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THE ISOMORPHISM CONJECTURE IN L-THEORY:
GRAPHS OF GROUPS

S.K. ROUSHON
(communicated by Jonathan M. Rosenberg)

Abstract

We study the fibered isomorphism conjecture of Farrell and
Jones in L-theory for groups acting on trees. In several cases we
prove the conjecture. This includes wreath products of abelian
groups and free metabelian groups. We also deduce the conjec-
ture in pseudoisotopy theory for these groups. Finally in 2. of
Theorem 1.2, we prove the L-theory version of Theorem 1.2 in
the 2003 paper by Farrell and Linnell.

1. Introduction and statements of results

The classification problem for high-dimensional manifolds needs the study of two
classes of obstruction groups. One is the lower K-groups (that is, K-theory in dimen-
sion < 1) (pseudoisotopy-theory), and the other is the surgery L-groups (surgery
theory) of the group ring of the fundamental group. The Farrell-Jones isomorphism
conjecture gives a unified approach for computations and understanding of both these
classes of groups. If this conjecture is true for the pseudoisotopy theory as well as for
the surgery theory, then other results for example, the Borel conjecture, the Novikov
conjecture and the Hsiang conjecture will be immediate consequences (see [9]). The
Farrell-Jones conjecture predicts that one needs to consider only virtually cyclic sub-
groups of a group for computations of the above obstruction groups of the group.

In this second article we are concerned about the fibered isomorphism conjecture
in surgery theory for groups acting (without inversion) on trees or equivalently for the
fundamental groups of graphs of groups. Also, we prove the conjecture for a certain
class of virtually solvable groups in both the pseudoisotopy and surgery theory. The
fibered isomorphism conjecture in surgery theory for various classes of groups were
proved in [15]. Also, some machinery was set up in [15] which are crucial in this
paper.

The fibered isomorphism conjecture is stronger and has the hereditary property.
Also, it allows one to consider groups with torsion in induction steps, although the
final aim is to prove results for torsion free groups. This technique was first used
in [8] to prove the conjecture in the pseudoisotopy case for Artin full braid groups.
The general methods in [14] and [15] extend this feature further by considering the
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conjecture always for groups wreath products with finite groups. This simplifies proofs
and proves stronger results.

In most of our results of the fibered isomorphism conjecture in the equivariant
homology theory ([2]), we need the assumption that ,:7ve, Pye and Lye (see Defi-
nition 2.2) are satisfied. We checked before that these conditions are satisfied for the
L{=>) and for the pseudoisotopy version of the conjecture. (See [14] and [15].) In [4,
Theorem 0.1] it is included that Lye and Py¢ are satisfied for the K-theory case of
the conjecture.

Formally, the conjecture in surgery theory says that a certain assembly map in
L{=)_theory is an isomorphism. A weaker version of the conjecture is that the
assembly map is an isomorphism after tensoring with Z[%} This eliminates the UNiL
groups of Cappell, and the tensored assembly map can be proven to be an isomor-
phism for a larger class of groups. In addition to some general results, we also prove
the isomorphism of this tensored assembly map for a large class of groups acting on
trees.

For two groups G and H, G!H denotes the (restricted) wreath product with
respect to the regular action of H on G¥. By definition, G denotes the group
under coordinatewise multiplication of the tuples {{gn}ren | gn € Gp, for h € H and
gn, = 1 for all but finitely many h € H}, where G}’s are the copies of G indexed by
H. And the action of H on G is such that A’ € H sends an element of G}, to the
corresponding element of G, jry-1.

If the fibered isomorphism conjecture is true for G F' for all finite groups F' for
the L= L[{7®) = (=) g, Z[%] or for the pseudoisotopy theory, then we say
respectively that the FICwFE, FICwFL or FICWF?Y is true for G.

Throughout the article a ‘graph’ is assumed to be connected and locally finite, and
groups are assumed to be discrete and countable.

Definition 1.1. A finitely generated group G is called closely crystallographic if it
is of the form A x C, where A is torsion free abelian, C' is infinite cyclic and A is
irreducible as a Q[C]-module.

When C' is virtually cyclic then G was defined as nearly crystallographic in [7,
Definition].
Our first theorem is the following:

Theorem 1.2.

1. Let G be a group which contains a subgroup H of finite index so that H belongs
to one of the following classes:
(i) Al B where A and B are both abelian.
(i) Free metabelian groups. That is, it is the quotient of a free group by its
second derived subgroup.
(iii) A X Z, where A is torsion abelian.

Then the FICwF and the FICwFT are satisfied for G.
2. If the FICwFY (FICwF?Y ) is true for all closely crystallographic groups, then
the FICwFY (FICwFY ) is true for all virtually solvable groups.

Remark 1.3. It is not yet known if the fibered isomorphism conjecture is true for
all metabelian groups. The simplest case for which it is unknown is Z[3] x Z, where
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the action of Z on Z[1] is multiplication by 2. One can show that Z[3] x Z can not
be embedded in A! B where A and B are both abelian. I thank Chuck Miller for
explaining this fact to me. On the other hand, by a result of Magnus, free metabelian
groups can be embedded in such a wreath product.

Although our method does not work to deduce the fibered isomorphism conjecture
in the closely crystallographic case, the isomorphism conjecture can be proved for
these groups in surgery theory for all the decorations.

Theorem 1.4. The isomorphism conjecture in L*-theory is true for closely crystal-
lographic groups where i = (—oo), h or s.

Remark 1.5. Here we recall that in [7, Theorem 1.2] it was proved that the fibered
isomorphism conjecture in the pseudoisotopy theory is true for any virtually solv-
able groups if the same is true for any nearly crystallographic groups. Thus B of
Theorem 1.2 is the L-theory version of [7, Theorem 1.2].

The following is an Important Assertion in the fibered isomorphism conjecture. In
general it is not yet known.

TA(K). K is a normal subgroup of a group G with infinite cyclic quotient. If the
FICwFyc(K) is satisfied, then the FICwFyc(QG) is also satisfied.

Theorem 1.6. Let G be a graph of groups with finite edge groups.

1. If the vertex groups are residually finite and the FICwFL is true for the vertex
groups of G, then the FICwF is true for m,(G).

2. Assume that there is a homomorphism f: 71(G) — Q. Then the following state-
ments hold:

(i) If the kernels of the restriction of f to the vertex groups of G are finitely
generated, residually finite and satisfy the FICwF, then the FICwFT is
true for m(G) provided the same is true for Q and the IA(V) is satisfied
for all vertex groups V of G in the L-theory case.

(i) If the kernels of the restriction of f to the vertex groups of G are virtually
polycyclic and the FICwFY is true for Q, then the FICwF® is true for
m1(G).

Let us now recall from [14] the following definitions: Vg and Eg denote respectively
the set of all vertices and edges of a graph of groups G. G, denotes a vertex or an edge
group for x a vertex or an edge respectively. An edge e of G is called a finite edge if
the edge group G. is finite. G is called almost a tree of groups if there are finite edges
€1,€s,... so that the components of G — {ej, es,...} are trees. If we remove all the
finite edges from a graph of groups, then we call the components of the resulting graph
component subgraphs. A graph of groups G is said to satisfy the intersection property
if for each connected subgraph of groups G’ of G, Neep,, G, contains a subgroup
which is normal in m(G’) and is of finite index in some edge group. A group G
is called subgroup separable if for any finitely generated subgroup H of G and for
any g € G — H there is a finite index normal subgroup N of G so that H C N and
geG—N.
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Theorem 1.7. The FICwFT is true for m1(G) where G satisfies one of the following:
1. G is a graph of poly-cyclic groups with intersection property.
2. G is a graph of finitely generated nilpotent groups with w1 (G) subgroup separable.

3. The vertex groups are virtually cyclic, and any component subgraph is either a
single vertex or a tree of abelian groups.

4. The vertex and edge groups of any component subgraph are finitely generated
abelian and of the same rank, and any component subgraph is a tree.

Finally we state our results in the L<7°°>—theory case.

Let D be a class of groups which is closed under isomorphism. For a graph G we
denote by Dg the class of graphs of groups whose vertex and edge groups belong to
D and the underlying graph is G.

Theorem 1.8.
1. If the FICwFE (7 (T)) is satisfied for all tree of groups T, then the

FICwFE(r,(G))

1s satisfied for all graph of groups G.

2. If the FICwFL(7\(H)) is satisfied for all H € Dy and for all tree T, then the
FICwFY(my(H)) is satisfied for all H € Dg and for all graphs G.

Theorem 1.9. If G is a graph of finitely generated abelian groups, then the FICwF%
is true for w1 (G).

Theorem 1.10. Let G be a graph of groups with finite edge groups.

1. If the vertex groups are residually finite and the FICwFL is true for the vertex
groups of G, then the FICwFZL is true for 71 (G).

2. Assume that there is a homomorphism f: 71(G) — Q and the FICwFE is true

for Q. If the kernels of the restriction of f to the vertex groups of G are residually
finite and satisfy the FICwF., then the FICwFL is true for m1(G).

Acknowledgements

I would like to thank F.T. Farrell for some helpful e-mail communications. Also, I
am grateful to Wolfgang Liick for pointing out an error in a preprint which initiated
some of the results in this paper.

2. Statement of the isomorphism conjecture and some basic
results

Now we proceed to describe the formal statement of the conjecture (see [2]) and
introduce some notations.

Let H’ be an equivariant homology theory with values in R-modules for R a
commutative associative ring with unit. In this article we are considering the special
case R=17.
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In this section we always assume that a class of groups C is closed under isomor-
phisms, taking subgroups and taking quotients. We denote by C(G) the set of all
subgroups of a group G which belong to C. In this case C(G) is said to be a family of
subgroups of G. Tt follows that C(G) is closed under taking subgroups and conjugation.

Given a group homomorphism ¢: G — H and C a family of subgroups of H define
¢*C by the family of subgroups {K < G | ¢(K) € C} of G. For a family C of subgroups
of a group G there is a G-CW complex E¢(G), which is unique up to G-equivalence,
satisfying the property that for each H € C the fixpoint set E¢(G)¥ is contractible
and Ec(G) = ) for H not in C.

The isomorphism conjecture for the pair (G, C) states that the projection p: E¢(G)
— pt to the point pt induces an isomorphism

HE (p): HE (Ec(G)) = HE (pt)

for n € Z.
And the fibered isomorphism conjecture for the pair (G, C) states that for any group
homomorphism ¢: K — G the isomorphism conjecture is true for the pair (K, ¢*C).

Definition 2.1 ([14, Definition 2.1]). Let C be a class of groups. If the (fibered)
isomorphism conjecture is true for the pair (G,C(G)), then we say that the (F)IC,
is true for G or simply say (F)IC,(G) is satisfied. We also say that the (F)ICwF,(G)
is satisfied if the (F)IC,, is true for G H for any finite group H.

Clearly, if H € C then the (F)IC¢(H) is satisfied.
Let us denote by P, L and L, the equivariant homology theories that arise for
the pseudoisotopy theory, L<7°°>—theory and for the L{~°-theory respectively. We

also denote the corresponding conjectures with respect to the class of groups VC by
(F)ICX ((F)ICwF*) where X = P, L or L.

Definition 2.2 ([14, Definition 2.2]). We say that .,+T¢ (wf7c) is satisfied if, for a
graph of groups G with trivial (finite) edge groups and the vertex groups belonging
to the class C, the FICwF¢ for 71(G) is true. And ,,7¢ stands for the same property
without any restriction on the edge groups.

Also, we say that Pe is satisfied if for G1, Gy € C the product G; x G4 satisfies the
FICe.

We further say that L¢ is satisfied if for any directed sequence of groups {G}icr
for which the FIC¢(G;) is satisfied for ¢ € I, then the FIC¢(lim;c; G;) is satisfied.

We denote the above properties for the equivariant homology theories P, L and L
with a superscript by the corresponding theory. For example, P¢ for L is denoted by
PE.

We now recall some results we need to prove the theorems.

Lemma 2.3. Assume that Lc is satisfied. If for a directed sequence of groups {G}ier
the FICwF¢(G;) is satisfied for i € I, then the FICwF¢ is true for lim;cr G;.

Proof. Given a finite group F note the following equality:
(i) 2P = (@),

The proof now follows. O
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The following is easy to prove and is known as the hereditary property of the
fibered isomorphism conjecture:

Lemma 2.4. If the FIC: (FICwF¢) is true for a group G, then the FICe (FICwF¢)
is true for any subgroup H of G.

Lemma 2.5 ([15, Lemma 2.2]). Assume that Pc is satisfied.

1. If Gy and Gy satisfy the FIC: (FICwFc), then Gi X Gy satisfies the FICe
(FICwF¢ ).

2. Let G be a finite index subgroup of a group K. If the group G satisfies the
FICwFe, then K also satisfies the FICwFe.

3. Let p: G — Q be a group homomorphism. If the FICwF¢ is true for Q and for
p L (H) for all H € C(Q), then the FICwF¢ is true for G. If C = VC, then using
2. it is enough to consider H € C(Q) to be infinite cyclic.

Lemma 2.6 ([14, Corollary 5.3] and [15, Lemma 2.11]). The properties Ph., Phe,
L L .
Pye and Prry are satisfied.

Lemma 2.7 ([14, Corollary 2.1] and [15, Lemma 2.14]). The properties Ty,
TErns wiTe and o Ty are satisfied.

The proofs of the properties P and 7 in the L-theory case were given in [15], [6,
Theorem 2.1 and Remark 2.1.3]. See Remark 5.4 regarding the present status of the
proof of [6, Theorem 2.1 and Remark 2.1.3]. Here we sketch alternate proofs of the
above properties using some recent results of Bartels and Liick in [3]. In fact we can
even prove ,fTyk.

Alternate proofs of P, wT]_%N and 5. The proofs of these facts in the pseu-
doisotopy case of the fibered isomorphism conjecture were given in [14]. The same
proofs also apply in the L-theory case if we use [3]. We describe below the changes
required.

For P, replace P by L and use [3, Theorem B] in the proof of [14, Corollary 5.3].
Also see [16, Section 3] for more on this matter.

For a proof of ;7% use the last paragraph of the proof of [14, Proposition 2.4]
after replacing P by L and use [3, Theorem B]. We also need to use some basic
deductions from [16, Section 3]. The proof of the second property is immediate. [

For the proof of wfﬂ)LC we again use the proof of [14, Proposition 2.4].
The following lemma is another ingredient for the proofs of the theorems.

Lemma 2.8 ([7, Theorem 7.1]). The properties L., LL., E%C and ‘C.%'IN are sat-
isfied.

Finally we recall the following two lemmas:

Lemma 2.9 ([14, Lemma 6.3]). Assume that Pc and +Tc are satisfied. If the
FICwF¢ is true for Gy and Ga, then the FICwF¢ is true for G x Gs.

Lemma 2.10. Let FIN C C and assume that Pe, Lc and :Tc are satisfied. Then
the FICwF¢ is true for G where G is either a virtually abelian group or a virtually
free group.
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Proof. By Lemma 2.3 we can assume that the group G is finitely generated. At first
assume that G is virtually abelian. Using 2. of Lemma 2.5 we reduce to the case of
finitely generated abelian groups. Since FZA C C and since the conjecture is true
for members of C, it is enough to prove the lemma for finitely generated free abelian
groups. Now 1. of Lemma 2.5 implies that we need to consider only the infinite cyclic
group. Since the fundamental group of a graph of groups with trivial stabilizers is a
free group, we are done using ,,;7¢ and Lemma 2.4.

Next assume that G is finitely generated and virtually free. Again using 2. of
Lemma 2.5 it is enough to assume that G is a finitely generated free group. Now note
that a free group is isomorphic to the fundamental group of a graph of groups whose
vertex groups are trivial. Hence using ,,;7¢c we complete the proof. O

3. Proofs of the theorems

For the proof of Theorem 1.2 we prove the following theorem for the conjecture in
equivariant homology theory. The advantage of this general statement is that it works
for the conjecture in any equivariant homology theory, and to prove Theorem 1.2 we
just have to show that the hypotheses are satisfied both for the pseudoisotopy case
and for the L{~>°)-theory case.

Theorem 3.1. Assume that ;Tyvc, Pye and Ly are satisfied. Then the following
hold:

1. The FICwFy¢ is true for G if G contains AU B as a subgroup of finite indez,
where A and B are abelian groups.

The FICwFyc¢ is true for any virtually free metabelian group.
3. The FICwFy¢ is true for A x Z where A is torsion abelian.

The FICwFyc is true for any virtually solvable group provided it is true for
any closely crystallographic group.

Remark 3.2. In the algebraic K-theory version of the conjecture, Pyc and Ly¢ are
known. (See [4, Theorem 0.1].) But it is not yet known if ,,; Tyc is also satisfied. If this
is the case, then, together with the results in this paper, most of the results from [14]
and [15] will be true for the fibered isomorphism conjecture in algebraic K-theory.

Here we should recall that it was proved in [7, Lemma 4.3] that the pseudoisotopy
version of the fibered isomorphism conjecture is true for (Z"1Z) F, where F' is a
finite group. That is, the FICwF® is true for Z" 1 Z.

We now begin the proof of Theorem 3.1.

Using 2. of Lemma 2.5 it is enough to prove the FICwFy, for A{ B, where B
is infinite for free metabelian groups and for solvable groups under the respective
hypotheses as in 1., 2. and 3. Also, we will use the fact that the FICwF¢ is true for
virtually abelian groups during the proof. See Lemma 2.10.

Proof of 1. At first we reduce the situation to the case AlZ. Let B = lim;c; Bj,
where {B;} is an increasing sequence of finitely generated subgroups of B. Then we
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get the following equality:
A B =lim(A1 Bj).
jeJ

Therefore, from now on we can assume that B is finitely generated. If B has rank
equal to k, then B = Z* x F; where F} is finite. Hence A B contains AL XPy 7k —
AP ) ZF as a subgroup of finite index. Therefore we can use 2. of Lemma 2.5 to
reduce the situation to the case A ZF. If k > 2 then note the following equality: Let
7% = By x By where B; and B, are both nontrivial. Then

AU(By x By) = APY*B2 5 (B x By) < (AB1*B2 x By) x (AP1*B2 » By)
~ (A32 ?Bl) X (ABl ZBQ)
In the above display, for i = 1,2, the action of B; on AP1*B2 is the restriction of
the regular action of By x By on AB1*5B2_ Note that the restricted action of By (Bs)

is again regular on (AP2)B1 ((AP1)B2). And the second inequality is easily checked
by showing that the map

AB1XB2 5 (B) x By) — (AP1*B2 5 B)) x (AP *B2 » By)
defined by
(337 (b17 b2)) — ((x7b1)7 (l‘, b2))

for x € AB1*B2 and (by,by) € By x By is an injective homomorphism.

Therefore, using 1. of Lemma 2.5 and by the hereditary property, it is enough to
prove the FICwF ¢ for groups of the form A!Z where A is abelian.

Since A is countable abelian we can write it as a limit of finitely generated
abelian subgroups A;. Now note that A1Z = (lim;ey A;) 1 Z = lim;er(A; 1 Z). Hence
by Lemma 2.3 it is enough to prove the FICwFy¢ for A4; 1 Z.

Therefore, from now on we can assume that A is finitely generated.

Next note the equality in the following lemma. This was obtained in the proof
of [7, Lemma 4.3].

Lemma 3.3. Let A be an abelian group. Then the following equality holds:

A7 = lim (A" s 40),
n—oo

where the HNN extension A" x40 = H,, (say) is obtained using the following inclu-
stons:

iji A" — AT
i1(at, ... an) = (a1,...,an,0),
ig(at,...,an) — (0,a1,...,a,).
Again by Lemma 2.3 we need to prove the FICwFy¢ for H,.
We have a surjective homomorphism p: H,, — A""! x, Z = H,, (say), where
afar,. .. ant1) = (Apt1,01, .-, Qp)-

Recall that A is a finitely generated abelian group. Let B be a finitely generated
free abelian subgroup of A of finite index. Clearly, o leaves B"*! invariant. Therefore,
B"t %, 7Z =G, (say) is a finite index subgroup of H,. Hence p~1(G,,) is a finite
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index subgroup of H,. Obviously p~1(G,,) = B"*lxg. = G,, (say), where the HNN
extension G, is obtained by the same maps i; as we defined above.

We now use 2. of Lemma 2.5 to reduce the situation to G,,. That is, we need to
prove the FICwFy¢ for G,,. We would like to apply 3. of Lemma 2.5 to p: G,, = G,,.
From now on we follow the proof of Lemma 4.3 in [7, page 314].

Let C be a virtually cyclic subgroup of G,,. Since G,, is torsion free, C is either
trivial or infinite cyclic.

Since G, is an HNN-extension it acts on a tree with vertex stabilizer conjugates of
B"! and edge stabilizers conjugates of B™. Therefore ker(p) also acts on this tree,
and it follows that the stabilizers of this restricted action are trivial. Hence ker(p) is
a free group by [14, Lemma 3.2].

When C is infinite cyclic then in the proof of [7, Lemma 4.3] (see paragraphs 2 and
3 in [7, page 316)), it was deduced that p~1(C) is a direct limit of finitely generated
subgroups C; (say) so that each C; is a subgroup of a finite free product K x - -« * K|
where K is isomorphic to a direct product of a finitely generated free group and an
infinite cyclic group.

Now since ¢ Tyc is satisfied the FICwFy¢ is true for free groups. See Lemma 2.10.
Therefore the FICwF ¢ is true for ker(p). Also, by Lemma 2.9, the FICwFy,¢ is true
for the free product of two groups if the FICwFy¢ is true for each free summand
and .+ Tyc and Pyc are satisfied. Therefore, in addition, using 1. of Lemma 2.5 we
deduce that the FICwFy¢ is true for K * - -+ x K and hence for C; also by Lemma 2.4.
Finally, by Lemma 2.3, we conclude that the FICwFy is true for p~1(C).

Therefore G,, satisfies the FICwFy¢ for each n. This completes the proof of 1. [

Proof of 2. Let G be a free metabelian group. Then the Magnus Embedding Theorem
([11]) says that G can be embedded as a subgroup of a group of the form A B where
A and B are abelian. The proof of 2. now follows from 1. using Lemma 2.4. O

Proof of 8. The proof follows the steps of the proof of [7, Corollary 4.2].

Using Lemma 2.3 we assume that G = Al Z is finitely generated. This makes A
a finitely generated Z[Z]-module via the conjugation action of G on A. Hence A has
finite exponent.

Let us first assume that we have proved the result when this exponent is a prime.
To complete the proof we now use induction on the exponent, say 7. If 7 =1 then
there is nothing to prove. So assume 7 = pq > 2 and p is a prime. Note that pA is a
normal subgroup of G, and hence we have the following two exact sequences:

1-opA—>G—>Gy—1,

1= A/pA—- G —-Z — 1.

Note that the exponent of A/pA is p, and hence the FICwFy¢ is true for G by
assumption. Next, the exponent of pA is ¢ < 7, and hence by the induction hypothesis
and applying 3. of Lemma 2.5 to the homomorphism G — G; we are done.

Let us now assume that the exponent of A is a prime p and complete the proof.
This makes A a finitely generated Z,[Z]-module. Since Z,[Z] is a PID, A has a
decomposition in free part and torsion part as a Z,[Z]-module. Let Ay be the free
part. Then A is a normal subgroup of G. Let C' be an infinite cyclic subgroup of G
which goes onto Z under the map G — Z. Then AyC' is a finite index subgroup of
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G, and also AgC =~ Z; 1 Z, where n is the rank of Ay as a free Zy[Z]-module. Hence
using 2. of Lemma 2.5 we are done once we show that the FICwFyc is true for Zj 1 Z.
Let B =Z;. Then by Lemma 3.3 we have the following equality:
Bl1Z~ lim B**!sp. .
k—o0
Next note that B¥t1x . is finitely generated and isomorphic to the fundamental
group of a graph of finite groups and hence contains a free subgroup of finite index
(see [14, Lemma 3.2]). Finally, using Theorem 1.9, we complete the proof. O

Proof of 4. The proof uses the method of the proof of [7, Corollary 4.4].

For a solvable group G we say that it is n-step solvable if G() = (1) and G(*~1) #
(1), where G denotes the i-th derived subgroup of G.

Let G be an n-step solvable group. The proof of 4. is by induction on n. So assume
that if the FICwF ¢ is true for all closely crystallographic groups, then it is true for
all k-step solvable groups for £ < n — 1.

We have an exact sequence 1 — G — G — G/G® — 1. By 3. of Lemma 2.5 and
by the induction hypothesis it is enough to prove the FICwFy,¢ for 2-step solvable
groups, since for any infinite cyclic subgroup of G/G(? the inverse image under the
quotient map G — G/G®?) is an (n — 1)-step solvable group.

Therefore we have reduced the proof to the following situation:

1-6% 56 —-aG/GY 1.

Here GV and G/G™ are both abelian.

By Lemma 2.10 we can assume that G/G() is infinite. Again applying 3. of
Lemma 2.5 to the map G — G/G™), we see that it is enough to prove the FICwF
for the group G = A X Z where A is an abelian group.

Let A7 be the subgroup of A consisting of all elements of finite order. Then Ar is
a characteristic subgroup of A, and hence we have an exact sequence

1= Ar -G — G/Ap — 1.

Note that G/Ar ~ (A/Ar) % Z.
Therefore, by 2. and 3. of Lemma 2.5, it is enough to prove the FICwFy¢ for G
for the following two individual cases:

Case (a). A is torsion abelian.
Case (b). A is torsion free abelian.

Proof of Case (a). This case is the same as 2. of Theorem 3.1. O

Proof of Case (b). Note that by Lemma 2.3 we may assume that A is finitely gen-
erated as a Q[Z]-module (see the proof of [7, Corollary 4.4]). As Q[Z] is a principal
ideal domain, A ~ X @Y, where X is the sum of free and Y is the sum of finite
Q-dimensional Q[Z]-submodules of A. Let m =dimY and n be the number of free
parts in X. Note that Y is a normal subgroup of G. The proof is now by induction
first on n and then on m. If m = n = 0 then G is infinite cyclic so there is nothing to
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prove. So assume that n = 0 and m > 0. Let Y be an irreducible Q[Z]-submodule of
Y. Then we have an exact sequence

1-2Yy—>G—=G/Yy— 1

By induction and by 2. and 3. of Lemma 2.5 it is enough to prove the FICwFy¢ for
Yo x Z, which is true by hypothesis since Yy x Z is a closely crystallographic group.

Next assume that n > 0. Then it follows that G/Y is isomorphic to Q™ ¢ Z for which
1. shows that the FICwF ¢ is true. Now again we apply 2. and 3. of Lemma 2.5 to
the homomorphism G — G/Y, and hence we need only to show the FICwFy,¢ when
G/Y is infinite cyclic. But this is again the case n = 0 treated above. O

This completes the proof of 4. of Theorem 3.1. O

Proof of Theorem 1.2. The proof is immediate from Theorem 3.1, Lemmas 2.6, 2.7
and 2.8. O

Proof of Theorem 1.4. Let G be a closely crystallographic group. Recall that then
G is nearly crystallographic. Since nearly crystallographic groups are linear (see the
paragraph after |7, Definition]), the following hold by [7, Theorem 1.1] and the dis-
cussion following it:

for all negative integers 3.

Let G = A xZ where A is torsion free abelian. Since A is a direct limit of its
finitely generated subgroups and since the functors in the above display commute
with direct limit, the display also holds if we replace G by A.

As the Whitehead groups of the groups (G and A) we are considering vanish, the
surgery L-groups of these groups with different decorations coincide. Therefore, we
denote the surgery groups by the simple notation L, (—).

Let us first show that the non-connective assembly map in L-theory is an isomor-
phism for G. That is,

Efn([((G’7 1)7L0) — Ln(Z[G])

is an isomorphism.

Since the isomorphism of the above assembly map is invariant under taking direct
limit of groups and since the map is an isomorphism for finitely generated free abelian
groups ([5]), it follows that H, (K (A,1),L,) — L,(Z[A]) is also an isomorphism.

Let us now recall the following Ranicki’s Mayer-Vietoris type exact sequence of
surgery groups ([12]) for G:

oo = Lpy1(G) = Ly(A) = Lp(A) = L (G) — -+ .

There is a similar exact sequence for the homology theory H,(—,L,). Now, since
the assembly map is natural, a five lemma argument implies that H, (K (G,1),L,) —
L, (Z]|G]) is an isomorphism.

Next, the above K-theoretic vanishing result and an application of the Rothen-
berg’s exact sequence (see the proof of Corollary 5.3) imply that the ICE'(G) is
satisfied for ¢ = (—o0), h or s. O

We now begin the proof of Theorem 1.6.
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Proof of 1. 1. is an immediate consequence of [14, (1) of Proposition 2.2] and Lem-
mas 2.6, 2.7 and 2.8. Recall that in [14, (1) of Proposition 2.2] we assumed that
the equivariant homology theory should be continuous when the graph of groups is
infinite. But there this continuity assumption was used to get Lemma 2.8 for the
corresponding homology theory. Since we have noted that for L-theory Lemma 2.8 is
true, we do not need this assumption here. O

Proof of 2.(i). 2.(i) follows using Lemmas 2.6, 2.7 and 2.8 and the following Propo-
sition 3.4. O

Proof of 2.(i1). At first recall that virtually polycyclic groups are residually finite,
and the FICwFZ is true for virtually polycyclic groups by [15, Theorem 1.1 and (iv)
of Theorem 1.3]. Also, note that by the same result, IA(K) is true in the L-theory
case for any virtually polycyclic group K. This completes the proof using 2.(ii). O

Proposition 3.4. Assume the same hypotheses as in 2.(i) of Theorem 1.6 replacing
L by an arbitrary equivariant homology theory and, in addition, assume that Ty,
Pye and Ly are satisfied. Then the FICwFye is true for m(G).

Proof. We need to apply 3. of Lemma 2.5 to the homomorphism f: m1(G) — Q. Let
C be an infinite cyclic subgroup of Q. Then f~1(C) is isomorphic to the fundamental
group of a graph of groups whose edge groups are finite, and vertex groups are
subgroups of groups of the form K x Z, where K is finitely generated and residually
finite and by IA(K) K x Z satisfies the FICwFy¢. The proof will be completed by [14,
(1) of Proposition 2.2] once we show that K X Z is residually finite. We apply [14,
Lemma 4.2]. That is, we have to show that given any finite index subgroup K’ of
K there is a (finite index) subgroup K" of K’ which is normal in K x Z, and the
quotient (K x Z)/K" is residually finite. Since K is finitely generated we can find a
finite index characteristic subgroup K" (and hence normal in K x Z) of K contained
in K’. Then (K x Z)/K" is residually finite since it is virtually cyclic by [14, Lemma
6.1].

This completes the proof of the proposition. O

Proof of Theorem 1.7. The proofs of 1. and 2. follow using the following:
(i) Finitely generated nilpotent groups are virtually polycyclic.
(ii) Lemmas 2.6, 2.7 and 2.8.

(iii) [14, (3) of Proposition 2.2], which says that the statements 1. and 2. are true
for general equivariant homology theories . if H’ is continuous and Pyc and
wt Tyc are satisfied. In the proof of [14, (3) of Proposition 2.2] we needed the fact
that Lyc is satisfied which is implied by the hypothesis that #H’ is continuous
(see [14, Proposition 5.1]). This completes the argument using the previous
item.

The proof of 3. follows from the following: At first assume that the graph of groups
is finite which we can by Lemma 2.8.

(i) m(G) ~ m1(H), where H is a graph of groups whose edge groups are finite and
each vertex group is either virtually cyclic or fundamental group of a tree of
infinite virtually cyclic abelian groups. See [14, Lemma 3.1].
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(ii) The vertex groups of H are residually finite. See [14, Lemma 4.4].

(iii) The vertex groups satisfy FICwFX. Use 1. and [14, Lemma 3.5] which implies
that the graph of groups G has the intersection property.

For the proof of 4. we need the following;:
(i) Lemmas 2.6, 2.7 and 2.8.

(ii) ([14, 2(i) of Proposition 2.3]). Here note that for the proof of [14, 2(i) of Propo-
sition 2.3] we needed that the FICwFy¢ is true for Z™ x Z for all n, which is
the case for the FICwF” [15, Theorem 1.1 and (iv) of Theorem 1.3].

This completes the proof of Theorem 1.7. O

Proof of Theorem 1.8. Let G be a graph of groups. If G is a tree then there is nothing
to prove. So assume that it is not a tree. Then there is a surjective homomorphism
f:m(G) = F where F is a countable free group, and the kernel of f is a tree of groups
(the universal covering graph of groups of G). Now using the hypothesis, Lemma 2.10
and 2. and 3. of Lemma 2.5 we complete the proof of 1.

For the proof of 2. we just need to note that the universal covering graph of groups
of G is a tree of groups whose class of vertex and edge groups is same as that of G. [

Proof of Theorem 1.9. By 2. of Theorem 1.8 we can assume that the graph of groups
is a tree of finitely generated abelian groups. Next, by [14, Lemma 3.3] there is a
surjective homomorphism p: 71(G) — Hi(m1(G),Z) so that the restriction of p to any
vertex group has trivial kernel. This implies that the kernel of p acts on a tree with
trivial stabilizers, and hence it is a free group. Now using 2. and 3. of Lemma 2.5 and
Lemma 2.10 we complete the proof. O

Proof of Theorem 1.10. The proof of 1. follows from Lemmas 2.6, 2.7, 2.8 and [14,
(1) of Proposition 2.2]. The proof of 2. is routine using 1. of Theorem 1.10 and 2.
and 3. of Lemma 2.5. The only fact we need to mention is that a virtually residually
finite group is residually finite. O

4. Some special cases

In this section we deduce some results for the following simple cases of graphs of
groups. This is contrary to the situation of ascending HNN extension for which the
fibered isomorphism conjecture is still not proved. The simplest case is the groups
Zxz, where the two inclusions Z — Z are identity and multiplication by 2. Note here
that Zsz = Z[1] x Z. See Remark 1.3.

Proposition 4.1. Let G and A be two groups. Let ij: A — G be two injective homo-
morphisms for j =1,2. Assume that there exists an automorphism o: G — G with
the property that a(ii(a)) = iz(a) for all a € A. Then the FICwFL is satisfied for
the HNN-extension Gk, (defined by the two homomorphisms i1 and iz) provided G
also satisfies the FICwFL,

Proposition 4.2. Let G1 and G4 be two groups. Let A be a group with two injec-
tive homomorphisms ij: A — G; for j =1,2. Assume that there is an isomorphism
a: Ghp — Gy with the property that a(iy(a)) =iz(a) for each a € A. Then the
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FICwFE is satisfied for the generalized free product Gy x4 Gy (defined by the two
homomorphisms iy and is) provided Gy (or Go) also satisfies the FICwFL.

The following is an immediate corollary of Proposition 4.2:

Corollary 4.3. Let M and P be two compact manifolds with nonempty connected
w1 -injective boundaries and let f: M — P be a homotopy equivalence so that
floar: OM — OP is a homeomorphism. Then the FICwFE is true for mi (M Up P) if
the FICwFX is true for m(M). Here M Uy P is the union of M and P glued along
the boundary via the map f.

Proof of Proposition 4.1. At first note that there is an obvious surjective homomor-
phism f: G4 — G X (t). Using 2. of Lemma 2.5 it follows that the FICwFZ is true
for G x (t) for any action of {t) over G. Now note that the group G*4 acts on a tree
with vertex groups conjugates of G and edge groups conjugates of A, and also that
the restrictions of f to the vertex groups are injective. Therefore 2. of Theorem 1.10
completes the proof. O

Proof of Proposition 4.2. Let us consider the free product G = G * G3. Then there
are two inclusions j; and js from A to G defined by i; and i9, and there is an
isomorphism &: G — G defined by « so that &(j1(a)) = j2(a). Next note that there
is an embedding G x4 G2 — Gx 4, where G x4 G5 is defined with respect to i; and
io and G* 4 is defined with respect to j; and jo. Hence by Lemma 2.4 it is enough to
prove the FICWFL for G 4. Since by Lemmas 2.6, 2.7 and 2.9 the FICWFZL is true
for G, we are done using Proposition 4.1. O

Remark 4.4. Propositions 4.1 and 4.2 can be proven for arbitrary homology theories
and with respect to the class FZN of finite groups if we add the extra assumptions
that ;Trzn and Lrzar are satisfied. We have already mentioned in the introduction
that +TFzn in the K-theory case is still not known.

5. Some consequences

The following are some of the well-known consequences of the isomorphism con-
jecture:

Corollary 5.1. If I is a torsion free group for which the fibered isomorphism con-
jecture in pseudoisotopy theory is true, then the following holds:

The Whitehead group Wh(T'), the lower K-groups K_;(ZT') for i > 1 and the
reduced projective class group Ko(ZT') vanish.

Corollary 5.2. In addition to the hypothesis of the previous corollary, if the isomor-
phism conjecture in L{=°°) -theory is also true for the group T', then the following
holds:

The following assembly map is an isomorphism for all n and for j = (—o0),h
and s:

H,(BI;L/(Z)) — LJ (ZI).
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Note that the above two corollaries give further evidence to the Whitehead con-
jecture and the integral Novikov conjecture respectively. The Whitehead conjecture
says that the Whitehead group of any torsion free group vanishes, and the integral
Novikov conjecture says that the above assembly map is split injective for torsion free
groups.

Corollaries 5.1 and 5.2 together imply the following:

Corollary 5.3 (Generalized Borel conjecture). Let M be a closed aspherical manifold
with w1 (M) isomorphic to G, where G satisfies the fibered isomorphism conjecture for
the pseudoisotopy and the L-theory cases. Then M x DF satisfies the Borel conjecture
for dim(M) +k > 5. That is, if f: N — M x D* is a homotopy equivalence from
another compact manifold so that flon: ON — M x S¥~1 is a homeomorphism, then
f is homotopic, relative to boundary, to a homeomorphism.

Finally we recall that, in our earlier works together with the present article, we
have proved the fibered isomorphism conjecture both for the pseudoisotopy theory
and for the L~(>)-theory for a large class of groups.

Below we sketch the proofs of the above corollaries.

The arguments for the proofs of Corollaries 5.1 and 5.2 and 5.3 are already in the
literature. We briefly recall the proofs and then refer to the original sources.

Proof of Corollary 5.1. See [6, 1.6.5]. Also see [8, Theorem D]. O

Proof of Corollary 5.2. The isomorphism conjecture in L{~°)-theory for torsion free
groups implies the isomorphism of the assembly map

H, (BT LY (2)) — LY(ZT)

for j = —oo. See [6, 1.6.1] for details.
Now recall the following Rothenberg exact sequence:

o L (R) - L () — (2% Ki(R)

S LY @R) - LY (R — -

n—1

where R = ZI" and i < 1. Recall that LY = L" and L$ ° is the limit of L. Now
using Corollary 5.1 and by a five lemma argument we get the isomorphism of the
assembly map

H,(BT;L"(Z)) — L"(z1).

Using a similar Rothenberg exact sequence which connects the surgery groups with h
and s decorations and the Tate cohomology which appears is with coefficient in the
Whitehead group, one can show the following isomorphism:

H,(BT;L*(Z)) — L; (ZT).
See [10, Section 1.5] for details and for other related features. O

Proof of Corollary 5.3. Let us first recall the surgery exact sequence. This sequence
is for simple homotopy types and for the surgery groups with the decoration ‘s’. Since
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the Whitehead group of the group G in the present situation vanishes, there is no
difference between ‘s’ and ‘h’, and therefore we do not use any decoration.

s = Hp (X5 Ly) = Lp(m(X)) = Sp(X) = Hyo1 (X5 L) — -+ -

where S, (—) is the total surgery obstruction group of Ranicki and Ly, is a 1-connective
Q-spectrum with O-space homotopically equivalent to G/TOP. If X is a compact
n-dimensional manifold (n > 5), then the following part of the above surgery exact
sequence

T Sn+2(X) — Hn+1(X§LO) — Ln+1(7rl(X>)

— Spy1(X) = Hy (X L) = Ly (mi (X))
is identified with the original surgery exact sequence

s STP(X x DY O(X x DY) — [X x DY, 9(X x D'); G/TOP, %]
= Lpy1(m (X)) = S™P(X) — [X;G/TOP] — Ly (71 (X)).

In particular, for an n-dimensional closed manifold X there is the following iden-
tification:

Sninr1(X) = STP(X x D* 9(X x DF)).

Here S™P(P,0P) denotes the structure set of a compact manifold P. When the
Whitehead group Wh(m;(P)) = (1) and dim(P) > 5 (which is the case in the present
situation), the structure set can be defined in the following simpler way: ST°P(P, 9P)
is the set of all equivalence classes of homotopy equivalences f: (N,0N) — (P,0P)
from compact manifolds (N, 9N) so that f|an: ON — OP is a homeomorphism. Here
two such maps f;: (N;, ON;) — (P,0P) for i = 1,2 are said to be equivalent if there is
a homeomorphism h: (N1,9N;) — (N2, ON3) so that f5 o his homotopic to f; relative
to boundary, that is, during the homotopy the map on the boundary is constant.

Next, there is a homomorphism Hy(X;L,) — H(X;L(Z)) which is an isomor-
phism for k > n and is injective for k = n.

Now using the fact that M is aspherical and applying Corollaries 5.1 and 5.2, we
see that ST°P(M x D*) contains only one element for n + k > 5. This completes the
proof of Corollary 5.3.

For some more details with related references, see [10, Theorem 1.28] or
6, 1.6.3]. O

Remark 5.4. In view of the footnote in [14, Introduction], we finally remark that [6,
Remark 2.1.3] is used in this paper in the following statements: 2.(ii) of Theorem 1.6,
1. and 2. of Theorem 1.7 and 4. of Theorem 1.7 when the vertex groups of any
component subgraph has rank > 1. The complete proof of [6, Remark 2.1.3] is given
in [1].
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