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THE RATIONAL HOMOTOPY TYPE OF THE SPACE
OF SELF-EQUIVALENCES OF A FIBRATION

YVES FÉLIX, GREGORY LUPTON and SAMUEL B. SMITH

(communicated by Charles A. Weibel)

Abstract
Let Aut(p) denote the space of all self-fibre-homotopy equiv-

alences of a fibration p : E → B. When E and B are simply
connected CW complexes with E finite, we identify the ratio-
nal Samelson Lie algebra of this monoid by means of an isomor-
phism:

π∗(Aut(p))⊗Q ∼= H∗(Der∧V (∧V ⊗ ∧W )).

Here ∧V → ∧V ⊗ ∧W is the Koszul-Sullivan model of the fibra-
tion and Der∧V (∧V ⊗ ∧W ) is the DG Lie algebra of derivations
vanishing on ∧V . We obtain related identifications of the ratio-
nalized homotopy groups of fibrewise mapping spaces and of
the rationalization of the nilpotent group π0(Aut](p)), where
Aut](p) is a fibrewise adaptation of the submonoid of maps
inducing the identity on homotopy groups.

1. Introduction

Given a fibration p : E → B of connected CW complexes, let Aut(p) denote the
space of unpointed fibre-homotopy self-equivalences f : E → E topologized as a sub-
space of Map(E,E). By a theorem of Dold [8, Th. 6.3], Aut(p) corresponds to the
space of ordinary homotopy self-equivalences f : E → E satisfying p ◦ f = p, The
space Aut(p) is a monoid with multiplication given by composition of maps. In gen-
eral, Aut(p) is a disconnected space with possibly infinitely many components. The
group of components π0(Aut(p)) is the group of fibre-homotopy equivalence classes
of self-fibre-homotopy equivalences of p. We denote this group by E(p). We make a
general study of Aut(p), especially in rational homotopy theory.

The monoid Aut(p) appears as an object of interest in many different situations.
When B is a point, Aut(p) ' Aut(E) is the monoid of (free) self-homotopy equiva-
lences of the space E, and E(p) = E(E), the group of self-equivalences of E. Taking
p : PB → B to be the path-space fibration, we have Aut(p) ' ΩB and E(p) = π1(B)
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(see Example 2.4, below). When p is a covering map, Aut(p) contains the group of
deck transformations of the covering.

With regard to the homotopy type of Aut(p), under reasonable hypotheses on p,
the monoid Aut(p) is a grouplike space of CW type (see Proposition 2.2). The path
components of a well-pointed grouplike space are all of the same homotopy type.
Thus we focus on the path component of the identity map which we denote Aut(p)◦.
Our first main result gives a complete description of the rational H-homotopy type
of this connected grouplike space when E is finite.

Before describing our main results, we review some background and notation.
Recall the homotopy groups π∗(G) of a connected, grouplike space G admit a natural
bilinear pairing [ , ] called the Samelson product (see [29, Ch. III]). If G has multipli-
cation µ, then the pair (G,µ) admits a rationalization as in [18] yielding an H-space
(GQ, µQ) which is unique up to H-equivalence. We refer to the H-homotopy type of
the pair (GQ, µQ) as the rational H-type of (G,µ). If (G,µ) is grouplike, then (GQ, µQ)
is also. In this case, the rational H-type of G is completely determined by the ratio-
nal Samelson algebra π∗(G)⊗Q, [ , ]. Specifically, two grouplike spaces are rationally
H-equivalent if and only if they have isomorphic Samelson Lie algebras [27, Cor. 1].
We identify the rational Samelson Lie algebra of Aut(p)◦ in the context of Sullivan’s
rational homotopy theory. Our reference for rational homotopy theory is [11].

In [28], Sullivan defined a functor APL(−) from topological spaces to commutative
differential graded algebras over Q (DG algebras for short). The functor APL(−) is
connected to the cochain algebra functor C∗(−;Q) by a sequence of natural quasi-
isomorphisms. Let ∧V denote the free commutative graded algebra on the graded
rational vector space V . A DG algebra (A, d) is a Sullivan algebra if A ∼= ∧V and if V
admits a basis (vi) indexed by a well-ordered set such that d(vi) ∈ ∧(vj , j < i). If the
differential d has image in the decomposables of ∧V , then we say (A, d) is minimal.
Filtering by product length, a minimal DG algebra is seen to be a Sullivan algebra. A
DG algebra (A, d) is a Sullivan model for X if (A, d) is a Sullivan algebra and there
is a quasi-isomorphism (A, d) → APL(X). If (A, d) is minimal, then it is the Sullivan
minimal model of X.

A fibration p : E → B of simply connected CW complexes admits a relative min-
imal model (see [11, Prop. 15.6]). This is an injection of DG algebras I : (∧V, d) →
(∧V ⊗W,D) equipped with quasi-isomorphisms ηB and ηE , which make the following
diagram commutative:

(∧V, d)
ηB '

²²

I // (∧V ⊗ ∧W,D)

ηE '
²²

APL(B)
AP L(p) // APL(E).

Here (∧V, d) is the Sullivan minimal model of B, while (∧V ⊗ ∧W,D) is a Sullivan
(but generally non-minimal) model of E. The differential D satisfies

D(W ) ⊂ (∧+V⊗ ∧W )⊕ (∧V ⊗ ∧>2(W ))

and further, W admits a basis wi indexed by a well-ordered set such that D(wi) ∈
∧V ⊗ ∧(wj , j < i).
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A derivation θ of degree n of a DG algebra (A, d) will mean a linear map lower-
ing degrees by n and satisfying θ(ab) = θ(a)b− (−1)n|a|aθ(b) for a, b ∈ A. We write
Dern(A) for the vector space of all degree n derivations. The graded vector space
Der∗(A) has the structure of a DG Lie algebra with the commutator bracket [θ1, θ2] =
θ1 ◦ θ2 − (−1)|θ1||θ2|θ2 ◦ θ1 and differential D(θ) = [d, θ]. Given a DG subalgebra
B ⊆ A, we write Der∗B(A) for the space of derivations of A that vanish on B. The
bracket and differential evidently restrict to give a DG Lie algebra (Der∗B(A),D).
More generally, given a DG algebra map φ : A→ A′, we write Dern(A,A′;φ) for
the space of degree n linear maps satisfying θ(ab) = θ(a)φ(b) + (−1)n|a|φ(a)θ(b) with
differential D(θ) = dA′ ◦ θ − (−1)|θ|θ ◦ dA. The pair (Der∗(A,A′;φ),D) is then a
DG vector space. Given a DG subalgebra B ⊆ A we have the DG vector subspace
(Der∗B(A,A′;φ),D) of derivations that vanish on B.

We now describe our main results. Given a fibration p : E → B of simply connected
CW complexes, choose and fix a relative minimal model I : (∧V, d) → (∧V ⊗ ∧W,D)
as above. We have:

Theorem 1.1. Let p : E → B be a fibration of simply connected CW complexes with
E finite. There is an isomorphism of graded Lie algebras

π∗(Aut(p)◦)⊗Q ∼= H∗(Der∧V (∧V ⊗ ∧W )).

By the remarks above, Theorem 1.1 completely determines the rational H-type of
Aut(p). Taking B = ∗, we recover Sullivan’s Lie algebra isomorphism

π∗(Aut(E))⊗Q ∼= H∗(Der(∧W ))

described in [28, §11]. Here (∧W,d) is the minimal model for E.
We obtain Theorem 1.1 as a sharpened special case of a general calculation of the

rational homotopy groups of a fibrewise mapping space. Let p′ : E′ → B′ be a second
fibration and f : E′ → E be a fibrewise map covering a map g : B′ → B. Let

Mapg(E
′, E) = {h : E′ → E | p ◦ h = g ◦ p′}

denote the function space of maps over g topologized as a subspace of Map(E′, E).
Write Mapg(E′, E; f) for the path component of f . We compute the rational homo-
topy groups of this space as an extension of Sullivan’s original approach. Fix a relative
minimal model I ′ : (∧V ′, d) → (∧V ′ ⊗ ∧W ′, D) for p′ : E′ → B′ as above. The map
f : E′ → E has a model Af : ∧ V ⊗ ∧W → ∧V ′ ⊗ ∧W ′. A homotopy class α : Sn →
Mapg(E′, E; f) has adjoint F : E′ × Sn → E satisfying p ◦ F (x, s) = g ◦ p′(x) and
F (x, ∗) = f(x) for all (x, s) ∈ E′ × Sn. We show F has a DG model

AF : ∧ V ⊗ ∧W → ∧V ′ ⊗ ∧W ′ ⊗ (∧(u)/〈u2〉)

satisfying

AF (χ) = Af (χ) + uθ(χ) for χ ∈ ∧V ⊗ ∧W.
Here |u| = n so that (∧(u)/〈u2〉, 0) is a Sullivan model for Sn. The degree n map θ
is then an Af -derivation as defined above, and we show θ vanishes on ∧V ; that is, θ
is an element of Dern∧V (∧V ⊗ ∧W,∧V ′ ⊗ ∧W ′;Af ). We prove the assignment α 7→ θ
gives rise to a rational isomorphism:
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Theorem 1.2. Let p′ : E′ → B′ and p : E → B be fibrations of simply connected CW
complexes with E′ finite. Let f : E′ → E be a fibrewise map with model Af as above.
There is an isomorphism of vector spaces

πn(Mapg(E
′, E; f))⊗Q ∼= Hn(Der∧V (∧V ⊗ ∧W,∧V ′ ⊗ ∧W ′;Af ))

for n > 2. Further, the group π1(Mapg(E′, E; f)) is nilpotent and satisfies

rank(π1(Mapg(E
′, E; f))) = dimQ (H1(Der∧V (∧V ⊗ ∧W,∧V ′ ⊗ ∧W ′;Af ))) .

Again, taking B′ = B = ∗, we recover known results; in this case the vector space
isomorphism

πn(Map(X,Y ; f))⊗Q ∼= Hn(Der(MY ,MX ;Mf ))

for n > 2 appears in [5, 7, 21], where Mf : MY →MX is the Sullivan minimal
model of f : X → Y . The result on rank(π1(Map(X,Y ; f))) is [22, Th. 1]. Our proof
of Theorem 1.2 is an adaptation of the proofs of [21, Th. 2.1] and [22, Th. 1] with
adjustments made for the fibrewise setting.

Finally, with regard to the group E(p) of path components of Aut(p), we remark
that this group is not, generally, a nilpotent group and so not directly amenable
to rational homotopy theory. In Section 6, we consider the subgroup E](p) of E(p)
consisting of homotopy equivalence classes of maps f : E → E over B inducing the
identity on the image and the cokernel of the connecting homomorphism in the long
exact sequence on homotopy groups of the fibration. The group E](p) is nilpotent
and localizes well for E finite by the fibrewise extension of results of Maruyama [23].
Let D0 : W → V be the linear part of D in the Sullivan model for p. Write
W = W0 ⊕W1, where W0 = kerD0 and W1 is a vector space complement. Denote by
Der0#(∧V ⊗ ∧W ) the vector space of derivations θ of degree 0 of ∧V ⊗ ∧W that
satisfy θ(V ) = 0, D(θ) = 0, θ(W0) ⊂ V ⊕ ∧>2(V ⊕W ), and θ(W1) ⊂ V ⊕W0 ⊕
∧>2(V ⊕W ). Define

H0(Der](∧V ⊗ ∧W )) = coker{D : Der1∧V (∧V ⊗ ∧W ) → Der0#(∧V ⊗ ∧W )}.
The case B = ∗ in the following result is originally due to Sullivan [28, §11]. See
also [26, Th. 12].

Theorem 1.3. Let p : E → B be a fibration of simply connected CW complexes with
E finite. There is a group isomorphism

E#(p)Q ∼= H0(Der](∧V ⊗ ∧W )).

The paper is organized as follows. In Section 2, we prove several general results
concerning Aut(p). We prove Theorem 1.2 in Section 3 as a consequence of some
results in fibrewise DG homotopy theory. We prove Theorem 1.1 in Section 4 and
deduce some consequences in Section 5. Finally, in Section 6 we turn to the group of
components E(p) of Aut(p) and prove Theorem 1.3. We conclude with an example to
show that E#(p) is not generally a subgroup of E#(E).

2. Basic homotopy theory of Aut(p)

Function spaces are not generally suitable for and well-behaved under localization.
In this section we show that, under reasonable hypotheses, the fibrewise function
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spaces are nilpotent CW complexes admitting natural localizations. This result is
a direct consequence of the corresponding, standard results on function spaces. We
then give a variety of examples concerning the monoid Aut(p).

Start with a commutative diagram of connected CW complexes

E′

p′

²²

f // E

p

²²
B′

g // B

(1)

with vertical maps fibrations. Composition with p gives a fibration of ordinary func-
tion spaces

p∗ : Map(E′, E; f) → Map(E′, B; p ◦ f).

The fibre of p∗ over the basepoint p ◦ f is the space

F = {h : E′ → E | h ' f and p ◦ h = p ◦ f}.
The path component of f in F is just the fibrewise function space Mapg(E′, E; f)
introduced above.

Following Hilton-Mislin-Roitberg [18], we say that a space X is a nilpotent space
if X is a connected CW complex with π1(X) nilpotent and acting nilpotently on the
higher homotopy groups of X. As shown in [18, Ch. II], the class of nilpotent spaces
admit P-localizations for P any fixed collection of primes. That is, there is a space XP
and a map `X : X → XP such that XP is a P-local space and `X is a P-local-equiv-
alence. Given a map f : X → Y with Y nilpotent, we write fP = `Y ◦ f : X → YP. We
will mostly be interested in the case P is empty in which case we write fQ : X → YQ.

The assignment X 7→ XP is functorial at the level of homotopy classes of maps
[18, Prop. II.3.4]. We observe a refinement of this fact for fibrations. Suppose p : E →
B is a fibration of nilpotent spaces. We may construct P-localizations for E and B
creating a commutative diagram:

E
`E //

p

²²

EP

q

²²
B

`B // BP,

where q is a fibration. To see this, first construct P-localizations `′E : E → E′P and
`B : B → BP as relative CW complexes. Then p ◦ `B : E → BP extends to a map
q′ : E′P → BP. Transform q′ into a fibration by injecting q′ into the associated homo-
topy fibration yielding q : EP → BP. Let `E : E → EP denote the composition of the
equivalence E′P ' EP with `′E .

Now suppose given a commutative diagram (1) with all spaces nilpotent. We then
have a commutative square:

E′

p′

²²

fP // EP

p

²²
B′

gP // BP
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and a map
(`E)∗ : Mapg(E

′, E; f) → MapgP(E
′, EP; fP)

induced by composition with `E . We prove

Proposition 2.1. In the commutative square (1), suppose E′ is a finite CW complex
and E and B are nilpotent spaces. Then Mapg(E′, E; f) is a nilpotent space and
composition with `E induces a P-localization map

(`E)∗ : Mapg(E
′, E; f) → MapgP(E

′, EP; fP).

Proof. By [25], the function spaces Map(E′, E; f) and Map(E′, B; p ◦ f) are of
CW type. Thus the fibre of p∗ : Map(E′, E; f) → Map(E′, B; p ◦ f) is CW as well
by [19, Lem. 2.4]. Further, by [18, Cor. II.2.6 and Th. II.3.11], Map(E′, E; f) and
Map(E′, B; p ◦ f) are nilpotent spaces with rationalizations induced by composition
with `E and `B . By [18, Th. II.2.2], each component of the fibre of p∗ is nilpotent. (As
remarked at the end of the proof [18, p. 63], the result holds for non-connected fibres.)
Thus Mapg(E′, E; f) is a nilpotent space. Finally, we see `E induces a P-localization
by the Five Lemma.

With regard to the monoid Aut(p)◦, we may sharpen the first part of this result:

Proposition 2.2. Let p : E → B be a fibration of connected CW complexes with con-
nected fibre F . If either E or B is finite, then Aut(p) has the homotopy type of a CW
complex and the H-homotopy type of a loop-space.

Proof. For the CW structure in the case B is finite, we use the identity Aut(p) '
ΩMap(B,BF ;h), where BF is the base of the universal fibre with fibre F = p−1(b0)
and h : B → BF is the classifying map (see [17, Th. 1] and [6, Th. 3.3]). Since BF is
CW in this case, applying [25] again gives the result. In either case, Aut(p) is a strictly
associative CW monoid and so admits a Dold-Lashof classifying space BAut(p). Thus
Aut(p) ' ΩBAut(p) [15, Satz.7.3]

In our main results, we consider Aut(p) for E finite. By Proposition 2.2 this restric-
tion is not necessary for nilpotence since a connected CW monoid is automatically
nilpotent. However, we will make use of the second statement in Proposition 2.1 in
the proof of Theorems 1.1 and 1.2.

We next recall an interesting invariant of a connected grouplike space G, the homo-
topical nilpotency of G as studied by Berstein and Ganea [4]. It is defined as follows:
Using the homotopy inverse, we have commutator maps ϕn : Gn → G: Here ϕ1 is the
identity, ϕ2(g, h) = ghg−1h−1 is the usual commutator, and ϕn = ϕ2 ◦ (ϕn−1 × ϕ1).
The homotopical nilpotency Hnil(G) is then the least integer n such that ϕn+1 is null-
homotopic. The rational homotopical nilpotency HnilQ(G) of G = (G,µ) is defined to
be the homotopical nilpotency of GQ = (GQ, µQ). The inequality HnilQ(G) 6 Hnil(G)
is direct from definitions. When Hnil(G) = 1 (respectively, HnilQ(G) = 1) we say G
is homotopy abelian (respectively, rational homotopy abelian).

When G = ΩX is a loop-space, Hnil(G) is directly related to the nilpotency
Nil(π∗(G)) of the Samelson bracket [ , ] on π∗(G) and to the length WL(X) of the
longest Whitehead bracket in π∗(X). If X is a nilpotent space, write WLQ(X) for the
Whitehead length of the rationalization of XQ of X.
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Proposition 2.3. Let G be a connected CW loop space, G ' ΩX for some simply
connected space X. Then

HnilQ(G) = Nil(π∗(G)⊗Q) = WLQ(X) 6 WL(X) = Nil(π∗(G)) 6 Hnil(G).

Proof. The equality WL(X) = Nil(π∗(G)) (and its rationalization) is a consequence
of the identification of the Whitehead product with the Samelson product via the iso-
morphism π∗(ΩX) ∼= π∗+1(X) [29, Th. X.7.10]. The inequality Nil(π∗(G)) 6 Hnil(G)
is [4, Th. 4.6]. The equality Nil(π∗(G)⊗Q) = WLQ(X) is [1, Lem. 4.2] (see also
[26, Th. 3]). Finally, the inequality WL(XQ) 6 WL(X) is immediate from the defi-
nition.

We give some examples and direct calculations regarding Aut(p).

Example 2.4. Let PB be the space of Moore paths at b0 ∈ B:

PB = {(ω, r) | r > 0, ω : (R>0, 0) → (B, b0), such that ω(s) = ω(r) for s > r}.
Let p : PB → B given by p(ω, r) = ω(r) be the path-space fibration. Then there is
an H-equivalence Aut(p) ' ΩB, where ΩB = {(σ, s) ∈ PB | σ(s) = b0} is the space
of Moore loops at b0. To see this, define θ : ΩB → Aut(p) given by θ((σ, s))(ω, r) =
(σ ∗ ω, s+ r) and ψ : Aut(p) → ΩB. Given f ∈ Aut(p), f restricts to an equivalence
f : ΩB → ΩB. Define ψ(f) = f(cb0 , 0), where cb0 is the constant loop. Clearly, ψ ◦ θ =
id. On the other hand, a homotopy H : Aut(p)× [0, 1] → Aut(p), between θ ◦ ψ and
the identity is defined by

H(f, t)(ω, r) = f(ωtr, tr) ∗ (ωbt , r − tr).

Here ωbs(t) = ω(t+ s), and

ωs(t) =

{
ω(t) t 6 s

ω(s) t > s.

Using Proposition 2.3, we conclude

Hnil(Aut(p)◦) > WL(B̃) and HnilQ(Aut(p)◦) = WLQ(B̃),

where B̃ denotes the universal cover of B.

Example 2.5. Observe that when π : F ×B → B is the (trivial) product fibration
then by adjointness we have

Aut(π) ∼= Map(B,Aut(F ))

with pointwise multiplication in the latter space. More generally, by the fibre-homo-
topy invariance of Aut(p) we have this identification for any fibre-homotopy trivial
fibration p : E → B with fibre F = p−1(b0). By [20, Th. 4.10], we have

Hnil(Aut(p)◦) = Hnil(Aut(F )◦)

in this case.

Example 2.6. Let F be a simply connected complex with H∗(F ;Q) and π∗(F )⊗Q
both finite-dimensional and Hodd(F ;Q) = 0. A fundamental open problem in rational
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homotopy theory asks whether the rational Serre spectral sequence collapses at the
E2-term for every fibration p : E → B of simply connected CW complexes with fibre
F (see [11, p. 516, Prob.1]). A positive answer to this question was conjectured by
Halperin [14]. Halperin’s conjecture has been affirmed in many cases, including (finite
products of) even-dimensional spheres, complex projective spaces and homogeneous
spaces G/H of equal rank compact pairs.

By [24, Th. A], F satisfies Halperin’s conjecture if and only if Aut(F )◦ has van-
ishing even degree rational homotopy groups. Thus Nil(π∗(Aut(F )◦)⊗Q) = 1 in this
case for degree reasons and so HnilQ(Aut(F )◦) = 1. By Example 2.5, we conclude
that Aut(p)◦ is rationally homotopy abelian for any trivial fibration p : E → B of
simply connected spaces with fibre F satisfying Halperin’s conjecture.

This result extends to non-trivial fibrations via the identity

Aut(p)◦ ' Ω◦Map(B,BAut1(F );h).

Here we write BAut1(F ) = BAut(F )◦ for the classifying space of the connected
monoid Aut(F )◦. By [24, Th. A] again, BAut1(F ) has evenly graded rational homo-
topy groups and so BAut1(F ) is a rational grouplike space. We thus have an equiva-
lence Map(B,BAut1(F )Q;hQ) ' Map(B,BAut1(F )Q; 0), which loops to an H-equiv-
alence

Ω◦Map(B,BAut1(F )Q;hQ) ' Ω◦Map(B,BAut1(F )Q; 0).

Combining these two equivalences, we see

(Aut(p)◦)Q ' Ω◦Map(B,BAut1(F )Q; 0)
' Map(B,Ω◦BAut1(F )Q; 0)
' Map(B, (Aut(F )◦)Q; 0).

If F satisfies Halperin’s conjecture, then Aut(F )◦ is rationally homotopy abelian and
so Aut(p)◦ is as well.

Example 2.7. Let p : E → B be a principal G-bundle. Multiplication by an element
of G induces a morphism of H-spaces G→ Aut(p), while evaluation at the identity
gives a left inverse Aut(p) → G. Thus G is a retract of Aut(p). It follows easily that

Hnil(Aut(p)◦) > Hnil(G◦).

3. Rational homotopy groups of fibrewise mapping spaces

We now consider the diagram of fibrations (1) above defining the fibrewise mapping
space Mapg(E′, E; f). We assume all the spaces E′, E,B′, B are simply connected
CW complexes. Our calculation of πn(Mapg(E′, E; f))⊗Q will follow the line of
proof of [21, Th. 2.1]. Namely, we will define a homomorphism Φ′ from the ordinary
homotopy group of the function space to the DG vector space of derivations and
prove Φ′ induces an isomorphism Φ after rationalization.

As in [21], the construction of Φ′ depends on some DG algebra homotopy theory.
Let α ∈ πn(Mapg(E′, E; f)) be represented by a : Sn → Mapg(E′, E; f) with adjoint
F : E′ × Sn → E. Write i : E′ → E′ × Sn for the based inclusion and q : E′ × Sn →
B′ for p′ composed with the projection, so that q ◦ i = p′. The map F is then a
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map “under f” and “over g”. That is, we have F ◦ i = f and p ◦ F = g ◦ q. To define
Ψ′(α), we show the Sullivan model of such a map F can be taken as a DGA map
“under” a model for g and “over” one for f . We prove, in fact, that this assignment
sets up a bijection between homotopy classes of maps when p : E → B is replaced by
its rationalization. Precise definitions and statements follow.

Let Z be any nilpotent space and consider the diagram

E′

i

²²

f

''PPPPPPPPPPPPPPP

E′ × Z

q

²²

F // E

p

²²
B′

g // B.

(2)

If F makes the diagram strictly commute, then we say that F is a map over g and
under f . We say two such maps F0 and F1 are homotopic over g and under f , if there
is a homotopy H from F0 to F1 through maps over g and under f , i.e., if H makes
the diagram

E′ × I

i×1

²²

Tf

((QQQQQQQQQQQQQQQ

E′ × Z × I

q×1

²²

H
// E

p

²²
B′ × I

Tg // B

(3)

commute, where Tf and Tg are stationary homotopies at f and g, respectively. Write
[E′ × Z,E]o/u for the set of homotopy classes of maps over g and under f .

On the DG algebra side, let ηZ : (C, d) → (A(Z), δZ) be a Sullivan model for Z.
We then have a corresponding diagram:

∧V Mg //

I

²²

∧V ′

I′′

²²
∧V ⊗ ∧W Γ //

Af **UUUUUUUUUUUUUUUU ∧V ′ ⊗ ∧W ′ ⊗ C

P

²²
∧V ′ ⊗ ∧W ′.

(4)

Here I : ∧ V → ∧V ⊗ ∧W is the inclusion I(χ) = χ⊗ 1, for χ ∈ ∧V , I ′′ is the inclu-
sion I ′′(χ′) = χ′ ⊗ 1⊗ 1, for χ′ ∈ ∧V ′, and P = (1⊗ 1) · ε is the obvious projection
so that the composition P ◦ I ′′ gives the inclusion I ′ : ∧ V ′ → ∧V ′ ⊗ ∧W ′, with
I ′(χ′) = χ′ ⊗ 1, for χ′ ∈ λV ′. The inclusion J : ∧ V ′ ⊗ ∧W ′ → ∧V ′ ⊗ ∧W ′ ⊗ C splits
P . A DG algebra map Γ making the diagram (4) strictly commute will be called a
map under Mg and over Af . Recall that a DG homotopy between Γ0 and Γ1 may
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be taken as a map

H : ∧ V ⊗ ∧W → ∧V ′ ⊗ ∧W ′ ⊗ C ⊗ ∧(t, dt),

with πi ◦ H = Γi for i = 0, 1. Here ∧(t, dt) is the contractible DG algebra with |t| = 0;
the maps πi : ∧ V ′ ⊗ ∧W ′ ⊗ C ⊗ ∧(t, dt) → ∧V ′ ⊗ ∧W ′ ⊗ C correspond to sending
t 7→ i and dt 7→ 0 [11, §12.b]. We say Γ0 and Γ1 are homotopic under Mg and over
Af if H is a DG homotopy through maps under Mg and over Af , i.e., if H makes
the diagram

∧V Tg //

I

²²

∧V ′ ⊗ ∧(t, dt)

I′′⊗1

²²
∧V ⊗ ∧W H //

Tf **VVVVVVVVVVVVVVVVVVV ∧V ′ ⊗ ∧W ′ ⊗ C ⊗ ∧(t, dt)

P⊗1

²²
∧V ′ ⊗ ∧W ′ ⊗ ∧(t, dt)

commute, where Tg and Tf are stationary homotopies atMg and Af , respectively. We
write [∧V ⊗ ∧W,∧V ′ ⊗ ∧W ′ ⊗ C]u/o for the set of homotopy classes of maps under
Mg and over Af . We will define an assignment F 7→ Γ and show that it leads to a
bijection of homotopy sets when p : E → B is rationalized.

We begin by choosing and fixing models for g and f . First, we claim a model Af for
f may be constructed as a map underMg. That is, we haveAf ◦ I = I ′ ◦Mg. Writing
APL(X) = (A(X), δX) for the DG algebra of Sullivan polynomial forms, the relative
model of the map A(p) : (A(B), δB) → (A(E), δE) is of the form (A(B)⊗ ∧W,D) [11,
§14]. Choose a minimal model ηB : (∧V, d) → (A(B), δB) (the Sullivan minimal model
of B) and obtain a quasi-isomorphism

ηE : (∧V ⊗ ∧W,D) → (A(E), δE).

Now recall the surjective trick : Given a graded algebra U , we define (S(U), δ)
to be the contractible DG algebra on a basis U ⊕ δ(U). Given a DG algebra map
η : (B, d) → (A, d), this manoeuvre results in a diagram

B

η

²²

α //
B ⊗ S(A)

β
oo

γ
zzzzuuuuuuuuu

A

in which γ is a surjection, and both α and β are quasi-isomorphisms. Here η = γ ◦ α.
This trick is used in the standard construction of the model Mg for g. Write

ηB : (∧V, d) → (A(B), δB) and ηB′ : (∧V ′, d′) → (A(B′), δB′) for Sullivan minimal
models for B and B′. Convert ηB′ into a surjection γB′ : ∧ V ′ ⊗ S(A(B′)) → A(B′)
as above. We then lift the composite A(g) ◦ ηB through the surjective quasi-iso-
morphism γB′ , using the standard lifting lemma [11, Lem. 12.4]. We thus obtain
φg : ∧ V → ∧V ′ ⊗ S(A(B′)). Now set Mg = βB′ ◦ φg. All this is summarized in the
following diagram:
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∧V ′ ⊗ S(A(B′))

γB′'

xxxx

βB′wwoooooooooooo
'

wwoooooooooooo

∧V Mg

//

φg

00

ηB '
²²

∧V ′
ηB′ '

²²

αB′
77oooooooooooo

'

77oooooooooooo

A(B)
A(g)

// A(B′).

Here the symbol ' indicates that a map is a quasi-isomorphism. By construction,
we have γB′ ◦ φg = A(g) ◦ ηB . We will use the letters φ, α, β, γ, and η, with suitable
subscripts, in a consistent way for diagrams of the above form. Notice that α is the
obvious inclusion, and β is the obvious projection.

We apply the same construction to obtain a model for Af . However, in this case we
use a relative version of the lifting lemma. Converting the vertical quasi-isomorphisms
in the commutative diagram

∧V ′ I′ //

ηB′ '
²²

∧V ′ ⊗ ∧W ′

ηE′'
²²

A(B′)
A(p′)

// A(E′)

to surjections results in a commutative diagram

∧V ′ ⊗ S(A(B′))
I′⊗S(A(p′)) //

γB′ '
²²²²

∧V ′ ⊗ ∧W ′ ⊗ S(A(E′))

γE′'
²²²²

A(B′)
A(p′)

// A(E′),

in which S(A(p′)) : S(A(B′)) → S(A(E′)) is the map induced by A(p′) : A(B′) →
A(E′). We incorporate this into the following relative lifting problem:

∧V I′⊗S(A(p′))◦φg //

I

²²

∧V ′ ⊗ ∧W ′ ⊗ S(A(E′))

γE′'
²²²²

∧V ⊗ ∧W
A(f)◦ηE

//

φf

44

A(E′).

(5)

The relative lifting lemma as in [11, Lem. 14.4] provides the lift φf that makes
both upper and lower triangles commute. But we now break-off from our develop-
ment of ideas to give here an extension of that result, and also its development into
[11, Lem. 14.6], both of which which we need for the sequel and neither of which we
can find in the literature.

Proposition 3.1 (Under and Over Lifting Lemma). Suppose given a diagram of DG
algebra maps
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A
f //

i

²²

B

γ'
²²

rB

// B′

iB

xx

γ′

²²
A⊗ ∧V

φ
//

Ψ

<<

ψ

66mmmmmmmmmmmmmmmmmmmmmmmmmmmm
C

rC // C ′

iC

ff

that satisfies

• commutativity: γ ◦ f = φ ◦ i and γ′ ◦ rB = rC ◦ γ;
• iB and iC are splittings that are “natural,” in that we have rB ◦ iB = 1B′ ,
rC ◦ iC = 1C′ , and also γ ◦ iB = iC ◦ γ′;

• ψ is a lift of rC ◦ φ through γ′ relative to rB ◦ f , in that rB ◦ f = ψ ◦ i and
γ′ ◦ ψ = rC ◦ φ;

• γ is a quasi-isomorphism that is onto ker(rC) (not necessarily surjective).

Then there exists a lift Ψ of φ through γ that is under f and over ψ: γ ◦Ψ = φ,
Ψ ◦ i = f , and rB ◦Ψ = ψ.

Proof. We assume that V admits a decomposition V = ⊕i>1V (i), with respect to
which A⊗ ∧V satisfies the nilpotency condition d

(
V (i)

) ⊆ A⊗ ∧V (< i) and proceed
by induction on i. Induction starts with i = 0, where we already have the lift f . Now
suppose that Ψ has been constructed on A⊗ ∧V (< i) and that v ∈ V (i) for some
i > 1. Then dv ∈ A⊗ ∧V (< i), and so Ψ(dv) is defined. We have d(Ψ(dv)) = Ψ(d2(v))
= 0, so Ψ(dv) ∈ Z(B). Furthermore, we have γ∗([Ψ(dv)]) = 0, since γ ◦Ψ(dv) =
φ(dv) = dφ(v). Since γ is a quasi-isomorphism, ∃b ∈ B with Ψ(dv) = db. Now consider
φ(v)− γ(b) ∈ C: we have d

(
φ(v)− γ(b)

)
= dφ(v)− γ(db) = φ(dv)− γ ◦Ψ(dv) = 0,

and so φ(v)− γ(b) ∈ Z(C). Now “polarize” this cycle, using the splitting iC , by
writing

φ(v)− γ(b) =
[(
φ(v)− γ(b)

)− iC ◦ rC
(
φ(v)− γ(b)

)]
+ iC ◦ rC

(
φ(v)− γ(b)

)
. (6)

Observe that we have

iC ◦ rC
(
φ(v)− γ(b)

)
= iC ◦ γ′ ◦ ψ(v)− γ ◦ iB ◦ rB(b) = γ

(
iB ◦ ψ(v)− iB ◦ rB(b)

)
.

Also, writing χ =
(
φ(v)− γ(b)

)− iC ◦ rC
(
φ(v)− γ(b)

)
, we have that χ ∈ ker (rC) ∩

Z(C). Since γ is a quasi-isomorphism, ∃β ∈ Z(B) with γ∗([β]) = [χ], and so γ(β) =
χ+ dξ for some ξ ∈ C. Then we have

γ
(
β − iB ◦ rB(β)

)
= γ(β)− γ ◦ iB ◦ rB(β) = γ(β)− iC ◦ rC ◦ γ(β)
= χ+ dξ − iC ◦ rC(χ+ dξ) = χ+ dξ − iC ◦ rCdξ
= χ+ d

(
ξ − iC ◦ rC(ξ)

)
.

Since ξ − iC ◦ rC(ξ) ∈ ker (rC), and γ is onto ker (rC), there exists b′ ∈ B with γ(b′) =
ξ − iC ◦ rC(ξ). Without loss of generality, we may choose b′ ∈ ker (rB), since we have
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γ(b′) = γ(b′)− iC ◦ rC ◦ γ(b′) = γ
(
b′ − iB ◦ rB(b′)

)
. So we have

γ
(
β − iB ◦ rB(β)

)
= χ+ dγ(b′), or χ = γ

(
β − iB ◦ rB(β)− db′

)
.

Substituting this last identity and the one obtained earlier into (6) now gives

φ(v)− γ(b) = γ
(
β − iB ◦ rB(β)− db′

)
+ γ

(
iB ◦ ψ(v)− iB ◦ rB(b)

)
,

so we have

φ(v) = γ
(
b− iB ◦ rB(b) + β − iB ◦ rB(β)− db′ + iB ◦ ψ(v)

)
.

Now define

Ψ(v) =
(
b− iB ◦ rB(b)

)
+

(
β − iB ◦ rB(β)

)− db′ + iB ◦ ψ(v).

Observe that Ψ(v)− iB ◦ ψ(v) ∈ ker (rB). Evidently, we have γ ◦Ψ(v) = φ(v), and
rB ◦Ψ(v) = rB ◦ iB ◦ ψ(v) = ψ(v) as desired. Induction is complete, and the result
follows.

We extend this to a result on lifting homotopy classes in the following (cf. [3, Prop.
II.2.11], [11, Props. 12.9 and 14.6], and [21, Prop. A.4]).

Proposition 3.2 (Under and Over Homotopy Lifting Lemma). Suppose given a com-
mutative diagram of DG algebra maps

A
g //

i

²²

B

rB

²²

γ

'
// // C

rC

²²
A⊗ ∧V

f
//

;;

B′

iB

[[

γ′ // C ′

iC

[[

with γ : B → C a surjective quasi-isomorphism and iB, iC natural splittings as in
Proposition 3.1. That is, we have rB ◦ iB = 1B′ , rC ◦ iC = 1C′ and also γ ◦ iB =
iC◦, γ′. Then γ induces a bijection of homotopy sets

λ∗ : [A⊗ ∧V,B]u/o → [A⊗ ∧V,C]u/o.

Proof. Homotopy classes in [A⊗ ∧V,B]u/o are represented by maps F that make the
left-hand diagram below commute, and homotopies H between two such maps make
the right-hand diagram below commute:

A

g

##GGGGGGGGGGGGG

i

²²
A⊗ ∧V

F
//

f

##FF
FF

FF
FF

FF
FF

F B

rB

²²
B′

A

Tg

&&MMMMMMMMMMMMMMMM

i

²²
A⊗ ∧V

H
//

Tf

&&LLLLLLLLLLLLLLL B ⊗ ∧(t, dt)

rB⊗1

²²
B′ ⊗ ∧(t, dt).

Homotopy classes in [A⊗ ∧V,C]u/o are represented by maps F that make the left-
hand diagram below commute, and homotopies H between two such maps make the
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right-hand diagram below commute:

A

γ◦g

##GGGGGGGGGGGGG

i

²²
A⊗ ∧V F

//

γ′◦f
##FF

FF
FF

FF
FF

FF
F C

rC

²²
C ′

A

Tγ◦g

&&MMMMMMMMMMMMMMMM

i

²²
A⊗ ∧V H

//

Tγ′◦f

&&LLLLLLLLLLLLLLL C ⊗ ∧(t, dt)

rC⊗1

²²
C ′ ⊗ ∧(t, dt).

In these diagrams, Tg denotes the stationary homotopy at g, for example. Evidently,
we have (γ′ ⊗ 1) ◦ Tf = Tγ′◦f and (γ ⊗ 1) ◦ Tg = Tγ◦g. So γ∗ gives a well-defined map
of under-and-over homotopy classes. Now suppose given some [φ] ∈ [A⊗ ∧V,C]u/o.
We have the following diagram,

A
g //

i

²²

B

γ' ²²²²

rB // B′

iB

zz

γ′

²²
A⊗ ∧V

φ
//

<<

f

66mmmmmmmmmmmmmmmmmmmmm
C

rC // C ′,

iC

dd

and it follows from Proposition 3.1 that γ∗ is surjective.
Finally, we show that γ∗ is injective. Suppose we have two maps F0, F1 : A⊗ ∧V →

B under g and over f , and γ ◦ F0 and γ ◦ F1 are homotopic via a homotopy H : A⊗
∧V → C ⊗ ∧(t, dt) under γ ◦ f and over γ′ ◦ g. Form the commutative cube

Q //

²²

B′ ×B′

γ′×γ′

²²

P

r

66nnnnnnnnnnnnnnnn //

²²

B ×B

rB×rB

99ssssssssss

γ×γ

²²

C ′ ⊗ ∧(t, dt)
(1·ε0,1·ε1)

// C ′ × C ′

C ⊗ ∧(t, dt)

rC⊗1
77nnnnnnnnnnn

(1·ε0,1·ε1)
// C × C

rC×rC

99tttttttttt

in which the front and back faces are pullbacks, so that

P =
(
C ⊗ ∧(t, dt)

)×C×C
(
B ×B

)
and Q =

(
C ′ ⊗ ∧(t, dt)

)×C′×C′
(
B′ ×B′

)
.

The map r : P → Q is the one induced on the pullbacks so as to make the cube
commute. Since the forwards maps are composed of rC and rB , they admit natural
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splittings and a natural splitting i : Q→ P of r is induced. Denote by Γ the map
induced from the pullback diagram as follows:

B ⊗ ∧(t, dt)
(1·ε0,1·ε1)

&& &&
Γ

&&NNNNNNNNNNNNNNNNN

γ⊗1

'

%% %%

P //

'

²²

B ×B

γ×γ'
²²²²

C ⊗ ∧(t, dt)
(1·ε0,1·ε1)

// // C × C.

It follows from properties of the pullback that Γ is a surjective quasi-isomorphism.
We now include Γ, and the corresponding map Γ′ : B′ ⊗ ∧(t, dt) → Q obtained from
the back face of the above pullback cube, into the right-hand part of the following
diagram:

A
Tg //

i

²²

B ⊗ ∧(t, dt)

Γ'
²²²²

rB⊗1
// B′ ⊗ ∧(t, dt)

iB⊗1
ss

Γ′

²²
A⊗ ∧V (

H,(F0,F1)
) //

::

Tf

44iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
C

r // C ′.

i

ii

The lift obtained from Proposition 3.1 gives the desired homotopy from F0 to F1

under g and over f .

Now we return to the development of ideas that preceded Proposition 3.1. In
diagram (5), Proposition 3.1, applied to the case in which B′ = C ′ = Q, and rB , rC ,
and ψ are the augmentations, provides the relative lift. That is, we obtain a lifting
φf in diagram (5) and set Af = βE′ ◦ φf . It follows from the definitions that we have
I ′ ◦Mg = Af ◦ I.

Having chosen and fixed models for f and g, we now extend their construction to
Sullivan models for maps F over g and under f as in (2).

Proposition 3.3. A Sullivan model AF for a map F that makes (2) commute may
be chosen so that Γ = AF makes (4) commute. Further, if F0 and F1 are homotopic
over g and under f , then AF0 and AF1 are DG homotopic under Mg and over Af .

Proof. The existence of a model AF of the desired form follows directly from Proposi-
tion 3.1. Apply the Sullivan functor A(−) to diagram (2), and incorporate the result,
along with the models just constructed, into the following diagram:
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∧V
(I′′⊗S(A(q)))◦φg//

I

²²

∧V ′ ⊗ ∧W ′ ⊗ C ⊗ S(A(E′ × Z))

γE′×Z'
²²

P⊗S(A(i))
// ∧V ′ ⊗ ∧W ′ ⊗ S(A(E′))

J⊗S(A(p1))

rr

γE′

²²
∧V ⊗ ∧W

A(F )◦ηE

//

φF

77

φf

33ggggggggggggggggggggggggggggggggggggggggggggggggg
A(E′ × Z)

A(i) // A(E′)

A(p1)

ll

Proposition 3.1 gives an under-over lift φF , and we set AF = βE′×Z ◦ φF .
We show the relation of homotopy over-and-under is preserved through passing to

models in two steps. First, we establish that there is a well-defined map of homotopy
classes

[E′ × Z,E]o/u → [∧V ⊗ ∧W,A(E′ × Z)]u/o.

Suppose H : E′ × Z × I → E is a homotopy from F0 to F1 which is over g and under
f , as in diagram (3). Apply A(−) to that diagram, and adapt the argument of [11,
Prop. 12.6] as follows (some of the notation in what follows is adopted from there.):
From the diagram

A(E′ × Z)⊗ ∧(t, dt)

A(pE′×Z)·A(pI )

'

²²

A(i)⊗1
//

(id·ε0,id·ε1)

''OOOOOOOOOOOOOO
A(E′)⊗ ∧(t, dt)

A(p1)⊗1

ss

A(pE′ )·A(pI )

²²

(id·ε0,id·ε1)

xxrrrrrrrrrrrr

A(E′ × Z)×A(E′ × Z) A(E′)×A(E′)oo

A(E′ × Z × I)
A(i×1) //

(A(j0),A(j1))

77oooooooooooooo
A(E′ × I)

A(p1×1)

kk

(A(j0),A(j1))

ffLLLLLLLLLLLL

we adjust the left-hand vertical map into a map γ that is onto the kernel of
A(i× 1), using U = ker (A(j0), A(j1)) ∩ ker (A(i× 1)). Now apply Proposition 3.1 to
the diagram

∧V
(A(g◦q)⊗1)◦ηB //

I

²²

A(E′ × Z)⊗ ∧(t, dt)⊗ S(U)

γ

'

²²

A(i)⊗1
// A(E′)⊗ ∧(t, dt)

A(p1)⊗1

rr

A(pE′ )·A(pI )

²²
∧V ⊗ ∧W

A(H)◦ηE

//

φH

77

A(f)◦ηE

33gggggggggggggggggggggggggggggggggggggggggggggggg
A(E′ × Z × I)

A(i×1) // A(E′ × I)

A(p1×1)

ll
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to obtain a DG homotopy G = β ◦ φH from ηE ◦A(F0) to ηE ◦A(F1) that is a DG
homotopy under A(g) ◦ ηB and over A(f) ◦ ηE . Thus far, we have established that
there is a well-defined map of homotopy classes

S : [E′ × Z,E]o/u → [∧V ⊗ ∧W,A(E′ × Z)]u/o.

We now want to lift this correspondence up to minimal models. Converting the
quasi-isomorphism

ηE′×Z : ∧ V ′ ⊗ ∧W ′ ⊗ C → A(E′ × Z)

to a surjection gives, amongst other data, a surjective quasi-isomorphism

γE′×Z : ∧ V ′ ⊗ ∧W ′ ⊗ C ⊗ S
(
A(E′ × Z)

) → A(E′ × Z)

and the retraction map β : ∧ V ′ ⊗ ∧W ′ ⊗ C ⊗ S
(
A(E′ × Z)

) → ∧V ′ ⊗ ∧W ′ ⊗ C,
which we observe is also a surjective quasi-isomorphism.

The diagrams

∧V g //

i

²²

∧V ′ ⊗ ∧W ′ ⊗ C ⊗ S
(
A(E′ × Z)

)

P⊗S(A(i))

²²

γE′×Z

'
// // A(E′ × Z)

A(i)

²²
∧V ⊗ ∧W

f
//

66

∧V ′ ⊗ ∧W ′ ⊗ S
(
A(E′)

)
J⊗S(A(p1))

XX

γE′ // A(E′)

A(p1)

YY

and

∧V g //

i

²²

∧V ′ ⊗ ∧W ′ ⊗ C ⊗ S
(
A(E′ × Z)

)

P⊗S(A(i))

²²

βE′×Z

'
// // ∧V ′ ⊗ ∧W ′ ⊗ C

P

²²
∧V ⊗ ∧W

f
//

66

∧V ′ ⊗ ∧W ′ ⊗ S
(
A(E′)

)
J⊗S(A(p1))

XX

βE′ // ∧V ′ ⊗ ∧W ′

J

YY

yield, respectively, the bijections

(γE′×Z)∗ : [∧V ⊗ ∧W,∧V ′ ⊗ ∧W ′ ⊗ C ⊗ S
(
A(E′ × Z)

)
]u/o

→ [∧V ⊗ ∧W,A(E′ × Z)]u/o

and

(βE′×Z)∗ : [∧V ⊗ ∧W,∧V ′ ⊗ ∧W ′ ⊗ C ⊗ S
(
A(E′ × Z)

)
]u/o

→ [∧V ⊗ ∧W,∧V ′ ⊗ ∧W ′ ⊗ C]u/o.

Combined with our previous work, we now have a well-defined map of homotopy
classes

(βE′×Z)∗ ◦ ((γE′×Z)∗)−1 ◦ S : [E′ × Z,E]o/u → [∧V ⊗ ∧W,∧V ′ ⊗ ∧W ′ ⊗ C]u/o

induced by the assignment F 7→ AF .
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Now we turn to rationalization of the above correspondence. Consider the diagram

E′
fQ //

p′

²²

EQ

pQ

²²
B′

gQ // BQ

(7)

obtained from (1) by replacing p, f and g by their rationalizations. (Recall we are
assuming the spaces E,E and B,B′ are all simply connected.) Let

Ψ: [E′ × Z,EQ]o/u → [∧V ⊗ ∧W,∧V ′ ⊗ ∧W ′ ⊗ C]u/o

denote the corresponding map. The following result extends the standard correspon-
dence between homotopy classes of maps into a rational space and DG algebra homo-
topy classes of maps between Sullivan models [11, Props. 12.7 and 17.13].

Proposition 3.4. Suppose the spaces E′ and Z are finite CW complexes. Then Ψ is
a bijection of sets.

Proof. First assume pQ : EQ → BQ is a principalK(Wn, n)-fibration for Wn a rational
space concentrated in degree n. Let F : E′ × Z → EQ be a map over gQ and under
fQ. Define a class γF ∈ Hn(Z;Wm) ∼= Hom(Wm,H

∗(Z;Q)) as follows: Let j : Z →
E′ × Z denote the inclusion and observe pQ ◦ F ◦ j ' ∗. Thus F ◦ j is homotopic to
a map GF : Z → K(Wn, n), or equivalently, a class γF ∈ Hn(Z;Wm).

Conversely, given a class γ ∈ Hn(Z;Wm) we construct a map Fγ over g and under
f as follows: Let P : EQ ×K(Wn, n) → EQ denote the fibrewise action. Here P is a
map over 1BQ and under the inclusion EQ → EQ ×K(Wn, n). Let G : Z → K(Wn, n)
be the map induced by γ. Define Fγ to be the composite

E′ × Z
fQ×G−−−−→ EQ ×K(Wn, n) P−→ EQ.

It is direct to check that Fγ is a map over gQ and under fQ and that the assignments
F 7→ γF and γ 7→ Fγ set up a bijection

[E′ × Z,EQ]o/u ≡ Hn(Z;Wn).

Now suppose Γ is a DG map making (4) commute. Then we may write Γ(χ) =
Af (χ) + η(χ), where η(χ) = 0 for χ ∈ ∧V and P (η(χ)) = 0. Given w ∈Wn, since
D(w) ∈ ∧V , it follows that P ′(η(w)) is a cycle of C. Let γΓ ∈ Hn(Z;Wn) denote the
class corresponding to P ′ ◦ η restricted to Wn, where P ′ : ∧ V ′ ⊗ ∧W ′ ⊗ C → C is
the projection. The assignment Γ 7→ γΓ then gives a well-defined surjection

∧V ⊗ ∧W,∧V ′ ⊗ ∧W ′ ⊗ C]u/o ³ Hn(Z;Wn).

Finally, observe that the spatial realization F of γΓ constructed in the preceding
paragraph has Sullivan model Γ. This is direct from the fact that P is a map
over 1BQ and under EQ → EQ ×K(Wn, n). Suppose Γ0 and Γ1 satisfy γΓ0 = γΓ1

∈ Hn(Z;Wn). Writing γ for this class, we obtain a map Fγ over gQ and under fQ
with two Sullivan models Γ0 and Γ1. By Proposition 3.3, Γ0 and Γ1 are homotopic
under Mg and over Af , and the result is proved in this case.
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Now proceed by induction over a Moore-Postnikov factorization of the fibration
pQ : EQ → BQ. Let (pQ)n : (EQ)n → (EQ)n−1 be the nth fibration, a principal fibration
with fibre K(Wn, n). The Sullivan model for (pQ)n is of the form ∧V → ∧V ⊗ ∧W(n),
where W(n) =

⊕
k6nWk. Since E′ × Z is finite, for n large, composition with the

canonical map hn : EQ → (En)Q yields a bijection

[E′ × Z,EQ]o/u ≡ [E′ × Z, (En)Q]o/u.

Similarly, the inclusion W(n) →W for such n induces a bijection

[∧V ⊗ ∧W,∧V ′ ⊗ ∧W ′ ⊗ C]u/o ≡ [∧V ⊗ ∧W(n),∧V ′ ⊗ ∧W ′ ⊗ C]u/o.

We apply the foregoing to define Φ(α) for an element α ∈ πn(Mapg(E′, E; f)). Let
F : E′ × Sn → E be the adjoint of α. By Proposition 3.3, F has a Sullivan model of
the form

AF : ∧ V ⊗ ∧W → ∧V ′ ⊗ ∧W ′ ⊗ (∧(u)/〈u2〉)
with AF (χ) = Af (χ) + uθ(χ) for χ ∈ ∧V ⊗ ∧W and where Af (χ) = Mg(χ) and θ(χ)
= 0 for χ ∈ ∧V . Here (∧(u)/〈u2〉, 0) is a Sullivan model for Sn with |u| = n. The map
θ is thus linear of degree n vanishing on ∧V . The following facts are standard and
direct to check:

1. AF (χ1χ2) = AF (χ1)AF (χ2) =⇒ θ is an Af -derivation.
2. AF ◦D = D ◦ AF =⇒ θ is an Af -derivation cycle.

Lemma 3.5. The homology class 〈θ〉 ∈ Hn(Der∧V (∧V ⊗ ∧W,∧V ′ ⊗ ∧W ′;Af )) is
independent of the choice of representative of α ∈ πn(Mapg(E′, E; f)).

Proof. Suppose a, b : Sn → Mapg(E′, E; f) both represent α ∈ πn(Mapg(E′, E; f)).
Observe that a homotopy from a to b has adjoint H : E′ × Sn × I → E giving rise to
a commutative diagram as in (3), with Z = Sn. This translates into a Sullivan model
H for H that fits into the following commutative diagram:

∧V Tg //

I

²²

∧V ′ ⊗ ∧(t, dt)

I′′⊗1

²²
∧V ⊗ ∧W H //

Tf ++WWWWWWWWWWWWWWWWWWWWWW ∧V ′ ⊗ ∧W ′ ⊗ (∧(u)/〈u2〉)⊗ ∧(t, dt)

P⊗1

²²
∧V ′ ⊗ ∧W ′ ⊗ ∧(t, dt).

For χ ∈ ∧V ⊗ ∧W , we may write (being particular with the order of terms in each
sum)

H(χ) = Af (χ) +
∑

i>0

u ti ψi(χ) +
∑

i>0

u ti dt φi(χ),

for linear maps ψi and φi. Because the homotopy H is under Mg, we have ψi(V ) = 0
and φi(V ) = 0 for each i. From our definition above, and since the original homo-
topy was from a to b, it follows that ψ0, respectively

∑
i>0 ψi, is the derivation θa,

respectively θb, that corresponds under Φ′ to [a], respectively [b]. We must show that
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θb − θa =
∑
i>1 ψi is a boundary. In fact, the identity H(χ1χ2) = H(χ1)H(χ2) easily

yields that each ψi and each φi is an Af -derivation. Then the identity H ◦D = D ◦ H
yields that

D(φi) = [d, φi] = (i+ 1)ψi+1,

for each i > 0. Hence we have

θb − θa =
∑

i>0

1
i+ 1

D(φi),

and the cohomology class is well-defined.

Define

Φ′ : πn(Mapg(E
′, E; f)) → Hn(Der∧V (∧V ⊗ ∧W,∧V ′ ⊗ ∧W ′;Af ))

by Φ′(α) = 〈θ〉. The following result contains the first assertion of Theorem 1.2.

Theorem 3.6. Suppose given a commutative diagram

E′

p′

²²

f // E

p

²²
B′

g // B

with vertical maps fibrations and all spaces simply connected CW complexes. The map

Φ′ : πn(Mapg(E
′, E; f)) → Hn(Der∧V (∧V ⊗ ∧W,∧V ′ ⊗ ∧W ′;Af ))

defined above is a homomorphism for n > 2. If E′ is finite, then the rationalization

Φ: πn(Mapg(E
′, E; f))⊗Q −→ Hn(Der∧V (∧V ⊗ ∧W,∧V ′ ⊗ ∧W ′;Af ))

of Φ′ is an isomorphism for n > 2.

Proof. To show that Φ′ is a homomorphism for n > 2, let α, β ∈ πn(Mapg(E′, E; f))
with adjoints F,G : E′ × Sn → E. Let (F | G) : E′ × (Sn ∨ Sn) → E be the map in-
duced by F and G. We then have a commutative diagram (2) with Z = Sn ∨ Sn.
A Sullivan model for Sn ∨ Sn is (∧(u, v)/〈u2, uv, v2〉, 0) with |u| = |v| = n. Applying
Proposition 3.3, we see (F | G) has the Sullivan model

χ 7→ χ+ uθa(χ) + vθb(χ) : ∧ V ⊗ ∧W → ∧V ′ ⊗ ∧W ′ ⊗ (∧(u, v)/〈u2, uv, v2〉)
for χ ∈ ∧V ⊗ ∧W . Using that (F | G) ◦ (1E′ × i1) = F and (F | G) ◦ (1E′ × i2) = G,
where ij : Sn → Sn ∨ Sn are the inclusions, yields that θa and θb are cycle represen-
tatives for Φ′(α) and Φ′(β), respectively. The map (F | G) ◦ (1E′ × σ) is adjoint to
the sum α+ β where σ : Sn → Sn ∨ Sn is the pinch map. The result now follows from
the fact that a Sullivan model for σ is given by

u, v 7→ w : ∧ (u, v)/〈u2, uv, v2〉 → ∧(w)/〈w2〉.
Now assume E′ is finite. By Proposition 2.1, composition with a rationaliza-

tion `E : E → EQ gives a rationalization `E : Mapg(E′, E; f) → MapgQ(E
′, EQ; fQ).
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We take

Φ: πn(MapgQ(E
′, EQ; fQ)) → Hn(Der∧V (∧V ⊗ ∧W,∧V ′ ⊗ ∧W ′;Af ))

to be the map Φ′ corresponding to the diagram (7).
Suppose Φ(α) = 0 for α ∈ πn(MapgQ(E

′, EQ; fQ)). Then by Proposition 3.3, a Sul-
livan model AF for the adjoint F : E′ × Sn → EQ is given by

χ 7→ Af (χ) + uθ(χ) : ∧ V ⊗ ∧W → ∧V ′ ⊗ ∧W ′ ⊗ (∧(u)/〈u2〉),
and θ = D(θ) for some θ ∈ Dern+1

∧V (∧V ⊗ ∧W,∧V ′ ⊗ ∧W ′;Af ). Define a DG algebra
homotopy H from the map

χ 7→ Af (χ) : ∧ V ⊗ ∧W → ∧V ′ ⊗ ∧W ′ ⊗ (∧(u)/〈u2〉)
to the map AF by the rule

χ 7→ Af (χ) + tuθ(χ) + (−1)ndtuθ(χ) : ∧ V ⊗ ∧W → ∧V ′ ⊗ ∧W ′

⊗ (∧(u)/〈u2〉)⊗ ∧(t, dt).

Proposition 3.4 with Z = Sn gives a homotopy H : E′ × Sn × I → EQ, over gQ and
under fQ, between the adjoint of the trivial class in πn(MapgQ(E

′, EQ; fQ)) and F . It
follows that Φ is injective.

Finally, to prove Φ is onto for n > 2, let θ ∈ Dern∧V (∧V ⊗ ∧W,∧V ′ ⊗ ∧W ′;Af ) be
a cycle. Define a DG algebra map Γ by

χ 7→ Af (χ) + uθ(χ) : ∧ V ⊗ ∧W → ∧V ′ ⊗ ∧W ′ ⊗ C.

Using Proposition 3.4 with Z = Sn, we obtain a map F : E′ × Sn → EQ that is under
fQ and over gQ. The adjoint of F is a class α ∈ πn(MapgQ(E

′, EQ; fQ)) with Φ(α) =
〈θ〉.

We note that π1(Mapg(E′, E; f)) is not, in general, abelian and so Φ cannot, in
general, be an isomorphism (cf. [22, Ex. 1.1]). The proof that Φ′ is a homomorphism
breaks down if n = 1 because Z = S1 ∨ S1 is a non-nilpotent space. In fact, Φ is
generally not a homomorphism in degree 1.

By Proposition 2.1, π1(Mapg(E′, E; f) is a nilpotent group, and thus, it has a
well-defined rank. We have:

Theorem 3.7. With hypotheses as in Theorem 3.6, if E′ is finite, then

rank(π1(Mapg(E
′, E; f))) = dim(H1(Der∧V (∧V ⊗ ∧W,∧V ′ ⊗ ∧W ′;Af )).

Proof. The proof is an adaptation of [22, Th. 1] similar to the preceding result. Here
we use a Moore-Postnikov factorization of pQ : EQ → BQ in place of the absolute
Postnikov tower of Y for Map(X,Y ; f) used there. Also, we use Theorem 3.6 in place
of [21, Th. 2.1]. We omit the details.

4. The rational Samelson Lie Algebra of Aut(p)◦
In this section, we sharpen Theorem 3.6 in the case f and g are the respective

identity maps to prove Theorem 1.1. Fix a fibration p : E → B of simply connected
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CW complexes with E finite. Observe Aut(p)◦ = Map1B
(E,E; 1E). We prove the map

Φ′ : π1(Aut(p)◦) → H1(Der∧V (∧V ⊗ ∧W )) induces an isomorphism after rationaliza-
tion. We then show Φ′ induces an isomorphism

Φ: π∗(Aut(p)◦)⊗Q→ H∗(Der∧V (∧V ⊗ ∧W ))

of graded Lie algebras.
Let α ∈ πp(Aut(p)◦) and β ∈ πq(Aut(p)◦) be homotopy classes with adjoints

F : E × Sp → E and G : E × Sq → E. Let

θa ∈ Derp∧V (∧V ⊗ ∧W ) and θb ∈ Derq∧V (∧V ⊗ ∧W )

be cycle representatives for Φ′(α) and Φ′(β), respectively. Define a homotopy class
α ∗ β ∈ [Sp × Sq,Aut(p)◦] to be the composite

Sp × Sq
α×β−−−→ Aut(p)◦ ×Aut(p)◦

µ−→ Aut(p)◦,

where µ is the multiplication (composition of maps) in Aut(p)◦. Write

F ∗G : E × Sp × Sq → E

for the adjoint map. Let (∧(u, v)/〈u2, v2〉, 0) denote the Sullivan model for Sp × Sq,
where |u| = p and |v| = q.

Lemma 4.1. A Sullivan model for the map F ∗G is the DG algebra map

AF∗G : ∧ V ⊗ ∧W → ∧V ⊗ ∧W ⊗ ∧(u, v)/〈u2, v2〉
given by

AF∗G(χ) = χ+ uθa(χ) + vθb(χ) + uvθa ◦ θb(χ)

for χ ∈ ∧V ⊗ ∧W .

Proof. The map F ∗G is the composite

E × Sp × Sq
F×1Sq−−−−→ E × Sq

E−→ .

By the Künneth Theorem, a Sullivan model AF×1Sq for the product F × 1Sq is the
product of the Sullivan models

AF : ∧ V ⊗ ∧W → ∧V ⊗ ∧W ⊗ (∧(u)/〈u2〉) and 1: ∧ (v)/〈v2〉 → ∧(v)/〈v2〉.
Thus, given χ ∈ ∧V ⊗ ∧W , we see:

AF∗G(χ) = AF×1Sq (AG(χ))
= AF×1Sq (χ+ vθb(χ))
= AF (χ) +AF (vθb(χ))
= χ+ uθa(χ) + vθb(χ) + uvθa(θb(χ)).

We can now extend Theorem 3.6 to the fundamental group for the monoid Aut(p)◦.
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Theorem 4.2. Let p : E → B be a fibration of simply connected CW complexes with
E finite. Then the map

Φ′ : π1(Aut(p)◦) → H1(Der∧V (∧V ⊗ ∧W ))

is a homomorphism inducing an isomorphism

Φ: π1(Aut(p)◦)⊗Q
∼=−→ H1(Der∧V (∧V ⊗ ∧W )).

Proof. To prove Φ′ is a homomorphism, let α, β ∈ π1(Aut(p)◦)) and recall the basic
identity

α · β = (α ∗ β) ◦∆: S1 → Aut(p)◦,

where ∆ is the diagonal map and the left-hand product is the usual multiplication in
the fundamental group. Thus the adjoint to α · β is the composition

S1 × E
∆×1E−−−−→ S1 × S1 × E

F∗G−−−→ E.

The result now follows directly from Lemma 4.1 and the fact that a Sullivan model
for ∆ is the map ∧(u, v) → ∧(w) given by u, v 7→ w. The proof that Φ is a bijection
is now the same as in the proof in Theorem 3.6.

We next prove that the map Φ′ : π∗(Aut(p)◦) → H∗(Der∧V (∧V ⊗ ∧W )) preserves
brackets, which completes the proof of Theorem 1.1.

Theorem 4.3. Let p : E → B be a fibration of simply connected CW complexes with
E finite. Let α ∈ πp(Aut(p)◦) and β ∈ πq(Aut(p)◦). Then

Φ′([α, β]) = [Φ′(α),Φ′(β)] ,

where the left-hand bracket is the Samelson product in π∗(Aut(p)◦) and the right-hand
bracket is that induced by the commutator in Der∗∧V (∧V ⊗ ∧W ).

Proof. By Proposition 2.2, Aut(p)◦ is a grouplike space under composition. Let
ν : Aut(p)◦ → Aut(p)◦ be a homotopy inverse. Define F to be the composite

F : E × Sp
1E×α−−−−→ E ×Aut(p)◦

1E×ν−−−−→ E ×Aut(p)◦
ω−→ E,

where ω is the evaluation map. Then F is adjoint to −α = ν](α) ∈ πp(Aut(p)◦) and
so has the Sullivan model

AF (χ) = χ− uθa(χ) : ∧ V ⊗ ∧W → ∧V ⊗ ∧W ⊗ (∧(u)/〈u2〉)
for χ ∈ ∧V ⊗ ∧W , where 〈θa〉 = Φ′(α).

Now given two classes α ∈ πp(Aut(p)◦) and β ∈ πq(Aut(p)◦), the Samelson product
is defined by means of the map γ : Sp × Sq → Aut(p)◦ defined by

γ(x, y) = α(x) ◦ β(y) ◦ α(x) ◦ β(y),
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where α = ν](α). The map γ has adjoint Γ given by the composite

E × Sp × Sq
1E×∆×∆ //

Γ

&&MMMMMMMMMMMMMMMMMMMMMMMMMMM E × Sp × Sp × Sq × Sq

1E×1Sp×T×1Sq

²²
E × Sp × Sq × Sp × Sq

[F,G]

²²
E,

where T is transposition and

[F,G] = F ◦ (G× 1Sn) ◦ (F × 1Sp×Sq ) ◦ (G× 1Sp×Sq×Sp) .

We see the map [F,G] has the Sullivan model

A[F,G] : ∧ V ⊗ ∧W → ∧V ⊗ ∧W ⊗ (∧(u, v, u, v)/〈u2, v2, u2, v2〉),
given by

A[F,G](χ) = χ+ uθa(χ) + vθb(χ)− uθa(χ)− vθb(χ)
+ uvθa ◦ θb(χ) + uvθa ◦ θb(χ)− uvθa ◦ θb(χ)− vuθb ◦ θa(χ)
+ terms involving uu or vv.

Thus Γ has the Sullivan model

AΓ(χ) = χ+ uv[θa, θb](χ) : ∧ V ⊗ ∧W → ∧V ⊗ ∧W ⊗ ∧(u, v)/〈u2, v2〉,
for χ ∈ ∧V ⊗ ∧W . The result now follows from the definition of the Samelson product:
The restriction of Γ to E × (Sp ∨ Sq) is null and so Γ induces Γ′ : E × Sp+q → E sat-
isfying Γ ' Γ′ ◦ (1E × q), where q : Sp × Sq → Sp+q is the projection onto the smash
product. Finally, using the fact that q induces the map

w 7→ uv : ∧ (w)/〈w2〉 → ∧(u, v)/〈u2, v2〉,
we see Φ′(γ) is represented by [θa, θb].

Remark 4.4. The techniques above can be applied to describe a related space of fibre-
wise self-homotopy equivalences. Let F = p−1(x) be the fibre over the basepoint of
p : E → B as above. The restriction res : Aut(p) → Aut(F ) is a multiplicative con-
tinuous map. Denote the kernel by AutF (p). This monoid is of interest in the study
of gauge groups. Denote by Der∧V (∧V ⊗ ∧W ) the subcomplex of Der∧V (∧V ⊗ ∧W )
consisting of derivations θ such that θ(V ) = 0 and θ(W ) ⊂ ∧+V ⊗ ∧W . Then we have
a Lie algebra isomorphism

π∗(AutF (p)◦)⊗Q ∼= H∗(Der∧V (∧V ⊗ ∧W )).

The details of the proof are extensive but entirely similar to the above.

5. Applications and examples

We apply Theorem 1.1 to expand on some of the examples mentioned in Section 2.
We begin with the path-space fibration p : PB → B as discussed in Example 2.4. Let
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B be a simply connected CW complex. As in [11, §16b], p has a relative minimal
model of the form

I : (∧V, d) → (∧V ⊗ ∧V ,D)

where, as usual, (∧V, d) is the Sullivan minimal model for B. Here V is the desus-
pension of V , (V )n ∼= V n+1. We recover part of the main result of [10].

Theorem 5.1 (Félix-Halperin-Thomas). Let B be a simply connected CW complex
and p : PB → B the path-space fibration. Then there is an isomorphism of graded Lie
algebras

π∗(ΩB)⊗Q ∼= H∗(Der∧V (∧V ⊗ ∧V )).

Proof. The result is a direct consequence of Example 2.4 and Theorem 1.1.

We next give a general bound for HnilQ(Aut(p)◦) in terms of the rational homotopy
groups of the fibre.

Theorem 5.2. Let p : E → B be a fibration of simply connected CW complexes with
E finite. Let F = p−1(∗) be the fibre. Then

HnilQ(Aut(p)◦) 6 card{n | πn(F )⊗Q 6= 0}.
Proof. A non-trivial commutator [θ1, . . . , [θk−1, θk]] in Der∗∧V (∧V ⊗ ∧W ) gives rise
to a sequence w1, . . . , wk of vectors in W with degrees n1 < · · · < nk. To see
this, choose wk so that [θ1, . . . , [θk−1, θk]](wk) 6= 0. Choose a non-vanishing summand
θi1 ◦ · · · ◦ θik(wk) 6= 0. Choose wk−1 so that wk−1 appears in θik(wk) and θi1 ◦ · · · ◦
θik−1(wk−1) 6= 0. Proceed by induction. The result then follows from Theorem 1.1.

Finally, we specialize to a case where we can make a complete calculation of the
rational H-type of Aut(p)◦.

Theorem 5.3. Let p : E → B be a fibration with fibre F = S2n+1 and E and B sim-
ply connected CW complexes with E finite. Suppose i] : π2n+1(S2n+1) → π2n+1(E) is
injective. Then Aut(p)◦ is rationally homotopy abelian and, for each q > 1, we have
isomorphisms

πq(Aut(p)◦)⊗Q ∼= H2n+1−q(B;Q) .

Proof. Let (∧V, d) → (∧V ⊗ ∧(u), D) be a relative minimal model for p. A deriva-
tion θ ∈ Der∧V (∧V ⊗ ∧(u)) is determined by the element θ(u) ∈ (∧V )2n+1−q. The
derivation θ is a cocycle (resp. a coboundary) if θ(u) is a cocycle (resp. a cobound-
ary). Further, the commutator bracket of any two such derivations is directly seen to
be trivial. The result thus follows from Theorem 1.1.

6. On the group of components of Aut(p)

As mentioned in the introduction, the group E(p) = π0(Aut(p)) of path compo-
nents of Aut(p) does not generally localize well. First, E(p) is often non-nilpotent.
Even when E(p) is nilpotent, it may not satisfy E(p)Q = E(pQ) — take p : Sn → ∗, for
an easy example. However, by work of Dror-Zabrodsky [9] and Maruyama (e.g., [23]),
various natural subgroups of E(p) are nilpotent and do localize well. We consider one
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such example which we denote E](p). We note that different versions of groups of
fibrewise equivalences have also been considered [12, 13, 16]. Our definition of E](p)
is chosen to allow for an identification of (E](p))Q in the spirit of Theorem 1.1.

Suppose, as usual, that p : E → B is a fibration of simply connected CW complexes
with E finite. Then any fibrewise self-map of E is fibrewise homotopic to a based
self-map. Further, any two based fibrewise self-maps of E that are freely fibrewise
homotopic are also based fibrewise homotopic. Thus, in what follows, we work with
based fibre-self-equivalences of p : E → B.

Consider the long exact sequence of the fibration

· · · −→ πi+1(B) ∂−→ πi(F )
j#−−→ πi(E)

p#−−→ πi(B) −→ · · · .
Each f ∈ Aut(p) induces an automorphism f# of this sequence, which is the identity
on π∗(B) and on im ∂ ⊆ π∗(F ). Thus f# induces an automorphism of cokernels

f# :
π∗(F )

im
∂ → π∗(F )

im
∂.

Define E#(p) to be the group of based homotopy classes of based equivalences in
Aut(p) that induce the identity on the cokernels above, through the dimension of E.
Notice that this reduces to the subgroup of classes that induce the identity on π∗(F )
through degree equal to the dimension of E if the fibration is “Whitehead trivial,”
i.e., if the connecting homomorphism ∂ is trivial (through the dimension of E) as
considered in [12]. When p is trivial, it reduces to the subgroup E](E) of classes that
induce the identity on π∗(E) through degree equal to the dimension of E as in [23].

Theorem 6.1. Let p : E → B be a fibration of simply connected CW complexes with
E finite. Then E](p) is a nilpotent group. Given any set of primes P we have

E#(p)P ∼= E#(pP).

Proof. Observe E](p) acts nilpotently on the normal chain

0 C im ∂ C π∗(F )

through the dimension of E. That E](p) is a nilpotent group follows from [9]. The
result on localization is now obtained by adjusting Maruyama’s argument [23] to
the fibrewise setting by replacing the use of a Postnikov decomposition of E with
Moore-Postnikov decomposition of p : E → B. Compare [16, Th. 1.5].

By virtue of Theorem 6.1, we may identify E#(p)Q in terms of certain automor-
phisms of the Sullivan model of E. As usual, let (∧V, d) → (∧V ⊗ ∧W,D) denote the
minimal model of p. Let D0 : W → V be the linear part of D, and decompose W
as W = W0 ⊕W1 with W0 = kerD0 and W1 a complement. Topologically, W1 may
be identified with the dual of im ∂ = ker j] and W0 with the dual of coker ∂ = im j]
after rationalization. Write Aut](∧V ⊗ ∧W ) for the group of automorphisms ϕ of
∧V ⊗W , which are the identity on ∧V and have linear part ϕ0 : W → V ⊕W sat-
isfying (ϕ0 − 1)(W0) ⊆ V and (ϕ0 − 1)(W1) ⊆ V ⊕W0. As in [2], we may identify
E#(pQ) with the group of homotopy classes of Aut](∧V ⊗ ∧W ).
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Recall from the introduction that Der0#(∧V ⊗ ∧W ) denotes the vector space of
derivations θ of degree 0 of ∧V ⊗ ∧W that satisfy θ(V ) = 0, D(θ) = 0, θ(W0)
⊂ V ⊕ ∧>2(V ⊕W ), and θ(W1) ⊂ V ⊕W0 ⊕ ∧>2(V ⊕W ). The derivation differen-
tial defines a linear map

D : Der1∧V (∧V ⊗ ∧W ) → Der0#(∧V ⊗ ∧W ), θ 7→ D(θ) = Dθ + θD.

We are writing

H0(Der](∧V ⊗ ∧W )) = coker,D.
As in [26, Prop. 12] and [28, §11], the correspondence θ 7→ eθ gives a bijection (with

inverse ϕ 7→ log(ϕ)) from Der0#(∧V ⊗ ∧W ) to Aut](∧V ⊗ ∧W ). Under this bijection,
compositions of automorphisms eθ ◦ eφ correspond to “Baker-Campbell-Hausdorff”
products of derivations; i.e.,

log(eθ ◦ eφ) = θ + φ+
1
2
[θ, φ] +

1
12

[θ, [θ, φ]] + · · · .

Theorem 6.2. Let p : E → B be a fibration of simply connected CW complexes with
E finite. The assignment θ 7→ eθ induces an isomorphism of groups

Ψ: H0(Der](∧V ⊗ ∧W )) → E#(pQ),

where Baker-Campbell-Hausdorff composition of derivations is understood in the left-
hand term.

Proof. To see that Ψ is well-defined, we observe that the assignment θ 7→ eθ restricts
to a correspondence between boundaries in Der0] (∧V ⊗ ∧W ) and automorphisms
in Aut](∧V ⊗ ∧W ) homotopic to the identity there. Suppose θ = D(θ1) with θ1
∈, Der1∧V (∧V ⊗ ∧W ). Then we define a derivation θ2 of ∧V ⊗ ∧W ⊗ ∧(t, dt) by
θ2(V ) = θ2(t) = θ2(dt) = 0 and θ2(w) = tθ1(w) for w ∈W . The map

H = eD(θ2) : ∧ V ⊗ ∧W → ∧V ⊗ ∧W ⊗ ∧(t, dt)

satisfies p1 ◦ H = eθ and p0 ◦ H is the identity. Conversely, a given homotopy H : ∧ V
⊗ ∧W → ∧V ⊗ ∧W ⊗ ∧(t, dt) between the identity and ϕ in Aut](∧V ⊗ ∧W ) may
be chosen to be fibrewise in the sense of Proposition 3.4. Taking the dt component of
log(H), we obtain a derivation θ ∈ Der1∧V (∧V ⊗ ∧W ) with D(θ) = log(ϕ). The proof
that the induced map Ψ is a bijection now follows the same line as the proof of
Theorem 1.2.

We remark that this result may be used to analyze the nilpotency of E#(pQ), and
ultimately, since we have E#(pQ) ∼= E#(p)Q, that of E#(p), in terms of bracket lengths
in H0(Der#(∧V ⊗ ∧W )).

Finally, observe that the results of this section may also be applied to give car-
dinality results for the order of E(p). As a simple example, let π : B × Sn → B be a
trivial fibration. If Hn(B;Q) = 0, then E](π) is a finite group. On the other hand,
denote by V n the dual of the image of the rational Hurewicz map in Hn(B;Q). Then,
clearly E#(πQ) ∼= H0(Der](∧V ⊗ ∧W )) ∼= V n. Thus if V n is non-trivial, then E(π) is
infinite in this case. We conclude with one example involving a non-trivial fibration.
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Example 6.3. Let p : S7 × S3 → S4 be the composition p = η ◦ p1, where η denotes
the Hopf map and p1 projection onto the first factor. Then the fibre is S3 × S3. A
relative minimal model for p is given by

∧(v4, v7) → ∧(v4, v7)⊗ ∧(w3, w
′
3) → ∧(w3, w

′
3),

with (non-minimal) differential given by D(v7) = v2
4 , D(w′3) = v4 and D = 0 on other

generators. With reference to our notation above, we have V = 〈v4, v7〉, W0 = 〈w3〉,
and W1 = 〈w′3〉. Define a differential θ ∈ Der0#(∧V ⊗ ∧W ) by setting θ(w′3) = w3, and
θ = 0 on other generators. A direct check shows that θ represents a non-zero class in
H0(Der](∧V ⊗ ∧W )). From Theorem 6.3 and the discussion of this section, it follows
that E#(p) has infinite order.

Under the isomorphism of Theorem 6.3, the derivation θ evidently corresponds
to the automorphism ϕ of ∧V ⊗ ∧W given by ϕ(w′3) = w′3 + w3 and ϕ = 1 on other
generators. Notice that this automorphism does not correspond to an element of
E#(F )—in the “non-fibrewise” notation of [9]. Also, since in this case the total space
has the rational homotopy type of S3 × S7, we see that ϕ does not correspond to an
element of E#(E), which is rationally trivial. We note the automorphism φ is induced
by the map

(x, y) 7→ (x, xy) : S3 × S7 → S3 × S7 for x ∈ S3, y ∈ S7.

The example thus demonstrates that, in general, it is necessary to consider the relative
minimal model of a fibration and not just the minimal models of the spaces involved
to analyze E#(p) rationally.
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