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POWER MAPS ON p-REGULAR LIE GROUPS

STEPHEN THERIAULT

(communicated by Donald M. Davis)

Abstract
A simple, simply-connected, compact Lie group G is p-

regular if it is homotopy equivalent to a product of spheres when
localized at p. If A is the corresponding wedge of spheres, then it
is well known that there is a p-local retraction of G off ΩΣA. We
show that that complementary factor is very well behaved, and
this allows us to deduce properties of G from those of ΩΣA. We
apply this to show that, localized at p, the pth-power map on G
is an H-map. This is a significant step forward in Arkowitz-
Curjel and McGibbon’s programme for identifying which power
maps between finite H-spaces are H-maps.

1. Introduction

Lie groups are central objects in many areas of mathematics. Their topological
properties have been used to great effect, for instance, in K-theory, gauge theory and
the geometry of 4-manifolds. Yet many topological properties are not well understood.
For example, the multiplication on a Lie group G induces a power map k : G −→ G
for each integer k, defined by k(x) = xk. When is the kth-power map multiplicative,
at least up to homotopy? Very little is known, and this is one problem we intend to
address.

Let p be an odd prime. Localize all spaces and maps at p. Unless otherwise stated,
homology will be taken with mod-p coefficients. A simple, simply-connected, compact
Lie group G is p-regular if G is homotopy equivalent to a product of odd dimensional
spheres. More precisely, recall that G is rationally homotopy equivalent to a product
of spheres GQ '

∏l
i=1 S

2ni−1
Q . The type of G is defined by the sequence {n1, . . . , nl},

where n1 6 · · · 6 nl. The group G is said to be p-regular if there is a p-local homotopy
equivalence G '

∏l
i=1 S

2ni−1. It is classical that G is p-regular if and only if p > nl.

The goal of this paper is to achieve a better understanding of the homotopy theory
of p-regular Lie groups. To set the stage, it is useful to consider a more general
case. If G is torsion-free, that is if G has no torsion in its integral cohomology, then
H∗(G) ∼= Λ(V ) for some generating set V . By [T2] the generating set V can be
geometrically realized: there is a space A and a map A −→ G which induces the
inclusion of the generating set in mod-p homology. Taking the adjoint, we obtain

Received December 18, 2012, revised May 31, 2013; published on August 27, 2013.
2010 Mathematics Subject Classification: Primary 55P35, Secondary 55T99.
Key words and phrases: Lie group, p-regular, power map.
Article available at http://intlpress.com/HHA/v15/n2/a5 and doi:10.4310/HHA.2013.v15.n2.a5

Copyright c© 2013, International Press. Permission to copy for private use granted.



84 STEPHEN THERIAULT

a map ΣA
j−→ BG. This induces a fibration, up to homotopy, Q

γ−→ ΣA
j−→ BG.

If G is of low rank, for example if G = SU(n) and n 6 (p− 1)2 + 1, then Ωj has a
right homotopy inverse. Thus ΩΣA ' G× ΩQ. The motivating idea is to use this
decomposition to deduce properties of G from those of ΩΣA. This is a constructive
perspective, which has proved useful in other work [GT, T2, T3].

To make the decomposition ΩΣA ' G× ΩQ effective for studying G, one wants

to know information about the space Q and the map Q
γ−→ ΣA. For example, what

is the homotopy type of Q, and what is the homotopy class of γ? We carry out these
identifications when G is p-regular.

To state the results, we need some information on homotopy commutativity (when
localized at p). McGibbon [M2] showed that G is homotopy commutative in precisely
one of three cases: p > 2nl; G = G2 and p = 5; and G = Sp(2) and p = 3. In partic-
ular, if G is p-regular then it is homotopy commutative if and only if p > 2nl. For
example, SU(n) is p-regular if p > n and homotopy commutative if p > 2n. We prove
the following.

Theorem 1.1. Let G be a p-regular simple, simply-connected, compact Lie group.

Then the fibration Q
γ−→ ΣA

j−→ BG has the following properties:

(a) there is a homotopy equivalence e : ΣR −→ Q where R is a wedge of spheres;

(b) if G is homotopy commutative then the equivalence e in part (a) can be chosen
so that γ ◦ e is a sum of iterated Whitehead products;

(c) if G is not homotopy commutative then the equivalence e in part (a) can be
chosen so that γ ◦ e is a sum of: (i) iterated Whitehead products and (ii) maps
of the form w + a where w is an iterated Whitehead product and a depends on
the stable map α1.

More precise descriptions of the map γ in parts (b) and (c) are given in Propo-
sitions 2.8 and 2.12 respectively. In particular, the identification in part (c) relies
heavily on recent work of Kaji and Kishimoto [KK] on the homotopy nilpotency
class of G.

The structural properties in Theorem 1.1 are very useful for proving properties
of G. One application occurs in [KKT], where Theorem 1.1 is used in the commuta-
tive case to help show that a certain gauge group associated to G is also homotopy
commutative. In this paper we present a second application.

Theorem 1.2. Let G be a p-regular simple, simply-connected, compact Lie group,
where p > 5. Then the pth-power map on G is an H-map.

An interesting immediate consequence of Theorem 1.2 is the following.

Corollary 1.3. Let Y be a pointed CW -complex and let p > 5. Then the group of
p-local homotopy classes of maps [Y,G] has the property that multiplication by p is a
group homomorphism.

At the prime 3, McGibbon [M1] showed that the 3rd-power map on SU(2) is an H-
map. Since SU(2) is homeomorphic to Sp(1) and Spin(3), these cases are covered too.
The one remaining 3-regular simple, simply-connected compact Lie groups is SU(3).
It is not clear what happens in this case. In particular, the homotopy nilpotency class
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of SU(3) is 3, matching the prime, and this leads to an obstruction for the argument
in Proposition 4.4.

Theorem 1.2 is a special case of a general problem, which can be stated integrally
or p-locally. Let X be a finite, connected, homotopy associative H-space. For an
integer k, let k : X −→ X be the kth-power map, defined by k(x) = xk. It is natural
to ask whether k is an H-map. McGibbon [M1], following earlier work of Arkowitz
and Curjel [AC], showed that integrally there is a positive integerN such that the kth-
power map is an H-map if and only if k(k − 1) ≡ 0 mod N . The number N measures
the lack of homotopy commutativity in X; in particular, N is a multiple of the order
of the Samelson product of the identity map on X with itself. However, the number N
is known in only a few special cases when the rank of X is 1 or 2 (see [AC, M1]). As
a non-local example, N = 24 for X = S3, where the multiplication is from regarding
S3 as the unit quaternions. As a local example, for X = SU(3) with the standard
loop multiplication, the p-component of N is 5 if p = 5 and 0 if p > 5.

In [M1], McGibbon went on to relate the number N to certain commutativity
properties of X. He showed that if Y is a finite, pointed CW -complex and H = [Y,X],
the following hold integrally:

(i) if k(k − 1) ≡ 0 mod N then (ab)k = akbk for every a, b ∈ H;

(ii) for every h ∈ H, hN is in the centre of H;

(iii) the exponent of the commutator subgroup [H,H] divides N .

Let us consider the number N and properties (i) to (iii) in our p-local context.
Let Np be the p-component of the number N . Assume that G is a p-regular, sim-
ple, simply-connected, compact Lie group which is not homotopy commutative when
localized at p. The non-homotopy commutativity of G implies that the Samelson
product of the identity map on G with itself has order pt for some t > 1. As Np is
a multiple of the order of this Samelson product, we see that p divides Np. On the
other hand, by Theorem 1.2, the pth-power map on G is an H-map, so McGibbon’s
result implies that p(p− 1) ≡ 0 mod Np. Since p− 1 is a unit in the p-local integers,
this implies that p ≡ 0 mod Np. Thus Np divides p, and hence Np = p. Since The-
orem 1.2 holds for arbitrarily high ranks as p increases, this calculation of Np is a
substantial step forward compared to McGibbon’s work in determining families of
examples where the value of N is known.

The author would like to thank the referee for a careful reading of the paper and
for pointing out an error at the prime 3 in the original manuscript.

2. A homotopy fibration related to G

Let G be a p-regular simple, simply-connected, compact Lie group with type
{n1, . . . , nl}. Localize at p, so there is a homotopy equivalence G '

∏l
i=1 S

2ni−1. Let

A =
∨l
i=1 S

2ni−1. Including the wedge into product, we obtain a map i : A −→ G.
Since G is a loop space, G ' ΩBG. Let j : ΣA −→ BG be the adjoint of i. Then we
obtain a homotopy fibration sequence

ΩQ
Ωγ−→ ΩΣA

Ωj−→ G
∂−→ Q

γ−→ ΣA
j−→ BG (1)
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which defines the space Q and the maps γ and ∂. In this section we will identify the
homotopy type of Q, describe the map γ and prove Theorem 1.1.

It will be useful to first record a decomposition of ΩΣA.

Lemma 2.1. In the homotopy fibration ΩQ
Ωγ−→ ΩΣA

Ωj−→ G, the map Ωj has a right
homotopy inverse, and consequently there is a homotopy decomposition

ΩΣA ' G× ΩQ.

Proof. By definition, j is the adjoint of the composite

l∨
i=1

S2ni−1 I−→
l∏
i=1

S2ni−1 '−→ G

where I is the inclusion of the wedge into the product. By the Hilton-Milnor The-
orem, ΩI has a right homotopy inverse. Therefore the homotopy equivalence G '∏l
i=1 S

2ni−1 implies that Ωj has a right homotopy inverse. The homotopy decompo-
sition for ΩΣA follows immediately.

Consider next how the homotopy fibration ΩQ
Ωγ−→ ΩΣA

Ωj−→ G behaves in homol-
ogy. Throughout we write H∗(X) for homology with mod-p coefficients. By the Bott-

Samelson Theorem, there is an algebra isomorphism H∗(ΩΣA) ∼= T (H̃∗(A)), where

the right side is the tensor algebra generated by the vector space H̃∗(A). We also have

H∗(G) ∼= Λ(H̃∗(A)), where the right side is the exterior algebra generated by the vec-

tor space H̃∗(A). The definition of j as the adjoint of i implies that the composite

A
E−→ ΩΣA

Ωj−→ G is homotopic to i, where E is the canonical suspension. Observe
that i∗ is the inclusion of the generating set into H∗(G), and (Ωj)∗ is a multiplicative
extension of i∗. Therefore (Ωj)∗ is the abelianization of the tensor algebra.

To describe H∗(ΩQ) and (Ωγ)∗, it is useful to reinterpret the abelianization map

a : T (H̃∗(A)) −→ Λ(H̃∗(A)). As in [CMN], there is an isomorphism T (H̃∗(A)) ∼=
UL〈H̃∗(A)〉, where the right side is the universal enveloping algebra of the free

Lie algebra generated by the elements of H̃∗(A). Also, there is an isomorphism

Λ(H̃∗(A)) ∼= ULab〈H̃∗(A)〉, where the right side is the universal enveloping algebra of
the free abelian Lie algebra (characterized by having its bracket identically zero) gen-

erated by the elements of H̃∗(A). The abelianization map a is then identified with Uπ,

where π : L〈H̃∗(A)〉 −→ Lab〈H̃∗(A)〉 is the Lie algebra map that sends any bracket in

the domain to zero. Let L = L〈H̃∗(A)〉, and Lab = Lab〈H̃∗(A)〉. As in [CMN], there
is a short exact sequence of Lie algebras

0 −→ [L,L]
ε−→ L

π−→ Lab −→ 0

where [L,L] is the free Lie algebra generated by the brackets in L. This short exact
sequence of Lie algebras induces a short exact sequence of Hopf algebras

U [L,L]
Uε−→ UL

Uπ−→ ULab. (2)

By a short exact sequence of Hopf algebras we mean that there is an isomorphism
UL ∼= U [L,L]⊗ ULab of left U [L,L]-modules and right ULab-comodules. In our case,
we obtain an isomorphism H∗(ΩΣA) ∼= ULab ⊗ U [L,L] of left U [L,L]-modules and
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right ULab-comodules. On the other hand, since (Ωj)∗ is the abelianization map,
and Ωj has a right homotopy inverse by Lemma 2.1, we obtain the following.

Lemma 2.2. There is an isomorphism of Z/pZ-vector spaces H∗(ΩQ) ∼= U [L,L].

Note that the elements of H∗(A) are all in odd degree. In this case, an explicit

basis for [L,L] was given in [CN]. Let H̃∗(A) = {u1, . . . , ul}, where |ui| = 2ni − 1.

Lemma 2.3. A Lie basis for [L,L] is given by the elements

[ui, uj ], [ut1 , [ui, uj ]], [ut2 , [ut1 , [ui, uj ]]], . . .

where 1 6 j 6 i 6 l and 1 6 tk < tk−1 < · · · < t2 < t1 < i. In particular, the basis ele-
ments have bracket lengths from 2 through l + 1.

We now construct a new homotopy fibration sequence which has the same homo-
logical behavior as (1) but which may be homotopically distinct. In comparing the
two we will be able to identify the homotopy type of Q and the homotopy class of γ.

Observe that each element ui ∈ H̃∗(A) ⊆ T (H̃∗(A)) is in the image of the Hurewicz

homomorphism, via the composite µi : S
2ni−1 ↪→ A

E−→ ΩΣA. Thus the Lie bracket
[ui, uj ] is in the image of the Hurewicz homomorphism via the Samelson product

S2ni+2nj−2 ∼= S2ni−1 ∧ S2nj−1 〈µi,µj〉−−−−→ ΩΣA. Similarly, any iterated Lie bracket in L ⊆
UL ∼= T (H̃∗(A)) ∼= H∗(ΩΣA) is in the image of the Hurewicz homormorphism via the
corresponding iterated Samelson product of the maps µi for 1 6 i 6 l. In particular,
every basis element of [L,L] is the Hurewicz image of an iterated Samelson product.

Let νi : S
2ni −→ ΣA be the adjoint of µi. The adjoint of the Samelson product

〈µi, µj〉 is the Whitehead product [νi, νj ] : S
2ni+2nj−1 −→ ΣA. Let

R2 =
∨

16j6i6l
S2ni+2nj−2

and let

λ2 : ΣR2 −→ ΣA

be the wedge sum of the Whitehead products [νi, νj ]. Similarly, for k > 3, let Ik
be an index set enumerating the basis elements of [L,L] of bracket length k. Each
α ∈ Ik represents a bracket [utk−2

, . . . [ut1 , [ui, uj ]] . . .], which is the Hurewicz image
of the iterated Samelson product 〈µtk−2

, . . . 〈µt1 , 〈µi, µj〉〉 . . .〉, whose adjoint is the
corresponding iterated Whitehead product [νtk−2

, . . . [νt1 , [νi, νj ]] . . .]. This Whitehead
product is a map wk,α : S

dα −→ ΣA for dα = (2ntk−2
− 1) + · · ·+ (2nt1 − 1) + 2ni +

2nj − 1. Let Rk =
∨
α∈Ik

Sdα−1, and let

λk : ΣRk −→ ΣA

be the wedge sum of the Whitehead products wk,α. Note that Lemma 2.3 implies

that Ik = ∅ for k > l + 1. Let R =
∨l+1
k=2Rk, and let

λ : ΣR −→ ΣA

be the wedge sum of the maps λk. We obtain a homotopy fibration sequence

ΩΣR
Ωλ−→ ΩΣA

r−→ F
δ−→ ΣR

λ−→ ΣA (3)

which defines the space F and the maps δ and r.
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Observe that the adjoint of λ is the composite R
E−→ ΩΣR

Ωλ−→ ΩΣA, where E is
the suspension map. The construction of λ as a wedge sum of Whitehead products
immediately implies the following.

Lemma 2.4. The composite Ωλ ◦ E is a wedge sum of Samelson products, and in
homology (Ωλ ◦ E)∗ is a monomorphism onto the vector subspace of [L,L] spanned
by the Lie basis of Lemma 2.3.

Since (Ωλ)∗ is a multiplicative extension of (Ωλ ◦ E)∗, we obtain an analogue to
Lemma 2.2 for (3).

Lemma 2.5. There is an isomorphism H∗(ΩΣR) ∼= U [L,L] such that (Ωλ)∗ = Uε.

Comparing Lemmas 2.2 and 2.5, it is tempting to guess that Q ' ΣR, γ ' λ, and
the two homotopy fibrations (1) and (3) are equivalent. We will show that this is true
if and only if G is homotopy commutative. When G is not homotopy commutative
we will modify λ to give an explicit description of γ.

We begin with two general statements. First, let f : M −→ ΩΣA and g : N −→
ΩΣA be any maps and consider the Samelson product M ×N

〈f,g〉−−→ ΩΣA. Since

ΩΣA
Ωi−→ G is an H-map into a homotopy associative H-space, we have Ωi ◦ 〈f, g〉 '

〈Ωi ◦ f,Ωi ◦ g〉. We record this as the following.

Lemma 2.6. Samelson products on ΩΣA compose with Ωi to give Samelson products
on G.

Second, for a space X, let E : X −→ ΩΣX be the suspension map. The following
theorem is known as the universal property of the James construction [J].

Theorem 2.7. Let X be a path-connected space and Y be a path-connected homo-
topy associative H-space. Let f : X −→ Y be a map. Then f extends to an H-map
f : ΩΣX −→ Y , and f is the unique H-map such that f ◦ E ' f .

The uniqueness statement in Theorem 2.7 implies that there is a one-to-one cor-
respondence between the homotopy classes of maps [A, Y ] and the homotopy classes
of H-maps in [ΩΣA, Y ]. In particular, the homotopy class of any H-map ΩΣA −→ Y
is determined by its restriction to A.

We now specialize to the case when G is homotopy commutative. Recall from [M2]
that a p-regular group G of type {n1, . . . , nl} is homotopy commutative if and only
if p > 2nl.

Proposition 2.8. If G is homotopy commutative then there is a homotopy equiva-
lence ΣR

e−→ Q such that λ ' γ ◦ e.

Proof. By Lemmas 2.4 and 2.6, the composite R
E−→ ΩΣR

Ωλ−→ ΩΣA
Ωi−→ G is a wedge

sum of Samelson products. Since G is homotopy commutative, this composite is null
homotopic. Theorem 2.7 therefore implies that Ωi ◦ Ωλ is null homotopic. Thus there
is a lift

ΩΣR

Ωλ

��

φ

{{xxxxxxxx

ΩQ
Ωγ // ΩΣA

for some map φ.
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We will show that this lift deloops. First observe in general that the right adjoint

of a map f : ΣX −→ Y is homotopic to the composite X
E−→ ΩΣX

Ωf−→ ΩY , and the

left adjoint of a map g : X −→ ΩY is homotopic to the composite ΣX
Σg−→ ΣΩY

ev−→
Y , where ev is the canonical evaluation map. In particular, if we start with the
identity map on ΣX, take the right adjoint and then take the left adjoint of that, we
recover the identity map. Thus the identity map on ΣX is homotopic to the composite

ΣX
ΣE−→ ΣΩΣX

ev−→ ΣX.

Now consider the diagram

ΣR

ΣE

�� IIIIIIIII

IIIIIIIII

ΣΩΣR

ΣΩλ

��

Σφ

zzuuuuuuuuu
ev // ΣR

λ

��
ΣΩQ

ΣΩγ //

ev

��

ΣΩΣA
ev // ΣA

Q
γ // ΣA.

The upper triangle homotopy commutes since ev ◦ ΣE is homotopic to the identity
map on ΣR. The middle left triangle homotopy commutes as it is the suspension
of the previous diagram. The upper right square and bottom rectangle homotopy
commute by the naturality of the evaluation for suspension loop maps. Thus the
entire diagram homotopy commutes. Consider the outer perimeter of the diagram as
a whole. Letting e = ev ◦ Σφ ◦ ΣE, we obtain a homotopy commutative diagram

ΣR

λ

��

e

}}{{
{{

{{
{{

Q
γ // ΣA.

To finish the proof we need to show that e is a homotopy equivalence. It suffices
to show that Ωe is a homotopy equivalence, for then Ωe induces an isomorphism of
homotopy groups, which implies that e induces an isomorphism of homotopy groups,
and so is a (weak) homotopy equivalence. Since ΩΣR and ΩQ are simply-connected,
to show that Ωe is a homotopy equivalence it suffices by Whitehead’s Theorem to
show that (Ωe)∗ is an isomorphism.

By Lemmas 2.2 and 2.5, we have H∗(ΩΣR) ∼= U [L,L] ∼= H∗(ΩQ), and (Ωλ)∗ is
a monomorphism. Since (Ωλ)∗ is a monomorphism, the homotopy Ωγ ◦ Ωe ' Ωλ
implies that (Ωe)∗ is also a monomorphism. Now (Ωe)∗ is a monomorphism between
two Z/pZ-modules with the same Euler-Poincaré series. Hence (Ωe∗) is an isomor-
phism.

Corollary 2.9. If G is homotopy commutative then there is a homotopy fibration

ΣR
λ−→ ΣA

j−→ BG.
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Next, suppose that G is not homotopy commutative. Let xi be the composite

xi : S
2ni−1 µi−→ ΩΣA

Ωi−→ G.

By Lemma 2.6, Ωi ◦ 〈µi, µj〉 ' 〈xi, xj〉. Let α1 : S
2p −→ S3 represent the generator of

π2p(S
3), which is the least dimensional torsion homotopy group of S3. Ambiguously,

for m > 3, let α1 : S
m+2p−3 −→ Sm be the (m− 3)-fold suspension of α1. Kaji and

Kishimoto [KK] prove the following.

Lemma 2.10. Suppose that G is a p-regular simple, simply-connected, compact Lie
group which is not homotopy commutative. Then the following hold:

(a) at least one Samelson product 〈xi, xj〉 is nontrivial;

(b) if the Samelson product 〈xi, xj〉 is nontrivial, it is homotopic to a nonzero mul-

tiple of the composite ai,j : S
2ni+2nj−2 α1−→ S2ni+2nj−2p+1 ↪→

∏l
i=1 S

2ni−1 ' G;

(c) the Samelson product 〈xt, 〈xi, xj〉〉 is nontrivial only if

2nt + 2ni + 2nj = 4p;

(d) when 〈xt, 〈xi, xj〉〉 is nontrivial, it is homotopic to a nonzero multiple of the

composite S4p−3 α1−→ S2p α1−→ S3.

Lemma 2.10 is the main technical ingredient in [KK] for proving the nilpotency
result in Theorem 2.11. To state this, we require a definition. In general, for an H-
space X with a homotopy inverse, let c : X ×X −→ X be the commutator, defined
pointwise by c(x, y) = xyx−1y−1. Let c0 be the identity map on X, and for k > 1, let
ck : X

k+1 −→ X be the iterated commutator map

ck = c ◦ (1× c) ◦ · · · ◦ (1× · · · × 1× c)

where Xk+1 is the product of k + 1 copies of X. We say that nil(X) = m if cm is null
homotopic and cm−1 is not null homotopic. Observe thatX is homotopy commutative
if and only if nil(X) = 1.

Theorem 2.11. Let G be a p-regular simple, simply-connected, compact Lie group of
type {n1, . . . , nl}. Then the following hold:

(a) nil(G) = 2 if 3
2nl < p < 2nl;

(b) nil(G) = 3 if nl 6 p 6 3
2nl except for (G, p) equal to one of (F4, 17), (E6, 17),

(E8, 41) or (E8, 43);

(c) in the exceptional cases in part (b), nil(G) = 2.

Part (a) of Lemma 2.10 is a converse to Proposition 2.8. By the definition of λ,
each Samelson product 〈µi, µj〉 factors through Ωλ. Thus as 〈xi, xj〉 = Ωi ◦ 〈µi, µj〉
is nontrivial, the composite ΩΣR

Ωλ−→ ΩΣA
Ωi−→ G is nontrivial. Hence there is no lift

of λ through γ.
However, Lemma 2.10 (b) together with the homotopy nilpotency class of G lets

us modify λ to obtain a lift through γ. The next several paragraphs describe this
modification explicitly, culminating in Proposition 2.12. By definition, R =

∨l+1
k=2Rk

and λ =
∨l+1
k=2 λk, where Rk is a wedge of spheres and ΣRk

λk−→ ΣA is a wedge sum
of Whitehead products which are in one-to-one correspondence with the Lie basis
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elements of [L,L] of length k. Taking the adjoint, the composite Rk
E−→ ΩΣRk

Ωλk−→
ΩΣA is a wedge sum of Samelson products whose Hurewicz images are the Lie basis
elements of [L,L] of length k. Since G is of nilpotence class at most 3, the composite

Rk
E−→ ΩΣRk

Ωλk−→ ΩΣA
Ωi−→ G is null homotopic if k > 3. Thus for each k > 4 there

is a lift

Rk

Ωλk◦E
��

φk

||xxxxxxxx

ΩQ
Ωγ // ΩΣA

for some map φk.

Next, consider the composite R2
E−→ ΩΣR2

Ωλ2−→ ΩΣA. By definition, R2 is a wedge
of spheres and Ωλ2 ◦ E is a wedge sum of the Samelson products 〈µi, µj〉 for i > j.

So the composite R2
Ωλ2◦E−−−−→ ΩΣA

Ωi−−−−→ G is a wedge sum of the Samelson products
〈xi, xj〉 for i > j. Some of these Samelson products may be null homotopic, and some
may not; by Lemma 2.10 (a), at least one is not. Let R2,1 be the subwedge of spheres
in R2 whose corresponding Samelson products 〈xi, xj〉 are null homotopic, and let
R2,2 be the subwedge of spheres in R2 whose corresponding Samelson products 〈xi, xj〉
are nontrivial. Then R2 = R2,1 ∨R2,2 and the restriction of R2

Ωλ2◦E−−−−→ ΩΣA
Ωi−−−−→ G

to R2,1 is null homotopic. We now modify the restriction of Ωλ2 ◦ E to R2,2 so that
it also composes trivially with Ωi. Suppose that the Samelson product 〈xi, xj〉 is
nontrivial. Let bi,j be the composite

bi,j : S
2ni+2nj−2 α1−→ S2ni+2nj−2p+1 ↪→

l∨
i=1

S2ni−1 ' A.

Observe that the composite S2ni+2nj−2 bi,j−→ A
E−→ ΩΣA

Ωi−→ G is homotopic to a
nonzero multiple of the composite ai,j in Lemma 2.10. Let di,j = 〈µi, µj〉 − bi,j .
Since bi,j and 〈µi, µj〉 factor through ai,j and 〈xi, xj〉 respectively, Lemma 2.10 (b)
implies that the composite Ωi ◦ di,j is null homotopic. Thus the difference di,j lifts
through Ωγ. Collecting all these differences, one for each wedge summand of R2,2, we
obtain a map D2 : R2,2 −→ ΩΣA with the property that Ωi ◦D2 is null homotopic.
Define θ2 : R2 = R2,1 ∨R2,2 −→ ΩΣA as the wedge sum of λ2 ◦ E restricted to R2,1

and D2 on R2,2. Then Ωi ◦ θ2 is null homotopic, so we obtain a lift

R2

θ2

��

φ2

||xxxxxxxx

ΩQ
Ωγ // ΩΣA

for some map φ2.
Similarly, we write R3 = R3,1 ∨R3,2 where R3,1 (R3,2 respectively) is the sub-

wedge of spheres in R3 whose corresponding Samelson products 〈µt1 , 〈µi, µj〉〉 com-

pose trivially (nontrivially) with ΩΣA
Ωi−→ G. If the homotopy nilpotency class of G

is 2, then R3,2 = ∗ and R3 = R3,1. If the homotopy nilpotency class of G is 3, then
Lemma 2.10 (c) describes the nontrivial Samelson products 〈xt, 〈xi, xj〉〉. Any such
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Samelson product has 2nt + 2ni + 2nj = 4p and is homotopic to a nonzero multiple

of the composite S4p−3 α1−→ S2p α1−→ S3. Observe that by definition, 〈xt, 〈xi, xj〉〉 '
Ωi ◦ 〈µt, 〈µi, µj〉〉, and α1 ◦ α1 factors as Ωi ◦ α where α is the composite α : S4p−3 α1−→
S2p α1−→ S3 ↪→

∨l
i=1 S

2ni−1 = A
E−→ ΩΣA. In this case, let dt,i,j = 〈µt, 〈µi, µj〉〉 − α.

Then Ωi ◦ dt,i,j is null homotopic, so the difference dt,i,j lifts through Ωγ. Col-
lecting all these differences, one for each wedge summand of R3,2, we obtain a
map D3 : R3,2 −→ ΩΣA with the property that Ωi ◦D3 is null homotopic. Define
θ3 : R3 = R3,1 ∨R3,2 −→ ΩΣA as the wedge sum of λ3 ◦ E restricted to R3,1 and D3

on R3,2. Then Ωi ◦ θ3 is null homotopic, so we obtain a lift

R3

θ3

��

φ3

||xxxxxxxx

ΩQ
Ωγ // ΩΣA

for some map φ3.
Let θ : R −→ ΩΣA be the wedge sum of the maps θ2, θ3 and Ωλk ◦ E for 4 6 k 6

l + 1, and let φ : R −→ ΩQ be the wedge sums of the maps φk for 2 6 k 6 l + 1. Then
there is a homotopy commutative diagram

R

θ

��

φ

{{ww
ww

ww
ww

w

ΩQ
Ωγ // ΩΣA.

Taking adjoints, let ϑ = ev ◦ Σθ and ϕ = ev ◦ Σφ. Then there is a homotopy commu-
tative diagram

ΣR

ϑ

��

ϕ

}}{{
{{

{{
{{

Q
γ // ΣA.

(4)

Proposition 2.12. The map ΣR
ϕ−→ Q is a homotopy equivalence.

Proof. It suffices to show that (Ωϕ)∗ is an isomorphism. For then, as ΩΣR and ΩQ are
simply-connected, Whitehead’s theorem implies that Ωϕ is a homotopy equivalence.
Thus Ωϕ induces an isomorphism on homotopy groups, implying that ϕ induces an
isomorphism on homotopy groups, and hence ϕ is a (weak) homotopy equivalence.

Consider the loops on (4). By Lemma 2.2, H∗(ΩQ) ∼= U [L,L] as vector spaces, and
by Lemma 2.5, H∗(ΩΣR) ∼= U [L,L] as algebras. Suppose that (Ωϑ)∗ is a monomor-
phism. Then the homotopy commutativity of (4) implies that (Ωϕ)∗ is also a mono-
morphism. Thus (Ωϕ)∗ is a monomorphism between two Z/pZ-vector spaces with the
same Euler-Poincaré series and so is an isomorphism.

It remains to show that (Ωϑ)∗ is a monomorphism. Since (Ωϑ)∗ is an algebra map

whose domain is the tensor algebra H∗(ΩΣR) ∼= T (H̃∗(R)), the image of (Ωϑ)∗ is

determined by its restriction to the generating set H̃∗(R). On the level of spaces, this

corresponds to finding the image in homology of the composite R
E−→ ΩΣR

Ωϑ−→ ΩΣA.
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This composite is the adjoint of ϑ, which is θ. We claim that θ∗ = (Ωλ ◦ E)∗. By
definition, θ is the wedge sum of θ2, θ3 and Ωλk ◦ E for 4 6 k 6 l + 1, and by definition
of λ, Ωλ ◦ E is the wedge sum of Ωλk ◦ E for 2 6 k 6 l + 1. Thus it suffices to show
that (θ2)∗ = (Ωλ2 ◦ E)∗ and (θ3)∗ = (Ωλ3 ◦ E)∗.

The map θ2 is the wedge sum of the restriction of Ωλ2 ◦ E to R2,1 and difference
maps di,j on R2,2. Observe that the map ai,j in Lemma 2.10 (b) is zero in homology.
Thus each difference di,j = 〈µi, µj〉 − ai,j has the same image in homology as 〈µi, µj〉.
Therefore (θ2)∗ = (Ωλ2 ◦ E)∗. A similar argument shows that (θ3)∗ = (Ωλ3 ◦ E)∗, and
this completes the proof.

The homotopy equivalence of Proposition 2.12 combined with the homotopy com-
mutative diagram (4) immediately implies the following.

Corollary 2.13. There is a homotopy fibration

ΣR
ϑ−→ ΣA

j−→ BG.

Collecting the results so far, we obtain the goal of this section.

Proof of Theorem 1.1. Part (a) follows from the fact that R is a wedge of spheres in
Corollaries 2.9 and 2.13. Part (b) now follows from the definition of λ and Proposi-
tion 2.8, while part (c) follows from the definition of ϑ and Proposition 2.12.

Ideally, one would like to know precisely when the Samelson products 〈xi, xj〉 and
〈xt, 〈xi, xj〉〉 are nontrivial. Then R2,1, R2,2, R3,1 and R3,2 can be identified, and the
map ϕ is completely determined. However, this is known at present only when G is
homotopy commutative, in which case all the 〈xi, xj〉 are trivial, or when G is one of
SU(n), Sp(n) or Spin(2n+ 1) – to be described momentarily. When G is Spin(2n)
or an exceptional Lie group, and not homotopy commutative, not enough is known
about the Samelson products 〈xi, xj〉. Recently, [HK] and [KK] have given examples
of nontrivial Samelson products in certain cases, but a good deal needs to be done
before a complete answer is obtained.

We consider the case of G = SU(n) in detail. If p > 2n then by [M2], SU(n) is
homotopy commutative, in which case Lemma 2.8 implies that there is a homotopy

fibration ΣR
λ−→ ΣA

i−→ BSU(n) where λ is given entirely by Whitehead products.
If p < 2n then SU(n) is not homotopy commutative. Bott [Bo] showed that if

i+ j > n, the order of the Samelson product 〈xi, xj〉 is a non-zero multiple of

νp

(
(i+ j − 1)!

(i− 1)!(j − 1)!

)
(5)

where νp(p
tq) = pt if (p, q) = 1. In our case, SU(n) is p-regular so n 6 p. Thus

i 6 p and j 6 p so νp((i− 1)!(j − 1)!) = 1. Therefore (5) implies that 〈xi, xj〉 is non-
trivial if and only if i+ j − 1 > p. Thus R2,1 =

∨
i+j−1<p S

2ni+2nj−2 and R2,2 =∨
i+j−1>p S

2ni+2nj−2.

If 3
2n < p < 2n then nil(SU(n)) = 2 [KK], implying that R3 = R3,1 and ϑ3 =

λ3. This completes the description of ΣR and ϑ in this case. If n 6 p 6 3
2n then

nil(SU(n)) = 3 [KK]. By Lemma 2.10 (c), the Samelson product 〈xt, 〈xi, xj〉〉 is
nontrivial if and only if 2nt + 2ni + 2nj = 4p and 〈xt, 〈xi, xj〉〉 is homotopic to the

composite S4p−3 α1−→ S2p α1−→ S3. Thus R3,2 =
∨

I S
4p where I runs over all triples
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(t, i, j) such that 〈xt, 〈xi, xj〉〉 ' α1 ◦ α1, and R3,1 is the complement of R3,2 in R3.
This completes the description of ΣR and ϑ in this case.

A similar analysis in the case when G = Sp(n) can be made using the following:
(i) if 4p > n then Sp(n) is homotopy commutative [M2]; (ii) if 2p < n < 4p then [Bo]
states that for i+ j − 1 > n the order of the Samelson product 〈xi, xj〉 is a non-zero

multiple of νp

(
(2i+2j−1)!

(2i−1)!(2j−1)!

)
; (iii) if 3n < p < 4n then nil(Sp(n)) = 2 [KK]; and (iv)

if 2n < p < 3n then nil(Sp(n)) = 3 [KK].
In the case when G = Spin(2n+ 1), by [F] there is a homotopy equivalence of loop

spaces (localized at an odd prime) Spin(2n+ 1) ' Sp(n), so the description of ΣR
and ϑ in this case is identical to that when G = Sp(n).

3. Constructing certain H-maps

In this section we give conditions for the existence and uniqueness of H-maps
between certain homotopy associativeH-spaces. The ideas are similar to those in [Gr,
G1, G2, T1, T2], where the H-spaces considered are also homotopy commutative,
and the aim is to prove a certain “universal” property. Here, we drop the commuta-
tivity hypothesis and do not attempt anything as grand as a universal statement. It
may be useful to recall Theorem 2.7, as it will be used repeatedly.

To set up, let Y be a homotopy associative H-space, and suppose that there is
a space X and a map i : X −→ Y such that H∗(Y ) ∼= Λ(H̃∗(X)), with i∗ inducing
the inclusion of the generating set. By Theorem 2.7, there is an H-map i : ΩΣX −→
Y such that i ◦ E ' i. Notice that i∗ is the multiplicative extension of i∗, so i∗ is

the abelianization map, H∗(ΩΣA) ∼= T (H̃∗(A))
ab−→ Λ(H̃∗(A)) ∼= H∗(Y ). Define the

space F and the map h by the homotopy fibration

F
h−→ ΩΣX

i−→ Y.

Suppose that i has a right homotopy inverse s : Y −→ ΩΣX. Then the composite

e : Y × F
s×h−→ ΩΣX × ΩΣX

µ−→ ΩΣX

is a homotopy equivalence, where µ is the loop multiplication.
Now suppose that Z is a homotopy associative H-space, and let f : X −→ Z

be any map. By Theorem 2.7, f extends to an H-map f : ΩΣX −→ Z such that
f ◦ E ' f , and f is the unique H-map with this property. Let g be the composite

Y
s−→ ΩΣX

f−→ Z.

Lemma 3.1. Suppose that the composite F
h−→ ΩΣX

f−→ Z is null homotopic. Then
there is a homotopy commutative diagram

ΩΣX
i // Y

g

��
ΩΣX

f // Z

where g can be chosen to be an H-map.
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Proof. Consider the diagram

Y × F
s×h //

g×∗ ''OOOOOOOOOOO ΩΣX × ΩΣX
µ //

f×f
��

ΩΣX

f

��
Z × Z

m // Z

(6)

where m is the multiplication on Z. The left triangle homotopy commutes by the
definition of g and the hypothesis that f ◦ h is null homotopic. The square homotopy
commutes since f is an H-map. The composite along the top row is the definition of
the homotopy equivalence e. Thus the diagram implies that f ◦ e ' g ◦ π1, where π1
is the projection onto Y . Let t : ΩΣX −→ Y × F be a right homotopy inverse of e,
and precompose (6) with t. Then we obtain a homotopy commutative diagram

ΩΣX
t // Y × F

π1 // Y

g

��
ΩΣX

f // Z.

(7)

Next, we identify the homotopy class π1 ◦ t. In (6), take Z = Y and f = i. In this
case, g is homotopic to the identity map on Y . Therefore (7) implies that π1 ◦ t ' i.
Thus (7) can be rewritten as a homotopy commutative diagram

ΩΣX
i // Y

g

��
ΩΣX

f // Z,

which is the diagram asserted by the lemma.
It remains to show that g is an H-map. Consider the diagram

Y × Y
s×s //

g×g ''OOOOOOOOOOO ΩΣX × ΩΣX
µ //

f×f
��

ΩΣX
i //

f

��

Y

g

��
Z × Z

m // Z Z.

(8)

The left triangle homotopy commutes by the definition of g, the middle square homo-
topy commutes since f is anH-map, and we have just seen that the right square homo-
topy commutes. Let mY be the given H-structure on Y , and let m′

Y = i ◦ µ ◦ (s× s)
be the H-structure on Y determined by the composite along the top row of (8). The
homotopy commutativity of (8) implies that g is an H-map with respect to the H-
structure m′

Y on Y . We wish to show that g is an H-map with respect to mY . We do
so by showing that mY ' m′

Y . In (8) take Z = Y , f = i, and m = mY . In this case,
g is the identity map on Y . Therefore (8) implies that m′

Y ' mY , as desired.

Although not strictly necessary in what follows, we now improve Lemma 3.1 by

showing that the H-map g extends the initial map X
f−→ Z, and has a uniqueness

property.
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Proposition 3.2. Let f : X −→ Z be a map such that the composite F
h−→ ΩΣX

f−→
Z is null homotopic. Then f extends to an H-map

X
f //

i

��

Z

Y

g

>>~~~~~~~

and g is the unique H-map such that g ◦ i ' f .

Proof. Consider the diagram

X
E // ΩΣX

i //

f

��

Y

g

��
Z Z.

By Lemma 3.1, the square homotopy commutes and g is an H-map. By the definitions
of f and i, we have f ◦ E ' f and i ◦ E ' i. Thus this diagram implies that g ◦ i ' f ,
proving the homotopy commutativity of the diagram asserted by the lemma.

It remains to show the uniqueness property. Suppose that g′ : Y −→ Z is another
H-map such that g′ ◦ i ' f . We need to show that g ' g′. Consider the compos-

ites ψ : ΩΣX
i−→ Y

g−→ Z and ψ′ : ΩΣX
i−→ Y

g′−→ Z. Both are H-maps as they
are composites of H-maps. Observe that ψ ◦ E ' g ◦ i ◦ E ' g ◦ i ' f , and similarly
ψ′ ◦ E ' f . Thus ψ and ψ′ are H-maps extending f . The uniqueness property of
Theorem 2.7 implies that ψ ' ψ′. Since i has a right homotopy inverse s, we have a
string of homotopies

g ' g ◦ i ◦ s ' ψ ◦ s ' ψ′ ◦ s ' g′ ◦ i ◦ s ' g′.

4. The pth-power map on G

If X is an H-space, let p : X −→ X be the pth-power map. If Y is a co-H space,

let p : Y −→ Y be the degree p map. Since ΩΣA
Ωj−→ G is a loop map, it commutes

with the pth-power map, so there is a homotopy commutative diagram

ΩΣA
Ωj //

p

��

G

p

��
ΩΣA

Ωj // G.

(9)

By Lemma 2.1, Ωj has a right homotopy inverse, s : G −→ ΩΣA. Therefore (9) implies

that the pth-power map G
p−→ G is homotopic to the composite G

s−→ ΩΣA
p−→

ΩΣA
Ωj−→ G.

We wish to show that the pth-power map on G is an H-map. To do so, we will
compare Ωj ◦ p ◦ s to the composite Ωj ◦ Ωp ◦ s, where p : ΣA −→ ΣA is the degree p

map. This will bring into play the difference ΩΣA
p−Ωp
−−−−→ ΩΣA which is controllable

by means of the Hilton-Milnor Theorem.
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We begin with a preliminary observation. By definition, A =
∨l
i=1 S

2ni−1, so the

degree p map ΣA
p

−→ ΣA is homotopic to
∨l
i=1 ΣS

2ni−1

∨l
i=1 Σp

−−−−−−→
∨l
i=1 ΣS

2ni−1. In

particular, the map ΣA
p

−→ ΣA is homotopic to Σp, the suspension of the degree p

map on A. Now consider the composite S2ni−1 µi−→ ΩΣA
Ωp
−→ ΩΣA. By definition,

µi is the composite S2ni−1 ↪→
∨l
i=1 S

2ni−1 = A
E−→ ΩΣA. The naturality of the sus-

pension map E and p ' Σp therefore imply that there is a homotopy commutative
diagram

S2ni−1
µi //

p

��

ΩΣA

Ωp

��
S2ni−1

µi // ΩΣA.

(10)

Lemma 4.1. There is a homotopy commutative diagram

ΩΣA
Ωj //

Ωp

��

G

g

��
ΩΣA

Ωj // G

for some map g, which can be chosen to be an H-map.

Proof. We will show that the composite ψ : ΩΣR
Ωϑ−→ ΩΣA

Ωp
−→ ΩΣA

Ωj−→ G is null
homotopic. If so, then the asserted homotopy commutative diagram and the fact
that g can be chosen to be an H-map follows from Lemma 3.1. Since ψ is an H-map,
to show it is null homotopic it suffices by Theorem 2.7 to show that the composite

R
E−→ ΩΣR

ψ−→ G is null homotopic.
Recall that R =

∨l
k=2Rk is homotopy equivalent to a wedge of spheres, and there

were more explicit breakdowns R2 = R2,1 ∨R2,2 and R3 = R3,1 ∨R3,2. The restric-
tion of Ωϑ ◦ E to Rk for 4 6 k 6 l is a wedge sum of iterated Samelson products
of length k. By Lemma 2.4, these Samelson products compose with Ωj ◦ Ωp to give
iterated Samelson products of length k in G. These must be null homotopic since
Theorem 2.11 states that the homotopy nilpotency class of G is at most 3. Thus
ψ ◦ E is null homotopic when restricted to

∨l
k=4Rk.

Next, using the fact that Ωp is anH-map and (10), we obtain a string of homotopies

Ωp ◦ 〈µi, µj〉 ' 〈Ωp ◦ µi,Ωp ◦ µj〉 ' 〈µi ◦ p, µj ◦ p〉 ' 〈µi, µj〉 ◦ p2.

By Lemma 2.10, the composite Ωj ◦ 〈µi, µj〉 is either null homotopic or homotopic
to an element of order p. Thus the string of homotopies above implies that Ωj ◦ Ωp ◦
〈µi, µj〉 is null homotopic for all i and j. Therefore, as the restriction of Ωγ ◦ E to
R2,1 is a wedge sum of Samelson products 〈µi, µj〉, the restriction of ψ ◦ E to R2,1

is null homotopic. As the restriction of Ωγ ◦ E to R3,1 is a wedge sum of length 3
Samelson products in the µi’s, a similar argument shows that the restriction of ψ ◦ E
to R3,1 is null homotopic.

It remains to show that the restrictions of ψ ◦ E to R2,2 and R3,2 are null homo-
topic. The restriction of Ωϑ ◦ E to R2,2 is a wedge sum of differences 〈µi, µj〉 − bi,j
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where bi,j is the composite S2ni+2nj−2 α1−→ S2ni+2nj−2p+1 ↪→
∨l
i=1 S

2ni−1 = A
E−→

ΩΣA. Since Ωp and Ωj areH-maps, they distribute on the left. This and the argument
above for Samelson products shows that Ωj ◦ Ωp ◦ (〈µi, µj〉 − bi,j) ' Ωj ◦ Ωp ◦ bi,j .
Since Ωp is the loops on

∨l
i=1 Σp, the naturality of E and the definition of bi,j imply

that Ωp ◦ bi,j is homotopic to a nonzero multiple of the composite S2ni+2nj−2 α1−→
S2ni+2nj−2p+1

p
−→ S2ni+2nj−2p+1 ↪→

∨l
i=1 S

2ni−1 = A
E−→ ΩΣA. There are two

cases. First, if 2ni + 2nj − 2p+ 1 > 5 then α1 is a suspension, so p ◦ α1 ' α1 ◦ p.
Since α1 has order p, we obtain that α1 ◦ p is null homotopic. Second, if

2ni + 2nj − 2p+ 1 = 3 then α1 is not a suspension. But the double suspension S
3 E2

−→
Ω2S5 induces an isomorphism in homotopy groups in dimensions 6 4p− 4. There-

fore the composite S2p
p

−→ S2p α1−→ S3 is null homotopic since its double suspension
is. Hence, in either case, Ωp ◦ bi,j and therefore Ωj ◦ Ωp ◦ (〈µi, µj〉 − bi,j) are null
homotopic. Consequently, the restriction of ψ ◦ E to R2,2 is null homotopic.

The argument to show that the restriction of ψ ◦ E to R3,2 is null homotopic
is similar. In this case, the difference maps are 〈µt, 〈µi, µj〉〉 − ct,i,j , where, if ct,i,j
is nontrivial, then it is homotopic to the composite S4p−3 α1−→ S2p α1−→ S3, and this
composite composes trivially with the degree p map on S3 since we have just seen
that S2p α1−→ S3 does.

What Lemma 4.1 does not do is show that the map g is homotopic to the pth-
power map on G. To show this we bring in the Hilton-Milnor Theorem. For a space X
and an integer m, let X(m) be the m-fold smash of X with itself. Let Xi, 1 6 i 6 p,
be path-connected spaces and consider the wedge ΣX1 ∨ · · · ∨ ΣXp. Let ij : ΣXj −→
ΣX1 ∨ · · · ∨ ΣXp be the inclusion of the jth-summand into the wedge. The Hilton-
Milnor Theorem states that there is a homotopy equivalence

Ψ:

p∏
i=1

ΩΣXi ×
∏
α∈I

Ω(ΣX
(α(1))
1 ∧ · · · ∧X(α(p))

p ) −→ Ω(ΣX1 ∨ · · · ∨ ΣXp)

where: (i) the index set I runs over an additive basis of the free Lie algebra
L〈u1, . . . , up〉, but excludes the generators ui; (ii) α ∈ I corresponds to a bracket in
L〈u1, . . . , up〉 and each α(i) counts the number of appearances of ui in that bracket;

(iii) the space ΣX
(α(1))
1 ∧ · · · ∧X(α(p)) is mapped to ΣX1 ∨ · · · ∨ ΣX(p) by taking the

Whitehead product wα of the maps i1, . . . , ip corresponding to the bracket α; and
(iv) the map Ψ is formed by taking the product of Ωij for 1 6 i 6 p and Ωwα for
each α ∈ I. The composite of Ψ−1 with the projection onto a factor defines a map

Hα : Ω(ΣX1 ∨ · · · ∨ ΣXp) −→ Ω(ΣX
(α1)
1 ∧ · · · ∧X(αp)

p ).

Now suppose that Xi = X for each 1 6 i 6 p. Let δ : ΣX −→ ΣX ∨ ΣX be the
comultiplication determined by the suspension. Iterating, we obtain a map σ : ΣX −→∨p
i=1 ΣX. Note that the order of the iteration is irrelevant as the suspension co-H

structure is homotopy coassociative. For α ∈ I, let Hα be the Hilton-Hopf invariant,
defined by the composite

Hα : ΩΣX
Ωσ−→ Ω(

p∨
i=1

ΣX)
Hα−→ Ω(ΣX(α(1)+···+α(p)))
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and let wα be the composite

wα : ΣX
(α(1)+···+α(p)) wα−→

p∨
i=1

ΣX
∇−→ ΣX

where ∇ is the fold map. The degree p map on ΣX is the composite ΣX
σ−→∨p

i=1 ΣX
∇−→ ΣX. Thus Ωp is the composite

ΩΣX
Ωσ−→ Ω(

p∨
i=1

ΣX)
Ω∇−→ ΩΣX.

Applying the iterated Hilton-Milnor Theorem to Ω(
∨p
i=1 ΣX), we obtain the formula

Ωp ' p+
∑
α∈I

Ωwα ◦Hα. (11)

Equation (11) has been well studied, particularly by Barratt [Ba], and it may be due
to him.

Let It ⊂ I be the index set corresponding to the length t Whitehead products.
Barratt [Ba, 6.9] proved the following. Note that Barratt’s statement is phrased in
terms of homotopy groups rather than spaces, but the proof translates to spaces
without any change.

Lemma 4.2. If X is a suspension and t < p, there is a subset I ′
t ⊂ It such that∑

α∈It

Ωwα ◦Hα '
∑
α′∈I′

t

atΩwα′ ◦Hα′

where at is an integer divisible by p.

We will apply Lemma 4.2 to see what happens when Ωp− p on ΩΣA is composed
into G. First a preliminary lemma is needed to gauge the effect of composing Ωwα
on ΩΣA into G.

Lemma 4.3. If the Whitehead product wα is of length > 4, then the composite

ΩΣA(α(1)+···+α(p)) Ωwα−→ ΩΣA
Ωj−→ G

is null homotopic.

Proof. By Theorem 2.7, the homotopy class of the H-map Ωj ◦ Ωwα is determined
by the restriction Ωj ◦ Ωwα ◦ E. Since wα is a Whitehead product of length t > 4,
the restriction Ωwα ◦ E is a Samelson product of length t. Lemma 2.6 then implies
that Ωj ◦ Ωwα ◦ E is a Samelson product of length t. By Theorem 2.11, the homotopy
nilpotency class of G is at most 3, so Ωj ◦ Ωwα ◦ E is null homotopic. Hence Ωj ◦ Ωwα
is null homotopic.

Proposition 4.4. If p > 5 then the composite ΩΣA
Ωp−p
−−−−→ ΩΣA

Ωj−−−−→ G is null
homotopic.
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Proof. Since Ωj is an H-map, it distributes on the left. Thus

Ωj ◦ (Ωp− p) ' Ωj ◦ (
∑
α∈I

Ωwα ◦Hα) '
∑
α∈I

Ωj ◦ Ωwα ◦Hα.

Lemma 4.3 implies that Ωj ◦ Ωwα is null homotopic if wα is an iterated Whitehead
product of length t > 4. So we are reduced to showing that

∑
α∈It

Ωj ◦ Ωwα ◦Hα is
null homotopic for t ∈ {2, 3}.

Since A is a wedge of 2-connected spheres, it is a suspension. If p > 5, then
Lemma 4.2 implies that for t ∈ {2, 3},∑

α∈It

Ωj ◦ Ωwα ◦Hα '
∑
α′∈I′

t

p · a′tΩj ◦ Ωwα′ ◦Hα′

for some integer a′t. (Note that if p = 3, Theorem 2.11 implies that nil(G) = 3 for G
equal to SU(2) (equivalently, Sp(1) or Spin(3)) and SU(3), implying that the appeal
to Lemma 4.2 is no longer valid.)

Consider the composite ΩΣA(2) Ωwα′−→ ΩΣA
Ωj−→ G, where wα′ is a Whitehead prod-

uct of length 2. The restriction Ωwα′ ◦ E is a Samelson product of length 2. Since A is
a wedge of spheres, so is A(2), and under this equivalence Ωwα′ ◦ E is homotopic to a
wedge sum of length 2 Samelson products of the form 〈µi, µj〉. Thus Ωj ◦ Ωwα′ ◦ E is
homotopic to a wedge sum of Samelson products of the form 〈xi, xj〉. By Lemma 2.10,
〈xi, xj〉 ◦ p is null homotopic. Thus Ωj ◦ Ωwα′ ◦ E ◦ p, is null homotopic, where p

is the degree p map on A(2). By Lemma 2.7, this implies that the composite of

loop maps ΩΣA(2)
ΩΣp

−−−−→ ΩΣA(2) Ωwα′−−−−→ ΩΣA
Ωj−−−−→ G is null homotopic. This is not

quite what we want: we are aiming at a null homotopy for Ωj ◦ Ωwα′ ◦ p. However,
we can apply (11) to the difference ΩΣp− p on ΩΣA(2). We obtain

ΩΣp− p '
∑
β∈J

Ωwβ ◦Hβ .

Observe that if wβ is Whitehead product on ΣA(2) of length t, then the composite

ΣA(2t) wβ−→ ΣA(2) wα′−→ ΣA is a Whitehead product of length 2t. Thus, as t > 2 and the
homotopy nilpotency class of G is at most 3, Lemma 4.3 implies that the composite

ΩΣA(2t) Ωwβ−→ ΩΣA(2) Ωwα′−→ ΩΣA
Ωj−→ G is null homotopic for every β ∈ J . Hence there

is a string of homotopies

Ωj ◦ Ωwα′ ◦ (ΩΣp− p) ' Ωj ◦ Ωwα′ ◦ (
∑
β∈J Ωwβ ◦Hβ)

' (
∑
β∈J Ωj ◦ Ωwα′ ◦ Ωwβ ◦Hβ)

' ∗.

Since we have also shown that Ωi ◦ Ωwα′ ◦ ΩΣp is null homotopic, we therefore obtain
a null homotopy for Ωi ◦ Ωwα′ ◦ p. This is true for every Whitehead product wα′ of
length 2, so

∑
α′∈I′

2
p · a′tΩi ◦ Ωwα′ ◦Hα′ is null homotopic.

A similar argument shows that
∑
α′∈I′

3
p · a′tΩi ◦ Ωwα′ ◦Hα′ is null homotopic

when p > 5.

Since Ωj is an H-map, it distributes on the left, implying that Ωj ◦ (p− Ωp) '
Ωj ◦ p− Ωj ◦ Ωp. Thus Proposition 4.4 immediately implies the following.
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Corollary 4.5. If p > 5, then the composite ΩΣA
p−→ ΩΣA

Ωj−→ G is homotopic to

the composite ΩΣA
Ωp
−→ ΩΣA

Ωj−→ G.

Proof of Theorem 1.2. By Lemma 2.1, the map ΩΣA
Ωj−→ G has a right homotopy

inverse s : G −→ ΩΣA. Combining Lemma 4.1 and s, we obtain a homotopy commu-
tative diagram

G
s // ΩΣA

Ωj //

Ωp

��

G

g

��
ΩΣA

Ωj // G

where g is an H-map. Since s is a right homotopy inverse of Ωj, the upper direction
around the diagram is homotopic to g. As p > 5, by Corollary 4.5 the composite
around the lower direction around the diagram is homotopic to Ωj ◦ p ◦ s. Since p
commutes with H-maps, this in turn is homotopic to p ◦ Ωj ◦ s ' p. Hence g ' p,
and so the pth-power map on G is an H-map.
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