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Abstract
In multivariate data analysis dependence beyond pair-wise can

be important. With many variables, however, the number of simple
summaries of even third-order dependence can be unmanageably
large.

“Concurrence topology” is an apparently new method for describ-
ing high-order dependence among up to dozens of dichotomous (i.e.,
binary) variables (e.g., seventh-order dependence in 32 variables).
This method generally produces summaries of dependence of man-
ageable size. (But computing time can be lengthy.) For time series,
this method can be applied in both the time and Fourier domains.

Write each observation as a vector of 0’s and 1’s. A “concurrence”
is a group of variables all labeled “1” in the same observation. The
collection of concurrences can be represented as a filtered simplicial
complex. Holes in the filtration indicate relatively weak or negative
association among the variables. The pattern of the holes in the
filtration can be analyzed using persistent homology.

We applied concurrence topology on binarized, resting-state,
functional MRI data acquired from patients diagnosed with
attention-deficit hyperactivity disorder and from healthy controls.
An exploratory analysis finds a number of differences between
patients and controls in the topologies of their filtrations, demon-
strating that concurrence topology can find in data high-order struc-
ture of real-world relevance.
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1. Introduction

We propose an apparently new nonparametric method, “concurrence topology,”
for describing the high-order dependence structure of multivariate binary (“dichoto-
mous”) data. It does this by translating the data into a filtered simplicial complex and
then analyzing the topology of the filtration. In this paper, we analyze the topology
using persistent homology [12]. We call this approach to concurrence topology “con-
currence homology.” (Computer scientists also use topology to study “concurrences”
in distributed systems [16]. Apparently, this problem inspired “directed algebraic
topology” [17]. Prima facie our notion of “concurrence” is quite different from the
usage in these subjects.)

In this paper, we first explain how concurrence topology works and then demon-
strate it in analysis of “functional connectivity” in resting-state functional magnetic
resonance imaging data (fMRI; [20], [33], and Section 8). This data set consists of
multivariate time series of “blood oxygen level dependent (BOLD)” values for each
of 25 patients diagnosed with attention deficit hyperactivity disorder (ADHD), and
41 healthy controls (Section 8). (Concurrence topology applies to binary data, so we
first dichotomized the fMRI BOLD time-series values; see Appendix A.)

Functional connectivity appears to be particularly appropriate in understanding
ADHD. To quote [23], “. . . a change in perspective in etiological models of ADHD has
occurred. These models shift the focus of the assumed pathology from regional brain
abnormalities to dysfunctions in distributed network organization. . . . As a result, the
analysis of brain connectivity has become more and more critical.” Others have used
fMRI to reveal abnormalities in functional connectivity in ADHD [28]. We find other
abnormalities using concurrence topology.

Using fMRI to understand ADHD is an active area of research in psychiatry. The
fact that we find differences between ADHD and control groups using concurrence
topology demonstrates that concurrence topology can find in data structure of real-
world relevance.

In this paper, we use concurrence topology to describe functional connectivity in
each subject, then apply standard inferential statistical methods to the subject-wise
descriptions (Section 9).

1.1. Order of dependence
A binary variable X can be thought of as taking values in the set {0, 1}. With a

nod to fMRI terminology, say that X is “active” when it is “1.” Informally, variables
X1, . . . , Xp are “positively associated” if, when some of the variables are active, all p
variables tend to be active.

Concurrence homology is sensitive to relatively weak or negative (i.e., nonpositive)
association. Thus, variables X1, . . . , Xp are relatively weakly or negatively associated
if, compared to the number of times (frequency) at which some of them are active, the
frequency at which they are all active is low. The frequency at which some of them
are active can be checked by looking at fewer than p variables at a time. Similarly, the

definition of the interaction term λ
X1,...,Xp

11...1 in a log-linear model [1, p. 143] involves
not just the product X1 . . . Xp but also lower-dimensional marginals.

If a feature of the joint distribution can be detected by looking at p variables
at a time, but not by looking only at p− 1 variables at a time, then we say that
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feature pertains to “pth-order dependence” among the variables. For example, Pear-
son, Kendall, and Spearman correlations are measures of second-order dependence
because a correlation matrix for a collection of variables can be computed by looking
at the variables two at a time. The odds ratio [1, p. 15] is also second-order.

In this paper, we focus on “high-order” dependence, by which we mean dependence
of order at least 3. Table 1 displays “toy” data sets that illustrate the need to look
at orders of dependence higher than 2: The three data sets are identical in orders 1
and 2, but differ in order 3. For each data set, the rows represent individual cases
or observations. Each variable is active, and each pair of variables is simultaneously
active, the same number of times in all three data sets. But the triplet of variables
X, Y , and Z is simultaneously active 0, 1, and 2 times in data sets I, II, and III,
respectively. A real data example analogous to this is described in Section 10.

I II III
V W X Y Z V W X Y Z V W X Y Z
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 1 0 0 0 0 1 0 0 0 1 0
0 0 1 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 1 0 0 0 1 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 1 1 0 0 0 0 1
0 0 0 1 1 0 0 1 0 1 0 0 0 1 0
0 0 1 0 1 0 0 1 1 0 0 0 1 0 0
0 0 1 1 0 0 0 1 1 1 0 0 1 1 1
1 0 0 0 1 1 0 0 0 1 1 0 0 0 1
0 1 1 0 0 0 1 1 0 0 0 1 1 0 0
1 1 0 0 0 1 1 0 0 0 1 1 0 0 0

Table 1: Three data sets identical up to second-order, but not at third-order.

Typically, formulating a traditional statistical model involves stringent choices of
which variables should be included in a model and in what way. If one can use prior
knowledge as a guide in making these choices, a traditional statistical model can be
a powerful way to learn from data. However, our interest is in a more data-driven
approach to data analysis. Say a method is “agnostic” if a priori, for k = 1, 2, . . . all
groups of k variables are treated identically and few assumptions are put on the joint
distribution. (So the method is “nonparametric.” The term “agnostic” has a different
meaning in learning theory [22].) This rules out much a priori structural assumption.
An example of an agnostic method is principal component analysis [21, Chapter 8],
a second-order method.

There are apparently few nonparametric agnostic methods that can cope with
the “combinatorial explosion” (Section 2) that is inherent in describing high-order
dependence among more than a few variables. Other such methods include inde-
pendent component analysis (ICA) [19] and latent variable methods [3]. (ICA is a
popular method for analyzing fMRI data. For more discussion of analysis of fMRI
data, see [2, 25, 33, 30].)

The aforementioned methods and ours capture very different aspects of high-order
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dependence. Hence it is difficult to compare them to concurrence topology. For that
reason, and in the interest of brevity, in this paper we do not compare concurrence
topology to other methods.

1.2. Supplementary material
An updated version of the software we used for the computations described in this

paper (Section 6), plus fairly extensive documentation, is posted on StatLib (http:/
/lib.stat.cmu.edu/; search for “ConcurrenceTopology”). Two documents in that
posting that may interest the reader are [13] (“SomeBackground”) and [14] (“Con-
currenceTopol Notes”). The data we used for this paper, with documentation, plus
further results, as well as the software, can be found at http://binarybottle.com/
concurrencetopology/; [13] and [14] are also posted there.

1.3. Preview
In Section 2, we explain how agnostic analysis of high-order dependence in many

variables leads to a “combinatorial explosion.” Concurrence topology makes some
headway in overcoming this obstacle. In Sections 3 and 4, we explain how, in con-
currence topology, binary data is translated into a filtered simplicial complex. In
Section 5 the connection between persistent homology and statistical dependence is
made. Section 6 briefly describes the algorithm and software we used in our work.
With time-series data, like our fMRI data, concurrence topology can be used to ana-
lyze the data in either the “time” or “Fourier” domains. This is explained in Section 7.
Section 8 discusses fMRI in general and our fMRI data set in particular.

Section 9 describes the formal statistical methods we applied to the descriptions
generated by concurrence topology. Section 10 presents some of the findings we
obtained. Section 11 discusses “localization,” by which we mean identifying specific
“short cycles” representing homology classes. We then go on to describe some of our
findings based on localization. We sum up briefly in Section 12.

Two appendices provide further details of the methods and findings.

2. “Combinatorial explosion”

An agnostic analysis of order p means examining all combinations of p variables
at a time. If p > 2 and there are many variables, the number of combinations can be
unmanageably large.

As an example, in Section 10 we look at seventh-order dependence among the
regions of the “default mode network (DMN)” [32] in each subject in our fMRI data
set. In our interpretation the DMN consists of 40 regions (supplemental material; see
Section 1.2). For each subject, we discarded eight regions (Appendix A). Thus, we
examine seventh-order dependence in a 32-way table.

An agnostic seventh-order log-linear analysis would result in
(
32
7

)
= 3, 365, 856 dis-

tinct seventh-order interactions for each subject (compared to the 6144 fMRI BOLD
values—192 time points in 32 regions—in each subject’s data). The rapid growth in(
V
p

)
as p increases deserves to be called a “combinatorial explosion.” (See [1, p. 150];

[30, Section 8.3.1] makes essentially the same point.)
By contrast, we found that the data summaries produced by concurrence homol-

ogy included at most hundreds of numbers per subject, even when “localization”
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(Section 11) was employed. Moreover, those numbers are structured in a way that
aids interpretation. Thus, concurrence homology provides parsimonious descriptions
of high-order dependence (the cost is in computation time).

3. Concurrences

We now describe the general process by which binary data is translated into a fil-
tered simplicial complex. Concurrence topology is based on “concurrences.” A binary
variable can be coded “0” and “1.” In concurrence topology, the data consist of binary
variables observed on multiple “units.” The data from a single unit is an “observa-
tion.” Thus, an observation is a V -tuple of 0’s and 1’s, where V is the number of
variables. Focus for now on the case in which the unit is a single time point in an
fMRI run for a single person. (This is the “time domain” analysis. Another choice of
unit is made in Section 7.) The variables correspond to brain regions. A “1” means
the region is active; “0” indicates lack of activity. (To see how “active” is defined, see
Appendix A.) But, in principle, concurrence topology can be applied to any collection
of binary vectors.

A “concurrence” is a group of variables that are all “1” in the same observa-
tion. In effect, we throw away the 0’s and just retain the 1’s. (So if an observation
consists entirely of 0’s, it is dropped.) More precisely, we retain the names of the
variables coded “1” in the observation. Call the number of variables in the concur-
rence its “length.” The concurrences from a data set constitute a “concurrence list.”
In a concurrence list, the order of the concurrences is irrelevant, but multiplicity of
concurrences is important.

For illustration, consider the data sets in Table 1. The concurrence list in data set
I is Y Z, XZ, XY , Y Z, XZ, XY , V Z, WX, and VW . (The first and fifth rows are
dropped. We ignore the order, but not the frequency of appearance, of concurrences.)

4. The filtered Curto–Itskov complex

What we call the “filtered Curto–Itskov (simplicial) complex” is constructed in two
steps. (We explain the appellation “Curto–Itskov” presently.) Let C be a concurrence
list.

1) Filter the concurrence list: For each concurrence, C, in the list, count how many
times it appears as a subset (proper or not) of concurrences in the list. That count is
the “frequency” of C. Thus, even if C only appears as such once in the list, it can have
a frequency greater than 1. If f = 1, 2, . . ., let Cf be the concurrence list consisting of
concurrences that have frequency > f . We call f the (absolute) “frequency level” of
Cf . Thus, if f1 < f2, then any concurrence in Cf2 is a subset of a concurrence in Cf1 .
Call the collection C1, C2, C3 . . . the “filtered concurrence list” of the data.

2) Construct the filtered Curto–Itskov complex from the filtered concurrence list:
The “frame,”Kf , in the filtered Curto–Itskov complex at frequency level f is obtained
by interpreting each concurrence C ∈ Cf as an abstract simplex, σC .Kf is the abstract
simplicial closure of {σC : C ∈ Cf}. Thus,K1 ⊃ K2 ⊃ K3 · · · . This descending filtered
simplicial complex is the “filtered Curto–Itskov complex,”K, of the data. (In the fMRI
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data, each time series has the same length, 192. This allows us to use absolute, i.e.,
integer frequencies, f . In general, relative (i.e., fractional) frequencies must be used.
A population version of the filtered Curto–Itskov complex might be indexed by a
continuum of frequencies; see [13].)

The filtered complex K, together with the number of observations, is equivalent to
the contingency table [1, Section 2.1.1] for the binary data [13].

We call investigation of the joint distribution of multivariate dichotomous data by
analyzing the topology of the corresponding filtered Curto–Itskov complex “concur-
rence topology.”

The use of descending rather than ascending filtrations is natural in this context
because frequency level is a statistically meaningful index. But the fact that K is
descending does not interfere with computing its persistent homology: A persistent
classes is “born” at a higher frequency level than that at which it “dies.”

In Figure 1, each row is the filtered Curto–Itskov complex for a data set in Table 1.
We see that the filtered Curto–Itskov complexes—in particular their 1-dimensional
persistent homology—do distinguish the three data sets.
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Figure 1: Rows are filtered Curto–Itskov complexes for data sets in Table 1. Columns,
separated by dotted vertical lines, correspond to frequency levels. “λXY Z

111 ” is a third-
order interaction in a log-linear model; “α” and “β” label persistent classes in dimen-
sion 1.

Figure 1 also displays the values of the third-order interaction term λXY Z
111 in a log
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linear model [1, Chapter 5] for each data set. This term pertains to the frequency of
the event {X = 1, Y = 1, Z = 1}. Notice that there is a perfect negative association
between the lifespans of the homology class α represented by XY +XZ + Y Z and
the values of λXY Z

111 . Thus, it seems that the lifespan of the homology class α does
indicate how negative or weak is the third-order dependence among X, Y , and Z.
We do not claim that there will always be such a neat pattern, but it does provide
“experimental evidence” in favor of our contention that holes in a filtered Curto–
Itskov complex indicate weak or negative association (Section 5).

Our work on concurrence topology is inspired by Curto and Itskov [10], who inves-
tigated a question in theoretical neuroscience by applying topological methods to
simulated data. From each simulation, Curto and Itskov constructed the complex K1

and studied its homology. For their purpose, it was not necessary to build a filtration.
In essence, they only needed to know whether each cell in a contingency table was
0 or not. But typically for data analysis, one needs to know the actual values in the
table. To represent those values geometrically a single Curto–Itskov complex is not
sufficient.

Plotting death vs. birth yields a “persistence plot” for each dimension d. (Since we
index the filtered Curto–Itskov complex by frequency level, our “persistence plot” is
different from, but trivially equivalent to, the standard “persistence diagram” [12, p.
152].)

Figure 2 shows the persistence plot in dimension 1 (third- and higher-order depen-
dence by equation (1), below) for the regions in the DMN for control subject
“sub01912.” Thus, e.g., the dot marked by an asterisk indicates a persistent 1-
dimensional homology class, call it α, that is born in frequency level 13 and dies
in frequency level 3. One expects that classes like this one, with a long lifespan, are
less likely to appear by chance and are more likely to reflect negative, rather than
merely weak, association among the variables (Section 9.1).

It turns out that, indeed, classes similar to α appear in most subjects’ data in our
fMRI data set. Investigating this led us to find one of several ways of using concurrence
homology to discriminate ADHD subjects from controls (Section 11.1.1).

5. Homology and statistical dependence

In this paper, we analyze the persistent homology of the filtered Curto–Itskov
complex belonging to each subject in the fMRI data set. (We used Z/2 = {0, 1}
coefficients. In one analysis (Section 10) we made use of the Euler characteristic.)
Recently, there has been much interest in using persistent homology for data analysis
(e.g., [15, 8]). In particular, persistent homology has been applied to brain data
[24, 9]. However, concurrence topology appears to be a new method.

One cannot detect a d-dimensional persistent homology class, η, in a Curto–
Itskov complex by looking only at d+ 1 variables at a time, but one can detect
a d-dimensional homology class by looking at groups of d+ 2 variables at a time.
Detection of the class may require looking at multiple groups of d+ 2 variables at
the same time. Thus, η reflects dependence of order d+ 2 or higher.

The persistent homology class η is represented by the sum of at least d+ 2 d-
simplices, each corresponding to d+ 1 variables active at the same time. However,
for η to exist also requires one or more groups of d+ 2 of the same variables to not
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Figure 2: Dimension 1 persistence plot for the fMRI BOLD values in the time domain
in the DMN for subject “sub01912.” The larger dot indicates two coinciding points.
The dot near the asterisk represents an interesting persistent class discussed in Sec-
tion 11.1.1.

be active at the same time. Thus, existence of η reflects a shortage of groups of d+ 2
active variables compared to groups of d+ 1 active variables. Thus, at least in the
data set at hand, the d+ 2 variables are relatively weakly or negatively associated.
To sum up:

A d-dimensional persistent homology class of a filtered

Curto–Itskov complex indicates relatively weak or negative

statistical dependence of order d+ 2

or higher among the variables. (1)

(For more discussion of this issue, see Section 9.1.)

Remark 5.1. A d-dimensional persistent homology class of a filtered Curto–Itskov
complex that is “born” at a high frequency level actually indicates strong absolute
positive association because a d-dimensional hole is bounded by at least d+ 2 d-
simplices, each corresponding to a concurrence of length d+ 1. Strong, but not per-
fect, positive association is needed to generate so many long concurrences, particularly
if d is large.

Remark 5.2. In “classical” statistical methods, the sample size (e.g., number of time
points in an fMRI run) has to exceed the number of variables (number of regions).
This is the case in the data we describe in this paper. However, the filtered Curto–
Itskov complex and its persistent homology are well defined and computable even if
the number of variables equals or exceeds the sample size, an important case [18].
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6. Algorithm and software

We wrote our own concurrence homology software in R [31]. Other software
for computing homology include Dionysus (http://mrzv.org/software/dionysus),
Perseus (www.math.rutgers.edu/∼vidit/perseus.html), and CHomP (http://
chomp.rutgers.edu/).

In our algorithm, we compute persistent homology relative to a subfiltration of
acyclic subspaces [27]. Some of the theory underlying the software is discussed in
[14].

The distribution of the time needed to compute the homology for each subject had
a very long right-hand tail. Usually, a few hours sufficed to compute the persistent
homology for an individual subject, but sometimes even a week did not.

7. Concurrence topology in the Fourier domain

High-order spectral analysis of multivariate time series is a well-studied subject [5].
There is a concurrence topology version of this. For each subject, the fMRI BOLD
data consist of a multivariate time series with one component per region. Concurrence
topology of fMRI in the “time domain” is carried out by constructing the filtered
Curto–Itskov complex from direct dichotomization of BOLD values (Appendix A)
and treating every time point as a separate observation. In the “Fourier domain,”
instead of dichotomizing the BOLD signal itself, one dichotomizes the periodograms
(proportional to the squared moduli of the finite Fourier transform [7, p. 120]) of the
component series.

Define concurrence in the Fourier domain just as in the time domain, but treat
vectors of periodogram values at different Fourier angular frequencies [4, p. 42] as
separate observations. This allows the study of high-order dependence while taking
into account the time series nature of fMRI BOLD data.

Working in the Fourier domain gives information not provided by the time domain
analysis. In the time domain analysis, concurrences are based on simultaneous behav-
ior of the regional BOLD time series. The timing of brain activity is ignored. But
functional connectivity among brain regions might not manifest itself in simultane-
ous activity. For example, suppose the BOLD time series in several regions are quite
similar but shifted relative to each other in time. The time domain analysis may not
detect the strong dependence among these regions. However, the periodograms for
these series will be very similar, and one would expect them all to be included in
concurrences at a number of Fourier frequencies.

8. fMRI data

An active brain region attracts oxygenated blood. This gives rise to a “blood-
oxygen-level dependent (BOLD)” signal that can be detected by a magnetic resonance
(MR) machine. This use of MR is called “functional Magnetic Resonance Imaging
(fMRI).” A typical fMRI image of the brain is taken about once every 2 seconds with
a spatial resolution of about 3× 3× 5 mm3. So activity of different parts of the brain
can be recorded over time. “This exciting technology has revolutionized the scientific
study of the mind” [30, p. 1].
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In some fMRI experiments, subjects in an MR machine are asked to perform
specified tasks. But task-free or resting-state fMRI, in which subjects are asked to
think about nothing in particular, has become a popular form of fMRI experiment to
study baseline or spontaneous activity [33]. Ours are resting-state fMRI data.

The fMRI data set we use in this paper was produced at New York University
and distributed as part of the “1000 Functional Connectomes” project (http://
fcon 1000.projects.nitrc.org/). At the time we began our work, this was the
largest publicly available resting-state fMRI data set containing clinical data. This
data set includes 41 healthy controls (“NewYork a part1”) and 25 adults diagnosed
with ADHD (“NewYork a ADHD”).

The samples were highly imbalanced with respect to age and gender. Only 20%
of the ADHD group was female, while about half of the controls were. About 25%
of the controls were children (younger than 20; median age = 12), while there were
no children in the ADHD group. Among adults, ages ranged from about 21 to about
50 in each group. The median age in the ADHD group was 37, while in the control
group the median adult age was 27.

We computed BOLD values for 92 regions, including 40 in the DMN (supplemental
material) at 192 time points. Prior to applying concurrence topology we dropped some
regions in a subject-wise fashion (Appendix A).

9. Analysis of fMRI data

9.1. Sampling within and between subjects
We again take up the issue discussed in Section 5, but we now allow randomness.

Let T = sample size (= number of fMRI time points). Let σ be a simplex in the
filtered Curto–Itskov complex of a subject’s fMRI data. If f = 1, 2, . . . is the highest
frequency level such that σ ∈ Kf , then P̂ (σ) := f/T is an estimate of the probability,
P (σ), of occurrence of the concurrence corresponding to σ. If T is large relative to
V := number of variables (= number of regions) and the observations are independent,
then one expects the estimate, P̂ , of the joint distribution, P , to be good.

For a given subject, one does not expect the fMRI BOLD signal in different time
points to be independent. However, it is reasonable to suppose that the multivariate
BOLD time series is “mixing.” (A time series is “mixing” if the statistical dependence
between the observations taken before time t and after time t+∆t drops off as ∆t > 0
increases [7, Section 1.3]). Appropriate forms of mixing will ensure that P̂ estimates
P well for T large compared to V (e.g., [6, Definitions 1.2 and 1.6 and Theorem
1.14]).

These considerations are relevant to interpretation of the persistent homology of
the filtered Curto–Itskov complex. To see this, consider a simple example in dimension
1. Hypothetically, suppose one analyzes BOLD values in only three regions, A, B, and
C. If fABC is the largest frequency level in the corresponding filtered Curto–Itskov
complex at which the 2-simplex ABC is present, then fABC/T is an estimate of the
probability of observing the concurrence ABC. Similarly for the 1-simplices AB, AC,
and BC. Suppose mABC := min{fAB, fAC , fBC} > fABC , then z := AB +AC +BC
represents a persistent homology class, α, whose lifespan is mABC − fABC .

The extent to which α is a reproducible feature of brain activity depends on
the probability of observing mABC > fABC in other resting-state fMRI runs. Now,
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fABC/T , fAB/T , etc., are estimates of probabilities. As such, they have sampling
variation to which the first two paragraphs of this section apply. If the lifespan of α is
sufficiently long, then in another sample, despite this sampling variation, it is proba-
ble that z would represent homology in the filtered Curto–Itskov complex for the new
sample. (If there are more than three regions the picture is much more complex.)

While the ideas presented above in this section help one to interpret persistence
plots, they are largely irrelevant to the formal statistical inferences in this paper.
That is because our statistical analyses are based on sampling subjects. The filtered
Curto–Itskov complex of a subject is treated as a descriptive statistic whose sampling
properties within that subject therefore do not matter. We model the subjects in each
group (ADHD or control) as independent draws from the relevant population. Our
statistical analyses are based on that model. Thus, we performed inference between
subjects, not within subjects.

9.2. Data analytic methods

For each subject, we computed summaries of the homology of the filtered Curto–
Itskov complex based on his/her dichotomized fMRI BOLD data or periodograms
thereof and compared the distribution of those summaries between groups (i.e.,
ADHD and control) or, in one instance, between genders.

Our purpose in this study is to develop methods for using concurrence topology. If
a method revealed something of interest in the fMRI data (usually group differences),
then we took that as an indication that the method might be a promising one for use
elsewhere.

Thus, the analyses we undertook were exploratory. Operationally, to “reveal some-
thing of interest in the fMRI data” meant finding an effect that was nominally sta-
tistically significant at the α = 0.05 level in an appropriate test. (We used Wilcoxon
rank sum and chi-squared tests and generalized least squares (GLS) [29].) “Statistical
significance” was used merely as a screening method and flag that indicated analytical
methods that might be worthwhile for future use.

We do not claim that these findings are firm conclusions about ADHD, only that
they are worth testing in independent samples. Unless stated otherwise, all findings we
mention concerning the fMRI data set are statistically significant in this operational,
uncorrected sense. Because our analyses are only exploratory, to save space we omit
some details of the analyses performed.

For each subject, we computed persistent homology (in both the time and Fourier
domains) in dimensions 0 through 5 (corresponding to dependence orders up to 7 or
more, by (1)) in the DMN. We also computed persistent homology in both domains
in dimensions 0 through 2 in the whole brain. In some cases, we also computed the
corresponding localization (Section 11) and/or Euler characteristics for each subject.

Since the fMRI data set is quite imbalanced with respect to age and gender (Sec-
tion 8), we sometimes analyzed only the data in adults and/or otherwise controlled
for age and/or gender.

In some analyses, for each dimension d we summarized the main features of a
persistence plot by nine “moments”: The first moment was the number of persistent
classes of dimension d. The other moments are, for i, j = 0, 1, 2 (not both 0), defined
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to be the averages

momentij := M−1
∑

(birth,death,m)∈plotd

m×
[
birthi (birth− death)j

]1/(i+j)
,

where plotd is the collection of triples (birth, death,m) in which (birth, death) is a
point, with mulitplicity m, in the persistence plot for dimension d. M is the sum of
all the multiplicities. Thus, “birth− death” is the lifespan of the class(es) plotted at
(birth, death). Note that, in line with the reasoning in Section 9.1, the longer the
lifespan a class has, the more weight it receives in momentij (j = 1, 2).

For the DMN, we computed persistent homology in dimensions d = 0, . . . , 5. Hence
for the DMN we obtained for each subject 6× 9 = 54 moments in each domain (time
and Fourier). For the whole brain, we computed persistent homology in dimensions
0 through 2, so each subject has a 3× 9 = 27 moments in the whole brain in each
domain. We analyzed these multivariate summaries using GLS with moment1/3 as
the response variable. (We took the cube root of moment in order to reduce the
skewness of its distribution.)

10. Some findings

In the whole brain and Fourier domain, GLS analyses just described show a differ-
ence between the groups in the persistent homology in dimensions 1 and 2, particularly
the former. Using the GLS analysis, we also picked up group differences in the DMN
in the time domain in dimensions 4 and 5.

The group difference in the DMN and time domain in dimension 4 (representing
6th- and higher-order dependence by (1)) was a robust finding, in the sense that
it manifested itself in a number of analyses. The essence of the difference is simply
that a smaller proportion of ADHD subjects (64.0%) had any homology in the time
domain in the DMN in dimension 4 than did controls (92.6%).

This finding is reminiscent of Table 1: In the DMN, in the time domain we find no
statistically significant differences between the two groups in dimensions 0 through 3
(orders of dependence 2 through 5 and up). Only in dimension 4 and, perhaps, 5 do
we see a difference. This is another example of why it is important to examine high-
order dependence. (Of course, some other method of analysis might find differences
in orders of dependence 2 through 5, so the parallel with Table 1 is not perfect.)

In the DMN, in the Fourier domain the Euler characteristic of the frame, K1,
in frequency level 1 is typically higher among the ADHD subjects (mean = 1.68,
standard deviation (SD) = 2.53) than it is among the controls (mean = 0.415, SD =
1.12), another robust finding.

As an informal analysis, we observed in some experiments that the homology one
gets from simulated data in which all the regions function independently of each other
is far different from what one finds in the real fMRI data. Obviously, brain regions do
not function independently of each other. It is reassuring that concurrence topology
recognizes this in the data.

We describe further findings concerning the fMRI data set in Section 11.1.
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11. Localization

“Localization” offers a higher-resolution description of the topology of the filtered
Curto–Itskov complex. Having found a persistent homology class, it is natural to ask
what variables (regions, in our case) are involved. Existence of a persistent homol-
ogy class of the filtered complex requires the cooperation of all variables, but some
variables are more directly involved than others.

In our persistent homology algorithm, we use relative homology (relative to acyclic
subcomplexes; see Section 6), but in this section we only refer to absolute cycles. The
fewest number of terms that a d-cycle can have is d+ 2. We say that a cycle is “short”
if it includes exactly d+ 2 terms.

Short representatives of a homology class are the ones most directly involved in
the hole corresponding to the class. Thus, to interpret a homology class, it makes
sense to focus on its short representatives (if there are any). (However, since the
homology classes depend on all variables, short cycles are only defined in the context
of the entire set of variables.) We computed all short cycles of all homology classes
(having short representatives), not just of classes in a basis. (Note that [11] discusses
a different notion of localization.) Localization was carried out separately for each
frame; i.e., persistence of homology classes was ignored in the localization.

11.1. Localization in the fMRI data

11.1.1. Dimension 1 in the DMN and time domain

In the DMN and time domain we found 7427 distinct short 1-cycles across all subjects.
(There are 40 regions in the DMN.

(
40
3

)
= 9880 distinct short cycles are theoretically

possible for a single subject; median number of distinct short 1-cycles per subject =
260.) One subject had a homology class in dimension 1 containing 164 short 1-cycles
in a single frequency level (frame).

We selected the most important short cycles using two criteria. One is that the
number of subjects having the cycle be large, and the other is that, in line with
the reasoning in Section 9.1, the lifespan of the cycle be long. A cycle may represent
homology across a range of frequency levels. The “lifespan” of the cycle is the number
of frequency levels in which it does so. The lifespan of a cycle can never be longer
than that of the persistent homology class to which it belongs.

A short cycle representing the persistent homology class plotted at the point
marked by “*” in Figure 2 appears in 13 subjects and, for subject “sub01912,”
has cycle lifespan = 8 (supplementary material). Call this cycle “z.” In subject
“sub01912,” this triplet of regions is well connected at second-order but, compar-
atively speaking, not even indirectly well connected at order 3.

To see if the appearance of a cycle in 13 subjects is remarkable, we performed
an analysis under the null hypothesis that all possible 9880 triplets of DMN regions
are equally likely to be short cycles in a given subject. We assumed that short cycles
were selected from the 9880 independently between subjects, but not necessarily inde-
pendently within subjects. Then, based on a simple model, an upper bound on the
probability that some triplet will be a short cycle for 13 or more subjects is only
0.021 (Appendix B). Thus, z appears to be rather special.

Now, presence of z itself does not differentiate the ADHD and control groups, but
the 29 short cycles that are homologous to z in subject “sub01912” do distinguish
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the groups. (We include short cycles that are homologous to z in any frame where z
exists and does not bound. This is not quite the same as taking all short cycles in
the persistent class, call it α, to which z belongs, because z is not present in α in all
frames where α is alive.)

We can refine this. Each of 16 of the 29 short cycles appears at least twice in each
diagnostic group (supplementary material). Nineteen out of 25 ADHD subjects (76%)
have at least one of the 16 short cycles, but only 18 out of 41 controls (44%) have
any. This difference was another of our robust findings.

The 16-cycles contain cerebral regions implicated in differences found in the litera-
ture between resting-state fMRI of ADHD patients and healthy controls, such as the
precuneus, the anterior and posterior cingulate, and the inferior and medial frontal
lobe (pars orbitalis and medial orbital frontal regions [23]).

The frequencies of occurrence of each of the 13 regions involved in any of the
16 short cycles are very similar in the two groups. Neither do the groups differ in
frequency of occurrence of any particular short cycle among the 16. It appears that
there is a particular persistent class or family of related classes that occur in many of
the subjects’ filtered Curto–Itskov complexes. We are detecting a subtle feature in the
data that might be common in people in the general healthy and ADHD populations,
but more commonly in the latter. This conjecture, like all our findings, needs to be
checked in an independent sample.

11.1.2. Dimension 4 in the DMN in the time domain

In dimension d = 4, a short cycle involves six regions. Out of
(
40
6

)
= 91,390 theoret-

ically possible 4-dimensional short cycles in the DMN time domain, 1497 appear in
the data. The median number of distinct short 4-cycles per subject is 12.5.

Call a class “narrow” if it has at least one short representative cycle. Say that two
narrow classes are “adjacent” if their sum is also narrow. The presence of adjacent
pairs of classes in dimension 4 does not discriminate the diagnostic groups, but it
does discriminate genders: only 1 out of the 25 females have any adjacent class pairs,
but 13 out of the 41 males do.

11.1.3. Dimension 2 in the whole brain in the Fourier domain

There are 92 regions in the “whole brain.” Out of
(
92
4

)
= 2, 794, 155 distinct theoreti-

cally possible 2-dimensional short cycles in the whole brain and Fourier domain, 7933
appear in the data. The median number of distinct short 2-cycles per subject = 57.5.

The “corpus callosum” consists of white matter, and until recently only gray mat-
ter was believed to produce a BOLD signal [26]. However, each of the five corpus
callosum regions in our data set appears in at least 909 short 2-cycles, which is more
often than any noncorpus callosum region appears and much larger than the median
number of times (249) that noncorpus callosum regions appear. Of the 2,794,155
possible quadruplets of whole brain regions, 20% include a region from the corpus
callosum, but of the distinct short 2-cycles in the data, 65% include a corpus callo-
sum region. Thus, the corpus callosum frequently takes part in quadruplets that are
weakly connected at fourth-order. (We performed no formal tests here.)
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12. Discussion and Conclusions

Concurrence topology is a general nonparametric strategy for describing high-order
dependence in dichotomous data. In this paper, we focus on “concurrence homology,”
a particular approach to concurrence topology. Using a resting state fMRI data set as
a test bed, we explored a number of different ways of deploying concurrence homology.
These included persistence, Euler characteristics, and several different ways of mining
localizations, and we found numerous interesting apparent structures in the data.
These findings are only exploratory, but we intend to try to replicate our findings in
an appropriate independent data set. Still, the fact that we find differences between
the groups demonstrates that concurrence topology can find structure in data of
real-world relevance.

Concurrence homology is computationally intensive, but, with that proviso, con-
currence homology can be applied, not just to fMRI BOLD data, but to any multi-
variate binary data. Moreover, we are confident that improved software will greatly
expand the range of data that can be analyzed using concurrence homology.

An important upshot of our work is evidence that, apparently, it is worthwhile to
study high-order dependence in data.
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A. Dichotomization

Concurrence topology is designed for binary data. The fMRI BOLD signal is contin-
uous. For each region in each subject, we determined at which time points the region
is “active” and at which it is “inactive” by dichotomizing fMRI BOLD values. There
is no single level of fMRI BOLD that demarcates activity from inactivity, because
fMRI BOLD levels in different regions are incomparable. So a separate threshold is
needed for each region (in each subject).

A potential complication is that in some cases dichotomizing can merely amplify
noise. Brain functional connectivity means covariation. Without variation, there is
no covariation. The little variation shown by a nearly constant activity level is liable
to be noise. Dichotomizing such a slightly varying noise series will amplify it and
introduce a noisy binary component in the multivariate series.

Therefore, in the fMRI data, for each subject separately we discarded the 20%
least variable regions. So different subjects may have different regions dropped. (One
subject had fMRI BOLD values of 0 for all time points in two regions, likely due
to either missing or inaccurate automated labeling of the regions. For that subject,
those two regions were also dropped.) This was done separately for the whole brain
and DMN. We measured variability by a robust version of the coefficient of variation:
interquartile range divided by median.

Whether or not our reasoning in favor of dropping the least variable regions is
sound, it is expedient: if all regions are included, the computation of homology takes
much longer than it does when low variability regions are dropped.

We stress that the analysis does not start after the 20% least variable regions
are dropped. Dropping the least variable regions is the first step in the analysis.
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So this step does not compromise the agnostic nature (Section 1) of our method.
The distribution of regions that were dropped did not differ between the ADHD and
control groups, but did depend on age and sex.

In the time domain, separately for each subject and region retained for that subject,
we deemed as “active” the 20% (39) time points at which the fMRI BOLD value was
highest. In the Fourier domain, for each subject and region we set the threshold at the
90th percentile of power, because the fMRI BOLD time series had low power in about
the highest half of the Fourier frequencies and 20% of half the Fourier frequencies is
the same as 10% of all of them.

The thresholds used in dichotomization are tuning constants of the method. Our
choices of thresholds are based on informal experiments on a smaller data set inde-
pendent of our fMRI data set. More experimentation with tuning constants is needed,
but it is difficult because of the lengthy computing times.

B. Upper bound on probability that a short 1-cycle appears
in 13 or more subjects in the DMN

Here we back up the claim made in Section 11.1.1 that, under a null hypothesis
we make explicit, the probability that in the DMN and time domain some triplet will
be a short 1-cycle for 13 or more subjects is only 0.021 or less.

The number of short time domain DMN 1-cycles among the 66 subjects has a
mean of 260 with an SD of 81. The distribution is fairly normal looking (Figure 3)
but slightly skewed. Table 2 shows group-wise summaries.

Group Min. 1st Qu. Median Mean 3rd Qu. Max.

ADHD 108.0 209.0 273.0 263.4 310.0 499.0
Controls 102.0 194.0 258.0 258.2 299.0 426.0

Table 2: Counts of short 1-cycles in DMN in time domain by group.

Only about 3% of the subjects have more than m = 400 short cycles. The majority
have fewer than 300. For simplicity, assume a conservative model in which each subject
gets 400 short cycles independently across subjects.

Let S be the set of all N :=
(
40
3

)
= 9880 theoretically possible short cycles. Let p(z)

be the probability that a specific, but arbitrary, short cycle, z, appears in a specific,
but arbitrary, subject’s list of m short cycles. Assume p(z) = p is constant in z. That
is, no short cycle is special. (This is the null hypothesis.)

If Z ⊂ S, let |Z| denote the cardinality of Z. By assumption, the subject will
get assigned to him/her some set Z ⊂ S of m short cycles. The probability that
the subject gets Z varies with Z, but the subject will get some Z. (We make no
assumption about the probability that the subject gets a given Z beyond the null
hypothesis p(z) = p.) Thus, for a specific, arbitrary subject,∑

Z⊂S; |Z|=m

Prob{subject gets Z} = 1. (2)
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Figure 3: Subject-wise number of short time domain 1-cycles in the DMN in each
diagnostic group. The vertical dashed line at abscissa = 400 shows the constant value
used in the probability calculation.

Then, by (2),

Np =
∑
z∈S

Prob{subject gets cycle z}

=
∑
z∈S

∑
Z⊂S; z∈Z; |Z|=m

Prob{subject gets Z}

=
∑

Z⊂S; |Z|=m

∑
z∈Z

Prob{subject gets Z}

=
∑

Z⊂S; |Z|=m

mProb{subject gets Z}

= m× 1.

Thus, p = m/N = 0.040.

Hence, assuming independence across subjects and our simple model, the prob-
ability that a particular triplet pops up in 13 or more of the 66 subjects can be
computed from the binomial distribution. The probability is 2.131× 10−6. (We also
estimated this probability by simulation, using the actual numbers of short cycles
per subject instead of the fixed number 400. The estimate computed by simulation
is < 5× 10−7.) Hence a Bonferroni upper bound on the probability that some triplet
is found in 13 or more subjects is N × 2.131× 10−6 ≈ 0.021.
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This bound is small. Hence one is inclined to reject the null hypothesis and to
believe that the short cycle that did appear among the short time domain default
mode 1-cycles of 13 subjects is special.
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