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POWER MAPS ON p-REGULAR LIE GROUPS
STEPHEN THERIAULT

(communicated by Donald M. Davis)

Abstract

A simple, simply-connected, compact Lie group G is p-
regular if it is homotopy equivalent to a product of spheres when
localized at p. If A is the corresponding wedge of spheres, then it
is well known that there is a p-local retraction of G off QX A. We
show that that complementary factor is very well behaved, and
this allows us to deduce properties of GG from those of 23X A. We
apply this to show that, localized at p, the p"-power map on G
is an H-map. This is a significant step forward in Arkowitz-
Curjel and McGibbon’s programme for identifying which power
maps between finite H-spaces are H-maps.

1. Introduction

Lie groups are central objects in many areas of mathematics. Their topological
properties have been used to great effect, for instance, in K-theory, gauge theory and
the geometry of 4-manifolds. Yet many topological properties are not well understood.
For example, the multiplication on a Lie group G induces a power map k: G — G
for each integer k, defined by k(z) = x*. When is the k'"-power map multiplicative,
at least up to homotopy? Very little is known, and this is one problem we intend to
address.

Let p be an odd prime. Localize all spaces and maps at p. Unless otherwise stated,
homology will be taken with mod-p coefficients. A simple, simply-connected, compact
Lie group G is p-regular if G is homotopy equivalent to a product of odd dimensional
spheres. More precisely, recall that G is rationally homotopy equivalent to a product
of spheres Gg ~ Hizl S(é"ifl. The type of G is defined by the sequence {ni,...,n;},
where ny < - -+ < ny. The group G is said to be p-regular if there is a p-local homotopy
equivalence G ~ Hi‘:1 S§2ni=1 Tt is classical that G is p-regular if and only if p > n;.

The goal of this paper is to achieve a better understanding of the homotopy theory
of p-regular Lie groups. To set the stage, it is useful to consider a more general
case. If G is torsion-free, that is if G’ has no torsion in its integral cohomology, then
H.(G) =2 A(V) for some generating set V. By [T2] the generating set V' can be
geometrically realized: there is a space A and a map A — G which induces the
inclusion of the generating set in mod-p homology. Taking the adjoint, we obtain
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a map YA —» BG. This induces a fibration, up to homotopy, Q — YA - BG.
If G is of low rank, for example if G = SU(n) and n < (p —1)? + 1, then Qj has a
right homotopy inverse. Thus Q¥ A ~ G x QQ. The motivating idea is to use this
decomposition to deduce properties of G from those of QX A. This is a constructive
perspective, which has proved useful in other work [GT, T2, T3].

To make the decomposition QXA ~ G x QQ effective for studying G, one wants
to know information about the space Q and the map Q —— X A. For example, what
is the homotopy type of @, and what is the homotopy class of v? We carry out these
identifications when G is p-regular.

To state the results, we need some information on homotopy commutativity (when
localized at p). McGibbon [M2] showed that G is homotopy commutative in precisely
one of three cases: p > 2n;; G = G and p = 5; and G = Sp(2) and p = 3. In partic-
ular, if G is p-regular then it is homotopy commutative if and only if p > 2n;. For
example, SU(n) is p-regular if p > n and homotopy commutative if p > 2n. We prove
the following.

Theorem 1.1. Let G be a p-regular simple, simply-connected, compact Lie group.
Then the fibration Q — S A — BG has the following properties:
(a) there is a homotopy equivalence e: YR — Q) where R is a wedge of spheres;

(b) if G is homotopy commutative then the equivalence e in part (a) can be chosen
so that y o e is a sum of iterated Whitehead products;

(¢) if G is not homotopy commutative then the equivalence e in part (a) can be
chosen so that yoe is a sum of: (i) iterated Whitehead products and (ii) maps
of the form w + a where w is an iterated Whitehead product and a depends on
the stable map ay.

More precise descriptions of the map «y in parts (b) and (c) are given in Propo-
sitions 2.8 and 2.12 respectively. In particular, the identification in part (c) relies
heavily on recent work of Kaji and Kishimoto [KK] on the homotopy nilpotency
class of G.

The structural properties in Theorem 1.1 are very useful for proving properties
of G. One application occurs in [KKT], where Theorem 1.1 is used in the commuta-
tive case to help show that a certain gauge group associated to G is also homotopy
commutative. In this paper we present a second application.

Theorem 1.2. Let G be a p-regular simple, simply-connected, compact Lie group,
where p > 5. Then the p"-power map on G is an H-map.

An interesting immediate consequence of Theorem 1.2 is the following,.

Corollary 1.3. Let Y be a pointed CW -complex and let p > 5. Then the group of
p-local homotopy classes of maps [Y, G| has the property that multiplication by p is a
group homomorphism.

At the prime 3, McGibbon [M1] showed that the 3"¢-power map on SU(2) is an H-
map. Since SU(2) is homeomorphic to Sp(1) and Spin(3), these cases are covered too.
The one remaining 3-regular simple, simply-connected compact Lie groups is SU(3).
It is not clear what happens in this case. In particular, the homotopy nilpotency class
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of SU(3) is 3, matching the prime, and this leads to an obstruction for the argument
in Proposition 4.4.

Theorem 1.2 is a special case of a general problem, which can be stated integrally
or p-locally. Let X be a finite, connected, homotopy associative H-space. For an
integer k, let k: X — X be the k*"-power map, defined by k(z) = x*. It is natural
to ask whether k is an H-map. McGibbon [M1], following earlier work of Arkowitz
and Curjel [AC], showed that integrally there is a positive integer N such that the k*"-
power map is an H-map if and only if k(k — 1) = 0 mod N. The number N measures
the lack of homotopy commutativity in X; in particular, IV is a multiple of the order
of the Samelson product of the identity map on X with itself. However, the number N
is known in only a few special cases when the rank of X is 1 or 2 (see [AC, M1]). As
a non-local example, N = 24 for X = 53, where the multiplication is from regarding
S3 as the unit quaternions. As a local example, for X = SU(3) with the standard
loop multiplication, the p-component of N is 5 if p =5 and 0 if p > 5.

In [M1], McGibbon went on to relate the number N to certain commutativity
properties of X. He showed that if Y is a finite, pointed CW-complex and H = [Y, X],
the following hold integrally:

(i) if k(k —1) = 0mod N then (ab)* = a*b* for every a,b € H;

(ii) for every h € H, h" is in the centre of H;

iii) the exponent of the commutator subgroup [H, H| divides V.
g

Let us consider the number N and properties (i) to (iii) in our p-local context.
Let N, be the p-component of the number N. Assume that G is a p-regular, sim-
ple, simply-connected, compact Lie group which is not homotopy commutative when
localized at p. The non-homotopy commutativity of G implies that the Samelson
product of the identity map on G with itself has order p' for some ¢ > 1. As N, is
a multiple of the order of this Samelson product, we see that p divides N,. On the
other hand, by Theorem 1.2, the p*"-power map on G is an H-map, so McGibbon’s
result implies that p(p — 1) = 0 mod N,,. Since p — 1 is a unit in the p-local integers,
this implies that p = 0 mod N,. Thus N, divides p, and hence N, = p. Since The-
orem 1.2 holds for arbitrarily high ranks as p increases, this calculation of N, is a
substantial step forward compared to McGibbon’s work in determining families of
examples where the value of IV is known.

The author would like to thank the referee for a careful reading of the paper and
for pointing out an error at the prime 3 in the original manuscript.

2. A homotopy fibration related to G

Let G be a p-regular simple, simply-connected, compact Lie group with type
{n1,...,n;}. Localize at p, so there is a homotopy equivalence G ~ Hé:l S2ni—1 et
A= \/i:1 527~ TIncluding the wedge into product, we obtain a map i: A — G.
Since G is a loop space, G ~ QBG. Let j: XA — BG be the adjoint of i. Then we
obtain a homotopy fibration sequence

00 D oxA Yo %0 2 va L BG (1)
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which defines the space @ and the maps v and 0. In this section we will identify the
homotopy type of @, describe the map v and prove Theorem 1.1.
It will be useful to first record a decomposition of QX A.

Lemma 2.1. In the homotopy fibration QQ Doy G, the map 7 has a right
homotopy inverse, and consequently there is a homotopy decomposition

QDA ~ G x QQ.

Proof. By definition, j is the adjoint of the composite

l
\/ g2ni—1 L> §2ni—1 i> G
i=1 i=1
where [ is the inclusion of the wedge into the product. By the Hilton-Milnor The-
orem, 2] has a right homotopy inverse. Therefore the homotopy equivalence G ~
Hi:l 527~ implies that 2 has a right homotopy inverse. The homotopy decompo-
sition for Q¥ A follows immediately. O

Consider next how the homotopy fibration QQ 2% 024 2 G behaves in homol-
ogy. Throughout we write H,(X) for homology with mod-p coefficients. By the Bott-
Samelson Theorem, there is an algebra isomorphism H, (QXA) = T(H,(A)), where
the right side is the tensor algebra generated by the vector space H, (A). We also have
H.(G) = A(H,(A)), where the right side is the exterior algebra generated by the vec-
tor space ﬁ*(A) The definition of j as the adjoint of 7 implies that the composite
AL ona % G is homotopic to i, where E is the canonical suspension. Observe
that i, is the inclusion of the generating set into H,(G), and (£2j), is a multiplicative
extension of i,. Therefore (£2j). is the abelianization of the tensor algebra.

To describe H,.(2Q) and (7)., it is useful to reinterpret the abelianization map
a: T(H,(A)) — A(H,(A)). As in [CMN], there is an isomorphism T(H,(A)) 2
UL(H,(A)), where the right side is the universal enveloping algebra of the free
Lie algebra generated by the elements of H, (A). Also, there is an isomorphism
A(H,(A)) = ULg(H,(A)), where the right side is the universal enveloping algebra of
the free abelian Lie algebra (characterized by having its bracket identically zero) gen-
erated by the elements of H, (A). The abelianization map « is then identified with U,

where m: L(H,(A)) — Lo (H.(A)) is the Lie algebra map that sends any bracket in

the domain to zero. Let L = L(H,(A)), and Loy = Lop(H«(A)). As in [CMN], there
is a short exact sequence of Lie algebras

0— [L,L] L= Ly —0

where [L, L] is the free Lie algebra generated by the brackets in L. This short exact
sequence of Lie algebras induces a short exact sequence of Hopf algebras

UL, L 2S5 UL Y5 ULy, (2)

By a short exact sequence of Hopf algebras we mean that there is an isomorphism
UL 2 UL, L] ® ULy of left U[L, L]-modules and right U Ly;-comodules. In our case,
we obtain an isomorphism H,(QXA) 2 ULy, ® U[L, L] of left U[L, L]-modules and
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right U Lg,-comodules. On the other hand, since (£27). is the abelianization map,
and Qj has a right homotopy inverse by Lemma 2.1, we obtain the following.

Lemma 2.2. There is an isomorphism of Z/pZ-vector spaces H.(QQ) = U[L, L].

Note that the elements of H,(A) are all in odd degree. In this case, an explicit
basis for [L, L] was given in [CN]. Let H.(A) = {u1,...,w}, where |u;| = 2n; — 1.

Lemma 2.3. A Lie basis for [L, L] is given by the elements

[uivujL [ut17 [ui’ uj]]7 [ut27 [utu [ui7uj]]]7 s

where l < j<i<landl <t <tp_q < -+ < to <ty <i.In particular, the basis ele-
ments have bracket lengths from 2 through [ + 1.

We now construct a new homotopy fibration sequence which has the same homo-
logical behavior as (1) but which may be homotopically distinct. In comparing the
two we will be able to identify the homotopy type of @ and the homotopy class of ~.

Observe that each element u; € H,(A) C T(H,.(A)) is in the image of the Hurewicz

homomorphism, via the composite p;: S2%~! < A 25 QX A. Thus the Lie bracket

[ui, u;] is in the image of the Hurewicz homomorphism via the Samelson product

§2nit2n; =2 o0 g2ni=1 p g2ng—1 Bkl O 4 Similarly, any iterated Lie bracket in L C

UL~ T(H.(A)) = H,(QXA) is in the image of the Hurewicz homormorphism via the
corresponding iterated Samelson product of the maps u; for 1 < i < [. In particular,
every basis element of [L, L] is the Hurewicz image of an iterated Samelson product.

Let v;: S?" — YA be the adjoint of u;. The adjoint of the Samelson product

{113, pt5) is the Whitehead product [v;,v;]: §2miT2m0i=1 — T A. Let
Ry = \/ 5127Li+2nj—2
1<
and let
A2: ¥Ry — XA

be the wedge sum of the Whitehead products [v;,v;]. Similarly, for k > 3, let Zj
be an index set enumerating the basis elements of [L, L] of bracket length k. Each

a € T, represents a bracket [ug, ,,...[us,, [u;, u;]]...], which is the Hurewicz image
of the iterated Samelson product (f, ,,...{t,, (i, ) - .), whose adjoint is the
corresponding iterated Whitehead product [vy, ,, ... [, [vs,v5]] .. .]. This Whitehead

product is a map wy o : S% — BA for dy = (204 _, — 1)+ + (214, — 1) + 2n; +
2n; — 1. Let Ry =\/ S4e=1 and let

o€y,

be the wedge sum of the Whitehead products wy, . Note that Lemma 2.3 implies
that Z, = ) for k > [ + 1. Let R = \/%"}, Ry, and let

A XR — XA

be the wedge sum of the maps \;. We obtain a homotopy fibration sequence

QSR 0vA - F - xR 2 x4 (3)

which defines the space F' and the maps § and r.
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Observe that the adjoint of A is the composite R £, oxr 2 OY A, where E is
the suspension map. The construction of A as a wedge sum of Whitehead products
immediately implies the following.

Lemma 2.4. The composite Qo E is a wedge sum of Samelson products, and in
homology (A o E), is a monomorphism onto the vector subspace of [L,L] spanned
by the Lie basis of Lemma 2.3.

Since (), is a multiplicative extension of (Q\ o E),, we obtain an analogue to
Lemma 2.2 for (3).

Lemma 2.5. There is an isomorphism H,(QXR) =2 U[L, L] such that (QX). = Ue.

Comparing Lemmas 2.2 and 2.5, it is tempting to guess that Q ~ X R, v ~ A, and
the two homotopy fibrations (1) and (3) are equivalent. We will show that this is true
if and only if G is homotopy commutative. When G is not homotopy commutative
we will modify A to give an explicit description of ~.

We begin with two general statements. First, let f: M — QYA and g: N —

QYA be any maps and consider the Samelson product M x N M QY A. Since

024 2 G is an H-map into a homotopy associative H-space, we have Qi o (f, g) ~
(Qio f,Qi 0 g). We record this as the following.

Lemma 2.6. Samelson products on QXA compose with Qi to give Samelson products

on G.

Second, for a space X, let E: X — QXX be the suspension map. The following
theorem is known as the universal property of the James construction [J].

Theorem 2.7. Let X be a path-connected space and 'Y be a path-connected homo-
topy associative H-space. Let f: X — Y be a map. Then f extends to an H-map
f: QXX — Y, and [ is the unique H-map such that fo E ~ f.

The uniqueness statement in Theorem 2.7 implies that there is a one-to-one cor-
respondence between the homotopy classes of maps [A, Y] and the homotopy classes
of H-maps in [QX A, Y]. In particular, the homotopy class of any H-map QXA — Y
is determined by its restriction to A.

We now specialize to the case when G is homotopy commutative. Recall from [M2]
that a p-regular group G of type {ni,...,n;} is homotopy commutative if and only
if p> 2ny.

Proposition 2.8. If G is homotopy commutative then there is a homotopy equiva-
lence YR -5+ Q such that A\~ vyoe.

Proof. By Lemmas 2.4 and 2.6, the composite R i ovr 2 aoxa 2 Gisa wedge
sum of Samelson products. Since G is homotopy commutative, this composite is null
homotopic. Theorem 2.7 therefore implies that Qi o QX is null homotopic. Thus there
is a lift
QYR
Z
QX
Qy
2Q —= Q%A

for some map ¢.
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We will show that this lift deloops. First observe in general that the right adjoint
of amap f: XX — Y is homotopic to the composite X Eoonx 24 QY and the

left adjoint of a map g: X — QY is homotopic to the composite XX ERD 519) (N
Y, where ev is the canonical evaluation map. In particular, if we start with the
identity map on XX, take the right adjoint and then take the left adjoint of that, we
recover the identity map. Thus the identity map on X is homotopic to the composite
X 25 vorx % vX.

Now consider the diagram

2Q ev
20Q — 5 nonA —> 54

ieu

Q ! YA

The upper triangle homotopy commutes since ev o X F is homotopic to the identity
map on X R. The middle left triangle homotopy commutes as it is the suspension
of the previous diagram. The upper right square and bottom rectangle homotopy
commute by the naturality of the evaluation for suspension loop maps. Thus the
entire diagram homotopy commutes. Consider the outer perimeter of the diagram as
a whole. Letting e = ev 0 ¥¢p o X F, we obtain a homotopy commutative diagram

S )
Q—>3xA.

To finish the proof we need to show that e is a homotopy equivalence. It suffices
to show that Qe is a homotopy equivalence, for then Qe induces an isomorphism of
homotopy groups, which implies that e induces an isomorphism of homotopy groups,
and so is a (weak) homotopy equivalence. Since Q¥R and Q) are simply-connected,
to show that (e is a homotopy equivalence it suffices by Whitehead’s Theorem to
show that (Qe). is an isomorphism.

By Lemmas 2.2 and 2.5, we have H,(QXR) X U[L, L] = H.(QQ), and (), is
a monomorphism. Since (Q\). is a monomorphism, the homotopy vy o Qe ~ QA
implies that (€Qe). is also a monomorphism. Now (Qe), is a monomorphism between
two Z/pZ-modules with the same Euler-Poincaré series. Hence ({2e,) is an isomor-
phism. O

Corollary 2.9. If G is homotopy commutative then there is a homotopy fibration
SR -2 ¥4 -1 BG.
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Next, suppose that G is not homotopy commutative. Let x; be the composite

z;r §2 T B OnA = q.

By Lemma 2.6, Qi o {u1;, p1j) ~ (xi, z;). Let aq: S?P — S3 represent the generator of
m2p(S%), which is the least dimensional torsion homotopy group of S*. Ambiguously,
for m > 3, let ay: S™+2P=3 — §™ be the (m — 3)-fold suspension of a;. Kaji and
Kishimoto [KK] prove the following.

Lemma 2.10. Suppose that G is a p-reqular simple, simply-connected, compact Lie
group which is not homotopy commutative. Then the following hold:
(a) at least one Samelson product (x;,x;) is nontrivial;
(b) if the Samelson product (x;,x;) is nontrivial, it is homotopic to a nonzero mul-
tiple of the composite a; j: S?Mit2ni=2 2L, G2nit2n;—2p+1 Hl |9l ~ G

(c) the Samelson product (x¢, (x;,x;)) is nontrivial only if
2ny + 2n; + 2n; = 4p;

(d) when (x4, <.Z‘Z,.TJ>> is nontrivial it is homotopic to a nonzero multiple of the
composite S*—3 2L, §2p 2L, G3

Lemma 2.10 is the main technical ingredient in [KK] for proving the nilpotency
result in Theorem 2.11. To state this, we require a definition. In general, for an H-
space X with a homotopy inverse, let ¢: X x X — X be the commutator, defined
pointwise by c(z,y) = zyz~ly 1. Let ¢y be the identity map on X, and for k > 1, let
cx: X*H — X be the iterated commutator map

ck=co(lxc)o-ro(lx---x1xc)

where X**+1 is the product of k + 1 copies of X. We say that nil(X) = m if ¢, is null
homotopic and ¢,,—1 is not null homotopic. Observe that X is homotopy commutative
if and only if nil(X) = 1.
Theorem 2.11. Let G be a p-regular simple, simply-connected, compact Lie group of
type {n1,...,n;}. Then the following hold:

(a) nil(G) =2 if 3n; < p < 2ny;

(b) nil(G) =3 if iy < p < 3ny except for (G,p) equal to one of (Fy,17), (Fs,17),

(Es,41) or (Fs,43);
(¢) in the exceptional cases in part (b), nil(G) = 2.

Part (a) of Lemma 2.10 is a converse to Proposition 2.8. By the definition of A,
each Samelson product (u;, ;) factors through QA. Thus as (x;,x;) = Qi o (i, )

is nontrivial, the composite Q3R 2\ 094 2% G is nontrivial. Hence there is no lift
of A through v

However, Lemma 2.10 (b) together with the homotopy nilpotency class of G lets
us modify A to obtain a lift through . The next several paragraphs describe this
modification explicitly, culminating in Proposition 2.12. By deﬁnition R = \/ij_l2

and A = \/l+1 Ak, where Ry is a wedge of spheres and YRy, My $A s a wedge sum
of Whitehead products which are in one-to-one correspondence with the Lie basis
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elements of [L, L] of length k. Taking the adjoint, the composite Ry N QX Ry, D
QY A is a wedge sum of Samelson products whose Hurewicz images are the Lie basis
elements of [L, L] of length k. Since G is of nilpotence class at most 3, the composite
Ry —> QX Ry, 4 QYA —> G is null homotopic if & > 3. Thus for each k& > 4 there
is a lift

Ry,
on QApoE
Qy
QQ — Q%A

for some map ¢y.

Next, consider the composite Ry N QOYR, 23 0% A. By definition, R5 is a wedge

of spheres and QA o E is a wedge sum of the Samelson products (u;, pt;) for i > j.

So the composite Ry Dok g4 P Gisa wedge sum of the Samelson products

(@i, x;) for i > j. Some of these Samelson products may be null homotopic, and some
may not; by Lemma 2.10 (a), at least one is not. Let Ry 1 be the subwedge of spheres
in Ry whose corresponding Samelson products (z;,x;) are null homotopic, and let
R5 5 be the subwedge of spheres in Ry whose corresponding Samelson products (z;, ;)
are nontrivial. Then Ry = Ry 1 V Rz 2 and the restriction of Ry 2208 Oy 4 2 G
to Ry ; is null homotopic. We now modify the restriction of QA o £/ to Ry 2 so that
it also composes trivially with 4. Suppose that the Samelson product (z;,z;) is
nontrivial. Let b; ; be the composite

l
b G2nit2n;—2 @1, g2ni+2n;—2p+1 \/ gl A
=1

Observe that the composite 52””‘2”7_2 hAE ana G ois homotopic to a
nonzero multiple of the composite a;; in Lemma 2.10. Let d;; = (u;, pt;) — bi ;-
Since b; ; and (u;, pt;) factor through a, ; and (z;, ;) respectively, Lemma 2.10 (b)
implies that the composite Qi o d; ; is null homotopic. Thus the difference d; ; lifts
through Qy. Collecting all these differences, one for each wedge summand of R 2, we
obtain a map Dy: Ry 2 — QXA with the property that Qi o D, is null homotopic.
Define 03: Ry = Ro 1 V Ry o — QXA as the wedge sum of Ay o E restricted to R 1
and Dy on Ry 2. Then i o 63 is null homotopic, so we obtain a lift

Ry

I
Qy
QQ —= Q%A

for some map ¢s.

Similarly, we write Rg = R31 V R32 where Rs1 (Rs32 respectively) is the sub-
wedge of spheres in R3 whose corresponding Samelson products (g, , (i, f;)) com-
pose trivially (nontrivially) with QXA 2 G If the homotopy nilpotency class of G

is 2, then Rz = * and R3 = R3 ;. If the homotopy nilpotency class of G is 3, then
Lemma 2.10 (c) describes the nontrivial Samelson products (zy, (z;, z;)). Any such
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Samelson product has 2n; + 2n; + 2n; = 4p and is homotopic to a nonzero multiple
of the composite S4—3 24 §2p 21, §3_ Observe that by definition, (x4, (z;,x;)) ~

Qi o (ut, (1i, pt5)), and o o o factors as i o @ where @ is the composite a: S4P—3 1,

S 2L 68 ey \/2=1 §2ni=1 = 4 £, O A In this case, let dy; j = (1, (i, p15)) — @.
Then Qiod;;; is null homotopic, so the difference d;;; lifts through {y. Col-
lecting all these differences, one for each wedge summand of R3, we obtain a
map Ds: Rgo — QXA with the property that Q4o Ds is null homotopic. Define
03: R3 = R3 1V Rz 0 — QXA as the wedge sum of A3 o E restricted to R3 1 and Ds
on R3 5. Then Qi o 03 is null homotopic, so we obtain a lift

R3

2k
Q
QQ —>0xn4

for some map ¢s3.

Let 0: R — QXA be the wedge sum of the maps 65, 03 and Q\; o F for 4 < k <
I+ 1, and let ¢: R — Q@) be the wedge sums of the maps ¢ for 2 < k <[+ 1. Then
there is a homotopy commutative diagram

e
0
Qy
Q2Q — Q%A
Taking adjoints, let ¥ = ev 0 X0 and ¢ = ev o X¢p. Then there is a homotopy commu-

tative diagram
1

Q —— %A
Proposition 2.12. The map SR —» Q is a homotopy equivalence.

Proof. Tt suffices to show that (Q¢), is an isomorphism. For then, as QX R and QQ) are
simply-connected, Whitehead’s theorem implies that ¢ is a homotopy equivalence.
Thus Q¢ induces an isomorphism on homotopy groups, implying that ¢ induces an
isomorphism on homotopy groups, and hence ¢ is a (weak) homotopy equivalence.

Consider the loops on (4). By Lemma 2.2, H,(Q2Q) = U[L, L] as vector spaces, and
by Lemma 2.5, H.(QXR) = U[L, L] as algebras. Suppose that (Qd), is a monomor-
phism. Then the homotopy commutativity of (4) implies that (Qp). is also a mono-
morphism. Thus (Q¢p), is a monomorphism between two Z/pZ-vector spaces with the
same Euler-Poincaré series and so is an isomorphism.

It remains to show that (Q49), is a monomorphism. Since (24), is an algebra map
whose domain is the tensor algebra H,(QXR) = T(H,(R)), the image of (Q0), is

determined by its restriction to the generating set H,(R). On the level of spaces, this
corresponds to finding the image in homology of the composite R E, 0nr 2 axA.
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This composite is the adjoint of ¢, which is §. We claim that 6, = (QAo E).. By
definition, @ is the wedge sum of #5, 03 and QA o E for 4 < k < [+ 1, and by definition
of A\, QAo F is the wedge sum of QMg o FE for 2 < k <1+ 1. Thus it suffices to show
that (62). = (QX20 F), and (63). = (23 0 E),.

The map 65 is the wedge sum of the restriction of 2A\; o I/ to Ry ; and difference
maps d; j on Ry 9. Observe that the map a; ; in Lemma 2.10 (b) is zero in homology.
Thus each difference d; ; = (u;, ;) — @, ; has the same image in homology as (i, £t5).
Therefore (02). = (A2 0 E).. A similar argument shows that (63). = (Q\3 o E),, and
this completes the proof. O

The homotopy equivalence of Proposition 2.12 combined with the homotopy com-
mutative diagram (4) immediately implies the following.

Corollary 2.13. There is a homotopy fibration
sk -5 x4 -1 BG.
Collecting the results so far, we obtain the goal of this section.

Proof of Theorem 1.1. Part (a) follows from the fact that R is a wedge of spheres in
Corollaries 2.9 and 2.13. Part (b) now follows from the definition of A\ and Proposi-
tion 2.8, while part (c) follows from the definition of ¢ and Proposition 2.12. O

Ideally, one would like to know precisely when the Samelson products (z;, z;) and
(@, (x;,z;)) are nontrivial. Then Ry 1, Ra2, R31 and R3 o can be identified, and the
map ¢ is completely determined. However, this is known at present only when G is
homotopy commutative, in which case all the (z;,z;) are trivial, or when G is one of
SU(n), Sp(n) or Spin(2n + 1) — to be described momentarily. When G is Spin(2n)
or an exceptional Lie group, and not homotopy commutative, not enough is known
about the Samelson products (x;, z;). Recently, [HK] and [KK] have given examples
of nontrivial Samelson products in certain cases, but a good deal needs to be done
before a complete answer is obtained.

We consider the case of G = SU(n) in detail. If p > 2n then by [M2], SU(n) is
homotopy commutative, in which case Lemma 2.8 implies that there is a homotopy
fibration YR -5 YA s BSU (n) where X is given entirely by Whitehead products.

If p <2n then SU(n) is not homotopy commutative. Bott [Bo] showed that if
i+ j > n, the order of the Samelson product (z;,z;) is a non-zero multiple of

(i+j—1)
”P((z’—l)!(j—l)!) )

where v,(p'q) =p' if (p,q¢) =1. In our case, SU(n) is p-regular so n < p. Thus
i <pandj<psorv,((i—1)(j—1)!) =1. Therefore (5) implies that (z;,z;) is non-
trivial if and only if i +j—1>p. Thus Ry; =V §2nit2n=2 and Roo =
Szni+2’ﬂj72'

i+j—1<p
\/i+j—1>p

If 3n <p<2n then nil(SU(n)) =2 [KK], implying that Rs = R3; and d3 =
As. This completes the description of ¥R and 9 in this case. If n <p < %n then
nil(SU(n)) =3 [KK]. By Lemma 2.10 (c), the Samelson product (i, (x;,x;)) is
nontrivial if and only if 2n; + 2n; + 2n; = 4p and (x4, (z;,z;)) is homotopic to the
composite §4—3 21, §2p Xy §3 Thyg R3o=\7 54 where T runs over all triples
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(t,4,7) such that (z, (x;,x;)) ~ o1 0y, and Rz is the complement of Rz in Rs.
This completes the description of ¥R and ¥ in this case.

A similar analysis in the case when G = Sp(n) can be made using the following;:
(i) if 4p > n then Sp(n) is homotopy commutative [M2]; (ii) if 2p < n < 4p then [Bo]
states that for ¢ + j — 1 > n the order of the Samelson product (x;, x;) is a non-zero
multiple of v, (%), (iii) if 3n < p < 4n then nil(Sp(n)) = 2 [KK]; and (iv)
if 2n < p < 3n then nil(Sp(n)) = 3 [KK].

In the case when G = Spin(2n + 1), by [F] there is a homotopy equivalence of loop
spaces (localized at an odd prime) Spin(2n + 1) ~ Sp(n), so the description of ¥R
and 9 in this case is identical to that when G = Sp(n).

3. Constructing certain H-maps

In this section we give conditions for the existence and uniqueness of H-maps
between certain homotopy associative H-spaces. The ideas are similar to those in [Gr,
G1, G2, T1, T2|, where the H-spaces considered are also homotopy commutative,
and the aim is to prove a certain “universal” property. Here, we drop the commuta-
tivity hypothesis and do not attempt anything as grand as a universal statement. It
may be useful to recall Theorem 2.7, as it will be used repeatedly.

To set up, let Y be a homotopy associative H-space, and suppose that there is
a space X and a map i: X — Y such that H,(Y) & A(H.(X)), with i, inducing
the inclusion of the generating set. By Theorem 2.7, there is an H-map 7: QXX —
Y such that i o F ~ i. Notice that 7, is the multiplicative extension of i, so 7, is
the abelianization map, H,(QXA) = T(H,(A)) _ab, A(H,(A)) = H,(Y). Define the
space F' and the map h by the homotopy fibration

Fhorx 5y

Suppose that i has a right homotopy inverse s: Y — QXX. Then the composite

sxh

e: Y x FZROYX x QXX 25 QnXx

is a homotopy equivalence, where y is the loop multiplication.

Now suppose that Z is a homotopy associative H-space, and let f: X — Z
be any map. By Theorem 2.7, f extends to an H-map f: QXX — Z such that
foE ~ f, and f is the unique H-map with this property. Let g be the composite

Yy s aonx -4 2.

Lemma 3.1. Suppose that the composite F' Iyonx L> Z is null homotopic. Then
there is a homotopy commutative diagram

QXX —>Y

, )

QXX —Z7

where g can be chosen to be an H-map.
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Proof. Consider the diagram

YV x F2 onx < oux > onx
. - 6
e |77 |7 ©)

IxZ—"—>7
where m is the multiplication on Z. The left triangle homotopy commutes by the
definition of g and the hypothesis that f o A is null homotopic. The square homotopy
commutes since f is an H-map. The composite along the top row is the definition of
the homotopy equivalence e. Thus the diagram implies that f o e ~ g o 7y, where 7
is the projection onto Y. Let ¢t: QXX — Y x F be a right homotopy inverse of e,
and precompose (6) with ¢. Then we obtain a homotopy commutative diagram

ALY — >V x F—sy

T

195304 Z.

Next, we identify the homotopy class m; ot. In (6), take Z =Y and f = i. In this
case, g is homotopic to the identity map on Y. Therefore (7) implies that 7y ot ~ i.
Thus (7) can be rewritten as a homotopy commutative diagram

QXX —>Yv
lg

f
QrX —= Z,

which is the diagram asserted by the lemma.
It remains to show that g is an H-map. Consider the diagram

Y xY 5 0nX x 08X L 0nX sy
lfxf J/f lg (8)
gaxg

IxI—" 7

Z.

The left triangle homotopy commutes by the definition of g, the middle square homo-
topy commutes since f is an H-map, and we have just seen that the right square homo-
topy commutes. Let my be the given H-structure on Y, and let mf, =iopo (s x s)
be the H-structure on Y determined by the composite along the top row of (8). The
homotopy commutativity of (8) implies that g is an H-map with respect to the H-
structure mj- on Y. We wish to show that ¢ is an H-map with respect to my. We do
so by showing that my ~ mj,. In (8) take Z =Y, f =i, and m = my. In this case,
g is the identity map on Y. Therefore (8) implies that m). ~ my, as desired. O

Although not strictly necessary in what follows, we now improve Lemma 3.1 by

showing that the H-map g extends the initial map X Ny , and has a uniqueness
property.
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Proposition 3.2. Let f: X — Z be a map such that the composite F' My onx L
Z is null homotopic. Then f extends to an H-map

X4f>Z

Y%

and g is the unique H-map such that goi ~ f.
Proof. Consider the diagram

X—Zsonx sy

V)

By Lemma 3.1, the square homotopy commutes and g is an H-map. By the definitions
of f and 7, we have f o E ~ f and i o E ~ i. Thus this diagram implies that g o ~ f,
proving the homotopy commutativity of the diagram asserted by the lemma.

It remains to show the uniqueness property. Suppose that ¢': Y — Z is another
H-map such that g oi~ f. We need to show that g~ ¢'. Consider the compos-

ites ¥: QXX Y %5 7 and U QXX Ny —) Z. Both are H-maps as they
are composites of H-maps. Observe that 9o E ~ goioFE ~ goi~ f, and similarly
/' o E ~ f. Thus ¢ and v’ are H-maps extending f. The uniqueness property of
Theorem 2.7 implies that ¢ ~ 1)’. Since 4 has a right homotopy inverse s, we have a
string of homotopies

g~goios~ios~iy os~goios~g. O

4. The p"-power map on G

If X is an H-space, let p: X — X be the pt* power map. If Y is a co-H space,
let p: Y — Y be the degree p map. Since 2XA ALN G is a loop map, it commutes
with the p"-power map, so there is a homotopy commutative diagram

avdA 2.

l” | i (9)

QxA—1> .

By Lemma 2.1, ©j has a right homotopy inverse, s: G — QX A. Therefore (9) implies
that the p'"-power map G -2+ G is homotopic to the composite G —» QXA 25
aoxa Y G

We wish to show that the p**-power map on G is an H-map. To do so, we will
compare {25 o p o s to the composite {2j o Qp o s, where p: XA — YA is the degree p

-Q
map. This will bring into play the difference QXA P75 %A which is controllable
by means of the Hilton-Milnor Theorem.
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We begin with a preliminary observation. By definition, A = \/i=1 52mi=1 50 the

Vie1 Zp .
PR VD L O

particular, the map XA Livais homotopic to Xp, the suspension of the degree p

degree p map LA ZyvAis homotopic to \/iz1 »§2ni

. Q
map on A. Now consider the composite $27~1 25 O3 A 5 OnA. By definition,

;i is the composite S?i—1 — \/iz1 §2ni-1 = A 25 ONA. The naturality of the sus-
pension map E and p ~ Yp therefore imply that there is a homotopy commutative
diagram

§2ni—1 Oy A

l” ln (10)

g2ni-1 s ¥ AL

Lemma 4.1. There is a homotopy commutative diagram

Qy
QXA——G

=, b

QXA ——G

for some map g, which can be chosen to be an H-map.

Proof. We will show that the composite ¢: QX R 2 0nA % oxA Y, @ s null
homotopic. If so, then the asserted homotopy commutative diagram and the fact
that g can be chosen to be an H-map follows from Lemma 3.1. Since 9 is an H-map,
to show it is null homotopic it suffices by Theorem 2.7 to show that the composite

R-Z QyR N G is null homotopic.

Recall that R = \/i€=2 Ry, is homotopy equivalent to a wedge of spheres, and there
were more explicit breakdowns Ry = Ro 1 V R 2 and R3 = R3 1V R32. The restric-
tion of QYo E to Ry for 4 < k <[ is a wedge sum of iterated Samelson products
of length k. By Lemma 2.4, these Samelson products compose with 5 o Qp to give
iterated Samelson products of length k in G. These must be null homotopic since
Theorem 2.11 states that the homotopy nilpotency class of G is at most 3. Thus
1 o E' is null homotopic when restricted to \/ﬁc:4 Ry.

Next, using the fact that Qp is an H-map and (10), we obtain a string of homotopies

Qp o (i, py) =~ (Qp o i, Qp o ) = (i 0 p, pj © p) ~ (i, pj) © p°.

By Lemma 2.10, the composite §2j o (u;, pt5) is either null homotopic or homotopic
to an element of order p. Thus the string of homotopies above implies that 25 o Qp o
(s, ) is null homotopic for all ¢ and j. Therefore, as the restriction of Qv o E to
Ry is a wedge sum of Samelson products (u;, it;), the restriction of ¢ o E to Rg
is null homotopic. As the restriction of Qyo E to R3; is a wedge sum of length 3
Samelson products in the pu;’s, a similar argument shows that the restriction of ¥ o E
to Rg3,1 is null homotopic.

It remains to show that the restrictions of ¢ o E to Rz 2 and R3 2 are null homo-
topic. The restriction of Q¥ o E to Ry 2 is a wedge sum of differences (u;, 1) — b;;
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where b; ; is the composite S2MiH+2mi—2 21y g2ni+2n;=2p+l y \/b G-l — 4 N
¥ A. Since Qp and j are H-maps, they distribute on the left. This and the argument
above for Samelson products shows that Qj o Qpo ((us, ) — bi ;) ~ QjoQpob; ;.
Since Qp is the loops on \/2:1 ¥p, the naturality of E' and the definition of b; ; imply

that Qdpob;; is homotopic to a nonzero multiple of the composite §2nit2n;—2 A,

) ) p ) . ) E
§2nat2n—2pl T, Gnit2n;=2ptl ey \/t G-l — 4 5 ONIA. There are two
cases. First, if 2n; +2n; —2p+ 1> 5 then «; is a suspension, so poa; ~ aj op.

Since «; has order p, we obtain that ajop is null homotopic. Second, if
2
2n; + 2n; — 2p + 1 = 3 then o is not a suspension. But the double suspension 53

Q2S5 induces an isomorphism in homotopy groups in dimensions < 4p — 4. There-

fore the composite S2P £y 5% 91 68 s null homotopic since its double suspension
is. Hence, in either case, Qpob; ; and therefore Qj o Qpo ((us,pj) — b;;) are null
homotopic. Consequently, the restriction of ¢ o E to Rg’{is null homotopic.

The argument to show that the restriction of o E to R32 is null homotopic
is similar. In this case, the difference maps are (u, (1, ft5)) — c,i,5, where, if ¢;; ;
is nontrivial, then it is homotopic to the composite S4~3 24 §27 24 63 and this
composite composes trivially with the degree p map on S? since we have just seen
that S =% $3 does. O

What Lemma 4.1 does not do is show that the map ¢ is homotopic to the pth-
power map on (. To show this we bring in the Hilton-Milnor Theorem. For a space X
and an integer m, let X (™ be the m-fold smash of X with itself. Let X;, 1 < i < p,
be path-connected spaces and consider the wedge XX, V ---V XX,,. Let i;: ¥X; —
YX; V.- VXX, be the inclusion of the j*"-summand into the wedge. The Hilton-
Milnor Theorem states that there is a homotopy equivalence

p
v Je5xX, x [ Ex@M A AXE®) — Q(EX, V-V EX,)

i=1 acl

where: (i) the index set Z runs over an additive basis of the free Lie algebra
L{u1,...,up), but excludes the generators u;; (ii) o € Z corresponds to a bracket in
L{ui,...,up) and each a(i) counts the number of appearances of u; in that bracket;
(iii) the space ZXl(a(l)) A -+ A X(©@®) is mapped to 2X; V -+ -V Y X(p) by taking the
Whitehead product w, of the maps i1,...,%, corresponding to the bracket a; and
(iv) the map ¥ is formed by taking the product of Qi; for 1 < i < p and Qw, for
each o € Z. The composite of ¥~! with the projection onto a factor defines a map

Ho: QEX V- VEX,) — QEX A A X)),

Now suppose that X; = X for each 1 <7 < p. Let §: XX — XX VXX be the
comultiplication determined by the suspension. Iterating, we obtain amap o: ¥ X —
P_, ¥X. Note that the order of the iteration is irrelevant as the suspension co-H
structure is homotopy coassociative. For a € 7, let H,, be the Hilton-Hopf invariant,
defined by the composite
P _
Hy: 05X 2% 0(\/ 2X) &9 Q(mx @)+ +a@))

i=1
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and let w, be the composite

P
we: DX @WHta) Doy \ /3y Yy 5y
i=1
where V is the fold map. The degree p map on XX is the composite ¥X —Z»
Vi, ZX Y, ©X. Thus Qp is the composite
P

azx 2% o(\/ £x) 2% QuX.
=1

Applying the iterated Hilton-Milnor Theorem to (\/?_, £X), we obtain the formula

QQ:p+ZQwaoHa. (11)
a€el

Equation (11) has been well studied, particularly by Barratt [Ba], and it may be due
to him.

Let Z; C Z be the index set corresponding to the length ¢ Whitehead products.
Barratt [Ba, 6.9] proved the following. Note that Barratt’s statement is phrased in
terms of homotopy groups rather than spaces, but the proof translates to spaces
without any change.

Lemma 4.2. If X is a suspension and t < p, there is a subset I, C I, such that

E Quwey 0 Hy >~ g aiQwq o Heyy
a€l; o’ €]

where az is an integer divisible by p.

We will apply Lemma 4.2 to see what happens when 2p — p on QXA is composed
into G. First a preliminary lemma is needed to gauge the effect of composing Qw,
on QYA into G.

Lemma 4.3. If the Whitehead product w,, is of length > 4, then the composite

QrACW+-+a®) Mg o5 4 Y,

is null homotopic.

Proof. By Theorem 2.7, the homotopy class of the H-map 2j o Quw, is determined
by the restriction 2j o Quw, o E. Since w, is a Whitehead product of length ¢ > 4,
the restriction Quw, o E is a Samelson product of length ¢. Lemma 2.6 then implies
that j o Quw, o F is a Samelson product of length ¢. By Theorem 2.11, the homotopy
nilpotency class of G is at most 3, so 25 o Quw,, o E is null homotopic. Hence £2j o Quw,
is null homotopic. O

Qp— .
Proposition 4.4. If p > 5 then the composite QXA EPavA Y G s nadl
homotopic.
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Proof. Since €15 is an H-map, it distributes on the left. Thus
Qjo(Qp—p) ZQjO(ZQwaoHQ) o~ ZQjOQwaoHa.

o€l a€l

Lemma 4.3 implies that €3 o Quw,, is null homotopic if w, is an iterated Whitehead
product of length ¢t > 4. So we are reduced to showing that ZQGL Qj o Quw, 0 Hy is
null homotopic for ¢ € {2, 3}.

Since A is a wedge of 2-connected spheres, it is a suspension. If p > 5, then
Lemma 4.2 implies that for t € {2, 3},

ZQjOQwQOHa: Z p-ajQjoQuy o Hy

a€ly o’'€T;

for some integer aj. (Note that if p = 3, Theorem 2.11 implies that nil(G) = 3 for G
equal to SU(2) (equivalently, Sp(1) or Spin(3)) and SU(3), implying that the appeal
to Lemma 4.2 is no longer valid.)

Consider the composite QX A2 % ona Y, G, where w, is a Whitehead prod-
uct of length 2. The restriction Quw, o F is a Samelson product of length 2. Since A is
a wedge of spheres, so is A?), and under this equivalence Quw, o E is homotopic to a
wedge sum of length 2 Samelson products of the form (u;, p;). Thus Qj o Qg o E is
homotopic to a wedge sum of Samelson products of the form (z;, z;). By Lemma 2.10,
(z7,2;) op is null homotopic. Thus Qj o Qw, o E o p, is null homotopic, where p
is the degree p map on A®). By Lemma 2.7, this implies that the composite of
loop maps Q3 A 2) OXA®) ik

Qwal

OX A —2 5 G is null homotopic. This is not
quite what we want: we are aiming at a null homotopy for 5 o Quw,s o p. However,
we can apply (11) to the difference QXp — p on OX AR We obtain

Q¥p—p~ Z Quwg o Hg.
Beg

Observe that if wg is Whitehead product on YA®) of length ¢, then the composite
wg

v AC) 28 5 4(2) Zoh 554 is a Whitehead product of length 2¢. Thus, as ¢ > 2 and the

homotopy nilpotency class of G is at most 3, Lemma 4.3 implies that the composite

0xAe) 2% 03 4@ 2y oA Xy i pull homotopic for every 8 € J. Hence there

is a string of homotopies

Qj o Qg o (QXp — p) Qf 0 Quar 0 (3 5¢ 7 Qwp o Hp)
(X pes 2 0 Quar 0 Qug o Hg)

*,

1R IR

Since we have also shown that (2i o Qw, o QXp is null homotopic, we therefore obtain
a null homotopy for Qi o Qwy: o p. This is true for every Whitehead product w,s of
length 2, so Za’elé p - a; i o Qwgs o Hy, is null homotopic.

A similar argument shows that Za'eIé p - aifdi o Qwy o Hy, is null homotopic
when p > 5. O

Since Qj is an H-map, it distributes on the left, implying that Qj o (p — Qp) ~
Qj op—QjoQp. Thus Proposition 4.4 immediately implies the following.
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Corollary 4.5. If p > 5, then the composite QXA 2+ QXA VG is homotopic to
Q .
the composite QXA “Lara % q.

Proof of Theorem 1.2. By Lemma 2.1, the map QXA . @ has a right homotopy
inverse s: G — QX A. Combining Lemma 4.1 and s, we obtain a homotopy commu-
tative diagram

s 2
G—Q¥A——G

|

Qj
QYA ——
where g is an H-map. Since s is a right homotopy inverse of €2j, the upper direction
around the diagram is homotopic to g. As p > 5, by Corollary 4.5 the composite
around the lower direction around the diagram is homotopic to €2j o p o s. Since p
commutes with H-maps, this in turn is homotopic to po Qjos ~ p. Hence g >~ p,
and so the p!*-power map on G is an H-map. O
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