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THE GEOMETRIC REALIZATION OF MONOMIAL IDEAL RINGS
AND A THEOREM OF TREVISAN

A. BAHRI, M. BENDERSKY, F. R. COHEN anD S. GITLER
(communicated by Donald M. Davis)

Abstract
A direct proof is presented of a form of Alvise Trevisan’s
theorem [7], that every monomial ideal ring is represented by
the cohomology of a topological space. Certain of these rings
are shown to be realized by polyhedral products indexed by
simplicial complexes.

1. Introduction

In the paper [7], Alvise Trevisan showed that every ring which is a quotient of an
integral polynomial ring with two dimensional generators by an ideal of monomial
relations, can be realized as the integral cohomology ring of a topological space. More-
over, he showed that the rings could be all realized with spaces which are generalized
Davis-Januszkiewicz spaces. These spaces are colimits over multicompleres which are
generalizations of simplicial complexes.

Here is presented a direct proof of the “realization” part of Trevisan’s theorem. It
uses a result of Froberg from [5] which asserts that a map known as “polarization”
produces, in a natural way, a regular sequence of degree-two elements. This allows
for the realization of any monomial ideal ring by a certain pullback.

It is noted also that certain families of monomial ideal rings, beyond Stanley-
Reisner rings, can be realized as generalized Davis-Januszkiewicz spaces based on ordi-
nary simplicial complexes. Of course, as Trevisan shows, multicomplexes are needed
in general.

Through the paper, all cohomology is taken with integral coefficients.

2. The main result
Let Z[z1,...,zy] be a polynomial ring on generators of degree two and

M= m . my =l at m
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be a set of minimal monomials, that is, no monomial divides another. Here, the
exponent t;; might be equal to zero but every x; must appear in some m;. Notice
that the set M is determined by the n x r matrix (¢;;). Denote by I(M) the ideal in

Zlz1,...,xy) generated by the minimal monomials m; and set
A:A(M):Z[xl,...,xn]/I(M) (2)
a monomial ideal ring. From this is defined a second monomial ideal ring A(M) with
monomial ideal generated by square free monomials. For each i = 1,2,...,n set
ti = maX{tﬂ, tig, N ,tir}, (3)
the largest entry in the i-th row of (¢;;). Next, introduce new variables of degree two
. . _ taj tog tnj
Yi1, Yi2, - - - Y, for each 4 =1,2,... n. For each monomial m; = ;7 x5” - - -z, set
m; = (y112Ul2 e 'ylt1j>(y21fg22 te yztzj) T (ynlynQ te ynt"j)- (4)

Let M = {m;};_, and define an algebra B = B(M) by

B = Z[y117y127'"7y1t17y217y227' <y Y2t - "7yn1ayn2a"'7yﬂtn}/l(ﬁ)' (5)

The monomials here are square-free so B is a Stanley-Reisner algebra which deter-

mines a simplicial complex K (M). (This process which constructs B from A is known
in the literature as polarization.) Associated to this simplicial complex is a fibration

Z(K(M); (D?,8%)) —s DI(K(M)) — BTIOD,

where d(M) = Y71, t;, with #; as in (3), DJ(K (M)) is the Davis-Januszkiewicz space
of the simplicial complex K (M), and Z (K (M);(D?,S")) is the moment-angle com-

plex corresponding to K (M), [3]. Recall that the Davis-Januszkiewicz space has the
property that

H*(DJ(K(M))) = B. (6)
Define next a diagonal map A: T" — 740D by

Axy,z9,...,27) = (Atl(ml), Ap,(22), ... Ay, (xl)), (7)

where Ay, (7;) = (w4, %4, ..., 2;) € T'. In the diagram below, let W (A) be defined as
the pullback of the fibration.

Z(K(M);(D? 8") ——— Z(K(M);(D? "))

l I

W(4) — D (K(M)) (8)
" BA l i

BT
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The diagram (8) extends to a larger diagram

% —— Z(K(M);(D? 8%)) —— Z(K(M);(D?,8")) —— *
TM=—n) W(A) ——  DIK(M))  —— BTV
A P
Td(ﬁ—n) , BT™ BA BTd(ﬁ) , BTd(M—n)
where the fact that W(A) is a pullback implies that
TA0D-n 2y (A) 2, Dg(K (M) )

is a fibration too. A long exact homotopy sequence argument comparing W(A) to the
homotopy fibre of p shows that

W (4) 25 DI(K(M)) L+ BTiD—n (10)
is a homotopy fibration. Recall that d(M) = Y_7_, t; and choose generators
H*(BTd(H)*n) o Z[U127 ey UL U2 ey UDpg g e e e s U2y e ,Untn],
so that
p*(uzki):yll_yzki Z:17277n7 k2:2,37atl

This choice is possible because of the commutativity of the bottom right square in the
large diagram above and the description of H*(DJ(K(M))) given in (5) and (6). Set
i1, = p*(u, ). The proposition following is a basic result about the diagonal map A
(the polarization map); a proof may be found in [5, page 30].

Proposition 2.1 (Froberg). Over any field k, the sequence {0;r,} is a regular se-
quence of degree-two elements in the ring H* (CDH(K(M)); k)

This result allows for a direct proof of the realization theorem.
Theorem 2.2. There is an isomorphism of rings
H*(W(A);Z) — A(M).

Proof. Working over a field k and following Masuda-Panov, [6, Lemma 2.1], we use
the Eilenberg-Moore spectral sequence associated to the fibration (10). It has

By® = Tor'y” ey oy (H(DI(K (M), k).

Now H*(DJ(K(M))) is free as an H*(BTM)~").module by Proposition 2.1, so
TOI'Et (BTd(ﬁ)—n) (H* (pH(K(M))) ? k) = Tor(l){’i(BTd(ﬁ)fn) (H* (DB(K(M))) ) k)
= H* (Qa(K(M))) ®H* (BTd(ﬁ)fn) k
= H*(DJ(K (M) /p"(H>* (BTN,

It follows that the Eilenberg-Moore spectral sequence collapses at the Fs term and
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hence, as groups,
H*(W(A)) = H*(DI(K (M))) /p* (H>* (BT D7),

from which we conclude that H* (W(A); k) is concentrated in even degrees. Taking

k = Q gives the result that in odd degree, H* (W(A);Z) consists of torsion only.
Unless this torsion is zero, the argument above with k& =T, for an appropriate p
implies a contradiction. It follows that H* (W(A); Z) is concentrated in even degrees.

Lemma 2.3. The integral Serre spectral sequence of the fibration (10) collapses.

Proof. The spaces in the fibration have integral cohomology concentrated in even
degrees. O

The FE>-term of the Serre spectral sequence is
H*(W(A);Z) ® H* (BT =" 7).

It follows that, as a ring, H*(W(A);Z) is the quotient of H*(DJ(K(M))) by the
two-sided ideal L generated by the image of p*. So there is an isomorphism of graded
rings,

H* (W(A); Z) — H*(DI(K(M))) /L = AM)/L = A(M),

completing the proof of Theorem 2.2. O

Remark 2.4. The Eilenberg-Moore spectral sequence of the fibration
Z(K(M);(D? S")) — W(A) — BT"

collapses and so it can be used to compute the cohomology of Z(K(M);(D?,S")),
the two-connected covering of W (A).

3. On the geometric realization of certain monomial
ideal rings by ordinary polyhedral products

In this section, polyhedral products, [1], involving finite and infinite complex pro-
jective spaces are used to realize certain classes of monomial ideal rings. As noted
earlier, generalizations of the Davis-Januszkiewicz spaces to the realm of multicom-
plexes are required in order to realize all monomial ideal rings; see Trevisan [7].

The class which can be realized by ordinary polyhedral products is restricted to
those monomials

o ar oty tog tnj
M_{m.]}j:17 My =Ty Ty Ty

of (1), which satisfy the condition:

% t;; is constant over all monomials m; which have t;; and at least one other
exponent both non-zero.
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In particular, a monomial ring of the form

Zla1, xa, w3) [ (aTws, atas, o3) (11)
can be realized by an ordinary polyhedral product. As usual, let (X, A) denote a
family of CW pairs

{(Xla Al)a (X27 A2)7 ) (Xnv An)}
Given a monomial ring A(M) of the form (2), satisfying the condition % above, a
simplicial complex K and a family of pairs (X, A) will be specified so that
H*(Z(K; (X, A));Z) = A(M),
where Z(K; (X, A) represents a polyhedral product as defined in [1].
Construction 3.1. Let K be the simplicial complex on n vertices {vi,va,...,v,}
which has a minimal non-face corresponding to each m; having at least two non-zero
exponents. If m; has non-zero exponents
Uivir Ligis - -5 bjgis

then K will have a corresponding minimal non-face {v;, ,vj,, ..., v;, }. Moreover, these

will be the only minimal non-faces of K.

For example, the ring (11) above will have associated to it the simplicial complex
K on vertices {v1,v2,v3} and will have minimal non-faces {vy,v2} and {vy,v3}. So,
K will be the disjoint union of a point and a one-simplex.

For the set of monomials M satisfying condition %, the cases following are distin-
guished in terms of (1) for fixed i € {1,2,...,n}.

1. For certain j, t;; = 1, t;; # 0 for some ¢’ # ¢ and ¢;;, = 0 otherwise.
2. For certain j, t;; = ¢; > 1, ty; # 0 for some ' # i and t;;, = 0 otherwise.
3. m; = ;" for some j and t;; = 0 for k # j.
4. mj = ;" for some j and if ¢;; # 0 for k # j, then t;, = ¢; < s;.
With this classification in mind, define a family of CW-pairs
(X, A) ={(X;,A):i=1,...,n}

by
(CP>, %) if 7 satisfies (1),
o Cpai—1 7 sati
(XA = (CP " ,(1CP ) 1fz sat?sﬁes (2), (12)
(CPs=1 %) if 4 satisfies (3),
(Cpsi—t Ccpa-t) if ¢ satisfies (4).

The next theorem describes the polyhedral products which have cohomology realizing
the monomial ideal rings satisfying condition .

Theorem 3.2. Let A(M) be a monomial ring of the form (2), satisfying the condition
x and K, the simplicial complex defined by Construction 3.1, then

H*(Z(K;(X,A));Z) = A(M)
where (X, A) is the pair specified by (12).
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Remark 3.3. The improvement here over [2, Theorem 10.5] consists of the inclusion
of cases (3) and (4) above. The polyhedral products which realize the monomial ideal
rings discussed in [1] have X; = CP*™ for all i = 1,2,...,n.

Proof of Theorem 3.2. Set @ = (q1,92,.-.,qn) with ¢; > 1 for all ¢ and write the
spaces A; of (12) as CP%~! where q; = 1 if A; = *, a point. Write

(X, 4) = (X,CPY) = {(X;,CP" ) i=1,2,...,n}
and consider the commutative diagram

H(ILX)  ——  H(TCPY)

l k*l (13)
H* (Z(K; (X, CP97Y) " H*(Z(K; (CP>,CPO™)

induced by the various inclusion maps. According to [2, Theorem 10.5], there is an
isomorphism of rings

H*(Z(K;(CP>,CPY™M)) — Zlay,...,x,) /I(M?),

qiq xqm x‘]ik

where I(M®@) is the ideal generated by all monomials z;tx?, ... x, " correspond-
ing to the minimal non-faces {v;,, vs,, . .., v;, } of K. Moreover, the proof of [2, Lemma
10.3] shows that the composition i*p* is a surjection. The commutativity of diagram
(13) implies that these relations all hold in H*(Z(K; (X, QQ_I))). In addition to
these, the relation z;* = 0 is included for each i satisfying X; = CP*~!. These rela-
tions account for all the relations determined by I(M). The remainder of the argument
shows that I(M) determines all relations in H*(Z(K; (X, A)); Z). Consider now the

space
Wy =CP%7 1t x ... x CP¥*171 x X}, x CP#+171 x ... x CPIn~ 1
corresponding to the simplex {v} € K, consisting of a single vertex. The composition
Wi — Z(K; (X, CP7Y) — [T, X;

factors the natural inclusion Wy, — []7_; X;. From this observation follows the fact
that no other monomial relations occur in H*(Z(K; (X, CiPQfl))) other than those
determined by I(M). Suppose next that there is a linear relationship of the form

k
aw = Z a;Wi, (14)
i=1

where a,a; € Z and w,w; are monomials in the z;,7i =1,2,...,n. Without loss of
generality, w and w; can be assumed to be not divisible by any of the monomials in
>\1 )\2

A . .
M. Suppose w = xjlai? -z, then o = {vj,, V45, ..., 05} € K is a simplex and so

is a full subcomplex of K. (The corresponding polyhedral product Z(o; (X, CP9™1))
is a product of finite and infinite complex projective spaces.) This implies, by [4,
Lemma 2.2.3], that H*(Z(o; (X, QQ_l))) must be a direct summand in H*(Z(K;
(X, QQ_I))) contradicting the relation (14). O
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