦ (H ⊗ ((fΓ ⊗H) ◦ δH))

= µA ◦ (A⊗ β) ◦ (((((µA ◦ (A⊗ fΓ))⊗H) ◦ (A⊗ δH)) ◦ψA
H)⊗H)

◦ (H ⊗ ((fΓ ⊗H) ◦ δH))

= [µA ◦ ((ϕA ◦ (H ⊗ fΓ))⊗ fΓ) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)] ∧ β.
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Finally, it is obvious that µA ◦ (A⊗ fΓ) ◦ σA
H,α = α ∧ ∂1,1(fΓ) and, by (49) and

β ◦ Ω2
H = β, we have

∂1,0(fΓ) ∧ ∂1,2(fΓ) ∧ β = [µA ◦ ((ϕA ◦ (H ⊗ fΓ))⊗ fΓ) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)] ∧ β.
(68)

Theorem 4.9. Under the hypothesis of Theorem 4.5, the weak crossed products A⊗α

H and A⊗β H, associated to α and β, are equivalent if and only if there exists
f ∈ Reg+ϕA

(H,A) such that the equalities (58) and (67) hold.

Proof. If the weak crossed products A⊗α H and A⊗β H are equivalent, then by
Theorem 4.5 there exist multiplicative and preunit-preserving morphisms
Γ, Γ′ ∈ AHom

H
C (A⊗H, A⊗H) satisfying (e1)–(e3). Then, by Remark 4.4,

fΓ ∈ RegϕA(H,A), and by Theorem 4.7, the equalities (58) and fΓ ◦ ηH = ηA hold.
Finally, by Corollary 4.8 we get (67). Conversely, let f ∈ Reg+ϕA

(H,A), with inverse
f−1. Then, Γf and Γf−1 are morphisms of left A-modules and right H-comodules
satisfying (e1)–(e3) and preserving the preunit ν = ∇A⊗H ◦ (ηA ⊗ ηH). Indeed, by
(14) and Proposition 2.15(iii), we have Γf ◦ ν = ν. Similarly, Γf−1 ◦ ν = ν. By The-
orem 4.7 and Corollary 4.8, Γf is multiplicative and ωα,β = pA⊗H ◦ Γf ◦ iA⊗H is an
H-comodule algebra isomorphism with inverse ω−1

α,β = pA⊗H ◦ Γf−1 ◦ iA⊗H . Then,
Γf−1 is multiplicative and, by Theorem 4.5, A⊗α H and A⊗β H are equivalent.

Remark 4.10. Note that, if H is a cocommutative weak Hopf algebra, (A,ϕA) is a
weak left H-module algebra, and f : H → A a morphism, the equality (58) is always
true if A is commutative. Then, if (A,ϕA) is a left H-module algebra, the equiva-
lence between two weak crossed products A⊗α H and A⊗β H is determined by the
inclusion of f in Reg+ϕA

(H,A) and the equality (67). In this case, (67) is equivalent
to saying that α ∧ β−1 ∈ Im(D1+

ϕA
).

Theorem 4.11. Let H be a cocommutative weak Hopf algebra, and let (A,ϕA) be a
commutative left H-module algebra. Then there is a bijective correspondence between
H2

ϕA
(H,A) and the equivalence classes of weak crossed products of A⊗α H where α :

H ⊗H → A satisfies the 2-cocycle condition (43)(equivalently (51)) and the normal
condition (52).

Proof. First note that H2
ϕA

(H,A) is isomorphic to H2+
ϕA

(H,A). Then it suffices to
prove the result for H2+

ϕA
(H,A). Let α, β ∈ Reg+ϕA

(H2, A) satisfy the 2-cocycle condi-
tion (43) (in the commutative case the twisted condition is always satisfied). IfA⊗α H
and A⊗β H are equivalent, by the previous Remark, α ∧ β−1 ∈ Im(D1+

ϕA
). Then α

and β are in the same class in H2+
ϕA

(H,A). Conversely, if [α] = [β] in H2+
ϕA

(H,A), α
and β satisfy (67), i.e., α ∧ β−1 = D1+

ϕA
(f), for f ∈ Reg+ϕA

(H,A). Then, if Γf is the
morphism defined in Remark 4.4, we have that Γf satisfies (57), because, using that
f ∈ Reg+ϕA

(H,A),

pA⊗H ◦ Γf ◦ ν = pA⊗H ◦ (f ⊗H) ◦ δH ◦ ηH = pA⊗H ◦ ((f ◦ΠL

H)⊗H) ◦ δH ◦ ηH
= pA⊗H ◦ ((f ◦ΠL

H)⊗H) ◦ δH ◦ ηH = pA⊗H ◦ (u1 ⊗H) ◦ δH ◦ ηH = pA⊗H ◦ ν.

In a similar way, β ∧ α−1 = D1+
ϕA

(f−1) and Γf−1 satisfies (57). Then, by Theo-
rem 4.7, Γf and Γf−1 are multiplicative morphisms of left A-modules and right H-
comodules preserving the preunit and satisfying (e1)–(e3). Therefore, by Theorem 4.5,
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we obtain that A⊗α H and A⊗β H are equivalent weak crossed products.

Example 4.12. Let G be a finite groupoid, and let F be a field. Let

FG =
⊕
σ∈G1

Fσ

be the groupoid algebra defined in Example 2.3. If G1 is finite, FG is a finite cocom-
mutative weak Hopf algebra. Then GF = (FG)∗ is a commutative weak Hopf algebra
defined by

GF =
⊕
σ∈G1

Ffσ

with < fσ, τ >= δσ,τ . The algebra structure is given by the formulas

fσ.fτ = δσ,τfσ, 1
GF = η

GF(1F) =
∑
σ∈G1

fσ,

and the coalgebra structure is

δ
GF(fσ) =

∑
t(σ)=t(τ)

fτ ⊗ fτ−1σ, ε
GF(

∑
σ∈G1

aσfσ) =
∑
x∈G0

axfx,

where fx denotes the morphism fidx and ax denotes its coefficient. The antipode is
giving by λ

GF(fσ) = fσ−1 . The algebra GF is a left FG-module algebra with action

ϕ
GF(ω ⊗ fσ) = δs(ω),s(σ)fσω−1 .

Let G be the groupoid with G0 = {x, y} and

G1 = {idx, idy, σ : x→ y, σ−1 : y → x}.

Then {idx, idy, σ, σ−1} is a basis for FG and {fx, fy, fσ, fσ−1} is a basis for GF. The
neutral element of Reg+ϕ

GF
(FG,GF) is the morphism u1 = ϕ

GF ◦ (FG⊗ η
GF) such that

u1(idx) = u1(σ
−1) = fx + fσ, u1(idy) = u1(σ) = fy + fσ−1 .

Moreover, h ∈ Reg+ϕ
GF
(FG,GF) if and only if

h(idx) = fx + fσ, h(idy) = fy + fσ−1 , h(σ) = afy + bfσ−1 , h(σ−1) = cfx + dfσ

with a, b, c, d ∈ F∗. Therefore, the inverse of h is the morphism h−1 such that

h−1(idx) = fx + fσ, h−1(idy) = fy + fσ−1 , h−1(σ) = a−1fy + b−1fσ−1 ,

h−1(σ−1) = c−1fx + d−1fσ,

and, as a consequence, Reg+ϕ
GF
(FG,GF) is isomorphic to the group F∗ × F∗ × F∗ × F∗.

To compute D1+
ϕ

GF
(h) it is enough to obtain the images of all elements ω ⊗ τ such

that t(ω) = s(τ) because, if t(ω) 6= s(τ), φ(ω ⊗ τ) = 0 for all φ ∈ Reg+ϕ
GF
(FG2, GF).
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Then we have the following:

D1+
ϕ

GF
(h)(idx ⊗ idx) = D1+

ϕ
GF
(h)(idx ⊗ σ−1) = D1+

ϕ
GF
(h)(σ−1 ⊗ idy) = fx + fσ,

D1+
ϕ

GF
(h)(idy ⊗ idy) = D1+

ϕ
GF
(h)(idy ⊗ σ) = D1+

ϕ
GF
(h)(σ ⊗ idx) = fy + fσ−1 ,

D1+
ϕ

GF
(h)(σ ⊗ σ−1) = adfy + bcfσ−1 , D1+

ϕ
GF
(h)(σ−1 ⊗ σ) = bcfx + adfσ.

The neutral element of Reg+ϕ
GF
(FG2, GF) is u2 = ϕ

GF ◦ (FG⊗ u1). Then

u2(idx ⊗ idx) = u2(idx ⊗ σ−1) = u2(σ
−1 ⊗ idy) = u2(σ

−1 ⊗ σ) = fx + fσ,

u2(idy ⊗ idy) = u2(idy ⊗ σ) = u2(σ ⊗ idx) = u2(σ ⊗ σ−1) = fy + fσ−1 .

Thus, h ∈ Ker(D1+
ϕ

GF
) if and only if d = a−1, c = b−1. Hence the groups Ker(D1+

ϕ
GF
)

and Im(D1+
ϕ

GF
) are isomorphic to F∗ × F∗. Moreover, φ ∈ Reg+ϕ

GF
(FG2, GF) if and

only if

φ(idx ⊗ idx) = φ(idx ⊗ σ−1) = φ(σ−1 ⊗ idy) = fx + fσ,

φ(idy ⊗ idy) = φ(idy ⊗ σ) = φ(σ ⊗ idx) = fy + fσ−1 ,

φ(σ ⊗ σ−1) = mfy + nfσ−1 , φ(σ−1 ⊗ σ) = pfx + qfσ,

with m,n, p, q ∈ F∗. The inverse of φ is the morphism φ−1 defined by

φ−1(idx ⊗ idx) = φ−1(idx ⊗ σ−1) = φ−1(σ−1 ⊗ idy) = fx + fσ,

φ−1(idy ⊗ idy) = φ−1(idy ⊗ σ) = φ−1(σ ⊗ idx) = fy + fσ−1 ,

φ−1(σ ⊗ σ−1) = m−1fy + n−1fσ−1 , φ−1(σ−1 ⊗ σ) = p−1fx + q−1fσ.

Then Reg+ϕ
GF
(FG2, GF) is isomorphic to the group F∗ × F∗ × F∗ × F∗ and φ ∈

Im(D1+
ϕ

GF
) if and only if m = q and n = p. In this case D1+

ϕ
GF
(h) = φ for h defined by

h(idx) = fx + fσ, h(idy) = fy + fσ−1 , h(σ) = mfy + fσ−1 , h(σ−1) = fx + nfσ.

Let φ be in Reg+ϕ
GF
(FG2, GF). As in the previous case, to compute D2+

ϕ
GF
(φ) we

need only to obtain the images of ω ⊗ τ ⊗ π satisfying s(ω) = t(τ) and s(τ) = t(π).
Then,

D2+
ϕ

GF
(φ)(idx ⊗ idx ⊗ idx) = D2+

ϕ
GF
(φ)(idx ⊗ idx ⊗ σ−1) = D2+

ϕ
GF
(φ)(idx ⊗ σ−1 ⊗ idy)

= D2+
ϕ

GF
(φ)(idx ⊗ σ−1 ⊗ σ) = D2+

ϕ
GF
(φ)(σ−1 ⊗ idy ⊗ idy)

= D2+
ϕ

GF
(φ)(σ−1 ⊗ idy ⊗ σ) = D2+

ϕ
GF
(φ)(σ−1 ⊗ σ ⊗ idx)

= fx + fσ,

D2+
ϕ

GF
(φ)(idy ⊗ idy ⊗ idy) = D2+

ϕ
GF
(φ)(idy ⊗ idy ⊗ σ) = D2+

ϕ
GF
(φ)(idy ⊗ σ ⊗ idx)

= D2+
ϕ

GF
(φ)(idy ⊗ σ ⊗ σ−1) = D2+

ϕ
GF
(φ)(σ ⊗ idx ⊗ idx)

= D2+
ϕ

GF
(φ)(σ ⊗ idx ⊗ σ−1) = D2+

ϕ
GF
(φ)(σ ⊗ σ−1 ⊗ idy)

= fy + fσ−1 ,

D2+
ϕ

GF
(φ)(σ ⊗ σ−1 ⊗ σ) = qm−1fy + pn−1fσ−1 ,

D2+
ϕ

GF
(φ)(σ−1 ⊗ σ ⊗ σ−1) = np−1fx +mq−1fσ.

Therefore, φ ∈ Ker(D2+
ϕ

GF
) if and only if m = q and n = f and then Ker(D2+

ϕ
GF
) =
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Im(D1+
ϕ

GF
). This implies thatH2

ϕ
GF
(FG,GF) = {1}. As a consequence, all weak crossed

products GF⊗φ FG are equivalent.
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