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THE GEOMETRIC REALIZATION OF MONOMIAL IDEAL RINGS
AND A THEOREM OF TREVISAN

A. BAHRI, M. BENDERSKY, F. R. COHEN and S. GITLER

(communicated by Donald M. Davis)

Abstract
A direct proof is presented of a form of Alvise Trevisan’s

theorem [7], that every monomial ideal ring is represented by
the cohomology of a topological space. Certain of these rings
are shown to be realized by polyhedral products indexed by
simplicial complexes.

1. Introduction

In the paper [7], Alvise Trevisan showed that every ring which is a quotient of an
integral polynomial ring with two dimensional generators by an ideal of monomial
relations, can be realized as the integral cohomology ring of a topological space. More-
over, he showed that the rings could be all realized with spaces which are generalized
Davis-Januszkiewicz spaces. These spaces are colimits over multicomplexes which are
generalizations of simplicial complexes.

Here is presented a direct proof of the “realization” part of Trevisan’s theorem. It
uses a result of Fröberg from [5] which asserts that a map known as “polarization”
produces, in a natural way, a regular sequence of degree-two elements. This allows
for the realization of any monomial ideal ring by a certain pullback.

It is noted also that certain families of monomial ideal rings, beyond Stanley-
Reisner rings, can be realized as generalized Davis-Januszkiewicz spaces based on ordi-
nary simplicial complexes. Of course, as Trevisan shows, multicomplexes are needed
in general.

Through the paper, all cohomology is taken with integral coefficients.

2. The main result

Let Z[x1, . . . , xn] be a polynomial ring on generators of degree two and

M =
{
mj

}r

j=1
, mj = x

t1j
1 x

t2j
2 · · ·xtnj

n (1)
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be a set of minimal monomials, that is, no monomial divides another. Here, the
exponent tij might be equal to zero but every xi must appear in some mj . Notice
that the set M is determined by the n× r matrix (tij). Denote by I(M) the ideal in
Z[x1, . . . , xn] generated by the minimal monomials mj and set

A = A(M) = Z[x1, . . . , xn]
/
I(M) (2)

a monomial ideal ring. From this is defined a second monomial ideal ring A(M) with
monomial ideal generated by square free monomials. For each i = 1, 2, . . . , n set

ti = max{ti1, ti2, . . . , tir}, (3)

the largest entry in the i-th row of (tij). Next, introduce new variables of degree two

yi1, yi2, . . . , yiti for each i = 1, 2, . . . , n. For each monomial mj = x
t1j
1 x

t2j
2 · · ·x

tnj
n , set

mj = (y11y12 · · · y1t1j )(y21y22 · · · y2t2j ) · · · (yn1yn2 · · · yntnj ). (4)

Let M = {mj}rj=1 and define an algebra B = B(M) by

B = Z[y11, y12, . . . , y1t1 , y21, y22, . . . , y2t2 , . . . , yn1, yn2, . . . , yntn ]
/
I(M). (5)

The monomials here are square-free so B is a Stanley-Reisner algebra which deter-
mines a simplicial complex K(M). (This process which constructs B from A is known
in the literature as polarization.) Associated to this simplicial complex is a fibration

Z
(
K(M); (D2, S1)

)
−→ DJ(K(M)) −→ BT d(M),

where d(M) =
∑n

1=1 ti, with ti as in (3), DJ(K(M)) is the Davis-Januszkiewicz space
of the simplicial complex K(M), and Z

(
K(M); (D2, S1)

)
is the moment-angle com-

plex corresponding to K(M), [3]. Recall that the Davis-Januszkiewicz space has the
property that

H∗(DJ(K(M))
) ∼= B. (6)

Define next a diagonal map ∆: Tn −→ T d(M) by

∆(x1, x2, . . . , xl) =
(
∆t1(x1),∆t2(x2), . . . ,∆tn(xl)

)
, (7)

where ∆ti(xi) = (xi, xi, . . . , xi) ∈ T ti . In the diagram below, let W (A) be defined as
the pullback of the fibration.

Z
(
K(M); (D2, S1)

)
−−−−→

=
Z
(
K(M); (D2, S1)

)y y
W (A) −−−−→

∆̃
DJ(K(M))y y

BTn B∆−−−−→ BT d(M)

(8)
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The diagram (8) extends to a larger diagram

> −−−−→ Z
(
K(M); (D2, S1)

)
−−−−→

=
Z
(
K(M); (D2, S1)

)
−−−−→ >y y y y

T d(M−n) −−−−→ W (A) −−−−→
∆̃

DJ(K(M)) −−−−→
p

BT d(M−n)y y y =

y
T d(M−n) −−−−→ BTn B∆−−−−→ BT d(M) −−−−→ BT d(M−n)

where the fact that W (A) is a pullback implies that

T d(M)−n p−→W (A)
∆̃−→ DJ(K(M)) (9)

is a fibration too. A long exact homotopy sequence argument comparing W (A) to the
homotopy fibre of p shows that

W (A)
∆̃−→ DJ(K(M))

p−→ BT d(M)−n (10)

is a homotopy fibration. Recall that d(M) =
∑n

1=1 ti and choose generators

H∗(BT d(M)−n) ∼= Z[u12, . . . , u1t1 , u22, . . . , u2t2 , . . . , un2, . . . , untn ],

so that

p∗(uiki) = yi1 − yiki i = 1, 2, . . . , n, ki = 2, 3, . . . , ti.

This choice is possible because of the commutativity of the bottom right square in the
large diagram above and the description of H∗(DJ(K(M))

)
given in (5) and (6). Set

θiki := p∗(uiki). The proposition following is a basic result about the diagonal map ∆
(the polarization map); a proof may be found in [5, page 30].

Proposition 2.1 (Fröberg). Over any field k, the sequence {θiki} is a regular se-
quence of degree-two elements in the ring H∗(DJ(K(M)); k

)
.

This result allows for a direct proof of the realization theorem.

Theorem 2.2. There is an isomorphism of rings

H∗(W (A);Z
)
−→ A(M).

Proof. Working over a field k and following Masuda-Panov, [6, Lemma 2.1], we use
the Eilenberg-Moore spectral sequence associated to the fibration (10). It has

E∗,∗
2 = Tor∗,∗

H∗(BTd(M)−n)
(H∗(DJ(K(M)), k

)
.

Now H∗(DJ(K(M))
)
is free as an H∗(BT d(M)−n)-module by Proposition 2.1, so

Tor∗,∗
H∗(BTd(M)−n)

(H∗(DJ(K(M))
)
, k) = Tor0,∗

H∗(BTd(M)−n)
(H∗(DJ(K(M))

)
, k)

= H∗(DJ(K(M))
)
⊗H∗(BTd(M)−n) k

= H∗(DJ(K(M))
)/

p∗(H>0(BT d(M)−n)).

It follows that the Eilenberg-Moore spectral sequence collapses at the E2 term and
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hence, as groups,

H∗(W (A)
)
= H∗(DJ(K(M))

)/
p∗(H>0(BT d(M)−n)),

from which we conclude that H∗(W (A); k
)
is concentrated in even degrees. Taking

k = Q gives the result that in odd degree, H∗(W (A);Z
)
consists of torsion only.

Unless this torsion is zero, the argument above with k = Fp for an appropriate p
implies a contradiction. It follows that H∗(W (A);Z

)
is concentrated in even degrees.

Lemma 2.3. The integral Serre spectral sequence of the fibration (10) collapses.

Proof. The spaces in the fibration have integral cohomology concentrated in even
degrees.

The E2-term of the Serre spectral sequence is

H∗(W (A);Z
)
⊗H∗(BT d(M)−n;Z

)
.

It follows that, as a ring, H∗(W (A);Z
)
is the quotient of H∗(DJ(K(M))

)
by the

two-sided ideal L generated by the image of p∗. So there is an isomorphism of graded
rings,

H∗(W (A);Z
)
−→ H∗(DJ(K(M))

)/
L ∼= A(M)

/
L ∼= A(M),

completing the proof of Theorem 2.2.

Remark 2.4. The Eilenberg-Moore spectral sequence of the fibration

Z
(
K(M); (D2, S1)

)
−→W (A) −→ BTn

collapses and so it can be used to compute the cohomology of Z
(
K(M); (D2, S1)

)
,

the two-connected covering of W (A).

3. On the geometric realization of certain monomial
ideal rings by ordinary polyhedral products

In this section, polyhedral products, [1], involving finite and infinite complex pro-
jective spaces are used to realize certain classes of monomial ideal rings. As noted
earlier, generalizations of the Davis-Januszkiewicz spaces to the realm of multicom-
plexes are required in order to realize all monomial ideal rings; see Trevisan [7].

The class which can be realized by ordinary polyhedral products is restricted to
those monomials

M =
{
mj

}r

j=1
, mj = x

t1j
1 x

t2j
2 · · ·xtnj

n

of (1), which satisfy the condition:

> tij is constant over all monomials mj which have tij and at least one other
exponent both non-zero.
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In particular, a monomial ring of the form

Z[x1, x2, x3]
/
〈x2

1x2, x
2
1x

4
3, x

5
3〉 (11)

can be realized by an ordinary polyhedral product. As usual, let (X,A) denote a
family of CW pairs

{(X1, A1), (X2, A2), . . . , (Xn, An)}.

Given a monomial ring A(M) of the form (2), satisfying the condition > above, a
simplicial complex K and a family of pairs (X,A) will be specified so that

H∗(Z(K; (X,A));Z
)
= A(M),

where Z(K; (X,A) represents a polyhedral product as defined in [1].

Construction 3.1. Let K be the simplicial complex on n vertices {v1, v2, . . . , vn}
which has a minimal non-face corresponding to each mi having at least two non-zero
exponents. If mi has non-zero exponents

tj1i, tj2i, . . . , tjti,

thenK will have a corresponding minimal non-face {vj1 , vj2 , . . . , vjt}. Moreover, these
will be the only minimal non-faces of K.

For example, the ring (11) above will have associated to it the simplicial complex
K on vertices {v1, v2, v3} and will have minimal non-faces {v1, v2} and {v1, v3}. So,
K will be the disjoint union of a point and a one-simplex.

For the set of monomials M satisfying condition >, the cases following are distin-
guished in terms of (1) for fixed i ∈ {1, 2, . . . , n}.

1. For certain j, tij = 1, ti′j 6= 0 for some i′ 6= i and tik = 0 otherwise.

2. For certain j, tij = qi > 1, ti′j 6= 0 for some i′ 6= i and tik = 0 otherwise.

3. mj = xsi
i for some j and tik = 0 for k 6= j.

4. mj = xsi
i for some j and if tik 6= 0 for k 6= j, then tik = qi < si.

With this classification in mind, define a family of CW-pairs

(X,A) = {(Xi, Ai) : i = 1, . . . , n}

by

(Xi, Ai) =


(CP∞, ∗) if i satisfies (1),

(CP∞,CP qi−1) if i satisfies (2),

(CP si−1, ∗) if i satisfies (3),

(CP si−1,CP qi−1) if i satisfies (4).

(12)

The next theorem describes the polyhedral products which have cohomology realizing
the monomial ideal rings satisfying condition >.

Theorem 3.2. Let A(M) be a monomial ring of the form (2), satisfying the condition
> and K, the simplicial complex defined by Construction 3.1, then

H∗(Z(K; (X,A));Z
)
= A(M)

where (X,A) is the pair specified by (12).
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Remark 3.3. The improvement here over [2, Theorem 10.5] consists of the inclusion
of cases (3) and (4) above. The polyhedral products which realize the monomial ideal
rings discussed in [1] have Xi = CP∞ for all i = 1, 2, . . . , n.

Proof of Theorem 3.2. Set Q = (q1, q2, . . . , qn) with qi > 1 for all i and write the
spaces Ai of (12) as CP qi−1 where qi = 1 if Ai = ∗, a point. Write

(X,A) = (X,CPQ−1) = {(Xi,CP qi−1) : i = 1, 2, . . . , n}

and consider the commutative diagram

H∗(
∏n

i=1Xi) ←−−−−
p∗

H∗(
∏n

i=1CP∞)yi∗ k∗

y
H∗(Z(K; (X,CPQ−1))

) h∗

←−−−− H∗(Z(K; (CP∞,CPQ−1))
) (13)

induced by the various inclusion maps. According to [2, Theorem 10.5], there is an
isomorphism of rings

H∗(Z(K; (CP∞,CPQ−1))
)
−→ Z[x1, . . . , xn]

/
I(MQ),

where I(MQ) is the ideal generated by all monomials x
qi1
i1

, x
qi2
i2

, . . . , x
qik
ik

correspond-
ing to the minimal non-faces {vi1 , vi2 , . . . , vik} ofK. Moreover, the proof of [2, Lemma
10.3] shows that the composition i∗p∗ is a surjection. The commutativity of diagram
(13) implies that these relations all hold in H∗(Z(K; (X,CPQ−1))

)
. In addition to

these, the relation xsi
i = 0 is included for each i satisfying Xi = CP si−1. These rela-

tions account for all the relations determined by I(M). The remainder of the argument
shows that I(M) determines all relations in H∗(Z(K; (X,A));Z

)
. Consider now the

space

Wk = CP q1−1 × · · · × CP qk−1−1 ×Xk × CP qk+1−1 × · · · × CP qn−1

corresponding to the simplex {vk} ∈ K, consisting of a single vertex. The composition

Wk −→ Z(K; (X,CPQ−1)) −→
∏n

i=1 Xi

factors the natural inclusion Wk −→
∏n

i=1 Xi. From this observation follows the fact

that no other monomial relations occur in H∗(Z(K; (X,CPQ−1))
)
other than those

determined by I(M). Suppose next that there is a linear relationship of the form

aω =
k∑

i=1

aiωi, (14)

where a, ai ∈ Z and ω, ωi are monomials in the xi, i = 1, 2, . . . , n. Without loss of
generality, ω and ωi can be assumed to be not divisible by any of the monomials in
M . Suppose ω = xλ1

j1
xλ2
j2
· · ·xλl

jl
, then σ = {vj1 , vj2 , . . . , vjl} ∈ K is a simplex and so

is a full subcomplex of K. (The corresponding polyhedral product Z(σ; (X,CPQ−1))
is a product of finite and infinite complex projective spaces.) This implies, by [4,
Lemma 2.2.3], that H∗(Z(σ; (X,CPQ−1))

)
must be a direct summand in H∗(Z(K;

(X,CPQ−1))
)
contradicting the relation (14).
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