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POTENTIALS OF HOMOTOPY CYCLIC A∞-ALGEBRAS

CHEOL-HYUN CHO and SANGWOOK LEE

(communicated by Gunnar Garlsson)

Abstract
For a cyclic A-infinity algebra, a potential recording the

structure constants can be defined. We define an analogous
potential for a homotopy cyclic A-infinity algebra and prove
its properties. On the other hand, we find another different
potential for a homotopy cyclic A-infinity algebra, which is
related to the algebraic analogue of generalized holonomy map
of Abbaspour, Tradler and Zeinalian.

1. Introduction

We first recall the definition of cyclic inner products due to Kontsevich [Ko], which
may be understood as constant invariant symplectic structures in non-commutative
geometry.

Definition 1.1. An A∞-algebra (A, {m∗}) is said to have a cyclic inner product if
there exists a skew symmetric non-degenerate, bilinear map

〈, 〉 : A⊗A→ k

such that for all integers k > 1,

〈mk(x1, . . . , xk), xk+1〉 = (−1)K(~x)〈mk(x2, . . . , xk+1), x1〉. (1)

Here, (−1)K(~x) denotes the sign given by Koszul sign convention. Namely,

(−1)K(~x) = (−1)|x1|′(|x2|′+···+|xk+1|′), (2)

where |x|′ is the shifted degree of x.

This notion for the A∞-algebras and A∞-categories is crucial in homological mir-
ror symmetry, for example, as in the work of Kontsevich-Soibelman [KS] or of
Costello [Cos]. In particular, Costello has proved in [Cos] that the category of open
topological conformal field theory is homotopy equivalent to the category of Calabi-
Yau categories, where the Calabi-Yau category is a categorical generalization of a
cyclic A∞-algebra.
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The first application of this gadget is to define a potential for a cyclic A∞-algebra,
which in physics, is called an action of a string field theory: Let (A,mA

∗ ) be a cyclic
A∞-algebra. Let ei be generators of A as a vector space, which is assumed to be
finite dimensional. Define x =

∑
i eixi where xi are formal parameters with deg(xi) =

−deg(ei).

Definition 1.2. Define

ΦA(x) =

∞∑
k=1

1

k + 1

〈
mA
k (x,x, . . . ,x),x

〉
. (3)

This may be considered as a systematic way of gathering structure constants of
a cyclic A∞-algebra. In the case of toric manifolds, this potential, when restricted
to the Maurer-Cartan elements, becomes the Landau-Ginzburg superpotential of the
mirror B-model (see [CO, FOOO1]).

The notion of cyclicity is not a homotopy invariant notion. For example, an A∞-
algebra which is homotopy equivalent to a cyclic A∞-algebra may not be cyclic.
Instead, it has a strong homotopy inner product, which was defined by the first
author in [C]: for this, a cyclic inner product on A may be understood as a special
kind of A∞-bimodule map A→ A∗, where A∗ is the linear dual of A, which is an
A-bimodule (see, for example, Lemma 3.1 [C]). An A∞-bimodule quasi-isomorphism
A→ A∗ is called as an infinity inner product by Tradler (see [T, TZ] for example).

Definition 1.3 ([C, Definition 3.6]). Let A be an A∞-algebra. We call an A∞-bimod-
ule map φ : A→ A∗ a strong homotopy inner product in the sense of [C] if there exists
a cyclic A∞-algebra B with ψ : B → B∗ and an A∞-quasi-isomorphism f : A→ B
such that the following diagram of A∞-bimodules over A commutes:

A
g=f̃

//

φ

��

B

ψ cyc

��
A∗ B∗.

g∗
oo

(4)

Here, by g : A→ B, we denote the induced A∞-bimodule map f̃ = g where B is
considered as an A∞-bimodule over A.

In this paper, we give a definition of the potential for strong homotopy inner
products and prove its properties. It turns out that the definition of the potential in
Definition 3.1 is very similar to that of (3):

ΦA(x) =
∞∑
N=1

ΦAN (x)

:=
∞∑
N=1

∞∑
p+q+k=N

1

N + 1

〈
x,x, . . . ,x,mA

k (x,x, . . . ,x),x, . . . ,x | x
〉
p,q
,

but the proof that they are indeed related is non-trivial and involves quite combi-
natorial arguments. Beyond the fact that it is quite natural to work with homo-
topy notions when dealing with homotopy algebras, sometimes it is necessary to
work directly with homotopy notions. For example, in the work of Kontsevich and
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Figure 1: (a) Potential Ψ. (b) Cyclic Potential Φ. (c) Homotopy cyclic potential Φ.

Soibelman [KS], they find a relation between cyclic cohomology of an A∞-algebra A
and cyclic symmetry. Given a cyclic cohomology class, one first obtains a homotopy
inner product on A and then a cyclic inner product in the minimal model. We refer
readers to [CL] for the explicit formulas of this correspondence in terms of negative
cyclic cohomology HC•

−(A) and strong homotopy inner products.
Now, let us assume that the A∞-algebra is unital (see Definition 4.1), and assume

that the A∞-bimodule maps are also unital. Then, from the strong homotopy inner
products {〈, 〉p,q}, we can define another potential as follows: (Here, 〈, 〉p,q is obtained
from the (p, q)-component of the bimodule map φ; see (6).)

Definition 1.4. Define

ΨA(x) =
∑
p,q>0

1

p+ q + 1

〈
x, . . . ,x︸ ︷︷ ︸

p

,x,x, . . . ,x︸ ︷︷ ︸
q

| I
〉
p,q
.

We prove that this potential is, in fact, invariant under the gauge equivalence for
Maurer-Cartan elements. We also find its relation to the work of Abbaspour, Tradler
and Zeinalian [ATZ], where this map corresponds to the algebraic analogue of the
generalized holonomy map from the negative cyclic cohomology to the function ring
of Maurer-Cartan elements. The following Figure 1 explains the differences of the
expressions used in these potentials (without the coefficients). In the figure, the circle
represents the strong homotopy inner product (following that of Tradler [T]) whose
horizontal arrows are for the inputs from modules. The filled circle represents the
A∞-operation m.

This paper may be considered as a continuation of the paper [C] to which we
refer readers for the notations and further introductions, especially about the signs.
Throughout the paper we assume that H•(A) is finite dimensional.
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2. Strong homotopy inner products

We begin by proposing a modified definition of strong homotopy inner products
and discuss their equivalences and pullbacks.

We first make an observation that there exist certain subtleties in the direction of
arrows in the diagram (4) in the definition of strong homotopy inner products. One
could try to make the definition with the arrow A←− B instead of A −→ B, but
the resulting diagram would become weaker as there may exist elements of A which
are not covered by the image of the map A←− B in general. The subtlety actually
disappears if we have non-degeneracy in the chain level. The correct definition (which
corresponds to exactly the non-commutative invariant symplectic two form) is rather
in between these two definitions: to make the correct definition, we first recall the
following characterization theorem of strong homotopy inner products in the sense
of [C].

Theorem 2.1 ([C, Theorem 5.1]). An A∞-algebra A has a strong homotopy inner
product in the sense of [C] if and only if there exist an A∞-bimodule map φ : A→ A∗,
satisfying the following three conditions:

1. (Skew symmetry). For any ai, v, bj , w ∈ A,

φk,l(~a, v,~b)(w) = −(−1)Kφl,k(~b, w,~a)(v),

with |K| =
(∑k

i=1 |ai|′ + |v|′
)(∑l

j=1 |bj |′ + |w|′
)

2. (Closedness). For any choice of a family (a1, . . . , al+1) and any choice of indices
1 6 i < j < k 6 l + 1, we have

(−1)Kiφ(. . . , ai, . . .)(aj) + (−1)Kjφ(. . . , aj , . . .)(ak) + (−1)Kk

× φ(. . . , ak, . . .)(ai) = 0,

where the arguments inside φ are uniquely given by the cyclic order of the family
(a1, . . . , al+1), and the signs K∗ are given by the Koszul convention

K∗ = (|a1|′ + · · ·+ |a∗|′)(|a∗+1|′ + · · ·+ |ak|′).

3. (Homological non-degeneracy). For any non-zero [a] ∈ H•(A) with a ∈ A, there
exists a [b] ∈ H•(A) with b ∈ A, such that φ0,0(a)(b) 6= 0.

For non-degeneracy on the chain level, φ itself gives the strong homotopy inner product
in the sense of [C], otherwise the inner product obtained φ′ : A→ A∗ is only equivalent
to φ.

The second condition is called a closed condition since it is equivalent to the closed
condition of the related non-commutative symplectic 2-form, and this plays a crucial
role in proving the properties of the potential defined in this paper.

We also remark that in the proof of Theorem 2.1, φ satisfying the three conditions
does not always become exactly a strong homotopy inner product in the sense of [C]
as itself, but is only equivalent to a strong homotopy inner product in the sense of [C]
(the equivalence is defined below).

Hence, we propose to define the strong homotopy inner products by Theorem 2.1
because such a definition is equivalent to that of the non-commutative symplectic
form as explained in [C].
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Definition 2.2. Let A be an A∞-algebra. We call an A∞-bimodule map φ : A→ A∗

a strong homotopy inner product if it is skew-symmetric, closed and homologically
non-degenerate as in Theorem 2.1. And A is called homotopy cyclic A∞-algebra, if
there exists a strong homotopy inner product of A.

Then, the main result of [C] can be phrased as the following theorem:

Theorem 2.3. Let φ : A→ A∗ be an A∞-bimodule map.

1. If φ is a strong homotopy inner product in the sense of Definition 2.2, then
there exists an A∞-algebra B with a cyclic inner product ψ : B → B∗ and an
A∞-quasi-isomorphism ι : B → A satisfying the following commutative diagram
of A∞-bimodule homomorphisms:

A

φ

��

B
ι̃oo

cycψ

��
A∗ ι̃∗ // B∗.

(5)

2. If there exists a cyclic A∞-algebra B with ψ : B → B∗ and an A∞-quasi-iso-
morphism f : A→ B such that the following diagram of A∞-bimodules over A
commutes:

A
g=f̃

//

φ

��

B

ψ cyc

��
A∗ B∗,

g∗
oo

then φ is a strong homotopy inner product in the sense of Definition 2.2.

If φ0,0 is non-degenerate on the chain level, then the definition of ‘strong homotopy
in the sense of [C]’ and the new definition of strong homotopy inner product (in the
sense of Definition 2.2) are equivalent.

Remark 2.4. Hence the new definition of the strong homotopy inner product is a
little stronger than the diagram using A←− B, a little weaker than the diagram
using A −→ B and equivalent to the non-commutative symplectic two form.

Proof. If φ0,0 is non-degenerate on the chain level, then one can find B with an
A∞-isomorphism f : A→ B from the proof of Theorem 2.1 making the commuting
diagram (4). Hence one can find the exact inverse of f to make the commuting diagram
(5).

Also, statement 2. can be checked without much difficulty from the commuting
diagram, so we only consider statement 1. We explain that the proof of Theorem 2.1,
given in [C], is enough to prove the existence of the diagram (5): We recall from [C]
that the first step of the construction of the cyclic A∞-algebra B, when A is only
homologically non-degenerate, is to consider the minimal model ι : H•(A)→ A and
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consider the pullback ι∗φ,

A

φ

��

H•(A)
ι̃oo

ι∗φ

��

f̃

// H•(A)

cyc

��
A∗ ι̃∗ // (H•(A))∗ (H•(A))∗.

f̃∗
oo

Then ι∗φ is non-degenerate and skew symmetric and closed, and one proves the
theorem for ι∗φ to find f : H•(A)→ H•(A) with the above commutative diagram.
As the quasi-isomorphism f on H•(A) is, in fact, an isomorphism, hence there exists
the explicit inverse f−1, and we obtain the diagram (5).

We can also prove the following corollary:

Corollary 2.5. Let φ : A→ A∗ be a strong homotopy inner product. Suppose we have
an A∞-quasi-isomorphism f : A→ H•(A) with the commuting diagram

A
g=f̃

//

φ

��

H•(A)

ψ cyc

��
A∗ H•(A)∗.

g̃∗
oo

Then, there exists an A∞-quasi-isomorphism h : H•(A)→ A with the commuting dia-
gram (with the same ψ as the above)

A

φ

��

H•(A)
h̃oo

ψ cyc

��
A∗ h̃∗

// (H•(A))∗.

Proof. By the decomposition theorem of A∞-algebras, the map f has a right inverse
A∞-quasi-homomorphism, say h : H•(A)→ A such that f ◦ h = id. To see this, con-
sider an A∞-isomorphism η,

η : A→ Adc := AH ⊕Alc

to the direct sum of the minimal A∞-algebra AH and the linear contractible Alc.

Let π : Adc → AH be the projection and i : AH → Adc be the inclusion where
both are A∞-quasi-isomorphisms with π ◦ i = id. As f is an A∞-quasi-isomorphism,
f ◦ η−1 ◦ i : AH → H•(A) is an A∞-isomorphism and hence has an A∞-inverse say
ξ. Then, we define the right A∞ inverse h = η−1 ◦ i ◦ ξ. The property f ◦ h = id can
be checked immediately. The second diagram then follows from the first commuting
diagram.

Now, we define equivalences between strong homotopy inner products.

Definition 2.6. Let φ : A→ A∗ and ψ : B → B∗ be strong homotopy inner products.
They are called equivalent if there exists a cyclic symmetric A∞-algebra H with a
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commutative diagram

A

φ

��

H

cyc

��

qisoo qis // B

ψ

��
A∗ // H∗ B∗.oo

One can actually choose H to be a minimal (or canonical) model.
Given a strong homotopy inner product φ : B → B∗ and an A∞-quasi-isomorphism

f : A→ B, we may define a pullback f∗φ : A→ A∗

A

f∗φ

��

f̃

// B

φ

��
A∗ B∗

f̃∗
oo

as a composition: f∗φ = f̃∗ ◦ φ̂ ◦ ̂̃f where φ̂ and
̂̃
f denote the extensions to higher

tensor powers; see [C, Section 3].

Proposition 2.7. f∗φ defines a strong homotopy inner product on A which is equiv-
alent to φ.

Proof. Since φ : B → B∗ is skew-symmetric and closed, so is f∗φ by Lemma 5.6 of [C].
It is not hard to check that f∗φ is also homologically non-degenerate as f is a quasi-
isomorphism. Hence, by Definition 2.2, F 8φ, is a strong homotopy inner product.
Hence there exist an A∞-algebra C which is cyclic symmetric (ψ : C → C∗) and an
A∞-quasi-homomorphism h : C → A with the following commutative diagrams:

C
h̃

//

ψ

��

A

f∗φ

��

f̃

// B

φ

��
C∗ A∗

h̃∗
oo (B)∗.

f̃∗
oo

From the diagram, it is easy to see that φ and f∗φ are equivalent in the sense of
Definition 2.6.

3. Potentials

In this section we define a potential of a homotopy cyclic A∞-algebra and prove
its properties. Let (A,mA

∗ ) be given a strong homotopy inner product φ : A→ A∗.
Recall that an A∞-bimodule map φ is given by a family of maps

φp,q : A
⊗p ⊗A⊗A⊗q → A∗,

where the underlined A is to emphasize that it is an A-bimodule for the readers’
convenience. Let

〈x1, . . . , xp, v, y1, . . . , yq | w〉p,q := φ(x1, . . . , xp, v, y1, . . . , yq)(w). (6)

As in the cyclic case, let ei be generators of A as a vector space, which is assumed
to be finite dimensional. (One may use the pullback defined in the previous section
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using the inclusion ι : H•(A)→ A in the case thatH•(A) is finite dimensional.) Define
x =

∑
i eixi, where xi are formal parameters with deg(xi) = −deg(ei). Now we give

a definition of a potential for strong homotopy inner products.

Definition 3.1. The potential of an A∞-algebra (A,mA
∗ ) with a strong homotopy

inner product φ : A→ A∗ is defined as

ΦA(x) =
∞∑
N=1

ΦAN (x)

:=
∞∑
N=1

∑
p+q+k=N

1

N + 1

〈
x,x, . . . ,x,mA

k (x,x, . . . ,x),x, . . . ,x | x
〉
p,q
.

The definition itself is somewhat similar to that of cyclic case (3). But in (3), the
fraction 1/k was to cancel out repetitive contributions to the potential due to cyclic
symmetry (1), whereas in the strong homotopy case, such cyclic symmetry of the
rotation of arguments do not exist. Namely, in general,〈

e1, . . . ,mi(ej , . . . , ej+i−1), . . . , ek | ek+1

〉
6= ±

〈
e2, . . . ,mi(ej+1, . . . , ej+i), . . . , ek+1 | e1

〉
.

〈
e1, . . . ,mi(ej , . . . , ej+i−1), . . . , ek | ek+1

〉
6= ±

〈
e2, . . . ,mi(ej+1, . . . , ej+i), . . . , ek+1 | e1

〉
.

We later show that the combination of the A∞-bimodule equation, skew-symmetry
and the closed condition will compensate the absence of the strict cyclic symmetry.

We explain how the potential behaves under pullbacks, and this will show the
relation between the potentials of equivalent strong homotopy inner products. For an
A∞-quasi-isomorphism h : B → A, the pullback of a potential is defined as follows:
We assume B is finite dimensional as a vector space and denote by {fi} its basis and
introduce corresponding formal variables yi as before. Suppose

hk(fj1 , . . . , fjk) = hij1,...,jkei, hij1,...,jk ∈ k.

Then, we set

xi 7→ hij11yj11 + hij21,j22yj21yj22 + · · ·+ hijl1,...,jlkyjl1 · · · yjlk + · · · .

Then, one defines the pullback h∗ΦA by using the above change of coordinate formula.
Namely, h∗ΦA is given by the replacement of x by

∑
k>1 hk(y

⊗k) in the formula of

ΦA.

Theorem 3.2. Let φ : A→ A∗ be a strong homotopy inner product. Let B be a cyclic
A∞-algebra with a quasi-isomorphism h : B → A providing the commutative diagram
(5). Then, we have

ΦB = h∗ΦA.

Proof. The overall scheme of the proof, which is first to differentiate and then to
compare, follows that of [C] (idea due to Kajiura [Kaj] in the unfiltered case). The
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main difficulty, and the essential part of the proof, is the first step where we take
(formal) partial derivatives on each side. The following lemma shows that after partial
differentiation, the fraction on each summand disappears.

Lemma 3.3.

∂

∂xi
ΦAN (x) =

∂

∂xi

∑
p+q+k=N

1

N + 1

〈
x,x, . . . ,x,mA

k (x,x, . . . ,x),x, . . . ,x | x
〉
p,q

=
∑

p+q+k=N

〈
x,x, . . . ,x,mA

k (x,x, . . . ,x),x, . . . ,x | ei
〉
p,q
.

We assume the lemma for a moment and show the proof of the theorem using
the lemma. Let {fi} be a basis of H•(A), and let {yi} be the corresponding formal
variables for {fi}, namely y :=

∑
i yifi.

We let hsum(y) :=
∑
k>1 hk(y

⊗k). Then

∂

∂yi
ΦH

•(A) =
∑
k>1

〈
m
H•(A)
k (y, . . . ,y), fi

〉
by cyclic symmetry, and

∂

∂yi
h∗ΦA

=
∂

∂yi

∑
k>1

p+q+k=N

1

N + 1

〈
hsum(y)⊗p,mA

k (h
sum(y), . . . , hsum(y)), hsum(y)⊗q | hsum(y)

〉

=
∑
N>1

p+q+k=N

〈
hsum(y)⊗p,mA

k (h
sum(y), . . . , hsum(y)), hsum(y)⊗q | ∂

∂yi
hsum(y)

〉

by the above lemma. From the diagram (5), we have ψ = h̃∗ ◦ φ̂ ◦ ̂̃h, where all maps
are H•(A)-bimodule homomorphisms, consider the following:∑

p,q>0
k>1

ψ(y⊗p,m
H•(A)
k (−→y ),y⊗q)(fi)

=
∑
p,q>0
k>1

(h̃∗ ◦ φ̂ ◦ ̂̃
h)(y⊗p,m

H•(A)
k (−→y ),y⊗q)(fi)

=
∑
p,q>0
k>1

∑
p1+p2+p3=p
q1+q2+q3=q

h̃∗(y⊗p3 , φ(ĥ(y⊗p2), hp1+q1+1(y
⊗p1 ,m

H•(A)
k (−→y ),y⊗q1), ĥ(y⊗q2)),

y⊗q3)(fi)

=
∑
p,q>0
k>1

∑
p1+p2+p3=p
q1+q2+q3=q

φ(ĥ(y⊗p2), hp1+q1+1(y
⊗p1 ,m

H•(A)
k (−→y ),y⊗q1), ĥ(y⊗q2))

(hp3+q3+1(y
⊗q3 , fi,y

⊗p3))

=
∑
p,q>0
k>1

∑
p1+p2+p3=p
q1+q2+q3=q

〈
ĥ(y⊗p2), hp1+q1+1(y

⊗p1 ,m
H•(A)
k (−→y ),y⊗q1), ĥ(y⊗q2) |

hp3+q3+1(y
⊗q3 , fi,y

⊗p3)
〉
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=
∑
N>1

p+q+k=N

〈
hsum(y)⊗p,mA

k (h
sum(y), . . . , hsum(y)), hsum(y)⊗q | ∂

∂yi
hsum(y)

〉

=
∂

∂yi
h∗ΦA. (7)

Here, we denote by mk(
−→y ) the expression mk(y, . . . ,y) for simplicity. The last iden-

tity holds because the sum is over all p1 + p2 + p3 = p and q1 + q2 + q3 = q where
p and q run over all non-negative integers, and there is the A∞-bimodule relation

m̂A ◦ ĥ = ĥ ◦ m̂H•(A). We also use the fact that

∂

∂yi
hk(y

⊗k) =
∑

p3+q3+1=k

hp3+q3+1(y
⊗p3 , fi,y

⊗q3).

The summands of (7) are all zero except for (p, q) = (0, 0) because ψ is a cyclic
symmetric inner product. Hence,

∂

∂yi
h∗ΦA =

∑
k>1

ψ
(
m
H•(A)
k (−→y )

)
(fi) =

∑
k>1

〈
m
H•(A)
k (y, . . . ,y), fi

〉
=

∂

∂yi
ΦH

•(A).

This proves the theorem.

Proof. We prove Lemma 3.3. Before we proceed, we give some remarks on the signs.
The sign convention used in this paper and in [C] is the Koszul convention after the
degree one shift. For simplicity, we omit the Koszul sign factor, and the expression will
appear with + if it agrees with the Koszul sign rule and − if it is the negative of the
Koszul sign. We illustrate this for two examples, from which the general convention
can be easily understood. The first example is the A∞-equation with two inputs. We
write

m1m2(x1, x2) +m2(m1(x1), x2) +m2(x1,m1(x2)) = 0, (8)

whereas the actual equation is

m1m2(x1, x2) +m2(m1(x1), x2) + (−1)|x1|′m2(x1,m1(x2)) = 0.

Equation (8) will also be written as

m1m2(x1, x2) = −m2(m1(x1), x2)−m2(x1,m1(x2)).

The second example is the equation for 〈m2(x1, x2) | x3〉. Note that φ being an
A∞-bimodule map φ : A→ A∗ with the induced A∞-bimodule structure on A∗ (see
expression (3.3) [C] for the precise definition) implies the following actual equation:

〈m2(x1, x2) | x3〉+ 〈m1(x1), x2 | x3〉

+ (−1)|x1|′〈x1,m1(x2) | x3〉+ (−1)|x1|′+|x2|′〈x1, x2 | m1(x3)〉

+ (−1)|x1|′〈x1 | m2(x2, x3)〉 = 0.

In this paper, the above equation will be written simply as

〈m2(x1, x2) | x3〉+ 〈m1(x1), x2 | x3〉+ 〈x1,m1(x2) | x3〉
+ 〈x1, x2 | m1(x3)〉+ 〈x1 | m2(x2, x3)〉 = 0.
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Now, we begin the proof of the lemma. From now on, we replace mA
k by mk if

there is no ambiguity. By taking a derivative, the expression becomes

∂

∂xi

∑
p+q+k=N

〈
x,x, . . . ,x,mk(x,x, . . . ,x),x, . . . ,x | x

〉
p,q

(9)

=
∑

p+q+k=N

r+s=k−1

〈
x, . . . ,x,mk(

r︷ ︸︸ ︷
x, . . . ,x, ei,

s︷ ︸︸ ︷
x, . . . ,x),x, . . . ,x | x

〉
p,q

(10)

+
∑

p+q+k=N

r+s=p−1

〈
x, . . . ,x︸ ︷︷ ︸

r

, ei,x, . . . ,x︸ ︷︷ ︸
s

,mk(x, . . . ,x),x, . . . ,x | x
〉
p,q

(11)

+
∑

p+q+k=N

r+s=q−1

〈
x, . . . ,x,mk(x, . . . ,x),x, . . . ,x︸ ︷︷ ︸

r

, ei,x, . . . ,x︸ ︷︷ ︸
s

| x
〉
p,q

(12)

+
∑

p+q+k=N

〈
x, . . . ,x,mk(x, . . . ,x),x, . . . ,x | ei

〉
p,q
. (13)

Now, the lemma can be proved by the following lemma.

Lemma 3.4. The sum of the terms in (10), (11) and (12) equals to N times of the
expression (13).

Proof. To prove the lemma, we recall the A∞-bimodule equation. The equation for
A∞-bimodule homomorphism A→ A∗ is

φ ◦ b̂A = bA∗ ◦ φ̂ (14)

with bA = mA, when A is considered to be an A∞-bimodule, and bA∗ is defined by
canonical construction of the dual of the A∞-bimodule A. Here φ̂ is the coalgebra
homomorphism induced from φ. (We refer readers to [C, T] or [GJ] for details.) Let
us restrict equation (14) to the case (x, . . . ,x, ei,x, . . . ,x) ∈ A⊗n ⊗A⊗A⊗m where
n+m+ 1 = N . Then it becomes

∑
p+j1=n

j2+q=m

〈
x, . . . ,x,mj1+j2+1(

j1︷ ︸︸ ︷
x, . . . ,x, ei,

j2︷ ︸︸ ︷
x, . . . ,x),x, . . . ,x | x

〉
p,q

(15)

+
∑

k1+k2+j=n

p=k1+k2+1

〈
x, . . . ,x︸ ︷︷ ︸

k1

,mj(x, . . . ,x),x, . . . ,x︸ ︷︷ ︸
k2

, ei,x, . . . ,x | x
〉dum
p,m

(16)

+
∑

l1+l2+h=m

q=l1+l2+1

〈
x, . . . ,x, ei,x, . . . ,x︸ ︷︷ ︸

l1

,mh(x, . . . ,x),x, . . . ,x︸ ︷︷ ︸
l2

| x
〉dum
n,q

(17)

=
∑

p+k1=m

k2+q=n

〈
x, . . . ,x,mk1+k2+1(

k1︷ ︸︸ ︷
x, . . . ,x,x,

k2︷ ︸︸ ︷
x . . .x),x, . . . ,x | ei

〉
p,q
. (18)

It is important to note that the expression in summand (18) is obtained in k :=
k1 + k2 + 1 different ways according to the position of the (underlined) bimodule
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element x. Namely, different choices of a bimodule element still give rise to equivalent
expressions. We also observe that (15) = (10) after summing over n+m+ 1 = N .

We apply skew-symmetry to (16) and (17). Namely we have

−(16) =
∑

p+j+k1+k2+1=N

〈
x⊗p,x,x⊗k1 ,mj(~x),x

⊗k2 | ei
〉
, (19)

−(17) =
∑

p+j+k1+k2+1=N

〈
x⊗p,mj(~x),x

⊗k1 ,x,x⊗k2 | ei
〉
. (20)

Here we set mj(~x) := mj(x, . . . ,x).

In summary, we have the following:

(10) = k · (13) + (19) + (20),

hence

(9) = k · (13) + (19) + (20) + (11) + (12) + (13).

Now it remains to show that

(19) + (20) + (11) + (12) = (N − k) · (13),

which proves the theorem.

Let us list the remaining terms first:

(11)
∑

p+k+j1+j2+1=N

〈
x⊗p, ei,x

⊗j1 ,mk(~x),x
⊗j2 | x

〉
,

(12)
∑

p+k+j1+j2+1=N

〈
x⊗p,mk(~x),x

⊗j1 , ei,x
⊗j2 | x

〉
,

(19)
∑

p+k+j1+j2+1=N

〈
x⊗p,x,x⊗j1 ,mk(~x),x

⊗j2 | ei
〉
,

(20)
∑

p+k+j1+j2+1=N

〈
x⊗p,mk(~x),x

⊗j1 ,x,x⊗j2 | ei
〉
.

Now we use the closed condition with these terms:

1. By applying the closed condition from Theorem 2.1 to (12) and (19), we obtain
(here (ai, aj , ak) corresponds to (ei,mk(~x),x))〈

x, . . . ,x,x,x, . . . ,x︸ ︷︷ ︸
s

,mk(~x),x
⊗r | ei

〉
+

〈
x, . . . ,x,mk(~x),x, . . . ,x, ei,x, . . . ,x | x

〉
+

〈
x⊗r, ei,x

⊗s | mk(~x)
〉
= 0.

In fact, we obtain s different such equations depending on the position of x in
the first line. Hence, the sum of expressions (12) and (19) produces s times that
of (13) as the last term equals the minus of (13):〈

x⊗r, ei,x
⊗s | mk(~x)

〉
= −

〈
x⊗s,mk(~x),x

⊗r | ei
〉
.
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2. Similarly, by applying the closed condition to (11) and (20),〈
x⊗s,mk(~x),x, . . . ,x,x,x, . . . ,x︸ ︷︷ ︸

r

| ei
〉

+
〈
x, . . . ,x, ei,x, . . . ,x,mk(~x),x, . . . ,x | x

〉
+

〈
x⊗r, ei,x

⊗s | mk(~x)
〉
= 0,

we obtain r different such equations depending on the position of x in the first
line.

Hence we obtain r + s = N − k times the expression of (13), which proves
Lemma 3.4.

4. Potential Ψ and the generalized holonomy map

In this section, we consider another potential Ψ defined in Definition 1.4 for a unital
homotopy cyclic A∞-algebra. We discuss its gauge invariance and its relationship with
the algebraic analogue of generalized holonomy map in [ATZ].

Let us first recall the definition of a unit for an A∞-algebra.

Definition 4.1. An element I ∈ C0 = C−1[1] is called a unit if{
mk+1(x1, . . . , I, . . . , xk) = 0 for k > 2 or k = 0

m2(I, x) = (−1)deg xm2(x, I) = x.

We assume that the strong homotopy inner product φ : A→ A∗ is a unital A∞-
bimodule map, or φk,l(~a, v,~b)(w) vanishes if one of ai’s or bi’s is a constant multiple
of I.

We also recall the Maurer-Cartan elements and its gauge equivalences.

Definition 4.2. Let A be an A∞-algebra. An element b ∈ A1 satisfying m(eb) =∑
kmk(b, . . . , b) = 0 is called a Maurer-Cartan element, and we denote byMC(A) the

set of all Maurer-Cartan elements. LetMC :=MC/ ∼ be the moduli space of Maurer-
Cartan elements, whose gauge equivalence is defined as follows (Definition 2.3 of [Fu]):

b is gauge equivalent to b̃ if there are one-parameter families b(t) ∈ A1[t], c(t) ∈ A0[t]
such that

• b(0) = b, b(1) = b̃, and

• d

dt
b(t) =

∑
k>1

mk(b(t), . . . , b(t), c(t), b(t), . . . , b(t)).

We remark that b(t) is also a Maurer-Cartan element for any t (Lemma 4.3.7
of [FOOO]). Now, we prove the gauge invariance of the potential Ψ for Maurer-
Cartan elements.

Proposition 4.3. The potential Ψ(x) =
∑
p,q>0

1
p+q+1

〈
x⊗p ⊗ x⊗ x⊗q | I

〉
, when re-

stricted to the Maurer-Cartan elements MC is invariant under gauge equivalences.
That is, if x(t) is a one-parameter family in the Maurer-Cartan solution space, then

d

dt
Ψ(x(t)) = 0.
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Proof. We prove this proposition with the help of following lemmas:

Lemma 4.4. Ψ(x) equals the following expression: Ψ(x) =
∑
k>0

〈
x⊗ x⊗k | I

〉
.

Proof. By the closedness condition of φ, for any p and q we have〈
x⊗p ⊗ x⊗ x⊗q | I

〉
+
〈
x⊗p+q ⊗ I | x

〉
+
〈
x⊗q ⊗ I ⊗ x⊗ x⊗p−1 | x

〉
= 0.

By definition of unital A∞-bimodule homomorphisms, we have〈
x⊗q ⊗ I ⊗ x⊗ x⊗p−1 | x

〉
= 0,

and the above equation gives〈
x⊗p ⊗ x⊗ x⊗q | I

〉
= −

〈
x⊗p+q ⊗ I | x

〉
=

〈
x⊗ x⊗p+q | I

〉
,

where the last equality follows from the skew-symmetry of φ. This proves the
lemma.

Lemma 4.5. ∑
σ∈Z/nZ

〈
aσ(1), aσ(2), . . . , aσ(n−1) | aσ(n)

〉
= 0.

Proof. Fix a1, . . . , an and denote [i, j] := 〈. . . , ai, . . . | aj〉. Then what we need to
prove is

[1, n] + [2, 1] + · · ·+ [n, n− 1] = 0.

The closedness condition of strong homotopy inner products gives

[i, j] + [j, k] = [i, k].

Hence, it follows that

[1, n] + [n, n− 1] + · · ·+ [2, 1] = [1, n] + [n, 1] = 0.

Now we prove the above proposition. First, assume

d

dt
x(t) =

∑
i+j=k>0

mk+1(x(t)
⊗i ⊗ c(t)⊗ x(t)⊗j).

We denote x by x(t) and c by c(t) for they cause no problem in this proof.
Applying Lemma 4.4, the fraction disappears and we get

d

dt
Ψ(x) =

∑
l>0

〈 ∑
i+j=k>0

mk+1(x
⊗i ⊗ c⊗ x⊗j)⊗ x⊗l | I

〉
(21)

+
∑
l,m>0

〈
x⊗ x⊗l ⊗

∑
i+j=k>0

mk+1(x
⊗i ⊗ c⊗ x⊗j)⊗ x⊗m | I

〉
. (22)

To prove that it is zero, we use the A∞-bimodule equation. Namely, we compute

(φ ◦ m̂−m∗ ◦ φ̂)
(∑
l>0

c⊗ x⊗l +
∑
l,m>0

x⊗ x⊗l ⊗ c⊗ x⊗m
)
(I),
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which is a priori zero:

(φ ◦ m̂)
(∑
i>0

c⊗ x⊗i
)
(I) =

∑
l>0

〈∑
k>0

mk+1(c⊗ x⊗k)⊗ x⊗l | I
〉

(23)

+
∑
l,m>0

〈
c⊗ x⊗l ⊗

(∑
k>1

mk(x
⊗k)

)
⊗ x⊗m | I

〉
, (24)

and (24) is zero by the Maurer-Cartan equation:

(φ ◦ m̂)
( ∑
i,j>0

x⊗ x⊗i ⊗ c⊗ x⊗j
)
(I)

=
∑
l,m>0

〈∑
k>1

mk(x
⊗k)⊗ x⊗l ⊗ c⊗ x⊗m | I

〉
(25)

+
∑
l>0

〈 ∑
i>1,j>0

mk(x
⊗i ⊗ c⊗ x⊗j)⊗ x⊗l | I

〉
(26)

+
∑
l,m>0

〈
x⊗ x⊗l ⊗

∑
i+j=k>0

mk+1(x
⊗i ⊗ c⊗ x⊗j)⊗ x⊗m | I

〉
(27)

+
∑

l,m,n>0

〈
x⊗ x⊗l ⊗ c⊗ x⊗m ⊗

∑
k>1

mk(x
⊗k)⊗ x⊗n | I

〉
(28)

+
∑

l,m,n>0

〈
x⊗ x⊗l ⊗

∑
k>1

mk(x
⊗k)⊗ x⊗m ⊗ c⊗ x⊗n | I

〉
. (29)

Remark again that (25), (28) and (29) vanish by the Maurer-Cartan equation. Observe
also that

• (23) + (26) = (21),

• (27) = (22).

It remains to show that

(m∗ ◦ φ̂)
(∑
l>0

c⊗ x⊗l +
∑
l,m>0

x⊗ x⊗l ⊗ c⊗ x⊗m
)
(I) = 0.

Since I is the unit, we may easily verify that

(m∗ ◦ φ̂)
(∑
l>0

c⊗ x⊗l
)
(I) =

∑
l>0

〈
c⊗ x⊗l | x

〉
, (30)

(m∗ ◦ φ̂)
(∑
l>0

x⊗ x⊗l ⊗ c
)
(I) =

∑
l>0

〈
x⊗ x⊗l | c

〉
, (31)

(m∗ ◦ φ̂)
( ∑
l>0,m>1

x⊗ x⊗l ⊗ c⊗ x⊗m
)
(I) =

∑
l,m>0

〈
x⊗ x⊗l ⊗ c⊗ x⊗m | x

〉
.

In (30) and (31), for l = 0, we have

〈c | x〉+ 〈x | c〉 = 0

by skew-symmetry. For remaining parts, we collect terms appropriately and use
closedness condition to show that they all vanish. More precisely, for k > 1, we claim
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that 〈
c⊗ x⊗k | x

〉
+
〈
x⊗ x⊗k | c

〉
+

∑
l+m=k−1

〈
x⊗ x⊗l ⊗ c⊗ x⊗m | x

〉
= 0.

But this follows from the previous Lemma 4.5 by setting

a1 = c, a2 = · · · = ak+2 = x.

Lemma 4.6. Let φ : B → B∗ be a strong homotopy inner product, and let f : A→ B
an A∞-quasi-isomorphism, with the pullback strong homotopy inner product f∗φ:
A→ A∗. Given a Maurer-Cartan element x ∈ A, denote by f∗(x) =

∑
k fk(x, . . . , x)

the corresponding Maurer-Cartan element of B. Then, we have

ΨA(x) = ΨB(f∗(x)).

Proof. This can be checked from the Lemma 4.4 as in the case of the potential Φ.
We leave the details to the readers.

Now, we discuss the potential Ψ and the algebraic generalized holonomy map. We
refer readers to [ATZ] or [CL] for the relevant definitions of this construction.

First, recall from Proposition 6.1 of [CL] that given a negative cyclic cohomology
class α of an A∞-algebra A, one obtains a bimodule map α̃0 : A→ A∗. This provides
a strong homotopy inner product, if α is, in addition, homologically non-degenerate.
Definition 1.4 thus provides the potential Ψα using α. Combined with the above
proposition, we prove

Theorem 4.7. The potential Ψ provides a map Ψ: HC•
−(A)→ O(MC) defined by

α 7→ Ψα|MC . Furthermore, this agrees with the algebraic analogue of generalized hol-
onomy map of Abbaspour, Tradler and Zeinalian [ATZ].

Proof. We only need to prove the relation with that of [ATZ], and we recall the
construction of a map ρ : HC•

−(A)→ O(MC). Here we always work with reduced
versions of negative cyclic or Hochschild (co)homologies.

Given a Maurer-Cartan element a of a unitalA∞-algebraA, consider the expression
(Definition 8 of [ATZ])

P (a) :=
∑
i>0

I ⊗ a⊗i = (I ⊗ I) + (I ⊗ a) + (I ⊗ a⊗ a) + · · · .

One can check that P (a) is a Hochschild homology cycle from the unital property of
I and the Maurer-Cartan equation. Note that the Connes-Tsygan operator B of P (a)
vanishes on the reduced complex, due to the unit I. Hence, P (a) can be considered
as a negative cyclic homology cycle.

Hence, given a negative cyclic cohomology cycle α ∈ HC•
−(A), one can use the

pairing 〈, 〉 : HC•
−(A)⊗HC−

• (A)→ k to define the map ρ as

ρ([α])([a]) :=
〈
α,

∑
i>0

I ⊗ a⊗i
〉
.

Now, we compare the above expression with that of Lemma 4.4. We recall the
following proposition from [CL]:
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Proposition 4.8 ([CL, Proposition 6.1]). Let α ∈ C•
red(A,A

∗) be a negative cyclic
cocycle. We define

α̃0(~a, v,~b)(w) := α0(~a, v,~b)(w)− α0(~b, w,~a)(v).

Then α̃0 is an A∞-bimodule map from A to A∗, satisfying the skew-symmetry and
closedness condition.

Negative cyclic cocycles lie in the 2nd and 3rd quadrant of the (b∗, B∗)-bicomplex
(see (2.12) of [CL]) including the 0-th column (y-axis). By α0, we mean the 0-th
column of α in the (b∗, B∗)-bicomplex. It is easy to see that Hochschild cocycles
(Ker b∗) at the 0-th column become negative cyclic cocycles. For a general negative
cyclic cocycle α, b∗α0 may not vanish, but equals B∗α1, and it is shown in [CL] that

B̃∗α1 = 0.
Also, from the unital property, we have

α̃0(a, a, . . . , a)(I) = α0(a, . . . , a)(I)− α0(a, . . . , a, I)(a) = α0(a, . . . , a)(I).

Hence,

〈α, I ⊗ a⊗i〉 = 〈α0, I ⊗ a⊗i〉 = α0(a, . . . , a)(I) = α̃0(a, a, . . . , a)(I) = 〈a, a, . . . , a | I〉,

where the second equality follows from the identification

Hom(A⊗ (A[1]/k · 1)⊗n, k) ∼= Hom((A[1]/k · 1)⊗n, A∗).

Hence, each term of the function ρ of [ATZ] equals the potential Ψ in the paper given
in the Lemma 4.4. This proves the theorem.

Remark 4.9. From [CL], one can observe that the homological non-degeneracy condi-
tion is well-defined for negative cyclic cohomology classes (independent of cobound-
ary), and it is shown there that the negative cyclic cohomology class (with homo-
logical non-degeneracy) determines an equivalence class of strong homotopy inner
products. The value of potential at Maurer-Cartan elements are well-defined up to
equivalence classes of strong homotopy inner product from the Lemma 4.6. Thus the
map Ψ: HC•

−(A)→ O(MC), when restricted to the subset with homological non-
degeneracy conditions, factors through the equivalence classes of strong homotopy
inner products.
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