
Homology, Homotopy and Applications, vol. 13(2), 2011, pp.1–17

LIFTING OF MODEL STRUCTURES TO FIBRED CATEGORIES

ABHISHEK BANERJEE

(communicated by Charles A. Weibel)

Abstract
A fibred category consists of a functor p : N −→ M between

categories N andM such that objects ofNmay be “pulled back
along any arrow of M”. Given a fibred category p : N −→ M
and a model structure on the “base category” M, we show that
there exists a lifting of the model structure on M to a model
structure onN. We will refer to such a system as a “fibred model
category” and give several examples of such structures. We show
that, under certain conditions, right homotopies of maps in the
base category M may be lifted to right homotopic maps in the
fibred category. Further, we show that these lifted model struc-
tures are well behaved with respect to Quillen adjunctions and
Quillen equivalences. Finally, we show that if N and M carry
compatible closed monoidal structures and the functor p com-
mutes with colimits, then a Quillen pair on M lifts to a Quillen
pair on N.

1. Introduction

Model structures, first introduced by Quillen [1], provide an axiomatic setup for
Homotopy Theory. The category of chain complexes of modules over a ring, the
category of simplicial sets, the category of modules over a Frobenius ring and the
category of topological spaces all carry well-known model category structures (see,
for instance, [2]). The pursuit of defining model structures has been carried on to
various other categories, such as the category of modules over a group ring K[G]
(K being a commutative Gorenstein ring and G a finite group) (see Hovey [3]), the
category of chain complexes of quasi-coherent sheaves over a scheme (see Gillespie [4])
and the category of simplicial presheaves (see Jardine [5]).

In this paper, we introduce a method for defining model structures on a large class
of categories by describing a process whereby a model structure may be lifted from
a “base category” M to a category N “fibred over” M via a functor p : N −→ M.
Fibred categories, which first appeared in SGA-I [6], provide just the right axiomatic
framework for studying categories such as the category of presheaves over a given
category or the category of vector bundles over topological spaces.
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Consider, for instance, the categories VBn, n > 1 of n-dimensional (say complex)
vector bundles over the category Top of topological spaces. A map f : X −→ Y
of such spaces allows us to choose a pullback functor (unique up to isomorphism)
f∗ : VBn(Y ) −→ VBn(X) from the category VBn(Y ) of n-dimensional vector bun-
dles over Y to the category VBn(X) of n-dimensional vector bundles over X. Hence,
the category VBn is naturally “fibred over” (in a sense we will make precise in
Definition 2.2) the category of topological spaces. The choice that is made in the
construction of the pullback functor f∗ is referred to as “choosing a clivage” (see
Definition 2.4) for the fibred category VBn over Top. Besides, the category Top of
topological spaces carries a model structure. This situation suggests to us the notion
of a “fibred model category” p : N −→ M, where N is a fibred category over M in
the sense of SGA-I [6] and the “base category” M is a model category. This notion
is introduced in Definition 3.1. Thereafter, in Section 3, using a series of lemmas,
we show how we can lift the model structure from the category M to construct a
model structure on the category N. We also show that right homotopic maps in the
base category M can be lifted to right homotopic maps in the lifted model structure
on N.

Several examples of lifted model structures are given in Section 3. For instance, let
M be a model category, U an object of M and M/U the category of “objects of M
over U”. Then, we show that M/U carries a natural model structure, which is lifted
from M in the sense mentioned above. This construction generalizes to 2-categories:
given a 2-category whose underlying 1-category is a model category, we exhibit a
model structure on M/V for each object V of M.

Finally, in Section 4, we show that the lifted model structures are well behaved with
respect to Quillen adjunctions and Quillen equivalences on the “base category” M.
We then consider the situation in which N and M carry closed monoidal structures
compatible with the functor p : N −→ M. In this case we show that if the monoidal
structure on M defines a Quillen pair (see [2, §4.2.1]) for the model structure on M,
then the closed monoidal structure on N also defines a Quillen pair for the lifted
model structure, provided the functor p commutes with colimits.

Our notion of fibred category will be that of [7], which is equivalent to that of
SGA-I [6]. The definition of fibred categories is briefly recalled in Section 2 for the
convenience of the reader. Throughout this paper, we will sometimes abuse notation
by writing U ∈ C when we mean that U is an object of the category C.

2. Fibred categories

We will now briefly recall the definition of fibred categories and related notions.
Our exposition will basically follow that of Canonaco [7]. We start by defining the
notion of a cartesian morphism (see [7, §3.1.1] or [8, Definition 3.1]).

Definition 2.1. Let p : N −→ M be a functor between categories N and M. Let
φ : ξ −→ η be a morphism in N and suppose that p(ξ) = U ∈ M, p(η) = V ∈ M
and that p(φ) = f : U −→ V , a morphism in M. Then, we say that the morphism
φ : ξ −→ η is cartesian over f : U −→ V if, given any morphism φ′ : ξ′ −→ η of N
such that there exists g : U ′ = p(ξ′) −→ U with f ◦ g = p(φ′) = f ′ : U ′ = p(ξ′) −→
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V = p(η), there exists a unique morphism ψ : ξ′ −→ ξ in N such that φ′ = φ ◦ ψ and
p(ψ) = g.

Given a functor p : N −→ M and any object U of M, we will denote by NU the
subcategory of N whose objects are all objects η of N such that p(η) = U and whose
morphisms are all morphisms φ of N such that p(φ) = idU . Thereafter, we define (see,
for instance, [7, §3.1.8]):

Definition 2.2. The functor p : N −→ M is said to be a fibred category over M if,
given any morphism f : U −→ V in M, for every η in NV , there exists a morphism
φ : ξ −→ η in N such that p(φ) = f and φ is cartesian over f .

We also prove here the following statement that will be useful to us in Section 3.

Lemma 2.3. Let p : N −→ M be a fibred category. Suppose that the morphism φ′ :
ξ′ −→ η′ is a retract of the morphism φ : ξ −→ η in N. Then, if φ is cartesian over
the morphism p(φ) in M, φ′ is cartesian over the morphism p(φ′) in M.

Proof. Since φ′ is a retract of φ, we must have a commutative diagram (1) in N:

ξ′

φ′

��

ι // ξ

φ

��

κ // ξ′

φ′

��
η′

λ // η
µ // η′

(1)

in which the horizontal compositions are identity maps. We want to show that φ′ is
cartesian over p(φ′). Suppose, therefore, that we have a morphism ν : χ −→ η′ such
that p(ν) : p(χ) −→ p(η′) factors through p(φ′), i.e., we have a morphism s : p(χ) −→
p(ξ′) such that p(ν) = p(φ′) ◦ s.

Consider the morphism λ ◦ ν : χ −→ η. Then p(λ ◦ ν) = p(λ) ◦ p(ν) = p(λ) ◦ p(φ′)
◦ s = p(φ) ◦ p(ι) ◦ s factors through p(φ). Since φ is cartesian over p(φ), it follows
that there exists a unique θ : χ −→ ξ such that λ ◦ ν = φ ◦ θ and p(θ) = p(ι) ◦ s.

We consider the morphism κ ◦ θ : χ −→ ξ′. We note that

φ′ ◦ (κ ◦ θ) = µ ◦ φ ◦ θ = µ ◦ λ ◦ ν = ν (2)

and

p(κ ◦ θ) = p(κ) ◦ p(θ) = p(κ) ◦ p(ι) ◦ s = s. (3)

From (2) and (3) it follows that ν : χ −→ η′ factors through φ′ : ξ′ −→ η′ as ν =
φ′ ◦ (κ ◦ θ) and that p(κ ◦ θ) = s.

Hence, in order to show that φ′ is cartesian over p(φ′), it remains to show that
the factoring ν = φ′ ◦ (κ ◦ θ) is unique. Therefore, suppose that ν = φ′ ◦ τ for some
morphism τ in N such that p(τ) = s. Then φ ◦ θ = λ ◦ ν = λ ◦ φ′ ◦ τ = φ ◦ ι ◦ τ . Fur-
ther, p(ι ◦ τ) = p(ι) ◦ p(τ) = p(ι) ◦ s = p(θ). But, since the φ is cartesian over p(φ),
it follows from the uniqueness condition in Definition 2.1 that ι ◦ τ = θ. Then, τ =
(κ ◦ ι) ◦ τ = κ ◦ θ.

Definition 2.4. A clivage c for a fibred category p : N −→ M is obtained by choos-
ing, for each morphism f : U −→ V of M and each object η of NV , a morphism
cf (η) : f

∗(η) −→ η of N that is cartesian over f . The clivage is said to be normalised
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if the cartesian morphism chosen over any identity map in M is also an identity map
in N, i.e., c1p(η)

(η) = 1η : η −→ η for any object η of N.

Henceforth, unless otherwise mentioned, we will always assume that any clivage
we use is normalised. Given a clivage c, note that it follows from the definitions that
if ψ : η′ −→ η is a morphism in NV , then there exists a corresponding morphism
f∗(ψ) : f∗(η′) −→ f∗(η) in NU such that cf (η) ◦ f∗(ψ) = ψ ◦ cf (η′). It follows that,
given a fixed clivage c, a morphism f : U −→ V induces a functor

f∗ : NV −→ NU .

More generally, given a commutative square inM as in Figure 1 of (4) and a morphism
ψ : η′ −→ η in N with p(ψ) = g : V ′ −→ V :

U ′

h

��

f ′
// V ′ = p(η′)

g=p(ψ)

��
U

f // V = p(η),

f ′∗(η)

?

��

cf′ (η′)
// η′

ψ

��
f∗(η)

cf (η) // η.

Figure 1. Figure 2.

(4)

Since p(ψ ◦ cf ′(η′)) = g ◦ f ′ = f ◦ h and cf (η) : f
∗(η) −→ η is cartesian over f , there

exists a unique morphism φ : f ′∗(η′) −→ f∗(η) in N such that ψ ◦ cf ′(η′) = cf (η)
◦ φ and p(φ) = h. In other words, given a fixed clivage c, the cartesian morphism
cf (η) : f

∗(η) −→ η, chosen over any morphism f : U −→ V in M with η ∈ N such
that p(η) = V , is functorial on the category of morphisms of M. We will use this fact
later in the proof of Lemma 3.3.

The following alternate description will come in very handy: a pair N = (p : N −→
M, c), consisting of a fibred category p : N −→ M and a chosen normalised clivage c,
consists of the following data:

(a) For each object U of M, a category N(U) := NU ;

(b) For each morphism f : U −→ V , a functor N(f) := f∗ : N(V ) −→ N(U) and;

(c) For each pair f : U −→ V , g : U ′ −→ U of composable morphisms, natural iso-
morphisms cg,f : N(g) ◦N(f) −→ N(f ◦ g) of functors.

The isomorphisms in (c) are natural in the following sense: Let R : C′ −→ C,
F,G : C −→ D, S : D −→ D′ be functors and let c : F −→ G be a natural transfor-
mation of functors. Then c induces a natural transformation of functors from F ◦R
to G ◦R (resp. from S ◦ F to S ◦G), which we denote by c ∗ 1R : F ◦R −→ G ◦R
(resp. by 1S ∗ c : S ◦ F −→ S ◦G). Then, given morphisms f : U −→ V , g : U ′ −→ U
and h : V −→ V ′ in M, the following diagram commutes (in the category of functors
from N(V ′) to N(U ′)):

N(g) ◦N(f) ◦N(h)

1N(g)∗cf,h
��

cg,f∗1N(h) // N(f ◦ g) ◦N(h)

cf◦g,h

��
N(g) ◦N(h ◦ f)

cg,h◦f // N(h ◦ f ◦ g).
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With the clivage c being normalised, we have N(idU ) = idN(U) for each U ∈ M.
Then, the data (a), (b), (c) given above define a lax 2-functor N : Mop −→ Cat
(Cat being the 2-category of categories) (see [7, §3.3.2] or [8, Definition 3.10]).
Further, it may be shown that there is a one-to-one correspondence between lax
2-functors N : Mop −→ Cat and pairs N = (p : N −→ M, c) consisting of a fibred
category p : N −→ M with a choice of a normalised clivage c (see [7, §3.3]).

By a functor F = (F̃ , F ) of fibred categories from p : N −→ M to p′ : N′ −→ M′,
we will mean a functor F̃ : N −→ N′ such that F̃ descends to a functor F : M −→ M′

on the base categories, i.e., p′ ◦ F̃ = F ◦ p. Note that we will not need to assume that
F̃ : N −→ N′ carries cartesian morphisms to cartesian morphisms. We shall give sev-
eral natural examples of fibred categories when we deal with fibred model categories
in Section 3.

3. Lifting of the model structure

In this section, we fix a fibred category p : N −→ M, with a chosen normalised
clivage c. Suppose that M carries a model structure induced by a triple (C,W,F),
where C, W and F denote respectively the collection of cofibrations, weak equiva-
lences and fibrations for the model structure. For the definition and basic properties
of model categories, the reader may see [2, Chapter 1]. Through a series of lemmas,
we shall now show that the model structure on M induces a model structure on N.
First, we come to our definition of a fibred model category:

Definition 3.1. Let p : N −→ M be a fibred category and let M be a model category
with the model structure defined by a triple (C,W,F). Further, suppose that both
N and M contain zero objects 0N and 0M respectively and that p(0N ) = 0M . On N,
define three classes of morphisms:

CN : Morphisms φ in N such that p(φ) lies in C.

WN : Morphisms φ in N such that p(φ) lies in W.

FN : Morphisms φ in N such that p(φ) lies in F and φ is cartesian over p(φ).

We will refer to the triple (N, p,M) as a fibred model category. A functor

F : (N, p,M) −→ (N′, p′,M′)

of fibred model categories is a functor F = (F̃ , F ) of the underlying fibred categories
from p : N −→ M to p′ : N′ −→ M′ as defined in Section 2.

For the rest of this section, we will continue to use the notation of Definition 3.1.
Further, we will assume that (α, β) and (γ, δ) are the two functorial factorizations on
M. That is, given a morphism f : U −→ V in M:

(a) f = β(f) ◦ α(f), where α(f) is a cofibration and β(f) a trivial fibration, and

(b) f = δ(f) ◦ γ(f), where γ(f) is a trivial cofibration and δ(f) a fibration.

We will now establish that the triple (CN ,WN ,FN ) defines a model structure on N.
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Lemma 3.2. Let (N, p,M) be a fibred model category. Consider the following com-
mutative square in N:

ξ1

φ1

��

ψ // ξ2

φ2

��
η1

ψ′
// η2.

(5)

Suppose that φ1 lies in CN and φ2 lies in FN . Then, if at least one of φ1 and φ2 lies
in WN , there exists a morphism θ : η1 −→ ξ2 such that ψ = θ ◦ φ1 and ψ′ = φ2 ◦ θ.

Proof. We first consider the case in which φ1 lies in WN . We consider the image (6)
of diagram (5) in M:

p(ξ1)

p(φ1)

��

p(ψ) // p(ξ2)

p(φ2)

��
p(η1)

p(ψ′) // p(η2).

(6)

From Definition 3.1, we know that p(φ1) lies in both C and W, while p(φ2) lies in F.
From the model structure ofM, it follows that we have a morphism s : p(η1) −→ p(ξ2)
such that p(ψ′) = p(φ2) ◦ s and p(ψ) = s ◦ p(φ1). Furthermore, since φ2 lies in FN , it
follows that φ2 is cartesian over p(φ2). The morphism ψ′ : η1 −→ η2 is such that its
image p(ψ′) factors through p(φ2) as p(ψ

′) = p(φ2) ◦ s. Hence, there exists a morphism
θ : η1 −→ ξ2 in N such that ψ′ = φ2 ◦ θ and p(θ) = s.

It remains to show that θ ◦ φ1 = ψ. To do so, we note that φ2 ◦ ψ = ψ′ ◦ φ1 =
φ2 ◦ (θ ◦ φ1). Also, p(ψ) = s ◦ p(φ1) = p(θ ◦ φ1). Since φ2 is cartesian over p(φ2), it
now follows from the uniqueness condition in Definition 2.1 that ψ = θ ◦ φ1.

It is clear that the case in which φ2 lies in WN can be similarly proved.

Lemma 3.3. Let φ : ξ −→ η be a morphism in N. Then there exist factorizations
(αN , βN ) and (γN , δN ) of φ such that

(a) φ = βN (φ) ◦ αN (φ), βN (φ) lies in both WN and FN and αN (φ) lies in CN .

(b) φ = δN (φ) ◦ γN (φ), δN (φ) lies FN and γN (φ) lies in both CN and WN .

Further, if we have chosen a clivage c for the fibred category p : N −→ M, then the
factorizations (αN , βN ) and (γN , δN ) are functorial.

Proof. Consider the image p(φ) : p(ξ) −→ p(η) of the morphism φ in M. Since M
has a model structure, it follows that we can write p(φ) = β(p(φ)) ◦ α(p(φ)), where
β(p(φ)) lies in both F and W while α(p(φ)) lies in C.

We now choose a morphism βN (φ) : ξ1 −→ η cartesian over β(p(φ)). Since p(φ) =
β(p(φ)) ◦ α(p(φ)) = p(βN (φ)) ◦ α(p(φ)) and βN (φ) is cartesian over β(p(φ)), there
exists a unique morphism αN (φ) : ξ −→ ξ1 such that

φ = βN (φ) ◦ αN (φ) and p(αN (φ))= α(p(φ)).

Since βN (φ) is cartesian over β(p(φ)) and β(p(φ)) lies in both F and W, it follows
that βN (φ) lies in both FN and WN . Further, since p(αN (φ)) = α(p(φ)) and α(p(φ))
lies in C, it follows that αN (φ) lies in CN . This proves (a).
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Part (b) can be similarly proved. We will now show that the choice of a clivage
allows us to choose factorizations in N functorially. Consider a commutative square
in N:

ξ′

ψ

��

φ′
// η′

ψ′

��
ξ

φ // η

that shows the morphism φ′ in N mapping to the morphism φ in N. We want to show
that the factorization βN (φ′) ◦ αN (φ′) of the morphism φ′ maps to the factorization
βN (φ) ◦ αN (φ) of the morphism φ. We have the following diagrams:

ξ′ φ′

""
ψ

�� αN (φ′)��>
>>

>>
>>

ξ

φ

""
αN (φ) ��>

>>
>>

>>
> ξ′1

θ
��

βN (φ′)

// η′

ψ′

��
ξ1

βN (φ)
// η,

p(ξ′) p(φ′)

&&
p(ψ)

�� p(αN (φ′))""FFFFFFFF

p(ξ)
p(φ)

&&p(αN (φ)) ""FFFFFFFF
p(ξ′1)

h

��

p(βN (φ′))

// p(η′)

p(ψ′)

��
p(ξ1)

p(βN (φ))
// p(η).

(in N) (in M)

We want to show that the map θ : ξ′1 −→ ξ1 exists and makes the diagram in N
commutative. We have already defined αN and βN in such a way that

p(αN (φ)) = α(p(φ)) p(αN (φ′)) = α(p(φ′)),

p(βN (φ)) = β(p(φ)) p(βN (φ′)) = β(p(φ′)).

The map h : p(ξ′1) −→ p(ξ1) exists and makes the diagram in M commutative because
(α, β) is a functorial factorization of morphisms of M.

Now, given the chosen clivage c, we have βN (φ) := cβ(p(φ))(η) : C = β(p(φ))∗(η)
−→ η and βN (φ′) := cβ(p(φ′))(η

′) : ξ′1 = β(p(φ′))∗(η′) −→ η′. Then, from the discus-
sion following diagram (4) in Section 2.1, we note that there must exist θ : ξ′1 =
β(p(φ′))∗(η′) −→ β(p(φ))∗(η) = ξ1 such that ψ′ ◦ βN (φ′) = βN (φ) ◦ θ.

It remains to show that θ ◦ αN (φ′) = αN (φ) ◦ ψ. To prove this, we consider the
morphism ψ′ ◦ φ′ : ξ′ −→ η. We note that

ψ′ ◦ φ′ = ψ′ ◦ (βN (φ′) ◦ αN (φ′)) = βN (φ) ◦ (θ ◦ αN (φ′)),
ψ′ ◦ φ′ = φ ◦ ψ = βN (φ) ◦ (αN (φ) ◦ ψ),

and, further,

p(θ ◦ αN (φ′)) = h ◦ α(p(φ′)) = α(p(φ)) ◦ p(ψ) = p(αN (φ) ◦ ψ).

Since βN (φ) is cartesian over its image β(p(φ)) in M, it follows from the uniqueness
condition in Definition 2.1 that (θ ◦ αN (φ′)) = (αN (φ) ◦ ψ). Similarly, we can show
that the factorization (γN , δN ) is also functorial on the morphisms of N.

We now have all we need to prove the following theorem.
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Theorem 3.4. Let M be a model category and let p : N −→ M be a category fibred
over M with a chosen normalised clivage c. Then, the triple (CN ,WN ,FN ), as
defined in Definition 3.1, determines a model structure on N.

Proof. For two given (composable) morphisms φ1 and φ2 in N, suppose that two out
of the three morphisms φ1, φ2 and φ1 ◦ φ2 lie in WN . Then, it follows that two out
of the three morphisms: p(φ1), p(φ2) and p(φ1 ◦ φ2) lie in W, and hence so does the
third. From Definition 3.1, it follows that WN satisfies the two-out-of-three property.

Further, suppose that φ and φ′ are two morphisms in N such that φ′ is a retract of
φ. Then, p(φ′) is a retract of p(φ) in M. Using the model structure on M, it follows
that if p(φ) lies in C, W or F resp., then so does p(φ′). Hence, φ ∈ CN implies that
φ′ ∈ CN and φ ∈ WN implies that φ′ ∈ WN . From Lemma 2.3 it follows that if φ is
cartesian over p(φ), then φ′ is cartesian over p(φ′). Hence, φ ∈ FN implies φ′ ∈ FN .

The two lifting properties that are required in order for (CN ,WN ,FN ) to define
a model structure on N follow directly from Lemma 3.2. Finally, Lemma 3.3 shows
that the chosen normalised clivage c determines functorial factorizations in N. This
proves the theorem.

Remark 3.5.

(1) Henceforth, whenever we say that (N, p,M) is a fibred model category, it is
understood that N carries the model structure (CN ,WN ,FN ) lifted from M.
We also imply that the underlying fibred category p : N −→ M has a chosen
clivage c. In Definition 3.1, we have assumed that both N and M contain zero
objects 0N and 0M respectively, but we will drop the subscripts and denote
both zero objects simply by 0.

(2) In the modern definition of a model category, one usually also assumes that
the category contains all small limits and colimits. If the reader so desires, he
may add the assumption that “N contains all small limits and colimits and p
commutes with small limits and colimits” to the definition of a fibred model
category (N, p,M) in Definition 3.1. The condition that p commutes with small
colimits will be very important to us in Section 4.

We make note of the following result on cofibrant and fibrant replacement functors:

We recall that the cofibrant replacement (resp. fibrant replacement) QU
q−→ U (resp.

U
r−→ RU) of an object U of a model category M is obtained by factorizing the map

0 −→ U (resp. U −→ 0) into a cofibration 0 −→ QU (resp. a fibration RU −→ 0) and

a trivial fibration QU
q−→ U (resp. a trivial cofibration U

r−→ RU).

Corollary 3.6. Let (N, p,M) be a fibred model category. Let QN and QM denote the
cofibrant replacement functors on the categories N and M respectively, with RN and
RM denoting their respective fibrant replacement functors. Then, given an object ξ of
N, we have

p(QNξ) = QMp(ξ), p(RNξ) = RMp(ξ).

Proof. Considering the morphisms 0 −→ ξ and ξ −→ 0 in N, the result is clear from
the proof of Lemma 3.3.

We will now show that, under certain conditions, the lifted model structure on N
can be used to lift right homotopic maps from M to N. Recall that a path object
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for some X ∈ M is a factorization of the diagonal map ∆X : X −→ X ×X into a
weak equivalence s : X −→ X ′ followed by a fibration (p0, p1) : X

′ −→ X ×X. Given
two maps f, g : B −→ X in M, a right homotopy from f to g consists of a map
K : B −→ X ′ for some path object X ′ of X such that p0K = f and p1K = g.

Suppose that the category N contains finite products. Given the fibred cate-
gory p : N −→ M, we will say that p commutes with coordinate projections if, given
any ξ, ξ′ ∈ N and the coordinate projections π0 : ξ × ξ′ −→ ξ, π1 : ξ × ξ′ −→ ξ′, we
have p(ξ × ξ′) = p(ξ)× p(ξ′) and p(π0) : p(ξ)× p(ξ′) −→ p(ξ), p(π1) : p(ξ)× p(ξ′) −→
p(ξ′) are also coordinate projections.

Proposition 3.7. Let p : N −→ M be a fibred model category. Suppose that the cat-
egory N has finite products and that p : N −→ M commutes with coordinate projec-
tions. Then, given right homotopic maps f, g : U −→ V in M and some η ∈ N such
that p(η) = V , there exist right homotopic maps φ, ψ : ξ −→ η in N such that p(φ) = f
and p(ψ) = g.

Proof. The maps f, g : B −→ X induce a single map (f, g) : B −→ X ×X. Since N
contains finite products and p commutes with coordinate projections, p(η × η) = X
× X. We choose a morphism (φ, ψ) : ξ −→ η × η in N cartesian over (f, g) : B −→
X ×X. Let π0 : η × η −→ η and π1 : η × η −→ η be the two coordinate projections.
We set φ = π0 ◦ (φ, ψ) and ψ = π1 ◦ (φ, ψ). Then, p(φ) = f and p(ψ) = g.

Since f is homotopic to g, it follows from the definitions that there exists a path
object X ′ for X and a map K : B −→ X ′ such that p0K = f and p1K = g. Suppose
that the path object X ′ is obtained by factorizing the diagonal morphism ∆X : X −→
X ×X into a weak equivalence s : X −→ X ′ followed by a fibration (p0, p1) : X

′ −→
X ×X.

Consider the diagonal morphism ∆η : η −→ η × η and a morphism Φ: η′ −→ η × η
in N cartesian over (p0, p1) : X

′ −→ X ×X. Since (p0, p1) is a fibration in M, Φ
is a fibration in N. Also, p(Φ) = (p0, p1) ◦ s. Since Φ: η′ −→ η × η is cartesian over
(p0, p1), there exists a unique Ψ: η −→ η′ such that p(Ψ) = s and ∆η = Φ ◦Ψ. Then,
Ψ is a weak equivalence, and hence η′ is a path object for η.

Since Φ: η′ −→ η × η is cartesian over (p0, p1) and p(φ, ψ) = (f, g) = (p0, p1) ◦K =
p(Φ) ◦K, there exists a unique θ : ξ −→ η′ such that (φ, ψ) = Φ ◦ θ and p(θ) = K.
Then, φ = (π0 ◦ Φ) ◦ θ and ψ = (π1 ◦ Φ) ◦ θ. This shows that φ is right homotopic
to ψ.

We end this section by giving several examples of lifted model structures.
(1) Let M be a model category and let Mor(M) be the category of morphisms of

M. We define the functor p : Mor(M) −→ M by taking a morphism f : U −→ V of
objects in M (then f ∈ Mor(M)) to its target V . Then, if the category M contains
fibre products, it can be shown (see [7, §3.1.9]) that Mor(M) is a fibred category
over M. From Theorem 3.4, it follows that if M is a model category containing fibre
products, then Mor(M) carries a model structure.

(2) Let M be the model category Top of topological spaces with the morphisms
being continuous maps. For some n > 1, one could let N := VBn, the category of
n-dimensional (say complex) vector bundles over topological spaces. Then, for each
object X of Top, we have a category VBn(X) of n-dimensional vector bundles over
X. Further, for each morphism f : X −→ Y in Top, we can choose a pullback functor
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f∗ : VBn(Y ) −→ VBn(X) with id∗Y = idVBn(Y ). We have isomorphisms of functors
g∗ ◦ f∗ ∼= (f ◦ g)∗ for every pair of composable morphisms f , g. These isomorphisms
are natural, and, from the discussion at the end of Section 2, it now follows that the
category VBn is fibred over the category Top. This defines a natural lifted model
structure on the category VBn for each n > 1.

(3) Given a category C, denote by Ĉ := Func(Cop,Sets) the category of con-
travariant functors fromC to the category Sets of sets, i.e., the category of presheaves
of sets onC. For any objectX inC, let us denote by hX the presheaf onC represented
by X. Then, to each object X in C, we can associate the category Ĉ/hX of objects in

Ĉ over hX . Since the category Ĉ always contains fibre products, given any morphism
f : X −→ Y in C, we have a corresponding pullback functor f∗ : Ĉ/hY −→ Ĉ/hX .
Then, it follows from [7, §3.1.10] that this data determines a fibred category Psh(C)
over C. For instance, let C be the category Top of topological spaces with morphisms
being continuous maps. Then, by the same reasoning as above, the model structure
on Top lifts to a model structure on the category Psh(Top) fibred over Top.

(4) Let M be a model category and let U be an object of M. Then, the objects of
the categoryM/U are morphisms f : V −→ U ofM. A morphism from f : V −→ U to
f ′ : V ′ −→ U in M/U consists of a morphism g : V −→ V ′ in M such that f = f ′ ◦ g.

We may see the categoryM/U as a category fibred overM in the following manner:
Let hU denote the presheaf onM represented by U , i.e., the presheaf defined by taking
hU (V ) = MorM(V,U) for each object V of M. Then, to the presheaf hU of sets, we
can associate the category N whose objects are pairs (V, f) with V ∈ M and f a
morphism f : V −→ U . Then, a morphism φ : (V, f) −→ (V ′, f ′) in N is given by a
morphism g : V −→ V ′ in M such that f = f ′ ◦ g. Then, the functor p : N −→ M
defined by p(V, f) = V for each (V, f) ∈ N makes N into a fibred category over M.

Note that the category N is identical to M/U . Then, Theorem 3.4 shows that
M/U carries a model structure, which can be described as follows: A morphism
g : (V, f) −→ (V ′, f ′) is a cofibration, weak equivalence or fibration in M/U according
as g : V −→ V ′ is a cofibration, weak equivalence or fibration in M.

(5) Suppose that M is a 2-category whose underlying 1-category is a model
category. Then, for any two objects U , V ∈ M, we have a category Mor(U, V ) of
1-morphisms from U to V . A 1-morphism f : U −→ U ′ in M induces a functor
f∗ : Mor(U ′, V ) −→ Mor(U, V ). It follows that, for each object V , we can define a
fibred category M/V as follows:

(a) For each U ∈ M, we set (M/V )(U) := Mor(U, V ).

(b) For each 1-morphism f : U −→ U ′, we have an obvious functor (M/V )(f) =
f∗ : Mor(U ′, V ) −→ Mor(U, V ).

(c) Given composable 1-morphisms f : U −→ U ′ and g : U ′ −→ U ′′ in M, it follows
from the definition of a 2-category that there are natural isomorphisms cf,g of
functors f∗ ◦ g∗ ∼= (g ◦ f)∗ : Mor(U ′′, V ) −→ Mor(U, V ).

Then, from the discussion at the end of Section 2, it follows that (a), (b) and (c)
determine a fibred category M/V over M (with a chosen normalised clivage). Then,
Theorem 3.4 shows that the category M/V carries a model structure.

(6) Let Cτ = (C, τ) be a site with underlying category C and Grothendieck topol-
ogy τ . Consider the category Covτ (C) of τ -coverings of objects of C, defined as
follows: The objects of the category Covτ (C) are of the form (U, {pi : Ui −→ U}i∈I),
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where {pi : Ui −→ U}i∈I is a τ -covering of the object U ∈ C. A morphism F =
(f, fi) : (U

′, {p′i : U ′
i −→ U ′}i∈I) −→ (U, {pi : Ui −→ U}i∈I) consists of a morphism

f : U ′ −→ U and fibre squares

U ′
i

pi

��

fi // Ui

p′i

��
U ′ f // U.

The obvious functor pτ : Covτ (C) −→ C that takes (U, {pi : Ui −→ U}i∈I) to U
makes Covτ (C) into a category fibred over C, where the morphism

F = (f, fi) : (U
′, {p′i : U ′

i −→ U ′}i∈I) −→ (U, {pi : Ui −→ U}i∈I)

is cartesian over the morphism f in C. Now, if the underlying category C is a model
category, then it follows that Covτ (C) carries a lifted model structure. For instance,
this shows that the “category of open covers of topological spaces”, or the “category
of étale covers of topological spaces” carries a model structure. Recall here that an
étale cover {πi : Ui −→ U}i∈I of a topological space U is a jointly surjective family
of local homeomorphisms πi : Ui −→ U , i ∈ I.

(7) This example is a refinement of Example (1). Let M be a model category
that contains fibre products and let P be a property of morphisms in M that is
stable under base change. That is, if the morphism f : U −→ V in M has property
P , g : V ′ −→ V is any morphism in M, and we consider the fibre square

U ′

f ′

��

g′ // U

f

��
V ′ g // V,

then the morphism f ′ : U ′ −→ V ′ also has property P . For instance, M could be the
category of topological spaces, and P could be the property of a morphism being
an open immersion (or being proper, or étale, or surjective, etc.). Then, denote by
MorP (M) the category of morphisms of M having property P . A morphism G =
(g1, g2) : (f

′ : U ′ −→ V ′) −→ (f : U −→ V ) in MorP (M) is given by a commutative
square

U ′

f ′

��

g1 // U

f

��
V ′ g2 // V.

(7)

The obvious morphism that takes (f : U −→ V ) ∈ MorP (M) to V makes MorP (M)
into a fibred category over M, where the morphism G = (g1, g2) : (f

′ : U ′ −→ V ′) −→
(f : U −→ V ) is cartesian over g2 : V

′ −→ V if diagram (7) is a fibre square. Then, it
follows that MorP (M) carries a lifted model structure.
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4. Monoidal fibred model categories and Quillen adjunctions

In the previous section, we have shown how the model category structure can
be lifted from a base category M to a category N fibred over M. In this section,
we will consider monoidal structures and Quillen pairs on fibred model categories.
We will continue to use the notation defined in Sections 2 and 3. Whenever we talk
about a fibred category p : N −→ M, it will be understood that we also have a chosen
normalised clivage c.

We start with Quillen adjunctions. The following result shows that the lifted model
structures behave well with respect to Quillen adjunctions and equivalences.

Proposition 4.1. Let (N, p,M) and (N′, p′,M′) be two fibred model categories and
let (F ,G) be a pair of functors of fibred model categories, F = (F̃ , F ) : (N, p,M) −→
(N′, p′,M′), G = (G̃,G) : (N′, p′,M′) −→ (N, p,M) such that

(1) F̃ : N −→ N′ is left adjoint to G̃ : N′ −→ N.

(2) F : M −→ M′ is left adjoint to G : M′ −→ M and (F,G) is a Quillen adjunction
of model categories M and M′.

Then the pair (F̃ , G̃) is a Quillen adjunction of model categories N and N′, the
model structures on N and N′ being those lifted from M and M′ respectively. Further,
if (F,G) is a Quillen equivalence, then so is (F̃ , G̃).

Proof. Let φ : ξ1 −→ ξ2 be a morphism in N. If φ is a cofibration (resp. trivial cofi-
bration) in N, then p(φ) is a cofibration (resp. trivial cofibration) in M. Since F is
a left Quillen functor, p′(F̃ (φ)) = F (p(φ)) is a cofibration (resp. trivial cofibration)
in M′. Hence, F̃ (φ) is a cofibration (resp. trivial cofibration) in N′. Thus, the left
adjoint functor F̃ preserves cofibrations and trivial cofibrations, and hence F̃ is a left
Quillen functor. Since F̃ and G̃ are adjoint functors, this implies that G̃ is a right
Quillen functor (see, for instance, [2, Lemma 1.3.4]), and the pair (F̃ , G̃) defines a
Quillen adjunction.

Now suppose that (F,G) is a Quillen equivalence. Then, a morphism f in M is
a weak equivalence if and only if F (f) is a weak equivalence in M′. Given a weak
equivalence φ in N, we have p′(F̃ (φ)) = F (p(φ)). Since p(φ) is a weak equivalence in
M and F preserves weak equivalences, it follows that p′(F̃ (φ)) is a weak equivalence
in M′. Thus, by the definition of the lifted model structure on N′, it follows that
F̃ (φ) is a weak equivalence in N′.

Conversely, suppose that φ is a morphism inN such that F̃ (φ) is a weak equivalence
in N′. Then F (p(φ)) = p′(F̃ (φ)) is a weak equivalence in M′. Since (F,G) is a pair
of adjoint functors defining a Quillen equivalence, it follows that p(φ) is a weak
equivalence. Again, by the definition of the lifted model structure on N, it follows
that φ is a weak equivalence in N. Thus, if (F,G) is a pair of adjoint functors defining
a Quillen equivalence, then F̃ (φ) is a weak equivalence if and only φ is. This shows
that (F̃ , G̃) itself is a Quillen equivalence.

For instance, suppose that M and M′ are two model categories and let F : M −→
M′ be a functor left adjoint to G : M′ −→ M defining a Quillen adjunction of model
categories M and M′. Suppose that we can choose a pair of objects U ∈ M and
U ′ ∈ M′ such that
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(A1) FU = U ′ and GU ′ = U .

(A2) The unit and counit maps corresponding to the adjoint pair (F,G) are identities
on U and U ′, i.e., the canonical maps U → GF (U) = U and U ′ = FG(U ′) −→
U ′ induced by the adjoint pair (F,G) are identities.

Then, it follows that F : M −→ M′ induces a functor F/U : M/U −→ M′/U ′ and
G : M′ −→ M induces a functor G/U ′ : M′/U ′ −→ M/U .

Lemma 4.2. Let the model categories M, M′, the adjoint functors F : M −→ M′,
G : M′ −→ M, the objects U ∈ M, U ′ ∈ M′ and the induced functors F/U : M/U −→
M′/U ′, G/U ′ : M′/U ′ −→ M/U be as above. Then, the functors F/U and G/U ′ are
adjoint to each other.

Proof. Consider an object Sf = (f : S −→ U) ∈ M/U and an object Tg = (g : T −→
U ′) ∈ M′/U ′. Let ϕ̃ : (F/U)(Sf ) −→ Tg be a morphism in M′/U ′. Then ϕ̃ is induced
by a morphism ϕ : FS −→ T in M′ such that g ◦ ϕ = F (f). By adjointness of F and
G, the following diagram commutes:

HomM′(FU,FU)

∼=
��

◦F (f) // HomM′(FS, FU)

∼=
��

HomM(U,GFU) = HomM(U,U)
◦f // HomM(S,GFU) = HomM(S,U).

(8)

By assumption (A2) above, the left vertical isomorphism in (8) carries idF (U) ∈
HomM′(FU,FU) to idU ∈ HomM(U,U). It follows that the right vertical isomor-
phism in (8) carries F (f) = idF (U) ◦ F (f) ∈ HomM′(FS, FU) to the map f = idU ◦
f ∈ HomM(S,U). Again, by adjointness of F and G, the following diagram commutes:

HomM′(FS, T )

∼=
��

g◦ // HomM′(FS,U ′) = HomM′(FS, FU)

∼=
��

HomM(S,GT )
G(g)◦ // HomM(S,GU ′) = HomM(S,U).

(9)

Suppose that the left vertical isomorphism in (9) carries ϕ ∈ HomM′(FS, T ) to ϕ′ ∈
HomM(S,GT ). We know that g ◦ ϕ = F (f) ∈ HomM′(FS,U ′) = HomM′(FS, FU).
The right vertical isomorphism in (9) is identical to the right vertical isomorphism
in (8), and hence it carries F (f) ∈ HomM′(FS,U ′) = HomM′(FS, FU) to the map
f ∈ HomM(S,GU ′) = HomM(S,U). By commutativity of (9), it now follows that
G(g) ◦ ϕ′ = f . Hence, ϕ′ induces a morphism ϕ̃′ : Sf −→ (G/U ′)(Tg).

Reversing the vertical isomorphisms in (8) and (9), the morphism ϕ̃′ : Sf −→
(G/U ′)(Tg) corresponds to ϕ̃ : (F/U)(Sf ) −→ Tg. This shows that there are natu-
ral bijections

HomM′/U ′((F/U)(Sf ), Tg) ∼= HomM/U (Sf , (G/U
′)(Tg)),

which shows that the functors F/U and G/U ′ are mutually adjoint.

Proposition 4.3. Let the model categories M, M′, the adjoint functors F : M −→
M′, G : M′ −→ M, the objects U ∈ M, U ′ ∈ M′ and the induced functors F/U :
M/U −→ M′/U ′, G/U ′ : M′/U ′ −→ M/U be as in Lemma 4.2. Suppose that (F,G)
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is a Quillen pair for the model categories M and M′. Then, (F/U,G′/U ′) is a Quillen
pair for M/U and M′/U ′.

Proof. From Example (4) in Section 3, it follows thatM/U andM′/U ′ are fibred cate-
gories overM andM′ respectively, and they carry model structures lifted fromM and
M′. From Lemma 4.2, it follows that F/U : M/U −→ M′/U ′ and G/U ′ : M′/U ′ −→
M/U are adjoint functors. Then, Proposition 4.1 shows that F/U and G/U ′ are a
Quillen pair.

We will now consider fibred model categories with monoidal structures.

Definition 4.4. Suppose that N = (p : N −→ M), N′ = (p′ : N′ −→ M′) and N′′ =
(p′′ : N′′ −→ M′′) are fibred categories. Then, an adjunction of two variables from
N×N′ to N′′ is a tuple (⊗,Homl,Homr, ϕl, ϕr) such that ⊗ = (⊗̃,⊗), Homl =

(H̃oml,Homl), Homr = (H̃omr,Homr), ϕl = (ϕ̃l, ϕl), ϕr = (ϕ̃r, ϕr) where:

(1) ⊗̃ : N×N′ −→ N′′, H̃oml : N
op ×N′′ −→ N′ and H̃omr : N

′op ×N′′ −→ N are
bifunctors, and ϕ̃l and ϕ̃r are natural isomorphisms such that we have an adjunc-
tion of two variables from N×N′ to N′′:

N(ξ, H̃omr(ξ
′, ξ′′))

ϕ̃−1
r−→∼= N′′(ξ⊗̃ξ′, ξ′′) ϕ̃l−→∼= N′(ξ′, H̃oml(ξ, ξ

′′))

for objects ξ ∈ N, ξ′ ∈ N′ and ξ′′ ∈ N′′.

(2) The bifunctors ⊗̃, H̃oml and H̃omr descend to the bifunctors ⊗ : M×M′ −→
M′′, Homl : M

op ×M′′ −→ M′ and Homr : M
′op ×M′′ −→ M resp. on the base

categories and so do the isomorphisms ϕ̃l and ϕ̃l to natural isomorphisms ϕl
and ϕr, which form an adjunction of two variables from M×M′ to M′′:

M(U,Homr(U
′, U ′′))

ϕ−1
r−→∼= M′′(U ⊗ U ′, U ′′)

ϕl−→∼= M′(U ′,Homl(U,U
′′))

for objects U ∈ M, U ′ ∈ M′ and U ′′ ∈ M′′.

We will say that a monoidal structure on a fibred category N = (p : N −→ M)
consists of a tuple (⊗, a, l, r) with ⊗ = (⊗̃,⊗), a = (ã, a), l = (l̃, l) and r = (r̃, r) such
that

(a) ⊗̃ : N×N −→ N is a bifunctor defining a monoidal structure on N with the

associativity isomorphism ã : (ξ ⊗ ξ′)⊗ ξ′′′
∼=−→ ξ ⊗ (ξ′ ⊗ ξ′′), a unit object SN ∈

N, a left unit homomorphim l̃ : SN ⊗ ξ
∼=−→ ξ and a right unit homomorphism

r̃ : ξ ⊗ SN
∼=−→ ξ for objects ξ, ξ′ and ξ′′ ∈ N.

(b) ⊗ : M×M −→ M is a bifunctor defining a monoidal structure on M with the

associativity isomorphism a : (U ⊗ U ′)⊗ U ′′′ ∼=−→ U ⊗ (U ′ ⊗ U ′′), a unit object

SM ∈ M, a left unit homomorphism l : SM ⊗ U
∼=−→ U and a right unit homo-

morphism r : U ⊗ SM
∼=−→ U for objects U , U ′ and U ′′ ∈ M.

(c) The bifunctor ⊗̃ : N×N −→ N descends to the bifunctor ⊗ : M×M −→ M
on the base category; the isomorphisms ã, l̃ and r̃ descend to the isomorphisms
a, l and r respectively, and p(SN ) = SM .
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We can now define what a closed monoidal structure on a fibred category should
be. For the usual definition of a closed monoidal structure on an ordinary category,
see [2, §4.1.13].

Definition 4.5. A closed monoidal structure on a fibred categoryN = (p : N −→ M)
consists of a tuple

(⊗, a, l, r,Homl,Homr, ϕl, ϕr)

such that (⊗, a, l, r) defines a monoidal structure on N, and (⊗,Homl,Homr, ϕl, ϕr)
defines an adjunction of two variables from N×N to N in the sense of Definition 4.4.

We recall that an adjunction (⊗,Homl,Homr, ϕl, ϕr) of two variables fromM×M
to M for a model category M is called a Quillen adjunction of two variables (see [2,
§4.2.1]) if, given two cofibrations f : U −→ V and g : W −→ X in M, the induced
map

f�g := P (f, g) = (V ⊗W )
∐
U⊗W

(U ⊗X) −→ V ⊗X

is a cofibration, which is trivial if one of f and g is. For sake of brevity, we will often
abuse notation to refer to the tuple (⊗, a, l, r,Homl,Homr, ϕl, ϕr), defining both a
Quillen adjunction of two variables and a closed monoidal structure onM as a Quillen
bifunctor ⊗ on the model category M.

As usual, for the fibred model category (N, p,M), we will use (C,W,F) to denote
the model structure on the base category M and (CN ,WN ,FN ) to denote the
lifted model structure on N. The following proposition now shows that given a
closed monoidal structure (⊗, a, l, r,Homl,Homr, ϕl, ϕr) on a fibred model category
(N, p,M) and a Quillen bifunctor ⊗ for a model structure on the base category M,
⊗̃ becomes a Quillen bifunctor on N if the functor p commutes with colimits.

Proposition 4.6. Suppose that (⊗, a, l, r,Homl,Homr, ϕl, ϕr) is a closed monoidal
structure on a fibred model category (N, p,M) in the notation of Definition 4.5. Fur-
thermore, assume that the functor p : N −→ M commutes with finite colimits. Then,
if the tuple (⊗, a, l, r,Homl,Homr, ϕl, ϕr) defines a Quillen bifunctor ⊗ on the base

category M, the tuple (⊗̃, ã, l̃, r̃, H̃oml, H̃omr, ϕ̃l, ϕ̃r) defines a Quillen bifunctor ⊗̃ for
the lifted model structure on N.

Proof. We will maintain the notation of Definition 3.1. Suppose that φ : ξ −→ ξ′ and
ϕ : η −→ η′ are two cofibrations in N, i.e., morphisms in CN . Consider the pushout
product

φ�ϕ : ξ′⊗̃η
∐
ξ⊗̃η

ξ⊗̃η′ −→ ξ′⊗̃η′

and its image in M, which is also a pushout product (since p commutes with finite
colimits)

p(φ�ϕ) = p(φ)�p(ϕ) : p(ξ′)⊗ p(η)
∐

p(ξ)⊗p(η)

p(ξ)⊗ p(η′) −→ p(ξ′)⊗ p(η′).

Since φ : ξ −→ ξ′ and ϕ : η −→ η′ lie in CN , it follows that p(φ) : p(ξ) −→ p(ξ′) and
p(ϕ) : p(η) −→ p(η′) lie in C. Since ⊗ is a Quillen bifunctor on M, it follows that
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p(φ�ϕ) = p(φ)�p(ϕ) is a cofibration in M, whence it follows that φ�ϕ lies in CN .
Moreover, if any of φ or ϕ lies in WN , then it follows that its image under p lies in
W and hence p(φ�ϕ) lies in both C and W. It follows that φ�ϕ is also a trivial
cofibration in N, i.e., it lies in both CN and WN .

Let (⊗, a, l, r,Homl,Homr, ϕl, ϕr) be a closed monoidal structure on the fibred
category N = (N, p,M) and ⊗ be a Quillen bifunctor for a model structure on the
base category M. We will assume that p : N −→ M commutes with colimits, and
hence Proposition 4.6 shows that ⊗̃ is a Quillen bifunctor for the lifted model structure
on N. We will say that the above defines a Quillen bifunctor ⊗ : N×N −→ N.

Finally, we recall that a monoidal model category M consists of a closed monoidal
category with a model structure such that

(a) The monoidal structure ⊗ : M×M −→ M is a Quillen bifunctor.

(b) Given the cofibrant replacement QS
q−→ S for the unit S of the monoidal struc-

ture ⊗, the natural morphisms QS ⊗X −→ S ⊗X and X ⊗QS −→ X ⊗ S are
weak equivalences for all cofibrant objects X in M.

Therefore, we define a monoidal fibred model category as follows:

Definition 4.7. Let N = (N, p,M) be a fibred model category with a closed mon-
oidal structure given by a tuple (⊗, a, l, r,Homl,Homr, ϕl, ϕr) in the sense of Defini-
tion 4.5. Then, we will say that N is a monoidal fibred model category if:

(a) The monoidal structure ⊗ : N×N −→ N is a Quillen bifunctor.

(b) Given the cofibrant replacement QNSN
qN−→ SN (resp. QMSM

qM−→ SM ) for the
unit SN (resp. SM ) of the monoidal structure ⊗̃ (resp. ⊗) on N (resp. M),
the natural morphism QNSN ⊗̃ξ −→ SN ⊗̃ξ (resp. QMSM ⊗ U −→ SM ⊗ U) is
a weak equivalence for all cofibrant objects ξ (resp. U) inN (resp.M). Similarly,
the natural morphism ξ⊗̃QNSN −→ ξ⊗̃SN (resp. U ⊗QMSM −→ U ⊗ SM ) is
a weak equivalence for all cofibrant objects ξ (resp. U) in N (resp. M).

The last proposition now shows that a monoidal model structure on the base
category M also lifts to the category N, giving N the structure of a monoidal fibred
model category.

Proposition 4.8. Suppose that (⊗, a, l, r,Homl,Homr, ϕl, ϕr) is a closed monoidal
structure on a fibred model category (N, p,M) in the notation of Definition 4.5. Fur-
thermore, assume that the functor p : N −→ M commutes with finite colimits. Then,
if the tuple (⊗, a, l, r,Homl,Homr, ϕl, ϕr) makes the base category M into a monoidal
model category, the tuple (⊗, a, l, r,Homl,Homr, ϕl, ϕr) makes N = (N, p,M) into a
monoidal fibred model category.

Proof. From Proposition 4.6, it follows already that ⊗ : N×N −→ N is a Quillen
bifunctor.

Suppose that ξ is a cofibrant object of N, i.e., 0 −→ ξ is a cofibration in N. Hence,
0 −→ p(ξ) is a cofibration in M. It follows that QMSM ⊗ p(ξ) −→ SM ⊗ p(ξ) is a
weak equivalence in M. From Corollary 3.6, it follows that QMSM = p(QNSN ),
and hence p(QNSN ⊗̃ξ −→ SN ⊗̃ξ) = QMSM ⊗ p(ξ) −→ SM ⊗ p(ξ). It follows that
QNSN ⊗̃ξ −→ SN ⊗̃ξ is a weak equivalence in N. Similarly, ξ⊗̃QNSN −→ ξ⊗̃SN is
a weak equivalence in N. This proves the result.
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Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1), Dirigé par Alexandre
Grothendieck. Augmenté de deux exposés de M. Raynaud. Lecture Notes in
Mathematics 224, Springer-Verlag, New York, 1971.

[7] A. Canonaco, Introduction to algebraic stacks, preprint (2004).

[8] A. Vistoli, Notes on Grothendieck topologies, fibered categories and descent the-
ory, in (B. Fantechi, L. Gottsche, L. Illusie, S. Kleiman, N. Nitsure, A. Vistoli,
eds.), Fundamental algebraic geometry: Grothendieck’s FGA explained, Mathe-
matical Surveys and Monographs 123, Amer. Math. Soc., Providence, RI, 2006.

Abhishek Banerjee abhishekbanerjee1313@gmail.com

Department of Mathematics, The Ohio State University, 231 West 18th Avenue,
Columbus, OH 43210-1174, USA


