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(communicated by Alexander Mishchenko)

Abstract
The cohomology of digraphs was introduced for the first time

by Dimakis and Müller-Hoissen. Their algebraic definition is
based on a differential calculus on an algebra of functions on
the set of vertices with relations that follow naturally from
the structure of the set of edges. A dual notion of homology
of digraphs, based on the notion of path complex, was intro-
duced by the authors, and the first methods for computing the
(co)homology groups were developed. The interest in homology
on digraphs is motivated by physical applications and relations
between algebraic and geometrical properties of quivers. The
digraph GB of the partially ordered set BS of simplexes of a
simplicial complex S has graph homology that is isomorphic to
the simplicial homology of S. In this paper, we introduce the
concept of cubical digraphs and describe their homology prop-
erties. In particular, we define a cubical subgraph GS of GB,
whose homologies are isomorphic to the simplicial homologies
of S.

1. Introduction

In a recent paper [9], the authors developed the theory of homology of path com-
plexes, which can be considered as a natural generalization of a simplicial homology
theory (see, for example, [10], [11], and [12]). This approach allows us to define the
notion of homology for digraphs that is dual to the notion of cohomology of [2], [3],
and [8].

Any graph can be naturally regarded as a 1-dimensional simplicial complex, so that
its simplicial homologies of all dimensions n ⩾ 2 are trivial. However, as was shown
in [9] on many examples, the graph homologies of a digraph can be highly non-trivial
for any n, as this theory detects automatically higher-dimensional substructures of
the digraph; for example, a graphical simplex or cube with an appropriate direction
of edges.

Generally speaking, a digraph G can be turned into a simplicial complex S in many
ways, by constructing higher-dimensional simplexes on some of its cliques (a clique
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in a graph is a subset of its vertices such that every pair of vertices in the subset is
connected by an (undirected) edge). These, however, do not have to match the higher
dimensional substructures of G that are predetermined by G (see, for example, [1]
and [7]).

On the other hand, any simplicial complex S naturally determines an (undirected)
graph S1 that is the 1-skeleton of S. The graph S1 can be turned into a digraph by
choosing arbitrary directions of the edges. Simple examples show that the simplicial
homologies of S and the graph homologies of S1 can be different regardless of the
choice of the digraph structure on S1 (see example in Section 3).

Now let S be a finite simplicial complex and let BS be the set of its simplexes.
Consider a graph GB with vertex set BS and an arrow σ → τ if and only if (τ ⊂
σ)&(τ ̸= σ). Then the dual chain complex to the complex for the graph cohomology
of SB is isomorphic to the simplicial chain complex of the first barycentric subdivision
of S (see [8]).

Let GS be a subgraph of GB , with the same set of vertices BS , and with s, t ∈ BS

connected in GS by a directed edge s→ t if and only if

s ⊃ t and dim s = dim t+ 1. (1)

The graph GS can be realized geometrically as follows. Denote by bs the barycenter
of a simplex s ∈ S. Then the set BS coincides with the set of barycenters of all s ∈ S.
Define the edges bs → bt between two barycenters by the same rule (1); this gives a
digraph GB (see Fig. 1(b)).

 
(a)  simplicial complex S  (b) digraph GS based on BS 

(d)  cubical complex QS  (c) abstract digraph GS 

Figure 1: A simplicial complex S, the digraph GS realized on the barycenters, and,
abstractly, and the cubical complex QS .
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Furthermore, it is not difficult to see that GS is the 1-skeleton of a natural cubical
complex associated with S, which will be denoted by QS . More precisely, QS can be
constructed as follows. For each simplex s ∈ S, consider a full barycentric subdivision
sb of s, and for any vertex v of s take the union of all the elements of sb containing
v. This union is a topological cube, and the family of all such cubes of all simplexes
s ∈ S forms a cubical complex QS that is a cubillage of S (cf. [5, §5]). Thus we obtain
a new relation between graph homologies and cubical lattices of topological spaces
(see [4] and [5] for physical applications of cubical lattices).

The complexes S and QS have the same topological realization, which implies that
their cell homologies are the same. On the other hand, we prove in Section 5 that
the cell homology chain complex of QS and the graph homology chain complex of GS

are isomorphic, which implies the isomorphism of H∗ (S) and H∗ (GS). In particular,
this approach provides the possibility of computing homologies of complicated cubical
digraphs.

It is worth mentioning that the assignment S 7→ GS is a functor from the category
of simplicial complexes with inclusion maps to the category of digraphs with inclusion
maps.

In Section 2, we give necessary preliminary material about simplicial and cubical
complexes and their homology properties, following [6], [10], and [12]. In particu-
lar, we discuss in detail the procedure for constructing of the cubical complex QS

mentioned above. In Section 3 we give a brief account of the graph homology theory
following [9]. In Section 4, we define cubical digraphs and describe theirs properties.
Finally, in Section 5 we prove the main result, Theorem 5.1.
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2. Simplicial and cubical complexes

In this section we present necessary material about simplicial and cubical com-
plexes and describe the construction of a cubical complex associated with a given
simplicial complex. The details can be found in [6] and [12].

By an n-dimensional simplex we mean a non-degenerate affine image of the stan-
dard simplex

∆n =
{
(x0, x1, . . . , xn) ∈ Rn+1 : x0 + x1 + · · ·+ xn = 1, xi ⩾ 0 for all i = 0, . . . , n

}
in some space RN . Recall that a finite simplicial complex S is a finite family of
simplexes in RN such that the following conditions are satisfied:

1. if S contains a simplex s then S contains all the faces1 of s;

1Contrary to a common convention, we do not regard ∅ as a face.
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2. if s1, s2 are two simplexes from S then the intersection s1 ∩ s2 is either empty
or a simplex from S.

Let us describe the lesser known notion of a cubical complex. The standard n-
dimensional cube In is defined for n ⩾ 1 by:

In = {(x1, . . . , xn) ∈ Rn : 0 ⩽ xi ⩽ 1, i = 1, . . . , n},

and for n = 0 by I0 = {0}. An n-dimensional cube q is a non-degenerate piecewise
linear image of In in some RN . We would like to point out that in opposition to the
definition of a simplex, we use here a piecewise linear image of a standard cube.

A k-dimensional face of In is any of the k-cubes

{(x1, . . . , xn) ∈ In : xi1 = ε1, . . . , xin−k
= εn−k}

where 1 ⩽ i1 < · · · < in−k ⩽ n and εj = 0 or 1, and a k-dimensional face of q is the
image under the same mapping In → RN of one of the k-dimensional faces of In.

A finite cubical complex Q is a finite collections of cubes in some RN such that

(i) if Q contains a cube q then Q contains all the faces of q;

(ii) if q1, q2 are two cubes from Q then the intersection q1 ∩ q2 is either empty or a
cube from Q.

In this paper we will consider only finite simplicial and cubical complexes, so that
the adjective “finite” will be omitted. Clearly, both simplicial and cubical complexes
have an underlying structure of a topological space and even a structure of a poly-
hedron. Denote by |S| the union of all simplexes from a simplicial complex S and
similarly by |Q|—the union of all cubes from Q. Both |S| and |Q| will be regarded as
topological spaces with the induced topology from the ambient space RN .

Fix a ring K. Each simplicial complex S gives rise to a chain complex C∗ (S) over K
with a boundary operator ∂, and, hence, to the simplicial homologies H∗ (C∗ (S)) ∼=
H∗ (|S|), and, similarly, one obtains a cubical chain complex C∗ (Q) over K with
a boundary operator ∂ and the corresponding cubical homologies H∗ (C∗ (Q)) ∼=
H∗ (|Q|), where H∗ (|S|) and H∗ (|Q|) are the singular homologies of the topologi-
cal spaces |S| and |Q|, respectively.

For any simplicial complex S, we will construct an associated cubical complex QS

with the same underlying topological space |S| = |QS |.
Denote by Sb the barycentric subdivision of S. Now for any k-simplex s ∈ S and

a vertex v of s, define a set qs,v by

qs,v =
∪

{t∈Sb: v∈t}

t;

that is, qs,v is the union of all simplexes from sb that contain the vertex v. It is not
difficult to see that qs,v is a k-cube (see [5] and [13] for the details). It is also clear
that s is the union of all the cubes qs,v over all vertices v of s (cf. Fig. 2).

The collection of all cubes {qs,v} over all s ∈ S and v ∈ s is then a cubical complex
that will be denoted by QS . It is clear from the construction that H∗ (C∗ (S)) ∼=
H∗ (C∗ (QS)).

By construction, the set of vertices of QS coincides with the set BS of the barycen-
ters of all simplexes of S. The 1-dimensional skeleton of the cubical complex QS can
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2-simplex s 

vertex v 

2-cube qs,v 

Figure 2: Construction of a cube qs,v.

be described as follows. Given two simplexes s, t of S, let us connect their barycenters
bs and bt by a segment [bs, bt] if and only if s = t ∪ {v} for some vertex v /∈ t. Then
the 1-dimensional skeleton of QS is given by the union of all such segments [bs, bt]
(cf. Fig. 1).

3. Homologies of digraphs

In this section we cite necessary material from [9]. In this paper K is a fixed
commutative ring with a unity 1.

Let V be a finite set, whose elements will be called vertices. An elementary p-path
on a finite set V is any (ordered) sequence i0, . . . , ip of p+ 1 vertices of V , which
will be denoted by i0 . . . ip or by ei0...ip . Denote by Λp = Λp (V ) the free K-module
generated of all elementary p-paths ei0...ip with coefficients from K. The elements of
Λp are called p-paths. By definition, each p-path v ∈ Λp has the form

v =
∑

i0,...,ip∈V

vi0i1...ip ei0i1...ip , vi0i1...ip ∈ K.

For example, 0-paths are linear combinations of the vertices ei:

v =
∑
i∈V

viei,

and 1-paths are linear combinations of pairs of vertices eij :

v =
∑
i,j∈V

vijeij .

Define the boundary operator ∂ : Λp+1 → Λp by

(∂v)
i0...ip =

∑
k∈V

p+1∑
q=0

(−1)q vi0...iq−1kiq...ip (2)

where the index k is inserted so that it is preceded by q indices. This formula holds
for all p ⩾ 0. We also need the operator ∂ : Λ0 → Λ−1 where we set Λ−1 = {0} and
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∂v = 0 for all v ∈ Λ0.
It follows from (2) that

∂ei0...ip+1 =

p+1∑
q=0

(−1)q ei0...îq...ip+1
. (3)

It follows from the definition that, for any p-path v, ∂2v = 0.
An elementary p-path ei0...ip is called regular if ik ̸= ik+1 for all k. We would like to

define the boundary operator ∂ on the subspace of Λp spanned by regular elementary
paths. Just the restriction of ∂ does not work as ∂ is not invariant on this subspace.

Let Ip be the subspace of Λp that is spanned by all irregular ei0...ip . Consider the
quotient space

Rp = Rp (V ) = Λp/Ip.

The elements of Rp are the equivalence classes vmod Ip, where v ∈ Λp, and they are
called regularized p-paths. One verifies that the boundary operator ∂ is well-defined
for regularized paths. Clearly, Rp is linearly isomorphic to the space of regular p-
paths:

span
{
ei0...ip : i0 . . . ip is regular

}
.

For simplicity of notation, we will identify Rp with this space by setting all irregular
p-paths equal to 0.

Now we define paths on digraphs. A digraph is a pair G = (V,E), where V is an
arbitrary set and E is a subset of V × V \ diag. In this paper the set V will be always
assumed non-empty and finite. The elements of V are called vertices and the elements
of E are called (directed) edges.

The edge starting at a vertex a and ending at b will be denoted by ab. The fact
that there exists an edge starting at a and ending at b will be denoted by a→ b.

Let i0 . . . ip be a regular elementary p-path on V . It is called allowed if ik−1 → ik
for any k = 1, . . . , p, and non-allowed otherwise.

We would like to reduce the space Rp of regular p-paths on V to adapt it to the
digraph structure G. Denote by Ap = Ap (G) the subspace of Rp spanned by the
allowed elementary p-paths; that is,

Ap = span
{
ei0...ip : i0 . . . ip is allowed

}
.

The elements of Ap are called allowed p-paths. Note that A0 consists of linear com-
bination of vertices, and A1 consists of linear combinations of the edges.

In general, the spaces Ap are not invariant for operator ∂. For example, if ab and
bc are edges then eabc ∈ A2, while

∂eabc = ebc − eac + eab

is non-allowed if ac is not an edge.
Consider the following subspace of Ap:

Ωp = Ωp (G) = {v ∈ Ap : ∂v ∈ Ap−1} . (4)

Then the family {Ωp} is ∂-invariant. Indeed, if v ∈ Ωp then ∂v ∈ Ap−1 and ∂ (∂v) =
0 ∈ Ap−2 whence ∂v ∈ Ωp−1. The elements of Ωp are called ∂-invariant p-paths.
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We obtain a chain complex

0 ←− Ω0
∂←− Ω1

∂←− · · · ∂←− Ωp−1
∂←− Ωp

∂←− · · · (5)

and the notion of homology groups of the digraph G:

Hp (G) := ker ∂|Ωp

/
Im ∂|Ωp+1 .

In what follows, we will refer to Hp (G) as the graph homologies, in order to
distinguish from other theories of homologies.

Now we consider several examples. Let G = (V,E) be a finite digraph. The space
Ω0 has always the basis {ea}a∈V and Ω1 has the basis {eab}ab∈E . Let us give examples
of ∂-invariant paths in Ωn with n ⩾ 2.

Example 3.1. Let us call by a triangle a sequence {a, b, c} of three distinct vertices
a, b, c of G such that ab, bc, ac are edges:

a• → •c
↘•

b

↗ . (6)

The triangle determines a 2-path eabc ∈ Ω2 as eabc ∈ A2 and ∂eabc = ebc − eac + eab ∈
A1. More generally, a graphical n-simplex is a sequence {ak}nk=0 of n+ 1 distinct
vertices from V such that ai → aj for all i < j. Then ea0...an and ∂ea0...an are allowed
so that the n-path ea0...an is ∂-invariant. One can say that this n-path determines
the simplex.

Example 3.2. Let us call by a square a sequence {a, b, b′, c} of four distinct vertices
a, b, b′, c ∈ V such that ab, bc, ab′, b′c are edges:

b′• −→ •c
↑ ↑

a• −→ •b
The square determines a 2-path v = eabc − eab′c ∈ Ω2 as v ∈ A2 and

∂v = (ebc − eac + eab)− (eb′c − eac + eab′) = eab + ebc − eab′ − eb′c ∈ A1.

Example 3.3. More generally, a graphical n-cube is a set C of 2n vertices of V such
that any vertex α ∈ C can be identified with a sequences (α1 . . . αn) of binary digits
so that α→ β if and only if the sequence (β1 . . . βn) is obtained from (α1 . . . αn) by
replacing a digit 0 by 1 at exactly one position. The digraph • → • is a 1-cube, a
square is a 2-cube, and a 3-cube is shown in Fig. 3.

With any graphical n-cube one can associate a ∂-invariant n-path as was shown in
[9, Example 6.7] (cf. Section 4 below). For example, for the 3-cube as in Fig. 3 this is

v = e0457 − e0157 + e0137 − e0467 + e0267 − e0237.

It is easy to see that

∂v = (e457 − e467)− (e013 − e023) + (e015 − e045)

− (e237 − e267) + (e137 − e157)− (e026 − e046) .

In other words, ∂v is an alternating sum of six 2-paths, each of them corresponding
to a geometric face of the cube. This observation will be put in a general context in
Section 4, and it is a key to the proof of our main Theorem 5.1.
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0=(000) 1=(100) 

3=(110) 2=(010) 

4=(001) 5=(101) 

7=(111) 6=(011) 

Figure 3: A graphical 3-cube. The binary representations of the vertices are shown in
parentheses.

Example 3.4. It is clear that the ∂-invariant 2-paths associated to different triangles
are linearly independent. Let us give an example showing that the ∂-invariant 2-paths
associated to different squares can form a linear dependence. Consider the digraph
on Fig. 4. It has three squares {0, 1, 2, 4}, {0, 1, 3, 4}, {0, 2, 3, 4} that give rise to the
following three ∂-invariant 2-paths

e014 − e024, e014 − e034, e024 − e034,

that are obviously linearly dependent. It is possible to show that in this case dimΩ2 =
2 (cf. [9, Proposition 5.2]).

 
0 

3 

4 

1 2 

Figure 4: A digraph with linearly dependent squares.

Example 3.5. Consider the (undirected) graph G in Fig. 5 with 6 vertices and 12
edges. As a 1-dimensional simplicial complex, G has simplicial homologiesH∗(C∗(G)).
On the other hand, let us introduce arbitrarily a set D of directions on the edges of
G, so that (G,D) is a digraph and, hence, has the graph homologies H∗ (G,D). We
claim that for any choice of D,

H1 (C∗ (G)) ̸= H1 (G,D) . (7)

As above, let {Ωn} be the chain complex of the digraph (G,D). In particular, dimΩ0 =
6 (the number of vertices), and dimΩ1 = 12 (the number of edges). By homological



GRAPHS ASSOCIATED WITH SIMPLICIAL COMPLEXES 303

 

0 3 

4 

1 2 

3 5 0 

4

2 

0 

3 

1

5 

Figure 5: Graph G in two representations: embedded on the Möbius band (left) and
in R3 (right). In the left panel, the vertices with the same number are merged.

algebra, we have the following universal identity:

dimH1 (Ω)− dimH0 (Ω) = dimΩ1 − dimΩ0 − dim ∂Ω2

(see, for example, [9, Lemma 3.4]) and an analogous identity for the simplicial homolo-
gies. Since the graph G is connected, we have dimH0 (Ω) = 1 (cf. [9, Proposition 4.2]).
It follows that dimH1 (Ω) = 7− dim ∂Ω2. A similar formula holds for the simplicial
homologies: dimH1 (C∗ (G)) = 7− dim ∂C2 (G). Since C2 (G) is trivial, we obtain
dimH1 (C∗ (G)) = 7 (the same can be seen using the homotopy invariance of sim-
plicial homologies as the 1-dimensional simplicial complex G is homotopy equivalent
to a wedge sum of seven circles S1).

It remains to show that the space ∂Ω2 is non-trivial for any choice D of the edge
directions, which will yield dimH1 (G,D) ⩽ 6 and, hence, (7). For that it suffices to
verify that there is at least one triangle {a, b, c} in (G,D) in the sense of Example 3.1,
since then eabc ∈ Ω2 and ∂eabc ̸= 0. Indeed, let us try to define directions D on the
edges of G so that (G,D) contains no triangles. Then any undirected triangle in G

must become a cycle
• ←− •

↘•↗ or
• −→ •

↖•↙ rather than a triangle (6).

Given a direction of the edge 03, this requirement determines uniquely the direc-
tions of all other edges (cf. Fig. 6), up to the edge 23. However, with any direction
on 23 the sequence {0, 2, 3} will become a triangle, which finishes the proof.

 

1 0 3 2 

4 3 0 5 

Figure 6: An attempt to introduce on G the direction of edges. Any direction of the
edge 23 will create a triangle.
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4. Cubical digraphs

Let M be a finite set with m elements. Let us introduce in the power set 2M of
M the structure of a digraph as follows: for two arbitrary sets s1, s2 ∈ 2M , define the
edge between them by the rule

s1 → s2 ⇔ s2 is obtained from s1 by removing of exactly one element. (8)

Denote this digraph by GM . Let us fix an enumeration of the elements of M by
integers 0, 1, . . . ,m− 1; in fact, identify M with the set {0, 1, . . . ,m− 1}. For any set
s ∈ 2M define its anti-indicator N (s) by

N (s) =
∑

i∈M\s

2i.

For example, N (∅) = 2m − 1 and N (M) = 0. Clearly, if s1 → s2 then

N (s2) = N (s1) + 2i, (9)

where i is the unique element in s1 \ s2.
Let S be a family of subsets of M ; that is, S ⊂ 2M . Denote by GS,M the digraph

with the vertex set S, whose edges are all the edges from GM with the endpoints in
S. If no confusion arises, we write the shorthand GS instead of GS,M .

Definition 4.1. The digraph GS is called cubical if the family S ⊂ 2M possesses the
following property: if s, t are two elements of S, then any subset u of M such that
s ⊂ u ⊂ t is also an element of S.

For example, the digraph GM (S = 2M ) is a cubical graph. The reason for the term
“cubical” is that GM is, in fact, a graphical m-cube. Indeed, with each element s ∈
2M consider N (s) as a binary number, which provides a one-to-one correspondence
between 2M and the sequences of m binary digits. Moreover, s1 → s2 means by (9)
that N (s2) is obtained from N (s1) by replacing one binary digit 0 by 1. Hence, GM

is a graphical m-cube (cf. Fig. 7). In fact, GM is nothing other than the inverted
Hasse diagram of the partially ordered set 2M .

 

N({0,1,2})=0 

{0,1,2} 

{1,2} {0,1} {0,2} 

{2} {1} {0} 

O  / N({1,2})=1 

N({2})=3 

N(O)=7 

N({1})=5 

N({0,2})=2 

N({0,1})=4 

N({0})=6 / 

Figure 7: The cubical graph GM for M = {0, 1, 2} drawn in two ways. In the right
panel, each vertex s is assigned the number N (s).
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Example 4.2. With any simplicial complex S we associate a cubical digraph as follows.
Denote by M the set of all vertices of S (with a fixed enumeration as above). Then
any k-simplex in S can be regarded as a (k + 1)-subset of M , and S can be regarded
as a subset of 2M . By the above construction, we obtain a digraph GS . It satisfies the
definition of a cubical graph because by definition of a simplicial complex, if a subset
s of M is a simplex from S, then any non-empty subset s′ of s is also a simplex of S.

Equivalently, one can describe the graph GS of a simplicial complex S as follows.
The set of vertices of GS coincides with the set of all simplexes from S. The edges in
GS are defined by (8) or, equivalently, by

s→ t⇔ s ⊃ t and dim s = dim t+ 1, (10)

where s, t are simplexes from S (cf. Fig. 1 in Introduction).

Now we describe properties of general cubical digraphs that provide an effective
tool for computing homologies.

Fix a set M = {0, 1, . . . ,m− 1} as above, and consider the digraph GM . Let
{αk}nk=0 be an allowed path in GM ; that is, αk−1 → αk for all k = 1, . . . , n. Define
a non-negative integer σ (α) as follows. Since αk−1 → αk, there is a unique value
ik ∈ {0, 1, . . . ,m− 1} such that

αk−1 \ αk = {ik} ,

or, equivalently,

N (αk) = N (αk−1) + 2ik . (11)

Then define σ (α) as the number of inversions in the sequence {i1, . . . , in} (cf. Fig. 8).

 

0 1 

3 
2 

4 5 

7 6 

i1=1 

i2=0 

i3=2 

Figure 8: For the path α = 0237, the sequence {i1, i2, i3} is {1, 0, 2}, and it has one
inversion. Hence, σ (α) = 1.

Lemma 4.3. Let α = {αk}nk=0 be an allowed path in GM .

(a) Denote by α′ the truncated sequence {αk}nk=1 so that α′ is an allowed path. Then
the difference σ (α)− σ (α′) depends only on α0, α1, αn.
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(b) Denote by α′ the truncated sequence {αk}n−1
k=0 so that α′ is an allowed path.

Then the difference σ (α)− σ (α′) depends only on α0, αn−1, αn.

Proof. Indeed, let ik be as in (11). Then σ (α) is the number of inversions in the
sequence {i1, i2, . . . , in} while σ (α′) is the number of inversions in the sequence
{i2, i3, . . . , in}. Therefore, the difference σ (α)− σ (α′) is the number of inversions
of i1 in {i1, i2, . . . , in}; that is, the number of the values i2, . . . , in that are smaller
than i1. Since by (11)

N (αn)−N (α1) = 2i2 + 2i3 + · · ·+ 2in ,

and all ik are different, the values of i2, . . . , in (but not the order) are uniquely deter-
mined by N (αn)−N (α1). Since i1 is determined by N (α1)−N (α0), the number of
the values i2, . . . , in that are smaller than i1 is determined by N (αn)−N (α1) and
N (α1)−N (α0), which finishes the proof of (a). Part (b) is proved similarly.

For any two subsets s, t of M , such that t ⊂ s, denote by Ds,t the family of all
subsets u ⊂M such that t ⊂ u ⊂ s. We consider Ds,t as a digraph with the edges as
in (8). Clearly, Ds,t is a subgraph of GM and Ds,t is isomorphic to the digraph Gs\t
so that Ds,t is a graphical n-cube, where n = |s| − |t|. Note that if S ⊂ 2M satisfies
the property of Definition 4.1 and s, t are two elements of S such that t ⊂ s, then
Ds,t is a subgraph of S.

For any n-cube Ds,t ⊂ GM denote by P (Ds,t) the set of all allowed paths {αk}nk=0

such that α0 = s and αn = t. Then t ⊂ αk ⊂ s for any k, so that all αk belong to
Ds,t. Any path α ∈ P (Ds,t) is called a full chain in Ds,t. With each n-cube D = Ds,t

let us associate a n-path ω = ω (D) by

ω (D) =
∑

α∈P (D)

(−1)σ(α) eα. (12)

Since each n-path eα = eα0...αn is allowed in D, the n-path ω (D) is also allowed. We
will show below that ω (D) is, in fact, ∂-invariant in D.

Let D = Ds,t be an n-cube in GM . For any (n− 1)-cube D′ ⊂ D define the number
σ (D,D′) as follows. For D′ there are two possibilities:

1. either D′ = Ds′,t where s→ s′;

2. or D′ = Ds,t′ where t′ → t.

In the first case consider any full chain α ∈ P (D) with α1 = s′ and set α′ =
{αk}nk=1 so that α′ ∈ P (D′). Then define

σ (D,D′) = σ (α)− σ (α′) . (13)

In the second case consider a full chain α ∈ P (D) with αn−1 = t′ and set α′ =

{αk}n−1
k=0 so that α′ ∈ P (D′). Then define

σ (D,D′) = (−1)n (σ (α)− σ (α′)) . (14)

Note that by Lemma 4.3 the value of σ (D,D′) in the both cases does not depend on
the choice of α: in the first case σ (D,D′) depends on s, s′, t; in the second case, on
s, t′, t.
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Lemma 4.4. For any n-cube D in GM we have

∂ω (D) =
∑

D′⊂D

(−1)σ(D,D′) ω (D′) , (15)

where the sum is taken over all (n− 1)-cubes D′ ⊂ D. Consequently, ω (D) is a ∂-
invariant path in the digraph D.

Proof. We have

∂ω =
∑
α

(−1)σ(α) ∂eα0α1...αn

=
∑
α

(−1)σ(α)
n∑

k=0

(−1)k eα0...α̂k...αn

=
∑
α

(−1)σ(α) eα1...αn + (−1)n
∑
α

(−1)σ(α) eα0...αn−1

+
n−1∑
k=1

(−1)k
∑
α

(−1)σ(α) eα0...α̂k...αn
.

Observe that for any k = 1, . . . , n− 1∑
α

(−1)σ(α) eα0...α̂k...αn
= 0.

Indeed, it suffices to show that∑
αk

(−1)σ(α) eα0...α̂k...αn
= 0.

Since αk−1 and αk+1 are fixed, for αk there are only two possibilities, and σ (α) for
these two possibilities have different parity, so that the term eα0...α̂k...αn

cancels out.
Denoting by s′ any successor of s and by t′ any predecessor of t, we obtain

∂ω =
∑
α

(−1)σ(α) eα1...αn + (−1)n
∑
α

(−1)σ(α) eα0...αn−1

=
∑
s′

∑
α:α1=s′

(−1)σ(α) eα1...αn + (−1)n
∑
t′

∑
α:αn−1=t′

(−1)σ(α) eα0...αn−1 .

The sequence α1 . . . αn with α1 = s′ and αn = t determines a (n− 1)-subcube D′ =
Ds′,t of Ds,t. Denoting α′ = α1 . . . αn (that is, a full chain of Ds′,t), we obtain∑

α:α1=s′

(−1)σ(α) eα1...αn =
∑

α′∈P (D′)

(−1)σ(α) eα′
1...α

′
n

=
∑

α′∈P (D′)

(−1)σ(α)−σ(α′) (−1)σ(α
′) eα′

1...α
′
n

= (−1)σ(D,D′) ω (D′) ,

where we have used (13). Hence,∑
α

(−1)σ(α) eα1...αn =
∑

D′⊂D

(−1)σ(D,D′) ω (D′) , (16)
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where the summation extends to all (n− 1)-cubes D′ ⊂ D with the same target t.

Similarly, a sequence α0 . . . αn−1 with αn−1 = t′ determines a (n− 1)-subcube
D′ = Ds,t′ of Ds,t. Denoting α′ = α0 . . . αn−1, we obtain

(−1)n
∑

α′∈P (D′)

(−1)σ(α) eα′
0...α

′
n−1

= (−1)σ(D,D′) ω (D′) ,

where we have used (14). Therefore,

(−1)n
∑
α

(−1)σ(α) eα0...αn−1 =
∑

D′⊂D

(−1)σ(D,D′) ω (D′) , (17)

where the summation extends to all (n− 1)-cubes D′ ⊂ D with the same source s.
Combining together (16) and (17) we obtain (15).

Finally, since all ω (D′) are allowed paths in D, we obtain that ∂ω (D) is allowed
and, hence, ω is ∂-invariant.

Let GS be a cubical digraph based in a set M . Consider a digraph TS with the
same set of vertices and with the following set of edges. For any n-cube Ds,t ⊂ GS

and s ⊃ u ⊃ t, the edges s→ u(u ̸= s) and u→ t(u ̸= t) lay in TS . It is clear that
we have an inclusion GS → TS of digraphs; that is, an identity map on the set of
vertices. It follows immediately from this definition that any admissible path in TS

is ∂-invariant; that is, Ωp(TS) = Ap(TS), p ⩾ 0.

Now we define a topological realization QS of the cubical digraph GS as a cubical
cell complex and define a natural simplicial subdivision ∆S of GS . Let QS be a cubical
complex in which the cubical n-cells qs,t are in one-to-one correspondence with the
cubes Ds,t ∈ GS and the incidence relation is induced from incidence relation in GS .
To any full chain α = {αk}nk=0 ∈ P (Ds,t) (α0 = s, αn = t) we assign a n-simplex τα
given by the set of his vertices τα = {bαk

}nk=0. Thus, in particular, we identify the
vertices of GS with 0-cells of QS . The cell qs,t is a union

qs,t =
∪

α∈P (Ds,t)

τα, (18)

and hence the simplexes τα with α ∈ P (Ds,t) give a standard simplicial subdivision
of the cubical cell qs,t. We denote the obtained simplicial complex by ∆S . It follows
from the definition that

H∗(|QS |) ∼= H∗(|∆S |) ∼= H∗(C∗(∆S)), (19)

where H∗(C∗(∆S)) is the simplicial chain complex of ∆S . Additionally, we have an
isomorphism of chain complexes

i : Ω∗(TS) ∼= C∗(∆S), (20)

given on the set of admissible paths by i(β) = τβ , where β = β0 → β1 → · · · → βk

is an admissible path in TS and the simplex τβ is given by the set of his vertices
(β0, β1, . . . , βk). Hence we have an isomorphism H∗(TS) ∼= H∗(C(∆S)).
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5. Homology of cubical digraphs

Now the following theorem and its corollary give the main results of this paper
stated in the Introduction. All homologies are considered over a fixed ring K.

Theorem 5.1. Let GS be a cubical digraph based in a set M and Kn be the number
of n-cubes that are contained in the digraph GS. Then dimΩn(S) = Kn and for n ⩾ 0
we have an isomorphism Hn(GS) ∼= Hn(C∗(∆S)).

Remark 5.2. This statement is not true for a general digraph. Although any n-cube
D in an arbitrary digraph always gives rise to the ∂-invariant n-path ω (D), as in
Lemma 4.4, the paths ω (D) associated with different cubes D can be linearly depen-
dent as was shown in Example 3.4.

Proof. Consider a cubical complex QS as above and his simplicial subdivision ∆S

given by (18). Define orientations of the cubes in QS , taking the orientation of qs,t
that coincides with the orientation of the n-dimensional simplex τα ⊂ qs,t of the
subdivision TS for which the sequence of indexes (i1 = α0 \ α1, . . . , in = αn−1 \ αn)
is in increasing order. We equip every simplex τα′ in decomposition (18) with an
orientation that is given by the order of its vertices in the path α′.

We have the natural injective homomorphism of cellular chain complexes (see, for
example, [10, Sec. 3.8])

j : C∗(QS)→ C∗(TS), j(qs,t) =
∑

α∈P (D)

(−1)σ(α)τα. (21)

Denote by Fn ⊂ Cn(TS) the subgroup generated by all n-simplexes of TS that lie
in n-cells qs,t ∈ QS ; that is, Fn is generated by all simplexes τα where α = {αk}nk=0

is an allowed path in Ds,t ⊂ GS . Let An be a subgroup of Fn, consisting of all chains
c ∈ Fn such that ∂c ∈ Fn−1.

Lemma 5.3. There is an isomorphism j(Cn(QS)) = An.

Proof. It follows from (21) and (18) for a cube qs,t ∈ Cn(QS) that j(qs,t) ∈ An, since
the map j is a chain map. Hence j(Cn(QS)) ⊂ An.

Now we prove an inverse inclusion An ⊂ j(Cn(QS)). Consider a chain

fn =
∑
α∈P

kατα ∈ Fn, k ∈ K, P = {P (Ds,t) : |s \ t| = n}

such that ∂fn ∈ Fn−1. It is sufficient to consider the case where all simplexes τα lie
in one cube qs,t, and then use an induction by the number of cubes.

Thus, let q = qs,t be an n-cube, P = P (Ds,t), and

fn =
∑
α∈P

kατα ∈ Fn, k ∈ K, ∂fn ∈ Fn−1. (22)

Take any simplex τα = {bα0 , . . . , bαn} fitting in the sum with a nonzero coefficient
and consider its boundary. Only two simplexes

{bα1 , . . . , bαn} ,
{
bα0 , . . . , bαn−1

}
from its boundary lie in Fn−1. Hence for any another simplex of the boundary ∂(τα),
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say ∂k(τα) =
{
bα0 , . . . , b̂αk

, . . . , bαn

}
, there exists only one simplex τα′ ∈ Ds,t, where

α′
i =

{
αi, i ̸= k

αk−1 \ {ik+1}, where ik+1 = αk \ αk+1

for which the boundary contains the simplex ∂k(τα) with the opposite orientation.

Hence the simplex τα′ fits in the sum (22) with the coefficient kα′ = −kα. Extending
this process and using (21) we obtain that the sum in (22) coincides with ±kαj(qs,t).
This finishes the proof of the lemma.

Now consider a diagram

Ωn(TS)
∼=−→ Cn(∆S)

↑ ↑
An(GS)

∼=−→ Fn

↑ ↑
Ωn(GS) −→ An

where An = j(Cn(QS)) ∼= Cn(QS) by Lemma 5.3. The vertical maps in the diagram
are inclusions, the two upper horizontal maps are isomorphisms since they are restric-
tions of the isomorphism i (20), and the upper square is commutative. The map i is a
morphism of chain complexes and the subcomplexes Ωn(GS) ⊂ An(GS), An ⊂ Fn in
bottom row are defined by the same condition to be ∂-invariant. Hence the diagram is
commutative, and the bottom horizontal map is an isomorphism. Now the statement
of the theorem follows.
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