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MATRADS, BIASSOCIAHEDRA, AND A -BIALGEBRAS
SAMSON SANEBLIDZE anp RONALD UMBLE

(communicated by James Stasheff)

Abstract

We introduce the notion of a matrad M = {M,, ,,} whose
submodules M, ; and M; , are non-X operads. We define the
free matrad Ho, generated by a singleton 6] in each bidegree
(m,n) and realize Hoo as the cellular chains on a new fam-
ily of polytopes {KK,, y, = KK, n}, called biassociahedra, of
which KK, 1 = KK, is the associahedron K,,. We construct
the universal enveloping functor from matrads to PROPs and
define an A,.-bialgebra as an algebra over Ho.

1. Introduction

Let H be a DG module over a commutative ring R with identity. In [11], we
defined an A,.-bialgebra structure on H in terms of a square-zero ®@-product on
the universal PROP Uy = End (TH). In this paper we take an alternative point-
of-view motivated by three classical constructions: First, chain maps Ass — Ugy
and A,, — Ug in the category of non-3 operads define strictly (co)associative and
Aso-(co)algebra structures on H; second, there is a minimal resolution of operads
Ao — Ass; and third, A, is realized by the cellular chains on the Stasheff asso-
ciahedra K = UK, [7], [6]. It is natural, therefore, to envision a category in which
analogs of Ass and A, define strictly biassociative and A..-bialgebra structures
on H.

In this paper we introduce the notion of a matrad whose distinguished objects
‘H and Ho play the role of Ass and A,. But unlike the operadic case, freeness
considerations are subtle since biassociative bialgebras cannot be simultaneously free
and cofree. Although H and H., are generated by singletons in each bidegree, those
in H are module generators while those in Ho, are matrad generators. Indeed, as a
non-free matrad, H has two matrad generators and H., is its minimal resolution.
Thus H and H., are the smallest possible constructions that control biassociative
bialgebras structures and their homotopy versions (cf. [5], [12], [8]).
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Given a finite sequence x in N, let |x| =3 z;. A matrad (M,~) is a bigraded

module M = {Mn’m}m »>1 together with a family of structure maps

v ={7¥: TY(M) @ TL(M) = My}

xXyENIXP xNax1

defined on certain submodules
ry() & T c®My],p®®M,ml

and generated by certain components of the S-U diagonal Ap on permutahedra [10];
its substructures (I'Y (M), 7) and (I'k (M), y) are non-X operads. We think of monomi-
als in T'2 (M) as p-fold tensor products of multilinear operations, each with ¢ outputs,
and monomials in I'y (M) as g-fold tensor products of multilinear operations, each
with p inputs.

A general PROP, and Uy in particular, admits a canonical matrad structure
and chain maps ‘H — Uy and Ho, — Uy in the category of matrads define biasso-
ciative bialgebra and A,.-bialgebra structures on H. Furthermore, H., is realized
by the cellular chains on a new family of polytopes KK = |_|m n>1 KEKnm, called
biassociahedra, of which KK, , = KK, ,,, and KK ; is the Stasheff associahedron
K,,. We identify the top dimensional cell of KK, ,,, with the indecomposable matrad
generator ] represented graphically by a “double corolla” with data flowing upward
through m input and n output channels (see Figure 1). The action of the matrad
product 7 on the submodule ® = (0)},), -, generates Hoo; we define a differential
0 of degree —1 on 0, and extend it as a derivation of vy (as in Example 6.11).

n

o o "= ><

m

Figure 1.

Among the various attempts to construct homotopy versions of bialgebras, recent
independent results of Markl and Shoikhet are related to ours through the theory
of PROPs: In characteristic 0, the low-order relations in Markl’s version of a homo-
topy bialgebra [5] agree with our A..-bialgebra relations and Shoikhet’s composition
product on the universal preCROC [12] agrees with our prematrad operation on Ugy.
Thus we construct a functor from matrads to PROPs called the universal enveloping
functor.

The paper is organized as follows: In Section 2 we construct the biassociahedra
KK, , in the range m + n < 6. These polytopes have a simple description in terms of
the S-U diagonal Ak on associahedra [10] and demonstrate the general construction
while avoiding the complicating subtleties. In Section 3 we discuss various submodules
of TTM (the tensor module of T M), which model the geometry of our construction.
We introduce the notion of a prematrad in Section 4, the notion of a k-approximation
in Section 5, and the notion of a matrad in Section 6. We construct the posets PP
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and JCKC in Section 7, introduce the notion of the combinatorial join of permutahedra
in Section 8, and construct PP and KK as geometric realizations of PP and KK in
Section 9. We identify the cellular chains of K K with the A,.-bialgebra matrad H..
and prove that the restriction of the free resolution of prematrads p° : F pre(@) —H
to Ho is a free resolution in the category of matrads.

2. Low Dimensional Biassociahedra

Our construction of the biassociahedra {KK,, ,,,} in the range 1 < m,n < 4 and
m + n < 6 is controlled by the S-U diagonal on associahedra K; the polytope K K,
is identical to B, constructed by M. Markl in [5]. In the course of his construction,
Markl makes arbitrary choices, which correspond to choices we made when construct-
ing the S-U diagonal Ag. So for us, all choices in our construction were made a priori

once and for all.

2.1. The Fraction Product
Let © = (0, #0] 07 =1) ., and let M ={Mym},, >, be the free PROP
generated by ©. For simplicity, we assume that M is a free bigraded Zs-module; sign
considerations that arise over a general ground ring will be addressed in subsequent
sections. For p,g > 1, let x xy = (21,...,2p) X (y1,-.., yq) € N> x N9, In [5], M.
Markl defined the submodule S of special elements in M whose additive generators
are monomials o expressed as “elementary fractions” of the form
oy = (aff ++-an)/(ad, -l ), (1)
where o and o’ are additive generators of S and the j*" output of o is linked to
the i*" input of aj’ (juxtaposition in the numerator and denominator denotes tensor
product). Thus dimag =}, ;dimad, + dim ap’, and oY is represented graphically

n
(see Exam-

by a connected non-planar graph under the identification 67, <> Xm

ple 2.1). We refer to x and y as the leaf sequences of a.
Let TM denote the tensor module of M. All elementary fractions define a non-
associative fraction product /: TM ® TM — S. For example, in the iterated fraction

A/B/C = A/ (A1) /(A 11)

with A <> 01, we have (A/B)/C #0 and A/ (B/C) = 0. Notationally, let M4 =
Mgz @@ Mgz, and MY =M, ,®---® M, ; then the fraction product (1)
can be expressed in terms of our prematrad product v¥: MY @ ML — My x| as

Yi ... oY a0l ) =AY (o Ve al ...l
() O‘p)/(am O‘zp> ES (O‘p Ap'5 Ay O‘rp)'

Note that the free action of v on up-rooted m-leaf corollas A,, (or on down-rooted
n-leaf corollas Y™) generates all planar rooted trees with levels (PLTs), and the
projection to planar rooted trees (PRTs) by forgetting levels induces the standard
operadic product.

Although the matrad H o, is not defined in terms of PROP, one can identify H
with a proper submodule of S and think of the matrad product « as the fraction
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product restricted to Ho,. Thus we may regard the A.,-operad A, as either
Hiw= ({0, |m>=1)/~, 0), where 0 (0),) = Z al or (2)

OtinE’HL*"Hl,*

Hor = (07 |n>1)/~, 9), where d(07) = > af.

ol €EHu 1 Han
dim af=n—3

2.2. Low Dimensional Matrad Products

Let us construct {H,m }m+nge inductively as stage Fg of the increasing filtration
Fi = D man<kHn,m. Our construction is controlled by the S-U diagonal Agx on
cellular chains of the associahedra K (see Subsection 5.1 and [10]), which in the
range of dimensions considered here is given by

Ar(N) = N e A

avc A = Ao A+ Ao A and

A A= N A+ A2 A+ AoA
+ Ao A+ Ao A+ A2 A

Note that Ak agrees with the Alexander-Whitney diagonal on K9 = * and K3 = I.
Define Al = 1; for each k > 1, define the (left) k-fold iterate of Ag by

AP = (Ag @18 1) AlY

and view A(I?)(Ap) as a (p — 2)-dimensional subcomplex of K*!, and dually for
AP (v,
Referring to (2) above, define F3 = H1,1 & H1,2 @ Ha,1. To construct Fu, use the

generators of F3 to construct all possible elementary fractions with two inputs and
two outputs. There are exactly two such elementary fractions, namely,

a2 Y,/ A and all & (ML) (YY),

each of dimension zero. Let Ha o = (63,03, ali) and define 9 (03) = a3 + a1}. Then
Hs 2 is a proper submodule of M, » and K K> 5 is an interval I whose edge is identified
with 62 and whose vertices are identified with a3 and a}i. Define Fy = F3 & Hi 3 ®
Hoo @ Hs 1.

Although all fraction products are used to construct F4, more fractions than we
need appear at the next stage of the construction and beyond. Note that each numer-
ator or denominator of a3 and aii is an iterated S-U diagonal A%)(Y) or AYE)(A)

for some k = 0, 1. Indeed, the components of Ag’;) (Am) and A(I?) (Y™) will determine
which fraction products to admit and which to discard.

Continuing with the construction of Fj5, use the generators of F4 to construct all
possible fractions with three inputs and two outputs. There are 18 of these: one in
dimension 2, nine in dimension 1 and eight in dimension 0. Since KK 3 is to have
a single top dimensional (indecomposable) 2-cell, we must discard the 2-dimensional
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(decomposable) generator

_AA
YYY

as well as the appropriate components of its boundary. Note that e represents a square
given by the Cartesian product of the three points in the denominator with the two
intervals in the numerator. Thus the boundary of e consists of the four edges

AA AA AA ALXA
YYY YYY YYY YYY )

the first two of which contain components of Agp (A3) and Ag) () in their numerators
and denominators. Qur selection rule admits the first two edges and their vertices.

5 q Yi g Y=Y (a¥...a¥% a4 ...09 ) i
Express each of the factors af and ap’ in a3 =~y (ap cap’iad, ozwp> in

terms of their respective leaf sequences x;, q;, y; and p; so that

aYl - Yq

y P1 Oépq
Qy = 7‘]

P

O[xl - Ox,

Then (p1,...,Pq) and (qi,...,q,) define the upper and lower contact sequences of
oY, respectively.

Ezample 2.1. The upper and lower contact sequences of

()é12 _ 9%0[%% (4)
T R

are ((3),(1,2)) and ((2),(2),(2)), respectively.

A non-vanishing matrad monomial of codimension 1

ayl - oz%q
. .
= —q oy © My with x| +1y] <6

axy o Ox
satisfies the following two conditions:
(i) The upper contact sequence (pi,...,Pq) is the list of leaf sequences in some

component of A(Ig_l)()\p).

(i) The lower contact sequence (qi,...,qp) is the list of leaf sequences in some
component of A(Ig_l)(YQ).

Ezample 2.2. The elementary fraction a}3; = (0§ }%) / (0%9%9%) in Example 2.1 is

a non-vanishing 2-dimensional matrad generator since its upper contact sequence

((3),(1,2)) is the list of leaf sequences in the component

A@AofAQ(/l\)

and its lower contact sequence ((2),(2),(2)) is the list of leaf sequences in

APy =yeyYeY.
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Having discarded the last two fractions in (3), our selection rule admits seven
1-dimensional generators labeling the edges of K K 3. Now linearly extend the bound-
ary map 0 to these matrad generators and compute the seven admissible 0-dimension-
al generators labeling the vertices of K K» 3 (see Figure 12). Then in addition to the
2-dimensional generator e and the last two 1-dimensional generators in (3), our selec-
tion rule discards the common vertex

Different elementary fractions may represent the same element. For example,

AA AA )

=AAY
YYY g5

The associativity and unit axioms in the definition of a prematrad (see Definition 4.4
below) identify various representations such as these.

Finally, 2 3 is the proper submodule of M, 3 generated by 6% and the 14 admissible
fractions o given by the selection rule above. Define

2(X) - Y X X AN AN A/L A A
ATAT T TATXY TYX TYYY vy

Then KKj 3 is the heptagon pictured in Figure 2. Since K K3, is homeomorphic
to KKy 3 (see Figure 19), we simultaneously obtain H3o. Define F5 = F4 @ H1 4 &
Has3 @ Hso® Han.

We continue with the construction of Fg. Use the generators of F5 to construct all
possible fractions with two inputs and four outputs. Using the selection rule defined
above, admit all elementary fractions in dimension 2 whose upper and lower contact

sequences agree with lists of leaf sequences of components in Ag’;)()\p) or A&?)(Yq);
these represent the 2-faces of KK, 5. Linearly extend the boundary map 0 and com-
pute the admissible generators in dimensions 0 and 1. Let #H4 2 be the proper sub-
module of My generated by 63 and all admissible fractions o3, and define

o) - Y Y Y1 Iy iy Y

- + -

A X X X X X
CAX XX XA L AAX CAAXAXA

TYIYYIYY XYY TYY XYY
LCAXA U XAA L XAA AAAAAAAA

Y TYY YY T YY Ty

AAAA  AAAA  AAAA  AAAA
YYTYYTYY Yy

Then KK, is the 3-dimensional polytope pictured in Figures 3 and 21.
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X
XXX
X R

¥ &

Figure 2: The biassociahedron K K5 3.

Again, KK, 4 is homeomorphic to KKy o (see Figure 22) and we simultaneously
obtain Hsg 4. While similar, the calculations for K K33 (see Figure 20) also involve
elements such as (4); we leave this case to the reader. Define Fg = F5 & H15 B Hoa &
H3,3® Hao® Hs 1.

Note that all fractions in Fg are “operadic” in the sense that each contact sequence
is identified with some component of A(I?) (Aq) Or Ag) (Y?). When n > 6, however, F,
contains “matradic” fractions whose contact sequences are identified with components
of Ag) (Aq) or Agf) (Y?), the iterated diagonal on the permutahedron P,_;. In F7,
for example, there is the fraction

Nevertheless, the low dimensional examples discussed here demonstrate the general
principle, and with this in mind we proceed with the general construction.

3. Submodules of TTM

Let M = {Mym},,,>, be a bigraded module over a commutative ring R with
identity 1g. Various submodules of TT M will be important in our work, the most
basic of which is the g X p matriz submodule (M®P)®4. The name “matrix submodule”
is motivated by the fact that each pair of ¢ x p matrices X = (z;5), Y = (y;;) € N¥*P
with p,q > 1 uniquely determines the submodule

MY,X = (Myl,hl‘l,l Q- ® Myl,pywl,p) - (Myq,hlﬂq,l Q- ®M,

Yaq,p:Tq,p

) C TTM.

Fix a set of bihomogeneous module generators G C M. A monomial in TM is an
clement of G®P and a monomial in TTM is an element of (G®P)®?. Thus A € (G®P)®?
is naturally represented by the ¢ x p matrix

Yi,1 Yi,p
9z11 9z1.p

(Al =

Yq,1 Yq,p

Jzq1 9zq.p
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Figure 3: The 2-skeleton of KK, .

with entries in G and rows identified with elements of G®P. Thus A is the g-fold
tensor product of the rows of [A], and we refer to A as a ¢ X p monomial (we use the
symbols A and [A] interchangeably). Consequently,

(M®p)®q= @ My, x

X,YENaxp
and we refer to
M= P Myx and V= &y My x
X,Y EN?XP X,Y eNtXPyUNTXT
p,q>1 p,g>1

as the matriz submodule and the vector submodule, respectively. The matrix transpose
A — AT induces the permutation of tensor factors o, 4: (M®P)%? 5 (M®1)®P given
by

(O[yl'l R ® agllz) R ® (agzll R ® ayq,p> — (6)

T1,1 Tq,p

1,1 Tq,p

(ayl,l ®"'®O‘giﬁ> R ® (agi:Z ®,,_®ayq,p>_

Throughout this paper, x and y denote matrices in N9*P with constant columns
and constant rows, respectively; x and y will often be row and column matrices.
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Define

— ——col
M, oy = EB My, and M = @ My x.
x,Y €ENI*P; p,g>1 X,yeNexr; p.g>1

Consider ¢ X p monomials

Y1,1 Yi,p Y1 N Y1
Az, o Qg 1,1 T1,p
A=| : € Myy and B= | | e Myx.
Yq,1 Ya,p Y Y
aztt e ag? a1 0 Baa,

The row (or coderivation) leaf sequence of A is the p-tuple of lower (input) indices
rlsA = (z1,...,z,) along each row of A. Dually, the column (or derivation) leaf
sequence of B is the g-tuple of upper (output) indices clsB = (y1, ... ,yq)T along
each column of B. Pictorially, each graph in the j** column of A has x; inputs and
each graph in the i*" row of B has y; outputs (see Figure 4).

The bisequence submodule of TT M is the intersection

7x.

M = M, "M = D M

x,yENIXP; p.g>1

A g x p monomial A € M is represented as a bisequence matriz

Y1 . Y1
o Qg
A= S (7)
Y Y
ar‘i ... al‘;])

in this case rlsA = (z1,...,2;,) and clsA = (y1,. .. ,yq)T. Let
MY =(AeM|x=rlsA and y = clsA);

then
_ y
M = oy M.
x Xy ENIXP  NaX1
p,g=>1
Given a finite sequence of positive integers u = (ug,...,ug), let |u| = Xu;. By

identifying (H®9)®? ~ (H®?)®? with (¢,p) € N2, we can think of a ¢ X p mono-
mial A € MY as an operator on the positive integer lattice N2, pictured as an arrow
(Ixl,q) — (p,|y]) (see Figure 4 and Example 4.11). While this representation is help-
ful conceptually, it is unfortunately not faithful.

Unless explicitly indicated otherwise, we henceforth assume that

XXy = (z1,...,2p) X (yl,...,yq)T e NIXP » Nax1

with p,q > 1. When the context is clear, we will often write y as a row vector. The
bisequence vector submodule is the intersection

V=VnM= P M oM.
s,teN
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MbesidNss
L X

4
AeM23 <~

Figure 4: A 2 x 2 monomial in M and its arrow representation.

Ezample 3.1. Let M = M1 ® Mz o = <0%> P <0§> Then the bisequence vector sub-
module of TTM is

vVv=MioeM;oM;o---oM'aM" e .0
M3 & M3, & Mo, @ - @M & M3* @ - -
%T+ (Mlyl)@T-i_ (Ml,l) @T+ (Mgwg) @T+ (Mgﬁg).

A submodule
W=Me P WaWLcV
x,y&N; s,teN
is telescoping if for all x,y,s,t
(i) W¥ C MY and W, C ML;
(i) a¥' @@ ad’ € WY implies o¥' ® --- ®@ o € W for all j < ¢;
(iti) By, ®@---®pL, € Wi implies 5, ®@--- @, € W, . forall i <p.

Thus the truncation maps 7: W% — WY""% -1 and 7: Wfﬂl
determine the following “telescoping” sequences of submodules:

Xy - Wtrl"'ffi,—l
T(WY) e (W) S Crth (W) = W
(W) C72 (W) C oo S 7P (Wh) = W,

In general, W is an additive submodule of My, & --- ® MY and does not necessarily
decompose as By ® - -+ ® B, with B; C M, .

The telescopic extension of a telescoping submodule W C V is the submodule of
matrices YW CM with the following properties: If A = [afélj] is a ¢ X p monomial in
W and

(i) [odsd -+ agyit™] is a string in the i row of A such that y; ; = -+ = yi jom =
t t t
t, then Ay, Q- Qag, .. € Wz7zj+m
(it) [aws? -+ aaii™?]” is a string in the j column of A such that z;; =--- =

Titrj =S, then ag™”’ @ - @ a7 € Wh?¥end,

Thus if A € MY N W, the i*" row of A lies in W¥ and j* column of A lies in Wi
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4. Prematrads

4.1. 7Y-products on M

Given a family of maps 7 = {M®?® M®P — M}, ,>1, there is a canonical exten-
sion of the component v = {+¥: MY ® ML — Mm} to a global product T: M ®
M —M. Pairs of bisequence matrices in MY ® M{ are called “transverse pairs.”

Definition 4.1. A pair A® B = [a¥!] @ [By7] of (¢ X s, x p) monomials in M@M
is a
(i) Transverse Pair (TP) if s =t =1, u1; = ¢, and vy; = p for all j and k, i.e.,
setting z; = 1 ; and yr = yx,1 gives
at
AoB=| : | o[B8 - B |]eM/ oML

Yq
Qp

(i) Block Transverse Pair (BTP) if there exist ¢ x s block decompositions A =
[A%,J} and B = [B] ;] such that A} ® B}, is a TP for all i and [.

The block sizes in a BTP decomposition are uniquely determined. Unlike the
blocks in a standard block matrix, the blocks A/, (or B}}) of a BTP A® BEe M ® M
may vary in length within a given row (or column). However, if A® B € M} >t @
M, "%, is a BTP, each TP Aj; ® Bj; € M}i @ M so that for fixed i (or I) the
blocks A}, (or Bf,) have constant length ¢; (or p;). Furthermore, A ® B € MY @ MY
is a BTP if and only if x x y € N™IVl x NIWX1 if and only if the initial point of arrow
A coincides with the terminal point of arrow B in N2.

Ezample 4.2. A (4 x 2,2 x 3) monomial pair A ® B € M3 @ M3L; is a 2 x 2 BTP
per the block decompositions

T T T T
| o |
1 1 7 ]
| o |
e
| o |
! Lo ! | 33 300 33 |
: ad : : a5: I ﬁl 62 [ 63 |
o 5 9 [ TSR R S ——
A= || o : B= | .
| o | | - ,
1 [ 1 1 1 1
| 0/21 o aélll : ﬁl 62 : : 63 :
| o e
Lo L____
| 30 3
. Qg ar

Given a family of maps ¥ = {M®1 @ M® — M}, ,>1, extend the component v =
{7¥: MY @ Mg — M/} to a global product T: M ® M — M by defining

[v(Aj;®Bj;)], A® BisaBTP
) otherwise,

T(A@B):{ (8)

where Aj; ® Bj; is the (i,7)™ TP in the BTP decomposition of A ® B.
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We denote the Y-product by “” or juxtaposition. When A ® B = [agj]T ® [6&]
is a TP, we write

AB :'y(ozgl,...,agq;ﬁgl,...,ﬂgp).

As an arrow, AB “transgresses” from the z-axis to the y-axis N2. When
AT @ BYP € My @ My is a BTP and Aj; ® Bj; € MY: @ M is its BTP decom-

[yl lyel
[x1][xs]"

point of B to the terminal point of A.
— —col
Note that Y-products always restrict to the submodules Mo, and MCO, and

——=col ——=col

consequently to M. To see this, consider a BTP A BeM  ®M ~ with block
decomposition [Agj} ® [B;J} Since each entry along the i*" row of B has ¢ outputs,
each block A;j is a column of length q. Since all entries along a row of A have the
same number of outputs, the total number of outputs from each block Agj is the same

for all j. Thus AB € M and T is closed in M. Dually, T is closed in M.y, and
consequently, T is closed in M.

position, AB is a t X s matrix in M As an arrow, AB runs from the initial

Ezample 4.3. Continuing Example 4.2, the action of T on the (4 x 2,2 x 3) monomial
pair A® B € M @ M35, produces a 2 x 2 monomial in M3y

J— R r-—=—1 r-—=—21
— b1 Do
! 0% a
e%; D2 P
| I [ T ] | [
. [ SIS S S N R ST S
o vaz BT By et By
I P 1 1 I 1
| - Ia4| \a4|
| ! 21 I 1
et Lo _ 3 Lo —_ 3
L -
:Oé I-__:;-I I-__l____l_-‘ [ (]
1 [ I I (] ]
- i B Py ol By

In the target, (|xi|,|x2|)=(142,3) since (p1,p2) =(2,1); and (|yi|,|yz|) =
(145 +4,3) since (g1,q2) = (3,1). As an arrow in N2 AB initializes at (6,2) and
terminates at (2,13).

4.2. Prematrads Defined
Let 177 = (1,...,1) € NP and 19%! = (1,..., 1)T € N2x1: we often suppress the
exponents when the context is clear.
Definition 4.4. A prematrad (M, ~,7) is a bigraded R-module M = {M,, ,,,}
together with a family of structure maps v = {7¥: MYy @ ML — Mm} and a unit
n: R — M} such that
(i) Y (Y (4;B);C) =" (A;Y(B;C)) whenever A® B and B® C are BTPs in

M ® M;
(#) the following compositions are the canonical isomorphisms:

m,n>1

1bx1

b Ya b
@M, “— M,;

1bx1

®b
R® oM, "8 M}

b
1® ®a Y{1xa
M: @ R®* "L ME @ ML, 25 M.
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We denote the element 1n(1gz) by 1m. A morphism of prematrads (M,~) and
(M',~")is amap f: M — M’ such that fv¥ =% (f®? ® f©P) for all x x y.

Although Y fails to act associatively on M, Axiom (i) implies that (AB)C =
A (BC) whenever A, B,C € M, AB # 0, and BC # 0. On the other hand, T acts
associatively on M, which is the content of Proposition 4.7 below. Given a bisequence
matrix AP € MY, let 171X and 1¥1*P denote the (bisequence) matrices whose
entries are constantly 1n;. Then Axiom (ii) implies Y (1¥1<P; 4) = A = T (4; 197,

In the discussion that follows, we think of a string of matrices as a composition of
operators and index the matrices in the order applied (from right-to-left).

Definition 4.5. Let M = {M,, ,} be a bigraded R-module, and let m,n > 1. A
string of matrices A, - -+ A is a basic string of bidegree (m,n) if

(i) Ay e M4, x| =m,

(ii) A; € M\ {197 | p,q € N} for all 4,
(iii) As € MY, |y| =n, and

(iv) some association of A, --- A; defines a sequence of BTPs.
In particular, if M is a prematrad, A --- Ay is a basic string of bidegree (m,n), and
each BTP in Axiom (iv) defines a non-zero Y-product, then A;--- Ay defines a non-

zero element of M) = M, ,,,. Indeed, this is exactly the situation when a prematrad
(M,~,n) is “free” (see Definition 4.13 below).

Lemma 4.6. Let (M,~,n) be a prematrad. Then Y acts associatively on a basic string
Ag--- Ay if and only if A; € M for all i.

Proof. Suppose T acts associatively on a basic string Ag--- Ay. If s = 1,2 there is
nothing to prove, so assume that s > 2 and 1 < ¢ < s. Since T acts associatively, every
association of Ay --- A; defines a sequence of BTPs. Hence

BA;C = (A5 Aig1) Ai (Aim1 -+ Ar)

is a basic string and B ® A; and A; ® C are BTPs. So write B = [bgl --~bg"]T and

C = [ch -+t |; then the i'" row of A; has the form [aﬂ; e aﬁ’;] and the j* column

T — —~—=CO
of A; has the form [a”l, e a”"ﬁ} . Thus A; € M,oww "M b M.

ZJ Z]
Conversely, we proceed by induction on string length s. Consider a basic string
ABC with B € M, and suppose that A ® B and AB ® C are BTPs. Write

Y1 V1 . U1
ay byt bup
A® B = : ® : : ;
v, v,
agT bu‘i te buz,

let B* and B; denote the i'" row and j'* column of B. Set vy = 0 and express A as
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; vyt v T
the block matrix [Al e Aq]T where A* = ag phetiatt ag”” * 1} . Then
1l Yo+ tvi_1+1
A B ap 1 1
AB = . where A'B' = : (b e b
P
A1B4 ag7’1+“'+“i

Since AB® C'is a BTP, C has the form [cZ ---cf |, where s =uy + -+ + u,. Set
up = 0 and express C' as the block matrix [C} - - - Cp], where

Ci= [cgu1+“'+uj,1+1 Cgu1+,.,+uj} .
Then
b
Bi@Cj=1| : ® {cguﬁ,..ﬂj_lﬂ cguﬁ_‘_ﬂj]
bu!

isa TP and B ® C'is a BTP. Therefore (AB) C = A (BC) by Definition 4.4, Axiom (i).
Similarly, if B® C and A ® BC are BTPs, then A® B is a BTP.

Next consider a basic string ABCD with B,C e M. If B C, A® BC, and
A(BC)® D are BTPs, A(BC) is a column matrix whose entries are basic strings of
the form A; ([Bi1--- Bip| [Ci1--- Cip]). Hence A(BC) = (AB)C by the calculations
above; and dually, (BC) D = B (CD). Furthermore, the equalities

(A(BC))D = ((AB)C)D  and  A((BC)D) = A(B(CD))

imply ((AB)C)D = (AB) (CD) = A(B(CD)).

Inductively, let k£ > 4, and assume that Y acts associatively on the basic strings
Ag -+ Ay of length s < k with A; € M for all 4, and consider a basic string A1 -+ A
with A; € M for all j. Since some association of Ap4q---A; defines a sequence of
BTPs, there is an innermost BTP A;,1 ® A;. Let B = A;;11A;; then B is a bisequence
matrix since T is closed in M, and Y acts associatively on Ayy1--- Aj0BA;j_1--- Ay,
Ifl<j<k,let C=Apy1---Ajio and D =A;_1---Ay; then T acts associatively
on CA;11A;D, completing the proof. O

Proposition 4.7. Let (M,~,n) be a prematrad; then Y acts associatively on M.

Proof. It A, B,C € M such that A® B and AB ® C are BTPs, the entries of (AB) C
are basic strings on which T acts associatively by Lemma 4.6. Hence B ® C is a BTP
and (AB)C =A(BC). If A® B is a BTP and B ® C is not, neither is AB® C.
Dually, if B C is a BTP and A ® B is not, neither is A ® BC. In either case,
(AB)C = A(BC)=0. O

Some examples of prematrads now follow.

Remark 4.8. If (M, ~,n) is a prematrad, the restrictions (M1,*,%1<, 77) and (M, 1,75, 1)
are non-Y operads in the sense of May (see [6]).
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Ezample 4.9. A non-¥ operad (K, ~v,) with

T K(p) © K(21) @ - -+ @ K(zp) — K([x])

is a prematrad via

_J K(m), ifn=1 o, ify=1
Mim = { 0, otherwise and 75 = { 0, otherwise

(cf. Remark 4.8). For a discussion of the differential in the special case K = A, see
Example 6.11.

Ezample 4.10. Let (K = D,,5, K(n),7) and (L = €D,,>, L(m),7*) be non-¥ oper-
ads with K(1) = L(1) and the same unit 7. Set

K(n), ifm=1 Vi, ify=1
Mym=<¢ Lim), ifn=1 and Y =4¢ 7Y, ifx=1
0, otherwise 0, otherwise,

then (M,~) is a prematrad.

Ezample 4.11 (The Prematrad PROP M). The free PROP M, with its horizontal
and vertical products x: My, y, @ Mys mmr — Myipn/ maym and o2 My o @ My, — M,
(ct. [1], [6]), is endowed with a canonical prematrad structure (MP™ ~,n), with n
determined by 1 (1) = {unit of the PROP M }. To define the structure map +, define
x =1 and iterate x to obtain

Xt @ xP~h MY @ ML — M@ M7

x|

View o) € M7 as a graph with p groups of ¢ outputs (y1,1-+¥1,4) =+ (Up1 " ¥Up,a)
labeled from left-to-right. The leaf permutation

Oqp- (yLl T ylﬂl) T (yp,l T yp7q) = (yLl o 'yp,l) T (ylaq T ypaq)

induces a map o} : M7 — M!

x| x| Then + is the sum of the compositions

q—1 p—1 1Qc* °
WiMyeML T ET MPleME T MPleMP S MY (9)

x|

The induced associative product T on M takes values in matrices of (typically)
non-planar graphs as in Figure 4. In particular, let H be a free DG R-module of
finite type and view the universal PROP Uy = End(TH) as the bigraded R-module
M = {Hom (H®™ H®")} Then a ¢ X p monomial A € MY admits a represen-

tation as an operator on N2 via the identification (H®P)®? <+ (p,q) with the action
of A given by the composition

nm>=1"

(H®|X‘)®q ~ (H® @@ H®)® 24 (Fo) P g ... @ (H®Y)"P

Uyl,p@:}g"yq,p (H®p)®y1 @ - ® (H®p)®yq ~ (H®p)®|Y| '

This motivates the representation of a general A as an arrow (|x|,q) — (p,|y]) in
N2 (see Figure 4). The map x971 @ xP~1 in (9) is the canonical isomorphism and ~
agrees with the composition product on the universal preCROC [12].
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Ezample 4.12 (The Universal Enveloping PROP U). Recall that the structure map
~vrp in the free PROP FP (M) is the sum of all possible (iterated) “horizontal”
and “vertical” products x: My o @ My o — Myt a+qr and 02 Moy @ My o — M q.
Furthermore, the tensor product induces left S,,- and right .S,,-actions

1
Mb,b X Mb,a U§) Mb,b [02] Mb,a ’Yif Mbﬂ and

1Ro YFP
Mb,a & Ma,a — Mb,a ®Ma,a — Mb,a~

Note that FP is functorial: Given bigraded modules M and N, a map f = {fpq:
My o — Np,o} extends to amap FP(f): FP(M) — FP(N) preserving horizontal and
vertical products, i.e.,

Fp(f)(Mb,a X Mb’,a’) = f(Mb,a) X f(Mb/,a’)

and FP(f)(Mepo Mya) = f(Mep) o f(Mya). Now if (M,~var) is a prematrad, vy
is a component of v,, on MY ® M. Let J be the two-sided ideal generated by
Dy Ver —7u) (MY ® M%). The universal enveloping PROP of M is the
quotient

UM)=FP(M)/J.
Note that the restriction of U to operads is the standard functor from operads to
PROPs [1].

4.3. Free Prematrads

“Free prematrads” are fundamentally important. Our definition of a free prematrad
(below) involves an inductive definition of the intermediate set GP™ = G} in which
GP'y, is defined in terms of the set

m
Gm = |J &%
ism, j<n,
i+j<m-+n
We think of G, ,,) as an n x m array whose (j, i)™ cell contains GYY when i +j <
m + n and whose (n, m)th cell is empty. For example, we picture G3 4 as:

1 2 3 4

Borrowing our notation for the matrix and bisequence submodules of TT'M, we denote
the set of matrices over Gy, ;) by Gy, the set of matrices over GP™ by G, and the
subset of bisequence matrices in G by G.

Definition 4.13. Let © = (0, | ] =1 #0) _ be a free bigraded R-module gen-

pre

erated by singletons 07, and set G| = 1. Inductively, if m+n > 3 and Gy, ) has
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been constructed, define
GPe, =07, U {basic strings A --- Ay of bidegree (m,n), A; € G, ), 5> 2}.

Let ~ be the equivalence relation on GP*® generated by [A;;B;;| ~ [Ai;] [Bi;] if and
only if [A;;] x [By;] € G x G is a BTP, and let FP* () = (GP™ /~). The free pre-
matrad generated by O is the prematrad (FP**(©),~,n), where ~ is juxtaposition
and n: R — F77 (©) is given by 1 (1g) = 1.

Example 4.14 (The As-operad). Let 6, =0. #0 and 6" =0} #0 for all
m,n > 1. The non-sigma operads K = F* (f,) and L = F""(#*) are isomorphic to
the Ay.-operad and encode the combinatorial structure of an A.,-algebra and an
Aso-coalgebra, respectively. Let 951,1’ denote the 1 x p matrix [0 - - - 8,, - - - 1] with 6,,

in the i position, and let 677 denote the ¢ x 1 matrix [6*---0" - Hl]T with 6™ in
the j** position. Then modulo prematrad axioms (i) and (ii), the bases for K and L
given by Definition 4.13 are

{9 epk ___9101

Pk mpg, ik mi,i1

€ K(mi+p—1)|my=pr1—pr+1}
and
{QZLJZ ...9;1J19¢11 cL (nl +q — 1) | Ny = Gr+1 — ¢r + 1} X
Given A € G}y, /~, choose a representative As--- Ay € GJ'},. In view of Defini-

tion 4.5, Axiom (iv), some association of Ay --- A; defines a sequence of BTPs; thus
s — 1 successive applications of T produces a 1 x 1 (bisequence) representative B.

Definition 4.15. Let A € G}’ /~. A factorization of A is a representative
Ag--- Ay € A. A factorization Ag--- A1 € A is a ©-factorization if the entries of
A; are elements of © for all 7. A factorization B, --- By € A is a bisequence factor-
ization if B; € G for all 7. A bisequence factorization A, --- A; € A is bisequence

decomposable if there is a bisequence factorization B; - -- B1 € A such that ¢t > s.

Since bisequence factorizations are basic strings of matrices, bisequence factoriza-
tions are characterized by Lemma 4.6: A;--- A; € A is a bisequence factorization if
and only if T acts associatively on Ay --- Aj.

Given A € GP™ /~, consider a factorization A, --- Ay € A. Each association of
A -+ - A determines a fraction, any two of which will look quite different. For exam-
ple, the two associations of the bisequence ©-factorization

0% 92 92
AgAr Ay = | 63 [ a1 } [ 05 05 03 ]eGg, (10)
op L0201
which are
9% 2 2
5] e
(A3A2) Ay = 2 [ 05 63 65 ]
[0z ][0 1]
and

As (AzAy) = zg [{zg][eg 03 | [91%}[9%]}7
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determine the fractions

XX XXX

XY X1 ad XAV -
Define the graph of A to be the graph of the 1 x 1 representative A’ € A. If a fraction
f represents an association of Ag--- Ay € A, the graph of A can be obtained from f
by removing fraction bars and making the prescribed connections.

The arrows representing the factors of A, ---A4; € A form a polygonal path in N?
from the z-axis to the y-axis, and evaluating subproducts in an association changes the
path. For example, the 3-step path in Figure 5 represents the factorization AzA;A;
in (10) thought of as the composition

XY

XXX Al X
X

H®6 (H®2)®3 Z’) (H®3)®2 N (H®2)®3 02,23;1 (H®2)®3 i H®6,

and the 2-step paths represent the associations (AsAs) A; and As (AzA;), where
the subproducts in parentheses have been evaluated and the remaining unevaluated
products are thought of as the compositions

XXX X

6 (H®2)®3 723 (H®3)®2 ., g%

and
XA YI
YX X %
HEO s (059 23 (ren)® 7, pes

Figure 5: Polygonal paths of A3A3A;.
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In the special operadic situations of Example 4.14, every O-factorization is a bise-
quence factorization, but this is not true, in general. For example, the ©-factorization

o1 0l 1 re
B3By By = [ GE } { 12 0} ] [ 07 07 07 } EG§,3(®)

is not a bisequence factorization since By is not a bisequence matrix. Furthermore,
B3 B, By only associates on the left since By ® By is not a BTP. However, Cy = B3 Bs,
Cy = B1, and C = CyC are bisequence matrices; hence CoC and C are bisequence
factorizations of which
ooy 1]
ChCy = (62 2 6] (11)
03[ 1 6]

is bisequence indecomposable (see Figure 6).

A A
YYY

Figure 6: Graphical representations of CoC; and C.

Bisequence indecomposables are especially important, and we wish to identify a
canonical bisequence indecomposable representative of a given class A € G}, /~.
First consider a bisequence indecomposable Ay -+ A; € A with some A; € {01,9?}.
If A; =0} for some s, then A;---A; is identified with an up-rooted PLT with i
levels and m leaves; dually, if A; = 0% for some ¢, then Ay ---A; is identified with
a down-rooted PLT with k — ¢+ 1 levels and n leaves. Note that both situations
occur in factorizations of the form Ay --- 0461 ... A;. But in either case, the indicated
PLT represents an isomorphism class of PLTs whose elements determine distinct
bisequence indecomposable factorizations of A. For example, the isomorphic PLT's

\?/: ecee > (e0)oe > (e0)(e0)
\?/: cece oo (ee) > (e0)(0e)

respectively determine the distinct equivalent bisequence indecomposables

and

AgAgAs Ay = [0211])7 [163]" [62] [63]
and
Apas sy = [1163]" (63 1] [07] [03]

. pre
in G473.
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Now recall that a PLT with s levels and t leaves specifies the order in which
s pairs of parentheses are inserted into a string of ¢ indeterminates. When faced
with the situations described above, choose the factorization indexed by the PLT that
successively inserts parentheses as far to the left as possible. Such factorizations have
preferred operadic substrings.

Definition 4.16. A preferred factorization is a factorization with preferred oper-
adic substrings (if any) and factors whose entries have this property. A bisequence
matrix B € GP™ is balanced if each entry of B is a preferred bisequence indecom-
posable factorization. A balanced factorization of A € GP*® '~ is a preferred bise-
quence indecomposable factorization Ay --- A7 in which A; is balanced for all 7.

In the example above, A4 A3AsA; is the (obviously unique) balanced factorization
of A € G5 /~. In view of Definition 4.4, Axiom (i), two associations of a basic string
Ag--- Ay that define sequences of BTPs are equal. Hence each class A € G’y /'~ has
a unique preferred factorization of maximal length. In fact:

Proposition 4.17. Fach class A € G}, /'~ has a unique balanced factorization.

Proof. If m + n < 4, balanced factorizations of A are O-factorizations, and obviously
unique. Inductively, assume the statement holds for all B € G7)’/~ with k <m,
I <nand k+1<m+n, and consider a class A € G}, /~. If 0:; € A, then Ais a
balanced singleton class. Otherwise, consider the unique preferred class representative
Ag -+ Ay of maximal length. If A --- A; is a bisequence factorization, it is balanced.
If not, evaluate T-products and obtain a bisequence factorization By By of A. Either
By = As or By = A;Bj. In either case, there is a bisequence factorization A;B of A. If
B is bisequence indecomposable, A,B is the unique balanced factorization of A. If not,
there is a bisequence factorization C1C5 of B. If (] is bisequence indecomposable,
consider Cb; otherwise, decompose C;. Continue in this manner until the process
terminates. O

We now construct a set that conveniently indexes the module generators GP™ /'~
for FP*¢ (©). Define a map ¢ that splits the projection GP** — GP™ /~ as follows: For
each pair (m,n) with m 4+ n < 3, set ¢(cls07,) = 07 . Inductively, for each pair (m,n)
with m + n > 4, assume that ¢ has been defined on Gp , /~fori+j <m+mn. Then
given a class g € G}y, /~, define ¢y, ,,(g) to be the balanced factorization of g. Let
BEe, = Im ¢, and BPr = |JBRTS,.

Although a balanced factorization 5 € BP™ is not a ©-factorization, there is a
related PLT ¥ (8) whose leaves are O-factorizations. Let 8 = B, - -- B € BP™ and set
Uy (B) = p. If § is a O-factorization, set ¥ () = ¥y (). Otherwise, let (8)) denote
the tuple of entries of By listed in row order and replace each entry [y of (8)
with its balanced factorization (3}, € BP*®. Form the 2-level tree ¥y (8) with root 3
and leaves labeled by the entries of (53) (see Example 4.18). If each 8}, is a O-
factorization, set ¥ (3) = Wy (8). Otherwise, repeat this process for each 3}, i.e., let
Uy (8,) = By if By, is not a O-factorization, construct ¥ (5;,). Now construct 3-level
tree W3 (3) either by appending the tree W, (8;.) to the leaf 5, if §; is not a Theta-
factorization, or by extending the branch of 3 otherwise. If each level 3 entry of
U5 (8) is a O-factorization, set W (3) = U3 (5); otherwise continue inductively. This
process terminates after r steps and uniquely determines an r-level tree ¥ (3) whose
leaves are balanced ©-factorizations.
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Ezxample 4.18. The balanced factorization
03[ 03 01 ]
B = [0F 0 67 ]
03[ 01 03 ]
is associated with the 2-level tree

B

v (5) = A NN

oLy o] alol ] @ 0 o
Finally, let CP's, = {¥ (8) | B € BE'S, }; then CP® = Upn.n Chim indexes the set of

n,m n,m
module generators for FP™ (©). In Subsection 6.2 we identify a subset C C C**® whose
elements simultaneously index module generators of the “free matrad” F' (©) and cells
of the biassociahedra K K. This identification relates the module structure of F (©)

to the combinatorics of permutahedra.

4.4. The Bialgebra Prematrad
As is the case for operads and PROPs, prematrads can be described by generators
and relations.

Definition 4.19. Let © = (0} = 1,603,6% | 6/ #0). For A and B € FP*(0), define
A ~ B ifbideg (A) = bideg (B) . Let v be the structure map induced by projection and
let (1) = 1. Then the bialgebra permatrad (HP'® := FP™ (©) /~,~,n) satisfies
the following axioms:

(i) Associativity: v(03;03,1) = ~(63;1,63).
(i) Coassociativity: v(0%,1;60%) = (1, 0%;6%).
(iii) Hopf compatibility: v(0%;03) = v(03,61; 62, 6%).

Each bigraded component HP" is generated by a singleton ¢, ,; for example,
c1o=103 co1 =03 c13= 7(95;9%, 1), c3.1 = y(0%,1;0%), cao = v(0%;603), and so on.
Note that HY'S and HL' are operads; the first is generated by 65 subject to (i) while
the second is generated by 62 subject to (ii). Both are isomorphic to the associativity
operad Ass [6]. And furthermore, for the bialgebra PROP B we have BP'® = HPre
and U(HP™) = B.

Given a graded R-module H, a map of prematrads HP'® — Up defines a bialgebra
structure on H and vise versa. Since each path of arrows from (m,1) to (1,n) in N2
represents some Y-factorization of ¢, ,,, (see Figure 5), we think of all such paths as
equal. Therefore HP™ is the smallest module among existing general constructions
that describe bialgebras (cf. [5], [12]). Although the symmetric groups do not act on
prematrads, the permutation o, ,, built into the associativity axiom minimizes the
modules involved.

4.5. Local Prematrads
Let M = {Mynm},, n>1 be a bigraded R-module, let W be a telescoping submodule

of TTM, let W be its telescopic extension, and let v, = {7,-‘{: WY @ Wi — W‘lil‘}
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be a structure map. If A® B is a BTP in W® W, each TP A’ ® B’ in A ® B lies in
WY ® Wi for some x,y,p, q. Consequently, 7, extends to a global product T: W @
W — W as in (8). In fact, W is the smallest matrix submodule containing W on
which T is well-defined.

Definition 4.20. Let W be a telescoping submodule of TT M, let

|

Vo = {’yi': WZ@Wi%lel}

be a structure map, and let n: R — M. The triple (M,~,,,n) is a local prematrad
(with domain W) if the following axioms are satisfied:

(i) WL =ML and WY = M7 for all x,y;
(#) Y is associative on W N M;

(#ii) the prematrad unit axiom holds for ~,,, .

Ezample 4.21. Let 'V be the bisequence vector submodule of TTM. If (M,~) is a
prematrad, then v = ~,, and (M, ) is a local prematrad with domain V. Local sub-
prematrads (M, yw) C (M,~y) are obtained by restricting the domain to submodules

such as M, M!, and M! UM?. Note that (M, WMT) and (M, 'yMl) are operads.

5. Diagonal Approximations

A diagonal approximation Ax on a cellular complex X determines a “k-subdivi-
sion” X®*) of X and a cellular inclusion A®*): X*) —y X *k+1 whose image is the
subcomplex of X *¥*! we shall denote by A*®) (X). In particular, the subcomplex
AR (P,) C PX*+1 determined by the S-U diagonal Ap defines the selection rule in
Subsection 2.2 and, more generally, in the next section.

Recall that a map f: X — Y of CW-complexes is homotopic to a cellular map
g: X =Y, which in turn induces a chain map g: C, (X) — C., (V). Given a geomet-
ric diagonal A: X — X x X, a cellular map Ax: X — X x X homotopic to A is
called a diagonal approzimation. A diagonal approximation Ay induces a chain map
Ax: C(X) = Cy (X) ® Oy (X), called a diagonal. A brief review of the S-U diago-
nals Ap and Ag on cellular chains of permutahedra P = U,>; P, and associahedra
K = U,>2K,, (up to sign) now follows (see [10] for details).

5.1. The S-U Diagonals Ap and Ak
Let n ={1,2,...,n}, n > 1. A matrix E with entries from {0} Un is a step matriz
if the following conditions hold:
(i) Each element of n appears as an entry of E exactly once.
(#) Elements of n in each row and column of F form an increasing contiguous block.
(ii) Each diagonal parallel to the main diagonal of F contains exactly one element
of n.

The non-zero entries in a step matrix form a continuous staircase connecting the
lower-left and upper-right most entries. There is a bijective correspondence between
step matrices with non-zero entries in n and permutations of n.
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Given a ¢ x p integer matrix M = (m,;), choose proper subsets
S; C {non-zero entries in row ()} and T; C {non-zero entries in col (j)},

and define down-shift and right-shift operations Dg, and Ry, on M as follows:

(i) If S; # @, maxrow(i+ 1) < minS; = m;;, and m,;11 =0 for all k& > j, then
Dg, M is the matrix obtained from M by interchanging each m; € S; with
Mit1,k; otherwise Dg, M = M.

(i1) If T; # @, maxcol(j + 1) < minT; = m;;, and my j11 =0 for all k > ¢, then
Rr; M is the matrix obtained from M by interchanging each my ; € T; with
Mg, j+1; otherwise Rp; M = M.

Given a ¢ X p step matrix E together with subsets S1,...,S5; and T1,...,T, as above,
there is the derived matriz

RTp e RTzRTlDSq s DSzDle.

In particular, step matrices are derived matrices under the trivial action with
S; =T; = @ for all 4, ;.

Let a = A1|As|---|Ap and b= By|By_1|-- - |B1 be partitions of n. Then a x b is a
(p, q)-complementary pair (CP) if there is a ¢ x p derived matrix M = (m,;) such that
Aj={m;; #0|1<i<q} and B; = {m;; # 0|1 < j < p}. Thus (p, q)-CPs, which
are in one-to-one correspondence with derived matrices, identify a particular set of
product cells in P, x P,.

Definition 5.1. Define Ap: Cy (P1) = Co (P1) ® Co (P1) by Ap(1l) =1® 1. Induc-
tively, having defined Ap: C, (Py) = Ci (Px) ® Cy (Py) for all k < n, define Ap on
n+1¢e Cy(Pnt1) by

Ap(n+1) = Z ta®b
(p,q)-CPs axb
p+g=n-+2

and extend Ap multiplicatively, i.e., Ap (u1| - |u,) = Ap (u1) |- |Ap (ur).

The diagonal A, induces a diagonal Ag on C, (K). Recall that faces of P, in
codimension k are indexed by PLTs with n 4 1 leaves and k + 1 levels, and forgetting
levels defines the cellular projection ¥o: P, — K41 given by A. Tonks [15]. Thus
faces of P, indexed by PLTs with multiple nodes in the same level degenerate under
J9, and corresponding generators span the kernel of the induced map ¢¢: Cy (P,) —
C. (Kpn+1). The diagonal Ak is given by

A = (190 X 190)AP.

5.2. k-Subdivisions and k-Approximations

When X is a polytope one can choose a diagonal approximation Ax: X — X x X
such that

(i) Ax acts on each face e C X as a (topological) inclusion Ax(e) C e X e, and

(i4) there is an induced (cellular)1-subdivision X(*) of X that converts Ax into a
cellular inclusion Agp XM 5 X x X,
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If e = U:’;l e; and e; € XV there are faces u;,v; C e; such that Ag)(ei) = u; X v;.
Thus Ax(e) = U, Agp(ei) =", u; X v;, and in particular, A agrees with the
geometric diagonal A only on vertices of X.

The 1-subdivision X1 arising from an explicit diagonal approximation Ax can
be thought of as the cell complex obtained by gluing the cells in Ax (X) together
along their common boundaries in the only way possible. For example, the A-W
diagonal on the simplex A™, the Serre diagonal on the cube I, and the S-U diagonals

on the permutahedron P,;; and the associahedron K, 2 (see [10]) induce explicit
1-subdivisions (A™)®), (1)), Pr(l& and KT(LQQ (see Figures 7-10), and it is a good
(1)

exercise to determine how the vertices of (I™)"" resolve in Pﬁs-)l and Kﬁbl_zz.

Algebraically, the assignment
e {ui X vi}i1gi<cm (12)

determines a DG diagonal Ay : C, (X) = C, (X) ® C, (X) on cellular chains such
that Ax (Ci(X)) C C. (Agp()ﬂ”))7 where equality holds in the (unique) case
X = x. Conversely, if a DG diagonal approximation Ax on C, (X) is determined
by a cellular decomposition as in (12), there is a corresponding 1-subdivision X ()
and a l-approrimation Ag): XM 5 X x X.

Furthermore, there is a 2-subdivision X of X (see Figure 11) and a corresponding
2-approximation Ag?) : X®@ = X1 x X that sends each cell of X®) onto a single cell
of XM x X; consequently, the composition Ag?) = (Agp X 1) A(}?) sends each cell of
X @ onto a single cell of X *3. Inductively, for each k, there is a k-subdivision X ) and
a k-approximation Ag];): X#) 5 x(*=1) » X such that A(;;) = (Ag];_l) X 1) A()l;)
sends each cell of X(*) onto a single cell of X***1 Thus, for each k > 0, a diago-
nal approximation Ay fizes the subcomplex A®*) (X) := Ag?) (X)) ¢ X*F+1 which
says that Ay acts on A% (X) as an inclusion.

—_

12

Figure 7: The 1-subdivision of P, = K3 = I.

The subcomplex A®) (P,) € P}¥*1 defines the “configuration module” of a local
prematrad in the next section.

6. Matrads

In this section we introduce the objects in the category of matrads; morphisms
require a relative theory constructed in the sequel. As motivation, let © = (67, # 0 |
01 = 1),,.n>1, and consider the canonical projection pP*: F™(©) = H""; then
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012x2

0x012

01x12

e

Figure 8: 1-subdivisions of A% and A3 via the A-W diagonal.

0xXxX1

XX x11

00xXX

X0x1X

Jox xXX1
X0Xx1xX1 | Xxxx111
X00x1XX | XX0x11X

Figure 9: 1-subdivisions of 12 and I® via the Serre diagonal.
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2 12
13 3
9, © 9, 1
123 2
g 3
1
23
13 1
13 1 2 23
2 23

Figure 10: 1-subdivisions of P; and K, via S-U diagonals Ap and Ag.

B &

Figure 11: 2-subdivisions of P3 and K.
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pre , 0", m+n<3
n _ m?
poOn) = { 0, otherwise.

Now consider a differential 9™ on FP™(©) such that p” is a free resolution in the
category of prematrads. Then the induced isomorphism of™*: H, (F pre(@),ﬁpre) ~
H™ implies

57 (61) = 07 (62) = 0
0" (03) = ~(63;1,03) — v(63;63,1)
8" (03) = ~(63;05) — 7(0563;6767)
0" (07) = v(1,0%;67) — 7(67,1;67).

However, defining 8" on all of © is quite subtle, and while it is possible to canonically
extend 8" to all of O, acyclicity is difficult to verify. Instead, there is a canonical
proper submodule Ho, C F px'e(@) and a differential 0 on H such that the canonical
projection ¢: Hoo — M~ is a free resolution in the category of “matrads.” Further-
more, we conjecture that the minimal resolution of # in the category of PROPs (and
consequently, in the category of prematrads) is recovered by the universal enveloping
functor U discussed in Example 6.8 below, i.e., the minimal resolution of the bial-
gebra PROP B is U(p): U(Hoo) = U(HP™) = B, in which case Hoo is the smallest
extension of HP™ in the category of modules.
The precise definition of Ho, requires more machinery.

6.1. Matrads Defined

Consider a family of pairs (Wq,v,), where W, C TTM is a telescoping sub-
module, and the corresponding family of telescopic extensions (W,,T,). To each
pair Wy, T,) the T,-factorizations via Definition 6.1 below determine a unique
“configuration module” I'(W,) € W, with the following property: If W, C Wg

and 7y, = Tw, ‘w , then I' (W) € I' (Wg). The local prematrad (M, 7, ) is a
“matrad” if W, is a“I‘—stable,” i.e., W, is the smallest telescoping submodule such
that I' (W) = I' (Wp) whenever W, C Wg and 7,

Matrads are intimately related to the permutahedra. Recall that each codimension
k — 1 face of P,,_; is identified with two PLTs—an up-rooted PLT and its down-rooted
mirror image-with m leaves and k > 2 levels (see [4], [10]). Define the (m, 1)-row
descent sequence of A, to be m = (m). Given an up-rooted PLT T' = T* with k levels,
express TP =T/ Aoy, o+ Am,,, fork >i>1and T = Ky, , . Define the i'" leaf
sequence of T to be the row matrix m; = (m; 1,...,m;,) and the (m, k)-row descent
sequence of T to be the k-tuple of row matrices (my, ..., my). Note that the vertices
of P,,_; are identified with (m,m — 1)-row descent sequences (my, ..., m,,_;), where
m; = (1,...,2,...,1) € N" with exactly one 2 in position j for some 1 < j < r;, in
which case m; = (2). Dually, define the (n, 1)-column descent sequence of Y™ to be
n = (n). Given an down-rooted PLT T = T" with [ levels, express T = Y"1 ... Y™
/T Y forl >4 > 1and T' = Y™.1. Define the i*" leaf sequence of T to be the column

= 'Vwﬁ w.
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matrix n; = (n;1,...,n;)" and the (n,l)-column descent sequence of T to be the
l-tuple of column matrices (ny,...,n7).

Given a telescoping submodule W and its telescopic extension W, let Wiow =
——=col

WNM,ow and WOl =WNM .

Definition 6.1. Given a local prematrad (M, yw) with domain W, let ( € M, ,,
and £ € M, , be elements with m,n > 2.

(i) A row factorization of ¢ with respect to W is an T-factorization A;---Aj =
¢ such that A; € Wiow and rlsA; # 1 for all j. The sequence (rlsAy, ..., rlsAg)
is the related (m, k)-row descent sequence of (.

(ii) A column factorization of ¢ with respect to W is an Y-factorization
By---By = ¢ such that B; € W' and clsB; # 1 for all i. The sequence (clsBy,
...,clsBy) is the related (n,l)-column descent sequence of .

Column and row factorizations are not unique. Note that an element A € M,, . always
has a trivial column factorization as the 1 x 1 matrix [A]. When matrix entries in
a row factorization are pictured as graphs, terms of the row descent sequence are
“lower (input) leaf sequences” of the graphs along any row, and dually for column
factorizations.

Example 6.2. An Y-product of bisequence matrices is simultaneously a row and col-
umn factorization. For example, consider the YT-product

9% 2 2

0

C=C10,C5 = Ozg |: 0% ggé :| [9% 6% 9%] S M5,4.
B3

As a row factorization, the (4, 3)-row descent sequence of C is
(rlsCy,11sCo, rlsCs) = ((2), (12), (121)),
and as a column factorization, the (5, 3)-column descent sequence of C' is

1
(clsCy, clsCy, clsCs) = 2], <§) ,(2)
2

o

(), (12),(121))  ((122), 21)', (2))

Given a local prematrad (M,yw) and elements A € M, s and B € M, , with
s,t > 2, choose a row factorization A;---Ap of A with respect to W and (s, k)-
row descent sequence «, and a column factorization B;---Bj of B with respect to
W and (t,1)-column descent sequence 3. Then « identifies A with an up-rooted s-
leaf, k-level PLT and a codimension k — 1 face €4 of Ps_1, and 3 identifies B with
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a down-rooted t-leaf, I-level PLT and a codimension ! — 1 face ép of P,_;. Extend-
ing to Cartesian products, identify the monomials A = A4, ® --- ® A, € (M*TS)®q and
B=B®-®B, € (M,)®" with the product cells

A A A X M M M X
ea=¢€a, X---xXes, CPY and ép=ép, x---xép, C P,

Now consider the S-U diagonal Ap and recall from Section 5.2 that there is a
k-subdivision P of P, and a cellular inclusion P < A®) (P,) C PX*+1 for each
k and r. Thus for each ¢ > 2, the product cell e A either is or is not a subcomplex of

Al=D(P,_)) C P9 and dually for ¢ B- This leads to the notion of “configuration
module.”

Let xp ;= (1,...,m,...,1) € N"? with m in the i'" position and let y}7 =
(1,...,n,...,1)T € N1 with n in the j* position.
Definition 6.3. The (left) configuration module of a local prematrad (M, ~,,)
is the R-module

(M, yw)=M®& EB IY(M)®TL (M), where

x,y¢N; s,t>1

My, s=1; y =y} for some n, j,q
Y (M) = <A eEMY |84 C A<q—1>(PS,1)>, 5> 2
0, otherwise,
ML, t=1; x =x} ; for some m,i,p
It (M) = <B ML | ¢épC A(P‘l)(Pt_1)>, t>2
0, otherwise.

Thus I'y (M) is generated by those tensor monomials B = 8}, ® -+~ ® B, € M, ®
-+ ® My 5, whose tensor factor 3% is identified with some factor of a product cell

in A®=D(P,_;) corresponding to some column factorization BL. = Biy--- Bi1 with
respect to W, and dually for TY(M).

Ezample 6.4. Referring to Example 3.1, let M = My, & Mao = (61) ® (63), and
consider the local prematrad (M,~,,). Note that the action of ~,, is trivial modulo
unit (e.g., M3 - M}, = M2 and M3? - M3, C M} = 0). Then

TLU(M)~T5(M)~TF (M),
Since A = (0§)®q can be thought of as an element of either M2, or M2 2, we have
cither €4 = A@=D(P)) = PX% or ¢4 = A=V (Py) = P? 50 that
I2(M) ~T5(M) ~TT (Mayp).
Thus
I'M,~,)=V.
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Since r =1 is the only case in which the equality A®)(P.) = PX¥*! holds for
each k, it follows immediately that if A € M, ,, is 7, -indecomposable (in which case

its row and column factorizations with respect to W are trivial) and e A X e X e A
= ™2 x ... xe™ 2 is a subcomplex of A=Y (P,,_1), then either m =2 and n

n—2 n—2

is arbitrary or m > 2 and n = 1; dually, if\e/Ax-ux\e/A:e XX e is a
subcomplex of A(mfl)(Pn,l), then either m is arbitrary and n =2 or m =1 and

n > 2. Consequently,
P riM)~TT(M,.) and @ TY(M)~ T (M, 5).
X Yy

Furthermore, if m 4+ n > 4, (m,n) # (2,2), and A®" € I'(M, v, ), then r = 1, and the

inclusion I'Y (M) C MY is proper whenever s > 3, y € N©*! with ¢ > 2, and M,, ,

contains a yw-indecomposable element for each 1 < j < ¢, and dually for 'y, (M) C
We are ready to define the notion of a matrad.

Definition 6.5. A local prematrad (M, ~,,,7n) is a (left) matrad if
Y (M, ) @ TE(M, ) = Wy @ W
for all p,q > 2. A morphism of matrads is a map of underlying local prematrads.

Ezample 6.6 (The Bialgebra Matrad #). The bialgebra prematrad H'  satisfies
IY(M)®Ti(M) =My @M for p,q > 2. Hence H™ is also a matrad, called the
bialgebra matrad and henceforth denoted by H.

Example 6.7. Continuing Example 4.21, the inclusions (Ml,*>’YM1) C (M,~,,,) and
(M, 1, VMI) C (M, ’yMI) are inclusions of matrads since F%’r(cj\i, VMI) ®TL(M, 7M1) =
MY @ M4 =0 for p,q > 2. In particular, when M =F"" (©) and 67, # 0 for all
m,n > 1, the free operad (A, 7,,,) embeds in (F™ (©) s Yy ) @s a submatrad (cf.
Example 4.14 and Definition 6.9 below).

Ezample 6.8 (The Universal Enveloping Functor U). The universal enveloping PROP
U discussed in Example 4.12 induces the universal enveloping functor U from the
category of matrads to the category of PROPs. Given a matrad (M, v, ), let FP(M)
be the free PROP generated by M and let J be the two-sided ideal generated by the
clements @, ., (vw — Ver) (TF(M) @ TL(M)). Then U(M) = FP(M),/J.

6.2. Free Matrads
Recall that the domain of the free prematrad (M = F" (0©),7, 1) generated by
O=(00)mns 8 V=M®& &b MY @& M! whose submodules M, ML, and
x,y¢N; s,teN
M7 are contained in the configuration module T'(M). As above, the symbol “”
denotes the v product.

Definition 6.9. Let (M = F""(0),7,n) be the free prematrad generated by © =
(00)mn>10 let F(©) =T(M)-T'(M), and let 7, o, The free matrad

generated by O is the triple (F(0),7,,,7).

= ’Y|F(M)®F<M)'
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Remark 6.10. Let w =307 and consider the biderivative d,. Then F(©) is gen-
erated by the components of d, ® d,, in FP™(©) (the admissible fractions). Thus
I'(F(©),7r@©)) \ F(0) =T (FP*(0),yv) \ FP**(0) (cf. Proposition 6.14).

Let 8 € BP*. In Subsection 4.3 we constructed the r-level tree ¥(5) whose leaves
are balanced O-factorizations; the set CP'® = {U(S) | S € BP**} indexes the set
GPr/~ of module generators of the free prematrad FP™(©). Let & = F(©) N GP**/~
and let B = ¢ (®). Then

C={v(p)) |peB}

indexes the set & of module generators of F(0).

To establish the relationship between elements of ® and cells of KK, ,,, let
= As--- A1 € B, and observe that 3 € B,, , if and only if the tensor monomials
along each row and column of Ay lie in T'(FP*™ (0)) for all k (see (23) below). Let

Covn ={¥(B) | B=As--- Ay € By and either Ay or A, isa 1 x 1};

then in particular, Ci/,m =C1,m and C;;}l =Cna- Let C ., =Cnm\C,,,; then
Crnym = Cp, ,, UG, for each m,n > 1. Elements of C’ are defined in terms of Ap;
elements of C” are independent of Ap.

Define the dimension of #] =1 to be zero and the dimension of 67 to be m +
n —3; if A € &, then the dimension of A, denoted by |A|, is the sum of the dimen-
sions of the matrix entries in any representative monomial in G, and in particu-
lar, in its balanced factorization in B. Clearly, given x x y € N'*XP x N9X1 the set
{|4] | A € GY} is bounded and, consequently, has a maximal element. For example,
if A is a monomial in I'Y(F (0)) with s > 2 and €4 is the corresponding subcom-

plex of A=Y (P, 1), then |A| = ‘@A + |y| — ¢; and dually, if B is a monomial in
I'L(F(©)) with t > 2 and ép is the corresponding subcomplex of AP~V (P,_;), then
|B| = ‘\6/3’ + |x| — p. Consequently, max{|A| | A€ TY(F(©))}=|y|+s—¢—2 and
max{|B| | B € TL(F (©))} = x|+t — p— 2. In particular, if A € &,, 41,41 has bal-
anced factorization (= As---A;, 1<s<m+n, then codimA >s—1 and
codim A = s — 1 if and only if the dimensions of each bisequence matrix Ay is maximal
(see (28) below).

Given m +n > 3 and x x y € N'*P x N9*1 guch that |x| = m and |y| = n, define
the codimension 1 face e(y x) C Ppyn—2 as follows: If |x| =m > p > 2, let Ax|Bx be
the codimension 1 face of P,,_1 with leaf sequence x; dually, if |[y| =n > ¢ > 2, let
Ay |By be the codimension 1 face of P,_; with leaf sequencey.If A = {a1,...,a,} CZ

and z € Z, define —A = {—ay,...,—a,} and A+ z={a1 + z,...,a, + z}; then set
m—1, fx=1" m>1 , ify=1"n>1
A = , ifx=m>2 Ay=¢ n—-1, ify=n2>2
—Ax +m, otherwise, Ay,  otherwise,
a, ifx=1" m>1 n—1, ify=1"n>1
B = m—1, ifx=m>2 By = a, ify=n2>2
—Bx +m, otherwise, By, otherwise,




32 SAMSON SANEBLIDZE aNxD RONALD UMBLE

and define
elyx) = A1U(As +m —1)|B; U (By +m —1). (13)
For example, e(qn1my=m —1[(n=1+m—1), epm =On—-1+m—1)|m—1,

and 6((21)7(21)) = 13‘24

Ezample 6.11 (The A-bialgebra Matrad Hoo). Let © = (07, £ 0] 61 = 1) We

m,n>1"
say that 8 € B, m has word length 2 if 8 = C2C; for some Uy x C1 € GY x G,
where x X y € N1XP x N9X1 ' |x| = m, and |y| = n. Let

AY x B ={¥(B) | B € Bn,m has word length 2 }.
Denote the corresponding bases of I'L(F'(©)) and I'}(F(©)) by {(B%)s}pes: and
{(A%’)a}aeA%, respectively. Then A} = B! = ¢! with 95’ =i+ j—3; BL = 6P with
x =xP’and [BL| =m — 2, and AY = 67 ; with y =y, and |AY| = n — 2 (cf. Exam-
ple 4.14). In general, for p,q > 2, [(Bi)s| = x| +¢—p—2 and [(AY)a| = |y| +p —
q — 2. Then each ¢ 4 is a subcomplex of A(4=Y) (P,_;) with the associated sign (—1)“

and each €, is a subcomplex of AP~ (P,_) with the associated sign (—1)”. Define
a differential 9: F(©) — F(©) of degree —1 as follows: Define 9 on generators by

o) = > (D)t oy [(AY)a; (B, (14)
(@,8)EABm.

where (—1)¢ is the standard sign of €(y,x) C Pmin—2. Extend 0 as a derivation
of 7; then 9% =0 follows from the associativity of v. The DG matrad (F(©),9),
denoted by H, and called the A, -bialgebra matrad, is realized by the biassocia-
hedra {K K, ., <> 0} (see Theorem 9.13 below). One recovers A, by restricting
0 10 (Hoo)1,+ OF (Hoo)s,1. Note that € = i(m — 1) in (14) gives the sign of the cell
e(ym,.1) = €y C Pmtp—2 (see [10]). This simplifies the standard sign in the dif-
ferential on A [6].

Ezample 6.12. For x = (2,1) and y = (1,1,1)T, we have A3 = {a} and B3, = {5,
B2, B3}. The corresponding bases are

9% 91
A= | a andBﬁlz[Gg {9;]95],
o1 i

03 2021 p3 07 |2 g3
Bﬂ2|:|:9%][9191] 01:|5B53|:|:9%:|02 91}
Thus, 9(03) = —v(Aa; Bs, + B, + Bs,) + -+ (see Example 9.14).

6.3. The Biderivative

In [11] we used the canonical prematrad structure v on the universal PROP
Us = End(T A) to define the biderivative operator. By replacing U4 with an arbitrary
prematrad (M,~) we obtain the general biderivative operator Bd,: M — M having
the property Bd, o Bd, = Bd,. An element A € M is a y-biderivative if A = Bd,(A).
Note that Bd., (M) C (I'(M),); when M is generated by singletons in each bidegree,
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the image Bd,(M) is the module of fixed points of Bd, and gives rise to an algo-
rithmic construction of an additive basis for the A..-bialgebra matrad H.,. More
precisely:

Proposition 6.13. Let (M,v) be a prematrad generated by © = {07, | 61 = 1}, n>1,

m
and let Bd,: M — M denote the associated biderivative operator. Then

() Bdy(M) CT'(M,~) and Bd, o Bd, = Bd,.
(ii) Each element 0 € © has a unique y-biderivative d) € M.
(iii) T(M,~) = (dg).

Thus the ~-biderivative can be viewed as a non-linear map dq : M — M. When M =
End (T A) we omit the symbol v and denote the biderivative of 6 by dy as in [11].
In particular, the modules (Bd., (M, 2)) C T (M, 2) and (Bd,(Ms.)) C T (M, )
are spanned by symmetric tensors (cf. Example 6.4); furthermore, Bd,(My ) =
M, m, for m,n > 2.
Finally, the algorithm that produces dj for (M,~) = (FP* (©),~) simultaneously
produces an additive basis for H..

Proposition 6.14. Let © = (07, # 0] 6} = 1>m n>1 08 1n Ezample 6.11. Elements

of the bases {(AY)atacay and {(BE)s}gen: are evactly the components of dy in
IY(F(©),7) and TL(F(©),v) with degrees |y|+p—q—2 and [x[+q—p—2,
respectively. Thus

9 (0,,) = > 7 (4;B).

[x|=m; |y|=n
AxBe(dg)¥yx(dy)L

Proof. The proof follows from the definition of dj and is straightforward. O

6.3.1. The @-Product
Given a prematrad (M, ), define a (non-bilinear) operation

dy xdy j
@ M x M5 MxM -5 MY M, (15)
where proj is the canonical projection. The following facts are now obvious:

Proposition 6.15. The © operation acts bilinearly on M, 1 and M .. In fact, when
M = End (TH), the ® operation coincides with Gerstenhaber’s o;-operation on M ,
(see [2]) and dually on M, ;.

Remark 6.16. The bilinear part of the @ operation, i.e., its restriction to either M, ;
or M ., is completely determined by the associahedra K = LIK,, (rather than per-
mutahedra) and induces the cellular projection ¥g: P, — K, 1+1 due to A. Tonks [15].

7. The Posets PP and KK

In this section we construct a poset PP and an appropriate quotient poset K.
The elements of C/C correspond with the 0-dimensional module generators of the free
matrad Hs.. The geometric realization of C/C, constructed in Section 8, is the disjoint
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union of biassociahedra KK = {KK,, ,}
with Heo.

Let V,, denote the set of vertices of P, and identify V,, with the set S, of permu-
tations of n = {1,2,...,n} via the standard bijection V,, <+ S,,. The Bruhat partial
ordering on S,, generated by the relation a; |- - -|a, < ai|---|a;+1]ai| - - - |ay if and only
if a; < a;41 imposes a poset structure on V,,. For n > 1, set PP,, o = PPy, = Vp, and
define the geometric realization PP, = |PPy,0| = |PPon| = PPy, to be the per-
mutahedron P,,. Then KK, 111 = |[KKpt1,1| = |KK1 nt1| = K K1 41 is the Stasheff
associahedron K1 (see [13], [14], [10]). In the discussion that follows, we con-
struct the posets PPy, », and KK, 41,m+1 and their geometric realizations PP, ,, and
KKpi1,m+1 forall m,n > 1.

whose cellular chains are identified
m,n>1

Denote the sets of up-rooted and down-rooted binary trees with n + 1 leaves and
n levels by A, and V,,, respectively; then each vertex of P, is indexed by two binary
PLTs, one the reflection of the other. These indexing sets have a poset structure
induced by the standard bijections /- An = V, and Iz Vy — Vy, and the products
AR VX and AT XV, X™ are posets with respect to lexicographic ordering. Now
consider the subcomplexes A™ (P,,) € PX**! and A (P,) C P}™*! with faces
of P,, and P, indexed by up-rooted and down-rooted PLTs, respectively. Then the
0-skeletons X7*!1 C A (P,,) and V"' C A(™) (P,) are subposets of AX"! and
VXM +L and there is the inclusion of posets

n+1 m+1 xXn+1 xXm—+1
X x Y s AT XV .

Express z € A" as an n x 1 column matrix of up-rooted binary trees and replace
x with its (unique) BTP Y-factorization z1 - - - 2,, € M, where x; is an n x i matrix
over {1, A} with A appearing in each row exactly once. Dually, express y € V™ as
an 1 X m row matrix of down-rooted binary trees and replace y with its (unique)
BTP factorization as a Y-product ¥, ---y; € M, where y; is an j X m matrix over
{1,v} with Y appearing in each column exactly once.

Ezample 7.1. Whereas the product A1) (P) = Pl><2 can be thought of as either
A X AorY XY, we have

Xf—[i} and Y7 =[YY] sothatXfof—{i][YY].

The poset of vertices in AM (Py) P;z expresses the following products of permu-
tations and matrix sequences:

albx cld - 12 x 1[2 < 12 x 2|1 < 2[1 x 2|1
s DI - 6
Yy : {I\{][YY] < [I;}[YY] < {}(i}[\(v]

Furthermore, thinking of the product A®) (P) =P as ¥ x Y x Y, we have
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Y3 = [Y Y Y]; consequently X3 x Y =

T ai < o] et o< 3] ix vl

Definition 7.2. Let A = [a;;] be an (n+ 1) x m matrix over {1, A}, each row of
which contains the entry A exactly once. Let B = [b;;] be an n x (m + 1) matrix over
{1, Y}, each column of which contains the entry Y exactly once. Then (A, B) is an
(i,j)-edge pair if

(i) A® B is a BTP,
(ZZ) Qij = Qjy1,5 = A and bij = bi7j+1 =Y.

For u= Ay - ApBy, - By € X x Y"1 the only possible edge pair in u is
(A, By) . In X3 x Y33, for example, the respective matrix sequences

A Al A Al

A Al rri [Y Y Y] and | A Al it [Y Y Y]
11y 1 vy

A Al A Al

do and do not contain an edge pair.

Definition 7.3. Let @ be a poset and let z1 < z2 € Q. The pair (x1,x2) is an edge
of Qif x € Q and 1 < z < xo implies z = x7 or x = xs.

Edges of X! x Y,™*1 correspond to 1-dimensional elements of H., generated by
{1,9%,9%, 9;9?}; 1-dimensional elements of H, generated by {1,95,0%,9%} corre-
spond to edges of a poset Z,, ,, related to but disjoint from X! x ¥;m*! which we
now define.

Let A™ and B*J denote the matrices obtained by deleting the i*" row of A and
the j** column of B.

Definition 7.4. Let ¢ = C - - - C,. be a string of matrices in which (Ck, Ck+1) is an
(i,j)-edge pair for some k <r—1, and suppose that some association of
Cy-+ - (CkCly) - -+ C defines a sequence of BTPs. The (i,j)-transposition of ¢
in position k is the string

7;’;(0) =C- ..Czilcli* O,

The symbol 77; (c) implies that the action of 7;? on c is defined.

Note that if 77; actsonu = Ay -+ Ap By, - By € X x Y then k = m and the
potential edge pairs of consecutive matrices in

T (u) = Ar -+ A1 B A By - By

are (Ap—1, B:7) and (A%, B,—1). If (A,—1, B}7) is an edge pair and 7, " is defined
on T;7* (u), then

T T (u) = Ay -+ A o BI7H AN AY B, -+ By,

and so on. In this manner, iterate 7 on each element u € X1 x Y;™*1 in all possible
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ways and obtain

T = { T+ T

it i1J1

(u) | we Xyt ¢ > 1}.

Then
PPhm=X"Ttx Y™ U Z, .

To extend the partial ordering to Z, ,,, first define ¢ < 7;’; (c) for ¢ € PPy m.

To define a generating relation on Z, ,,, note that each composition 7:]:‘; 7:]1“;1
defined on u € X1 x Y"1 uniquely determines an (m,n)-shuffle o, in which case

we denote
k¢ k1
To (u) = 7—itjt ) "Tiljl (u)

and define Tiq = Id. When 7, (u) is defined, multiple compositions of (%, j)-trans-
positions on w may determine the same o; thus 7, (u) is a set, in general.
For uy <wug € XM x Y+ define T, (u1) < Ty (u2) if (ui,us) is an edge of
Xntl o ym+l or uy is “o -compatible” with u; in the following sense: Let a =

ai|---|am € S and b =by|---|b, € Sy,. The action of o on (a;b) decomposes a and
b into subsequences my, ..., my and ny,...,n; in one of the following four ways:
mi;,n;,mo,No,...,Ng_1,Mg, J(al):al, O'(bn)%bn
. o mi,n;,my, Ny, ..., Mg, Ng, U(al):al» U(bn):bn
o (a;b) =
nj,mp, Ny, My, ..., Ng, Mg, o (a1) # a1, o (by) # by
n17m17n2)m27"-amk7nk+1a O’(al)#ala U(bn)_bn

Define I, ={(ai,...,ant1) € S;" ™ | @i € Spm, X -+ X Sgm, C Sy} for all i

m
and J, = {(B1,...,Bm+1) € SX™ | B; € Spny X +++ X Sy, C Sp} for all j. Let
X: Vin = Vi, be the involutory bijection defined by

x|+ Jam) = (m+1=a) |- (n+1-a)

and fix the inclusion of posets

K
Xl yymAl & pxndl yopxmal o gxndl o gxmAl (16)
N\ Xn+1 . 1
where k= (X o/ X (E)Xm+ . Then wus is o-compatible with wy if wuy =

(o x B)(uy) for some a x § €I, x J,.

To view this geometrically, suppose uy = A} --- Al B! --- Bf is o-compatible with
uy = Ay Ay By - By in XL < YL For each i, let a; = iy|- - |iy, and a) =
|- -], be the permutations of m corresponding with the up-rooted trees given by
~-products A; 1 -+ A; p, and A;J e A;,m of i*" rows, respectively; dually, for each j,
let bj = ji| - |jn and b} = ji|---|j; be the permutations of n corresponding with
the down-rooted trees given by the y-products By, ;--- By and By, ;--- B} ; of gth
columns, respectively. Then for each (7,7), the o-partition of (a;;b;) determines a
product face my|---|my X ng|---|n; C P, x P, containing the vertices a; x b; and

a; x b’ and an oriented path of edges from a; x b; to aj x b}.

Remark 7.5.

(1) The map x used to define the poset structure of PP, ., is evoked to induce
the correct orientation of the quotient poset KK, 41 m+1 (see below), and is
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necessary to establish the bijection in Theorem 1 (see also item (iii) below).
For geometric realizations of IC/Cp, 41 my1 and KKy 1,041 compare Figures 21
and 22.

(ii) Note that if (u1,us) is an edge of X1 x Y™*1 the partial ordering in PP, .,
implies that (7 (u1), T (u2)) is an edge of PPy, .-

(iii) The transpose map X1 x Y+l — xmHl » yntl oiven by
Ay ApB, - By »—>Bf-~-B,7;AfL---A1T

induces a canonical order-preserving bijection PPy, mm <> PPy .

Ezxample 7.6. Using the notation of Example 7.1, let us determine those elements
u; € X2 x Y that are o-compatible with u;. Since all matrices in u; have constant
columns or rows, a; x b; = 1|2 x 1 C P, x P; for all ¢, j. The (2, 1)-shuffles of (1, 2; 3)
are og = 1]2|3, 01 = 1|3|2 and o2 = 3|1|2. The o-partition of (1]2;1) determines the
face 1|2 x 1 C P x P; whose only vertex is u;. Hence the only element of X3 x Y3
that is oj-compatible with w; is itself. If o € {0g,02}, the o-partition of (1]2;1)
determines the face 12 x 1 C Py x P; with vertices are 1|2 x 1 and 2|1 x 1. Since all
matrices in u3 have constant columns or rows, a; x b = 2|1 x 1 for all 4, j implies that
ug is o-compatible with u;. Furthermore, ay x b = 1|2 x 1 and a3 x b} = 2[1 x 1 for
all j implies that uy is also o-compatible with uy. Since u; < ug we have Ty, (u1) <

7:72 (’LL3)
Ezample 7.7. Since Z1 1 = [Y][A] we have
PPy = {[ ) } [vv] < mm}.

Using the notation of Example 7.6, the action of 7 on

ul:[i}[ii [YYY}andU3={A}[1)\

i 14 [Y Y Y]
produces the following four elements of Z; :

w4 e s g b

LN [ " ] [YYT[L A 23 YA L A

Thus PP12 = {u1 < To, (w1) < Toy (U1), U2, us < Ty, (ug) < Top (uz)}. Recall that
the action of 7 on wus is undefined, and as mentioned in Examples 7.1 and 7.6,
up < ug < ug and Ty, (u1) < Ty, (usz) (see Figure 12).
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X

AA

>

A M
X Yy

A A
YYY

><|>
~I>

A A
YYY

Figure 12: The digraph of PP o.

One can represent u = Ay -+ Ay By, -+ By € X2 x Y and 2 =T, (u) € Zym,
as piecewise linear paths of from (m +1,1) to (1,n+ 1) in the integer lattice N2
with m + n horizontal and vertical directed components. The arrow (i + 1,n + 1) —
(¢,m + 1) represents A;, while the arrow (m+1,7) = (m+ 1,5+ 1) represents B;.
Consequently, u is represented by the path

m+1,1)—»--—=>m+Ln+l)—=--—=(1,n+1)

and z is represented by some other path. In general, if the path (r+1,s—1) —
(r+1,s) = (r,s) represents the edge pair (A4}, Bj) in z, the path (r+1,s—1) —
(r,s —1) — (r, s) represents its transposition (B}, A}) in T (z) (see Figure 13).

Ay Ao Az
3 -
BY B, B,
2 @
Al Al
2 3 Bl
1 ® °
1 2 3 4

Figure 13: A1A2A3B2B1 < AlAQBéAgBl < AlBé,A/QAgBl

The poset ICK is a quotient of PP, which we now describe. Recall Tonks’ projection
Yo: P — Kpp1 [15]: If @ and b are faces of P,,, then 9 (a) = J¢ (b) if and only if
corresponding PLTs are isomorphic as planar rooted trees (forgetting levels). Define
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a~ b if 9o (a) =9y (b). Then Vi1 =99 (Vim) is the set of vertices of K, 1. For
example, 3[1|2 = 1|3|2 € V, since 3|1|2 and 1|3|2 are end points of the degenerate edge
13|2 C Ps, and in terms matrix sequences we have [A] [A 1][1 1 A] = [A][1 A][A 1 1]
(and dually [1 1 ¥]" [y 1]" [¥] = [v 1 1) [1 ¥]" [¥]). Of course, V; = V» = [A] and
Vo = Vs = {[A][A 1], [A] [T AJ}.

For matrix sequences in X1 define 2 --- 2/, ~x 21 - - x,, if the trees produced
by ~-products of i*" rows are equivalent for each i. Dually, for matrix sequences in
Y+ define 3, - - -y} ~y yn -+~ 91 if the trees produced by ~-products of j** columns
are equivalent for each j. Define a x b~ ¢ x din X! x YY" ifa ~x cand b ~y d.
Finally, for u; <up € X2 x V" and 21 = T, (u1) < 22 = Ty (uz), define z; ~ 2y
if uy ~ ug. Then

ICICn+1,m+1 - Ppn,m/’\“
and 99: PP, p, = KKy 41,m+1 denotes the projection.

8. The Combinatorial Join of Permutahedra

The combinatorial join of permutahedra, which resembles the standard join of
spaces, plays an important role in our construction of the biassociahedra to follow. The
combinatorial join P, *. P, of permutahedra P,, and P, is the permutahedron P,
constructed as follows: Given faces A;|---|Ax C P, and By|---|B; C P,, let s be an
integer such that max {k,l} <s<k+1,and let (i;j) = (i1 < -+ < ip;j1 < - < Ji),
where iUj=s. Obtain Aj|---[Ay and Bi|---|Bg by setting A} = A,, B}, = B,
and A} = B} = @ otherwise. Note that (A;, B;) # (&, @) for all r. Given a set B =
{b1,...,bp} C N and m € N, define B+ m = {b; +m,...,b; + m} and consider the
codimension s — 1 face

Aql--|Ag *ayg) Bl -+ |[Br =AU (By +m) | -+ | ALU (B, +m) C Pppn.

When s = m + n, each pair of vertices A;|---|A,, X By|---|B, C P, x P, generates
™) vertices Ay |Am %) Bl [Bn of Py as (i3j) ranges over all (m,n)-
shuffles of (Ay,..., Am; B1+m,..., B, +m). Define

Pyox. Py = U A1|"'|Ak*(i;j)Bl|"'|Bl-

Ayl |Agx By | BiC Py X Py,
iUj=s; max{k,l}<s<k+l

Thus, given m,n > 1 and a cell e C P, 4, there is a unique decomposition e =
Ayl |Ag *y) Bil - -+ | By with Ay|---[Ay C Py, and By|---|B; C P.

Ezample 8.1. Setting s = 2 produces the 14 codimension 1 faces of Py x. P, = Py:

(i) A | B | Axq; B (i;J) A | B | Axay B
@,2:1,2) [12 | 12| 13124 21,2 | 12 | 12| 31
112 | 2|1 14|23 12 | 2|1 4]123
oL [ 12| 2314 @21 |12 [ 12| 1342
oI [ 21| 24[13 o [ 12 | 2341
M1,2) [ 12 [ 12| 1231 M,2:2) |12 [ 12| 1234
12 | 2|1 124(3 2111 12 2134
T2 |12 12| 1234 21 [12 ]| 12| 3412
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Fraction products a/b reappear as combinatorial joins a *. b in Step 2 of the con-
struction that follows in the next section.

9. Constructions of PP and KK

We conclude the paper with constructions of the geometric realizations PP = |PP|
and KK = |ICK|. While the edges of PP and K K realize the edges of PP and KK, it is
difficult to imagine their higher dimensional faces. Fortunately, PP, ,, is a subdivision
of the permutahedron P,,.,, which is a subdivision of I"*™~!. Thus the higher
dimensional combinatorics of PP, ,, are determined by the orientation on the faces
of [mtn=1,

Our construction of PP, ,, has two steps: (1) Perform an “(m,n)-subdivision”
of the codimension 1 cell m|(n+m) C P4y and (2) use the (m,n)-subdivision to
subdivide certain other cells of P,,y,. We emphasize that Ap is used only in step
(1) and only in terms of its geometrical definition. Thus the non-coassociativity and
non-cocommutativity of Ap are not in play here (see also Remark 9.4 below). We
begin with some preliminaries.

9.1. Matrices with constant rows or columns
Given a set @) of matrix sequences, let

con@ = {C;---Cs € Q | C has constant rows or constant columns} .

Note that if Ay -+ A,, € con X1 each A; has constant columns; dually, if B, - - - By
€con Y"1 each B; has constant rows. Consequently, the inclusion of posets
ki XL ymAl ey pxntl s pxmtl given in (16) restricts to an order-preserving
bijection

(X o @) x £: con (X2H x V) 5 con X2 x conY, ™t

S AV ) AV 9 Vo x Vo (17)

where A (Vﬁ"“) < Vp, is given by the embedding V,, < VX"*! along the diago-
nal subposet A (V") = {(v,...,v) | v € V;}. Thus elements of V,, x V,, may be
represented as matrix strings in con (X2 x Y1),

Note that (4,j)-transpositions preserve constant rows and columns, i.e.,
u € conPPy, ., if and only if 7;’; (u) € conPPy, . And furthermore, if u = Ay --- A,

By, -+- By € con (X2 x Y1) and o is an (m,n)-shuffle, 7, (u) is defined since
each A; has a constant column of A’s and each B; has a constant row of Y’s. Thus

conPPpm = U Ts (con (X7TTLL+1 x ern+l)) : (18)

(m,n)-shuffles o
The order-preserving bijection
COHPPLQ = PPLQ \ {UQ} — Vg

discussed in Example 7.7 illustrates the following remarkable fact:
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Proposition 9.1. The bijection
(o) x £: con (X1 x ;1) = Vi x W,
extends to a canonical order-preserving bijection

Ky conPPy = Vign.

Thus |/<; |conPP,, | = Poin.

nE
Proof. There is the order-preserving bijection (X og) x £: con (XL x YnHl)
Sy, X S, via the identification V,, X V,, <> S, X S,,. Thus

conPPm ¢+ {00 (0 X 0y) | 0 is an (m,n)-shuffle; o, X 0, € Sy, X Sy}

by formula (18). But each permutation in Sy,1, factors as oo (o, X o) for some
(m,n)-shuffle ¢ and some o, X 0, € S, X Sy,. Therefore (X og) x [ extends to
Kyt coNPPy o <> Spugn < Vindn-

Corollary 9.2. For all m,n > 1, there is the commutative diagram

[con (X7 x Yt | Jeon PPyl
K| L~ ~l kgl
m| (n+m) = Py

Note that if x, : Vinyn = Vintn were induced by the composition Vp, x V, &
Vi X Vi = Vimyn in the same manner as s, then x, and x would differ on Vy,, 1,

even with n = 1.

Ezample 9.53. Continuing Example 7.7, the identification conPP;; <+ Vs is given by

e D

! !
1 (1+1) — 2[1.
(1,1)-shuffle

The identification conPP; 5 <> Vs:

|:}\:||:A1]<—>1|2652and [YYY]+1eS;

A Al
so that
A Al
uy = [ N } { 1 } [Y Y Y] < 1]2[ (1 +2) = 1|23 € S3 x 5.
Similarly,

[YY Y]+ 21 (1+2)=2]1|3 € 52 x 5
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and we have

A Al . A T,

[ e B[S ] B e
! ! I
1213 1312 3112

(2,1) -shuffles of 1]2|3

i][YYY] = {i}[vv][lu ES NIy

! ! !

2[13 2[3|1 32/1

(2,1)-shuffles of 2|1|3.

The projection ¥: con PPy, ;n, — con PPy, 1/~ has the following simple geomet-
rical interpretation: An element of con (XZ;H X Ynm“) is represented by a fraction
with multiple copies of the same leveled binary tree in the numerator and likewise in
the denominator. Two such elements are equivalent if and only if the trees in their
numerators or denominators (possibly both) are isomorphic as PRTs. So equivalence
in con (X2 x Y1) amounts to forgetting levels as in Tonks’ projection. The poset
structure then propagates this equivalence to general elements of con PPy, ,,.

Remark 9.4. Our constructions are independent of the various choices involved here.
If Ag) iterates Ap on factors other than the those on the extreme left, let
Xl ym+l be the poset defined in terms of Agf) and let PP, ., be the poset

produced by our construction. Then there is a canonical bijection PPy, <+ PPy m
and the corresponding geometric realizations are canonically homeomorphic. When
Ap acts on the extreme right, for example, a (combinatorial) isomorphism |PP,, | =

|737anm| is evident pictorially: The picture of |PP,, ;| uses the standard orientation

of the interval P,, while the picture of |73\75nm| uses the opposite orientation, but
nevertheless, these pictures are identical.

9.2. Step 1: The (m,n)-subdivision of m|(n + m)
The first step in our construction of PP, ,, performs an “(m,n)-subdivision” of
the codimension 1 cell m|(n+m) C Pytm. In Subsection 5.2 we applied the left-

iterated diagonal Agf) to construct the n-subdivision ann) of P,,. Since the poset
X2+ is the O-skeleton of A (P,,), the geometric realization | X! = P and
dually |Y;"+1| = P{™. The cellular subdivision |X2+ x Y+l | = P x ™ of
m|(n+m) = P, x B, is called the (m,n)-subdivision of m | (n + m); thus each cell
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Figure 14: The (2, 2)-subdivision P{*) x P{*).

in this subdivision has a canonical Cartesian product decomposition. The basic sub-
division vertices of PP, ,, are elements of

BSpm = (XpH < Y M)\ Vi

Each subdivision cell of PP, ,, is a proper subset of some cell of P,,+, and is the
geometric realization of its poset of vertices.

Ezxample 9.5. The 1-subdivision P2(1) consists of two 1-cells obtained by subdividing
the interval P, at its midpoint (see Figure 7). Thus the (2,1)-subdivision

Pz(l) X P1(2) of the edge 12|3 C P5 contains one basic subdivision vertex represented
by the midpoint

ug = { i ]|:fi:|[YYY]€X22><Y13\COH(X22XY13),

and two 1-cells of PP; 5. In fact, PP; 5 is exactly the heptagon obtained by subdi-

viding P5 in this way. The 2-subdivision P2(2) consists of three 1-cells obtained by
subdividing P» at its midpoint and again at its three-quarter point. Thus the (2,2)-

subdivision P2(2) X P2(2) of the square 12|34 C Py contains twelve basic subdivision
vertices and nine 2-cells of PP, 5 as pictured in Figure 14.

The (3, 1)-subdivision P?El) X P1(3) of the hexagon 123|4 C P; is identified with the

1-subdivision P3(1) and contains eleven basic subdivision vertices and eight 2-cells of
PP;; as pictured in Figure 15.

The (3,2)-subdivision P{¥ x P}
P:,EQ) x I by subdividing along the horizontal cross-sections Pé2) X

3 of the cylinder 123|45 C Ps, obtained from

i P x 3 and

P§2) X %, contains 140 basic subdivision vertices and eighty-four 3-cells of PP; .
(P?EQ) is pictured in Figure 11.)

9.3. Step 2: Subdividing cells of P, ., \ m|(n+m)

Recall that elements of Z,, arise from the non-trivial action of 7, on
Xt » ym+l When o ranges over all (m,n)-shuffles (including the identity), we
obtain the poset

Smm = U 7:7 (Bsn,m)

(m,n)-shuffles o

of subdivision vertices of PPy, n,,. Thus as sets, PPy m = con PPy, o, U Sy m-
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Figure 15: The (3, 1)-subdivision P?El) X Pl(s).

The second step of our construction detects those cells of P4, \ m| (n 4+ m) that
contain subdivision vertices. We refer to such cells as Type I cells; all other cells have
Type II. We use the poset structure of subdivision vertices to subdivide Type I cells,
and having done so, our construction of PP, ,, will be complete.

To begin, let us characterize those Type I cells of minimal dimension that contain
non-basic subdivision vertices. If e is a cell of some polytope, denote the set of vertices
of ¢ by V.. Given an (m,n)-shuffle o and a cell e C m|(n + m), let T (o, ¢) denote
the cell of P, 1, of minimal dimension such that 75 (Ve) € Vr(s,). This defines a
map

T: {(m,n)-shuffles} x {partitions of m|(n + m)} — {partitions of m + n},

which extends the map (o, 0, X 0y,) +— 0 0 (04, X 0y,) in the proof of Proposition 9.1.
To define T at a particular shuffle ¢ and partition

e=A| - |Ay|B1| - |Bi S m|(n+m),

remove all block delimiters of e and think of e as a permutation of m + n in which A;
and Bj are contiguous subsequences. Consider the set {D1,..., D, } of all contiguous
subsequences o(4;) and o(B;j) of o (e) that preserve the contiguity of the B;’s and
A;’s, respectively, then reinsert block delimiters so that

T(o,e) = C1|Dy |- |Cr|D;, [Crpa.

Since each cell of Py, ,, can be expressed uniquely as a component of the combinatorial
join Py, *. P,, we have

T(0.€) = Exay) F = EyU(F{ +m) |- | EQU(F{+m), (19)

where F; and F; are the unions of consecutive blocks Ag/|---|Ay 4 and Bj|---
|Bjr4j» of e, respectively. Thus o acts on the blocks of e as a (k,[)-shuffle if and
only if C; = @ for all i if and only if T(o,e) = Ay|---|Ap *4;5) Bi|--- [ By for some
(k,1)-unshuffle (i;j) = (i1 < -+ <ig; j1 < --- < i) of k+ 1. Clearly, a cell a C Py,
contains a non-basic subdivision vertex 7, (u) if and only if a = T (o, €) for some cell
e C m| (n + m) containing a basic subdivision vertex u on which 7, acts non-trivially.
In fact, a contains at most one non-basic subdivision vertex when m + n < 4.
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The following proposition incorporates the property of 7 described in Remark 7.5
and will be applied in our subsequent examination of the poset structure of PPy, ,,.

Proposition 9.6. If a cell e C m|(n+m) contains a subdivision cell a C | X1 x
Y, and To(Va) C (Snm N T(0,€)) UV (0,6), then [To(Va)] is a subdivision cell of
T(o,e) (combinatorially) isomorphic to a; in particular, if a = a1 X as, then

T Varxaz)| = [T (Var )| X | T5 (Va,) |-

Proof. Since T, (u) is defined for all u € V, and 7, preserves the poset structure of
Ve, the cells a = |V,| and |7,(V,)| are combinatorially isomorphic. O

Ezample 9.7. The action of T on the four vertices of 12|34 partitions the 24 vertices
of Py into four mutually disjoint sets of six vertices each. The vertices v; = 1|2|3]4
and vy = 1]2]4|3 of edge e = 1|2|34 correspond respectively to

A Al A Al
A A1l [III}[YYY]and A Al [iii}[\rvv].
A Al A Al

There are two basic subdivision vertices u; and us along e, exactly one of which
admits a non-trivial action of 7, namely,

A Al 1
up=| A Al [\{\1(\(1 [Y Y Y]
A Al .
Too =T A y1][ a1
Uy — z1 = A 1y 1 [Y Y Y]
_A_ B
Tos LT
e
Y1
Zg = A {ly}[YY][Al].
A

To physically position z; and zs, first note that 7,, (Ve) = {7Ts, (v1) = 1|3]2/4,
Ty (v2) = 14123} and 5, (Ve) = {To, (v1) = 13[4[2, To, (v2) = 1]43|2}.  Now
e = A1|A3| By = 1|2|34 and 01 (e) = 1324; thus o7 (Bi) is not contiguous in o1 (e) and
o1 (Asg) breaks the contiguity of By in o7 (€). Thus Dy = 01 (A1) and T (01, ) = 1]234.
On the other hand, o3 (¢) = 1342; in this case T (02,€) = 1]|34|2 since o2 acts on the
blocks of e as a (2,1)-shuffle. Consequently, we represent the vertices z; and zy as
interior points of the faces 1|234 and 1|34|2, respectively. To complete the subdi-
vision of 1|234, use the poset structure to construct new edges from u; to z; and
from z; to 2, and apply Proposition 9.6 to the subdivision cell a = (v1,u1) C e
to construct the edge |75, (V,)| from 1[3|2|4 to z;. Then 1]234 = d; Udp Uds in
which Vg, = {u1, uz2,v2, To, (v2), Toy (V2), 22, 21}, Va, = {u1,v1, T, (v1), 21}, and Vg, =
{Toy (v1), Ty (v1), 22, 21} (see Figure 16 and Example 9.8). An algebraic interpretation
of these cells appears in the discussion of K K3 3 following Theorem 1.
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134]2 14/23 1243
1]4/3)2 14)213
Z9 ¢
_ o
1/3/4]2 2
|3[4] N
12/34
13(24
1234
13214 1/2/314

Figure 16: The subdivision of 1|234 in PPs 3.

9.4. PP-factorization of proper cells

Recall that an element of PP,, ,,, is assigned to a unique directed piece-wise lin-
ear path from (m +1,1) to (1,n + 1) in N? with m + n components of unit length
(see Figure 13). Let II,, ,,, denote the set of all such paths and consider the map
T PPpm — Wy If w € con (X2 x Y1) e, w is a vertex of m| (n + m), then
7 restricts to a bijection {7, (u) | (m, n)-shuffles o} < II,, 1, and in view of Propo-
sition 9.1, 7 assigns each vertex of P, to a path in II,, ,, albeit non-injectively.

Now consider a proper cell ¢ = Cy|---|Cs C |conPPy, | ¢+ Prtrn. Each factor Cy
is a permutahedron P,,,, whose vertices are assigned to connected subpaths of
paths in IL,, ,,. Assign c to a directed piece-wise linear path €. = Ue; in the following
way: Write ¢ = E1|---|Ey ) Fi| - - - |Fy and obtain sequences

y={m+1l=r>--->79;=1} and d={1=6 <---<dg=n+1}, (20)

where vi41 =, — #FE¢_; and 041 = 0; + #F,_;, and assign C; = E; U (F{ +m) to
the path
Loegg: (w-1,m+1—34) = (yw,n+1-7),if C; = E,, for some ¢’ and maximal j
such that F; ,..., F; # @ and s < -+ <s; <1

2. & (4,0¢) = (4,0p41), if Cp = F5, +m for some ' and maximal 7 such that

E,, ... B, #Jand s <---<s5; <l
3. etr (Vi 65) = (Vix1,0541), if Cp = B, U (F5; +m) with E,,, Fs, # @ for some
1,7.

In particular, a cell a = Ay --- Ay B;---B1 C ’con (X:;Ll"'1 X Y,:”+1)’ < m|(n+m) is
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assigned to the path

ot (m+1,80) 2 B m+1,8) % (ar,n+1) 5" A (agn + 1),

where a={m+1=ay> - >ap=1}and f={1=5y <--- < i =n+ 1} (case
(3) does not occur). Thus if ¢ = T (0, a), the observation in (19) implies that v C «
and 6 C .

Given a subdivision cell d C T (o, a), there is a subdivision subcomplex u C a such
that d = |T5(V,,)|- Representing a as a partition Uy|---|Us of m| (n + m), there is a
Cartesian product decomposition d = Dy X --- X Dy in which Dy is a subdivision cell
of T(o,U;). The representation Ui|---|Us = E ;5 I relates the paths associated
with the vertices of T (o, U;) to the vertices of Dy, and in view of case (3) above, the
vertices of D; are assigned to paths related to those z € T,(V,,) given by the action of
75 on the matrix sequences @, , «+ - T~,~1Ys,,,—1 " * Ys, associated with the vertices of
uwas a (v — Yit1, 0j41 — 6;)-shuffle. But in every case, there is the Cartesian product
decomposition

D, = (ey§7z§ X oo X eyhm;t) X e X (eyétvxfi X oo X eyét,xzt),
where ¢ ¢ is some cell of PP, i and (pr.gr) € {(yer,n + 1= 5)., (0.8, (i1,6))}
pr+-+p€{yw_10,v} and ¢t +---+q € {n+1—70p41,0;41} (the Cartesi-
an product decomposition of D; is trivial whenever m = 1 or n = 1). Therefore every
proper cell e, »,, C PP, ,, has a Cartesian matriz factorization

FRIER

nm = [(ey1 g1 X -0 X ey%’z;k) X oo X (ey;k’m% X Xeyr a1

X [(eyf,xi NEERE ' eyf,zzk) X oo X (eygk@i X oo X eygk’x;’k )]’ (2]_)

where p; = g5 = 1 and s > 2. The decomposition in (21) is a PP-factorization if each
factor Eyk gk lies in the family PP.

Indeed, each factor Eyl of e, has a Cartesian matrix factorization with
xf + yf < m + n, and we may inductively apply the decomposition in (21) to obtain
a decomposition of ey, ,,, as a Cartesian product of polytopes in the family PP. This
decomposition involves Cartesian products in two settings: Those within bracketed

quantities correspond to tensor products of entries in a bisequence monomial (con-
trolled by Agf)) and those between bracketed quantities correspond to Y-products of
bisequence monomials. And indeed, this decomposition is encoded by a leveled tree
U(ep,m) constructed in the same way we constructed ¥(¢4(€)) for £ € . Whereas the
levels and the leaves of U(¢(&)) are bisequence and ©-factorizations, the levels and
leaves of ¥(e,, ) are Cartesian matrix and P P-factorizations.

Ezample 9.8. Refer to Example 9.7 and consider the codimension 1 cell ¢ = C1|Cy =
11234 C Poyo. Write ¢ = Eq|E2 x Fy = 1]2% 12 and obtain v =3, 11 =2, 2 =1;
and dp=1, 6 =3. Then C;=F{UF =F U@ and Cy=FE U (Fi+2)=
Es U (Fy +2). The path Cy is assigned to the path component e1: (2,3) — (1,3)
and C is assigned to e2: (3,1) — (2,3); in this case there is the action of a (79 — 71,
91 — 6o) = (1,2)-shuffle on 2, —1ys, —1¥s, = T2y2y1, which generates (classes of ) ver-
tices of Cs. Let u be the subdivision subcomplex of 1]2|34 consisting of the two
edges (u1,ug) and (ug,vs) (see Figure 16). Then for ¢ = 1,2, 3, the subdivision cell
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d; = Di x Db, where D} = C; = Py is a vertex and D} C Cy has the form D} =
egg X egyl, where (dim eég,dimeé’l) = (2,0) and (dim ¢§72,dim egyl) =(1,1) (eéw2 =
PP, is a heptagon and 6%71 is a vertex of PP;; efm is an edge of PP,; and
eé’l = PP, for i = 2,3). Thus up to homeomorphism we have

dl = [PPO,I X PP071 X PPOJ] X [PPQJ X (PPI,O X PPLQ)]
d2 = [PP()’l X PPO’l X PPOJ] X [(PPLI X PPL()) X PPQ’O]
d3 = [PPOJ X PPOJ X PPO,l] X [(PPLQ X PP171) X PP270:| .

9.5. The projection ¥9¢: PP — KK

The final piece of our construction establishes a geometric interpretation of
the projection ¥¥: PPy, , = KK, 11,m+1 induced by the quotient map PP, ,, —
KK y41,m+1- Let Py = conPPym, Pom = |Prml|, and Kpi1 mt1 = |Ppm,/~|; we
obtain K K, {1 m+1 as the subdivision of K, ;41 that commutes the following dia-
gram:

PP,y 5 Puin
99 | L
KKn+17m+1 - Kn+1,m+1

(the horizontal maps are non-cellular homeomorphisms induced by the subdivision
process). We identify the cellular chains C, (K K) with the free matrad H, and prove
that the restriction of the free resolution of prematrads p’ : F (©) — H to Moo is
a free resolution in the category of matrads.

To simplify notation, we suppress the subscripts of ¥, 1,1 P m — Kyt1,m+1 when
m and n are clear from context. Since | Py m| = Prum = Pmtn, a proper face e C Py, .,
is a product of permutahedra

e=Pnimy X X Py,
and projects to a product
e=19(e) = Prymy) ¥ X Prpm,) = Kyt 1,mi41 X 0 X K p1,m 41

The fact that 9, ,, = I'd when 1 < m,n < 2 implies Ky, 11 m+1 = Prm4n; also, K 2 =
Ks , is the multiplihedron J,, for all n (see [14], [3], [10], [9]). The faces 24|13 and
1]24|3 of P31 are degenerate in Ky o since v3 1 (24|13) = 24|1|3 and 951 (1|24]3) =
1/2|4]3; and dually, the faces 24|13 and 2|13|4 of P; 3 are degenerate in K Ko 4 since
Y1 3 (24]13) = 2|4/13 and ¥4 3 (2|13|4) = 2|1|3|4. Observe that the product cell

Koitr % Koyt = 9P % o) €0 (Prsn) = 9 (Pom) = Knp 1.1
admits the (m,n)-subdivision
KM x KU = 99(P x PS™) C 99 (PPom) = KKyt mi1-
Ezample 9.9. The (2,2)-subdivision K§2) X K§2) of the face ¥3,2(12]34) = K3 x K3 C

K33 produces 9 cells of KK33 (see Figures 14 and 20); the (3,1)-subdivision

KQ(S) X Kil) of the face 91 3(1|234) = Ko x K4 C K42 produces 6 cells of KK, 2 (see
Figures 3 and 21).
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Define
BSn+1,m+1 - (19* X 79*) (Bsn,m) .

FEzample 9.10. The biassociahedron K K33 = PP, 5 and has 44 vertices, 16 of which
lie in 12|34. Of these 16 vertices, 4 lie in Py o and generate the other 19 vertices

of K33 = Py; another 4 lie B\Sg,g and generate the 8 remaining vertices of K K33
(see Figure 20). By contrast, K K4 » is a non-trivial quotient of PP5 ;. As in Tonks’
projection ¥y: P, = K, 41, we identify faces of PP;; indexed by isomorphic graphs
(forgetting levels) as pictured in Figure 17. Here an equivalence class of graphs, which
labels a face of the target interval, contains the three graphs horizontally to its left.

L4 Y]
Rd
X bd

Figure 17: Projection of a degenerate square in PP;; to KKy 9.

b

< < IS
>

< <
|

The biassociahedra KK 1, K K> and KK 5 are isolated vertices and correspond
to the free matrad generators 1, 7 and 63, respectively. The biassociahedra K K, ,,
with 4 < m + n < 6 are pictured in Figures 18 through 22 below and labelled by par-
titions and (co)derivation leaf sequences. Note that KK, ,, = KK,, , forallm,n > 1
and K K ,, is a subdivision of J,, when m > 3.

If €, is a proper face of KK, ,,, the decomposition in (21) induces a product
decomposition of the form

én,m = [(éy%,m% X X éy},z;k) X X (éy;k,m% X X éyék ,le)k )]

X oo X [(éyfwzi X oo X éyf,xzk) X oo X (éygk’xf X oo X éyg ’x:f?k)]’ (22)

where p; = ¢s = 1 and s > 2. Here “x” within a bracketed quantity corresponds to the
tensor product in a bisequence monomial (controlled by certain iterations of Ap and
the product cell within k" bracket is thought of as a subdivision cell of Ky, 11,m,+1 in
the decomposition of e, ,,, in (21)) and “Xx” between bracketed quantities corresponds
to an Y-product, and each éy§7x¢~, has the form given by (22) with z¥ + yf <m+n.

We distinguish between two kinds of faces in (22). A Type I face is detected by the
diagonal Ap and its representation in (22) has (pg, gr) > (1,1) for all k; thus Ap is
only involved in forming the Cartesian products in parentheses. A Type II face €,

k
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is independent of Ap and its representation in (22) satisfies (px, qx) = (1,1) for all k;
thus €, , has the form KK, ;, x K;,—i,41 X -+ X K; ;. 41, 1 <2 < -+ <ig =m,
or Kjo*j1+1 X X Kj5727571+1 X Kst—l’m7 1< Js—1 <+ < jo = n Inpar-
ticular, a codimension 1 face (when s=2) has the form KK, ; X K,4+1_; or
Kyi1-j X KKj . Consequently, each cell é, , C KK, ,, is associated with a lev-
elled tree U(é,, ., ), whose levels are representations given by (22) and whose leaves
are K K -factorizations.
The assignment ¢: 0] — KK, ;, which preserves levels, induces a set map

t: By — {faces of KK, ,, } (23)

that sends balanced factorizations to Cartesian matrix factorizations and has the
following properties:

(i) The restriction of ¢ to 0-dimensional module generators of F,, ,,(©) establishes
a bijection with vertices of KK, ,, by replacing 6 with A and 6? with Y in
each entry of ¥(0).

(i) There is a location map
It Bgp1pr1 — {faces of Poyq} (24)

that commutes the following diagram of set maps

Gyt pt1 SN { faces of Pp14}

v 1 qp
{faces of KK 11 p11} — {faces of K11 41},

where v sends a cell of KK to the cell of K of minimal dimension contain-
ing it. Indeed, if 8 =Cy---Cy € B is the balanced representative of 6 with
Cy € Gi:, consider the (co)derivation leaf sequences ((x!,y!),..., (%% y%)),
and let x*' ..., x"% and y’',...,y7" be the subsequences obtained by remov-
ing all x*,y/ = 1. Thinking of these subsequences as row and column descent
sequences, consider the corresponding faces A = Ay|---|Ax C Pp—1 and B =
Bi|-++|B; C P,—1 and set

eo = X(A) i3 B C Prin—2,

where x: Pp,—1 — Py,—1 is the cellular involution defined by x(Ai|---|4x) =
(m—Ag)|---|(m—Aq) and (i;j) = (41 < -+ <ig;j1 < --- < ;). Then eg is the
unique cell of minimal dimension > k such that ¢(§) C ¥,,—1,m—1(eg); in partic-
ular, when s = 2, x! = x and y? =y, and we recover the special cell ey = €(y %)
defined in (13). Thus, the term “location map” suggests the fact that I points
out the position of the image cells ¢(#) with respect to cells of the permu-
tahedron P,,,. Under 7, the associativity of the Y-product on & is com-
patible with the associativity of the partitioning procedure in p + ¢ by which
ay|---lay is obtained from the (ordered) set aj ---ax by inserting bars: Given
0, € &, let £ € & be the component shared by 9(8) and 9(¢) in Ho. Then
P (&) o ((0) NV (1(Q)) in Kyy1,pr1 = H(Pptq) (see Example 9.12).

(#3) Let dim @ = k and let oy be the set of all 0-dimensional elements of H, obtained
by all possible compositions 0;, - - - 0;, (§) where 0; is a component of 9 = Y, 0;.
Then ¢(8) is the k-face of KK, ,,, spanned on the set ¢(op).
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(iv) If (m,n) €{(2,0),(1,1),(0,2)} in item (i) and k=1 in item (4%i) , then
KKyt1m+1 = Knt1,m+1 = Pmtn is an interval and (%) agrees with (i) under
the equality ¢ =7 for m+n < 2.

St mil

Remark 9.11. Since [ is not surjective, the action of the (pre)matrad axioms on
Type II generators forces us to obtain KK, 41 m+1 as a quotient of PP, ,, mod-
ulo combinatorial relations in PP, ,, as indicated in Figure 16 above, and thereby
extend the equality K, +1 = P,/ ~ induced by Tonks’ projection (see Theorem 9.13
below).

Ezample 9.12. The action of the map 6 — () involving associativity is illustrated
by the example in (10):
((221),(31)) — 146|2357 and ((41),(211)) — 12456|37

while
(((221),(2)), ((21),(21)), ((2), (211))) — 146]25|37

(on left-hand sides only (co)derivation leaf sequences of underlying matrad module
generator are shown). Also, from Example 6.2 we have

C5CyCy > 357(14]26.

The properties above imply that ¢ is a bijection so that Cy, ,, indexes the faces of
KK, . Define the boundary map in the cellular chain complex C, (KK, ) by

AN = D ()Tt (25)
(2,8)€ABym

where € is the sign of the cell e(y x) C Py—1,m—1 defined by (13). This sign reflects
the fact that the sign of a subdivision cell in the boundary inherits (as a component)
the sign of the boundary. Therefore, we immediately obtain:

Theorem 9.13. For each m,n > 1, there is a canonical isomorphism of chain com-
plezes
ta: (Moo)nm —= Col KKpm) (26)
extending the standard isomorphisms
Aso(n) = (Hoo)n1 — Cu(K K1) = Cu(Ky)
and
Ao (m) = (Hoo)1.m —= Co( KK ) = Cu(Kpn).

In other words, the cellular chains of the biassociahedra K K realize the free matrad
resolution H., of the bialgebra matrad . In particular, consider the submodule
Hoo C Hoo spanned on the generating set © fixed by summing of all (distinct) ele-
ments of ® in Ho that have the same leaf sequence form. Then (24) induces an
isomorphism

(9 00)s: (Hoo)nim —= Cu(Kpm) (27)
by (9 07).(0) = 9 (i(0s)), where 6, € &, ,, is any summand component of § € ©, and
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the following diagram commutes:

(goo)n,m — (Hoo)n,m
(Fol)s |~ s
C*(Kn,m) —#> C*(KKn,m)-

Ezample 9.14. We have i((111), (21)) = 1234 C Py, and apply Example 9.8 for which
bijection (26) implies

[ 1
o || o3 [G%]eﬂ o 0

i 2
o || |6 ot ] o

_01__
] ["f]ez 93} o od
1 2 1 3

The edge (1]3]2|4, z1) in Figure 16 is the intersection da N ds corresponding to

01

2 2 1
= |l | [ ([ ]] 0 |mon) & | eun (28)
o

The following proposition applies Proposition 6.14 to reformulate Theorem 9.13 in
terms of the @-operation defined in (15) for (M,~) = (FP™(0),~).

Proposition 9.15. Let (EFP*(0©),v) be the free prematrad and (Hoo,d) be the
Aso-matrad. If £ = [0\ 01) ® (0\ 07)]n.m with mn > 3, the components of £ fit the
boundary of KK, , and 9(§) = 0.

Thus, an A,.-bialgebra structure on a DGM H is defined by a morphism of matrads
Hoo — Un (compare [11]).

In our forthcoming paper [9], we construct the theory of relative matrads and use
it to define a morphism of A.,-bialgebras. Using relative A.,-matrads, we prove that
over a field, the homology of every biassociative DG bialgebra admits a canonical
Aso-bialgebra structure.

For KKQ’QZ

o= 7(0305;070%)
20 « 3 = ~(61;63)
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=
[

201

2
2

=
==

Figure 18: The biassociahedron K Ko (an interval)

For K K3 o:
1123 & 1 = (03636} 1(6361: 67)67 + 63 (6103:6))
132 « 12 = ~(0303;0%20%)
312 < 12 = ~(616%2;03)
1213 < 2 = ~4(0360);6%20%)
213 « 31 = ~(070};63)
2311« 3 = ~(03;6))
For KK 3:
123 < 3 = 7(0305;60367)
182 & 3 = ~(03:636})
312« 3 = ~4(07:03)
1213« 1 = (y(03:0301)05 + 037(05:0165) ; 076767)
213 « B = ~(004;60203)
281 « 1 = 7(03;60163)
312 312
12 2
132 | 12 2 31231 132 |3 ° fa] 231
! ’
1)23 111 21 2013 1)23 | 41 111 2013
i i1
123 123

Figure 19: The biassociahedra K K3 5 and K K5 3 (heptagons)
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For KKg,gi

1]234
1234
2/134
124)3

134]2
234/1
3124
4123
13[24
24/13
14]23
23|14

34[12
12)34

111

21
< 1

111
12

T

T

111

rrrrrrr T
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v(030365 ;03~v(0102 ;0%) + a + ), where
a+b=(0303;0707)07 + (6101 ;63)67
(e +d+ 03v(03;010));02020%), where
o = O304+ 5010 )
V(050505 ;7(6761 ;67)03 + e + f), where
e+ [ = 077(0303:010%) + 07~(0167 ;03)
Y(g +h+~(03:0301)03;076707), where
g+ h=057(0305;0303) + 037(03 ;0163)
V(03 50307)
W(95’79191)
V(0301 :63)
(919% ,92)
7(9292 79292
(63
(
(
(

2

ol 9193 ,0292
0 9292 79292
037 ;63)

)
Y 292 70292)
)
)

Y[037(05 5 0105)v(03 5 0103) + (05 ;0501 )03~(05 5 0163)

+7(603 ;0301)v(63 ;636163 ;
03~(0107 ; 03)7(0163 ; 63) + (0767 ; 67)6%
+7(0701 ;67)~ (0767 ; 67)07]

N

: AN

Y(0167 ;07)+

Figure 20: The biassociahedron K K3 3 (a subdivision of Py).
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1234
2/134
124)3
134]2
234/1
3124
4123
13)24
14]23
23|14
34[12
12)34
1]234

Figure 21: The biassociahedron KK, » (a subdivision of Jy = K45 = 93,1(Py)).
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31
11

211
2

22
11

13
11
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7(92919} 793) v(610167 ;67)
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Figure 22: The biassociahedron K K5 4 (a subdivision of Jy = Ky 4 = U1 3(Py)).
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