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ON TRIVIALITIES OF STIEFEL-WHITNEY CLASSES OF
VECTOR BUNDLES OVER ITERATED SUSPENSION SPACES

RYUICHI TANAKA

(communicated by Brooke Shipley)

Abstract
A space B is described as W-trivial if for every vector bundle

over B, all the Stiefel-Whitney classes vanish. We prove that if
B is a 9-fold suspension, then B is W-trivial. We also determine
all pairs (k, n) of positive integers for which ΣkFPn is W-trivial,
where F = R,C or H.

1. Introduction and results

A space B is called W-trivial if W (α) = 1 holds for every vector bundle α over B.
Here W (α) denotes the total Stiefel-Whitney class of α. If B is W-trivial, then a kind
of Borsuk-Ulam type theorem holds for every vector bundle α over B; precisely, for
any integer i with i > dim α, there does not exist a Z2-map from Si−1 to S(α), the
sphere bundle of α [6, Proposition 2.2]. Thus it would be interesting to ask whether
a space is W-trivial or not. As is well-known, the sphere Sn is W-trivial if and only
if n 6= 1, 2, 4, 8 (see [5]). Obviously, the projective space FPn, where F = R,C or
H, is not W-trivial for any n > 0. For the stunted projective space FPn

m, all (m,n)
for which FPn

m is W-trivial were determined in [9]; roughly speaking, FPn
m is not

W-trivial if and only if m is very small compared with n.
As is seen in the case B = Sn, it is not true that if B is W-trivial, then its suspen-

sion ΣB is also W-trivial. In this paper, we first prove the following theorem.

Theorem 1.1. For a space B, its 8-fold suspension Σ8B is W-trivial if either of the
following conditions is satisfied:
(1) B is W-trivial.

(2) The cup product in H̃∗(B;Z2) is trivial.

In general, the cup product in H̃∗(ΣB;Z2) is trivial, so that from the above theo-
rem, we immediately obtain the following result.

Corollary 1.2. For any space B, its 9-fold suspension Σ9B is W-trivial.

As is easily seen by using the suspension theorem, a k-connected complex B with
dim B 6 2k + 1 is homotopy equivalent to the suspension of a (k − 1)-connected com-
plex of dimension dim B − 1. By iterating this, we see that a k-connected complex
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B is homotopy equivalent to the 9-fold suspension of a (k − 9)-connected complex
(k > 9) if dim B 6 2k − 7. Therefore, from Corollary 1.2, we obtain the following
result.

Corollary 1.3. Let B be a k-connected complex with k > 9. If dim B 6 2k − 7, then
B is W-trivial.

This corollary greatly improves Theorem 1.3 in [8]. Since the smallest integer i
such that wi(α) 6= 0 is a power of 2 (see [8, Lemma 2.1]), the above corollary is actu-
ally useful only when k > 12. For example, we see that a 16-dimensional complex is
W-trivial if it is 12-connected. It should be also noted that the 16-dimensional stunted
projective space RP 16

k is W-trivial for 9 < k < 16 while RP 16
9 is not W-trivial (see [8,

Theorem 4.1]).
Next, in this paper, we investigate whether ΣkFPn is W-trivial or not, where

F = R,C or H. Because of Corollary 1.2, our interests are only in the case when
0 < k 6 8. For F = R, we have the following result.

Theorem 1.4. For positive integers k and n, the k-fold suspension ΣkRPn of RPn

is not W-trivial if and only if k and n satisfy one of the following conditions:
(1) k = 1, 2, 4 or 8 and n > k.
(2) k = 3, 5 or 7 and n + k = 4 or 8.
(3) k = 6 and n = 2 or 3.

This result shows that the condition k > 9 is best possible for ΣkB to be W-trivial
in general.

For F = C and F = H, we have the following results.

Theorem 1.5. For positive integers k, n with n > 1, the k-fold suspension ΣkCPn

of CPn is not W-trivial if and only if k = 2 or 4.

Theorem 1.6. For positive integers k, n with n > 1, the k-fold suspension ΣkHPn

of HPn is not W-trivial if and only if k = 4.

It is worth noting that the W-triviality of ΣkFPn does not depend on n for F = C
or H.

Throughout this paper, all cohomology is assumed to have coefficients Z2 unless
otherwise stated. The total Stiefel-Whitney class of α is denoted by W (α), and the
total Chern class by C(α).

The following two lemmas are straightforward to show but they are of fundamental
importance for our proofs of theorems.

Lemma 1.7.

(1) If K̃O(B) = 0, then B is W-trivial.

(2) Let f : B → X be a map and suppose that X is W-trivial. If f∗ : K̃O(X)
→ K̃O(B) is epimorphic, then B is W-trivial.

Lemma 1.8.

(1) If H2r

(B) = 0 for all r > 0, then B is W-trivial.
(2) Let f : X → B be a map and suppose that X is W-trivial. If f∗ : H2r

(B)
→ H2r

(X) is monomorphic for all r > 0, then B is W-trivial.
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2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We use the Bott periodicity theorem for
KO-theory. Let j : S8 ×B → Σ8B denote the quotient map and let p1 : S8 ×B → S8

and p2 : S8 ×B → B denote the projections. Let α be an arbitrary vector bundle
over Σ8B. By the Bott periodicity theorem, we see that j∗α is stably equivalent to
p∗1(ν − 8)⊗ p∗2(β −m) for some vector bundle β over B. Here ν denotes the Hopf
vector bundle over S8 and m = dim β. Then, we have

j∗W (α) = W (p∗1ν ⊗ p∗2β) ·W (p∗1ν)−m ·W (p∗2β)−8. (∗)
We compute this and show that W (α) = 1. Note that W (p∗1ν) = p∗1W (ν) = 1 + s× 1,
where s denotes the generator of H8(S8). Let

W (p∗1ν) =
8∏

i=1

(1 + si) and W (p∗2β) =
m∏

j=1

(1 + tj)

be formal factorizations of W (p∗1ν) and W (p∗2β). Then, by an analogous formula to
Formula III of Theorem 4.4.3 in [4], we have W (p∗1ν ⊗ p∗2β) =

∏
i,j(1 + si + tj). We

first calculate the product for i’s by using
∏8

i=1(1 + si) = 1 + s× 1 as follows:
8∏

i=1

((1 + tj) + si) =
8∑

k=0

(1 + tj)8−kλk(s1, s2, . . . , s8)

= (1 + tj)8 + s1s2 · · · s8

= 1 + t8j + s× 1,

where λk denotes the elementary symmetric polynomial of degree k and we used the
fact that λk(s1, s2, . . . , s8) = 0 for 0 < k < 8. Therefore we have

W (p∗1ν ⊗ p∗2β) =
m∏

j=1

((1 + s× 1) + t8j )

=
m∑

k=0

(1 + s× 1)m−kλk(t81, t
8
2, . . . , t

8
m).

Now, we assume that the cup product in H̃∗(B) is trivial. Then, we clearly have
W (β)2 = 1, so that W (p∗2β)8 = p∗2W (β)8 = 1. This implies that

∏m
j=1(1 + t8j ) = 1, so

that λk(t81, t
8
2, . . . , t

8
m) = 0 for every k > 0. Therefore we have

W (p∗1ν ⊗ p∗2β) = (1 + s× 1)m.

Substituting these results into (∗), we obtain

j∗W (α) = (1 + s× 1)m · (1 + s× 1)−m · 1−1 = 1. (∗∗)
Since j∗ : H∗(Σ8B)→ H∗(S8 ×B) is monomorphic, we conclude that W (α) = 1.
Thus the proof of Theorem 1.1 under the assumption (2) is completed.

The proof under the assumption (1) is quite similar. Since W (p∗2β) = 1 from the
assumption that B is W-trivial, we may regard all the tj ’s as zeros in our previous
calculations. Then we obtain W (p∗1ν ⊗ p∗2β) = (1 + s× 1)m and have the same result
as (∗∗). Thus the theorem under the assumption (1) follows.
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Here we prepare the following lemma, which will be used to prove Theorems 1.4
and 1.5 in later sections.

Lemma 2.1. Let d and m be positive integers with d 6 m.
(1) If γ is a vector bundle over Sd with dim γ = m and β is a line bundle over B,

then in H∗(Sd ×B) we have

W ((p∗1γ −m)⊗ (p∗2β − 1)) = 1 + wd(γ)× ((1 + w1(β))−d − 1),

where p1 : Sd ×B → Sd and p2 : Sd ×B → B are the projections.
(2) If γ is a complex vector bundle over S2d with dimC γ = m and β is a complex

line bundle over B, then in H∗(S2d ×B ;Z) we have

C((p∗1γ −m)⊗C (p∗2β − 1)) = 1 + cd(γ)× ((1 + c1(β))−d − 1),

where p1 : S2d ×B → S2d and p2 : S2d ×B → B are the projections.

Proof. We prove only (1) since the proof of (2) is quite similar. Let us put wd(γ)
= s and w1(β) = t. Let W (p∗1γ) = 1 + s× 1 = 1m−d ·∏d

i=1(1 + si) and W (p∗2β) =
1 + 1× t = 1 + t1 be formal factorizations. Then, just like before, we can calculate as
follows:

W (p∗1γ ⊗ p∗2β) = (1 + t1)m−d ·
d∏

i=1

(1 + si + t1)

= (1 + t1)m−d · ((1 + t1)d + s× 1)

= (1 + 1× t)m · (1 + s× (1 + t)−d).

Therefore, we have

W ((p∗1γ −m)⊗ (p∗2β − 1)) = W (p∗1γ ⊗ p∗2β) ·W (p∗2β)−m ·W (p∗1γ)−1

= (1 + s× (1 + t)−d) · (1 + s× 1)−1

= (1 + s× (1 + t)−d) · (1− s× 1)

= 1 + s× ((1 + t)−d − 1).

Thus the lemma follows.

3. Proof of Theorem 1.4

In this section, we investigate whether ΣkRPn is W-trivial or not. Since ΣkRPn is
W-trivial for k > 8 by Corollary 1.2, our interests are only in the case when 0 < k 6 8.
We divide into three cases: (1) k = 1, 2, 4 or 8, (2) k = 3, 5 or 7 and (3) k = 6.

First we consider the case when k = 1, 2, 4 or 8. The result is as follows.

Proposition 3.1. Let d = 1, 2, 4 or 8. Then ΣdRPn is not W-trivial if and only if
n > d.

Proof. Recall that for a vector bundle α, the smallest integer i such that wi(α) 6= 0
is a power of 2 (see [8, Lemma 2.1]). If n < d, then ΣdRPn has no cells of dimension
a power of 2, so that ΣdRPn is W-trivial. Now, let us consider the exact sequence

0←− K̃O(Sd ∨ RPn) i∗←− K̃O(Sd × RPn)
j∗←− K̃O(ΣdRPn)←− 0,
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where i and j are obvious maps. Let ν denote the Hopf vector bundle over Sd

and let ξ denote the canonical line bundle over RPn. Since i∗((p∗1ν − d)⊗ (p∗2ξ − 1))
= 0, there is a vector bundle α over ΣdRPn such that j∗α is stably equivalent to
(p∗1ν − d)⊗ (p∗2ξ − 1). By Lemma 2.1, in H∗(Sd × RPn) we have

W (j∗α) = 1 + s× ((1 + t)−d − 1)

= 1 + s× (td + t2d + t3d + · · · ),
where s and t denote the generator of Hd(Sd) and H1(RPn) respectively. Hence, we
see that j∗W (α) 6= 1 if n > d. We thus conclude that W (α) 6= 1, so that ΣdRPn is
not W-trivial if n > d.

Before we consider the second case, we prepare a few lemmas.

Lemma 3.2. If ΣkRP 2m−k is W-trivial, then ΣkRPn is W-trivial for any integer n
with 2m − k < n < 2m+1 − k.

Proof. Let i : ΣkRP 2m−k → ΣkRPn be the inclusion map. If 2m < n + k < 2m+1,
then i∗ : H2r

(ΣkRPn)→ H2r

(ΣkRP 2m−k) is monomorphic for all r > 0 for dimen-
sional reasons. Therefore, the lemma follows from Lemma 1.8.

Lemma 3.3. Let α be a vector bundle over a complex B. Let r be an integer with
r > 2 and suppose that wi(α) = 0 for 0 < i < 2r. Then we have Sqjw2r (α) = 0 for
0 < j < 2r−1.

Proof. We put 2r−1 = m and consider the inclusion i : B(3m) ↪→ B, where B(3m) is
the 3m-skeleton of B. For dimensional reasons, the induced bundle i∗α is stably
equivalent to some 3m-dimensional vector bundle β. Then we clearly have W (i∗α)
= W (β). We denote by P (β) the associated projective bundle of β, and by e the
Z2-Euler class of the line bundle β → P (β). The cohomology H∗(P (β)) is a free
H∗(B(3m))-module generated by 1, e, e2, . . . , e3m−1, in which we have the relation
e3m =

∑3m−1
i=0 w3m−i(β) · ei. Since we have wi(β) = i∗wi(α) = 0 for 0 < i < 2m by

the assumption, we can write this relation as e3m = w3m + w3m−1 · e + · · ·+ w2m

· em, where we have abbreviated wi(β) as wi. We apply the total squaring oper-
ation Sq =

∑
i>0 Sqi to this relation. Since Sq(ei) = (Sq e)i = (e + e2)i = ei(1 + e)i,

we obtain the following equation:

e3m(1 + e)3m = Sq w3m + Sq w3m−1 · e(1 + e) + · · ·+ Sq w2m · em(1 + e)m. (∗∗∗)
In this equation, we like to compare the coefficients of ej ’s. To do this, we must rewrite
the left-hand side of (∗∗∗) so that all summands have exponents of e less than 3m.
We calculate using the previous relation as follows:

e3m(1 + e)3m = e3m(1 + em + e2m + e3m)

= e3m(1 + em) + (e3m − w2m · em)e2m + w2m · e3m + (e3m)2

= (w3m + w3m−1 · e + · · ·+ w2m · em)(1 + em)

+ (w3m + w3m−1 · e + · · ·+ w2m+1 · em−1)e2m

+ w2m(w3m + w3m−1 · e + · · ·+ w2m · em)

+ (w3m + w3m−1 · e + · · ·+ w2m · em)2.
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With this expression of the left-hand side of (∗∗∗), we can compare the coefficients
of ej ’s for j < 3m. Comparing the coefficients of e2m, we obtain Sq w2m = w2m

+ w3m + w2
2m. Hence we have Sqjw2m = 0 for 0 < j < m and Sqmw2m = w3m. We

here recall that wi = i∗wi(α). Since i∗ : Hi(B)→ Hi(B(3m)) is monomorphic for
i 6 3m, we conclude that Sqjw2m(α) = 0 for 0 < j < m and Sqmw2m(α) = w3m(α).
Thus the lemma follows.

Remark. When wi = 0 for 0 < i < 2r, Wu’s formula [10] turns out to be Sqjw2r

=
(
2r−1

j

)
w2r+j = w2r+j (0 < j < 2r). Lemma 3.3 implies that this is zero for 0 < j

< 2r−1. We also remark that there is a vector bundle over Σ4HP 2 such that w8 6= 0
and w12 6= 0 (see [8, Theorem 4.5]). Thus our result is best possible at least for r = 3.

Now, we consider the second case: k = 3, 5 or 7. The result is as follows.

Proposition 3.4. Let k = 3, 5 or 7. Then ΣkRPn is not W-trivial if and only if
n + k = 4 or 8.

Proof. We consider the cofibration ΣkRPn−1 i−→ ΣkRPn j−→ Sn+k. First, let n + k
= 8. Since S8 is not W-trivial and j∗ : H8(S8)→ H8(ΣkRPn) is monomorphic,
it follows from Lemma 1.8 that ΣkRPn is not W-trivial. Similarly ΣkRPn is not
W-trivial when n + k = 4. Thus the “if” part of the proposition follows. Next, we
suppose n + k 6= 4, 8 and show that ΣkRPn is W-trivial. Our proof is divided into
two cases.

Case 1 : n + k > 16.
First we consider the case when n + k = 2r with r > 4. In this case, we have

K̃O(ΣkRPn−1) = 0 by [3, Theorem 1] since k = 3, 5, 7 and n + k − 1 ≡ 7 (mod 8).
Hence j∗ : K̃O(S2r

)→ K̃O(ΣkRPn) is epimorphic. Since S2r

is W-trivial for r > 4,
it follows from Lemma 1.7 that ΣkRPn is W-trivial, that is, ΣkRP 2r−k is W-trivial
for all r > 4. Hence, by Lemma 3.2, we see that ΣkRPn is W-trivial for all n > 16− k.

Case 2 : k + 1 6 n + k < 16 (n + k 6= 4, 8).
Let α be a vector bundle over ΣkRPn and let r be the smallest integer such that

w2r (α) is (possibly) non-zero. Then we obviously have r = 2 or 3 when k = 3, and
r = 3 when k = 5, 7. Also, note that 2r < n + k from our assumption n + k 6= 4, 8.
From Lemma 3.3, we must have Sq1w2r (α) = 0. On the other hand, since k is odd
and 2r < n + k, Sq1 : H2r

(ΣkRPn)→ H2r+1(ΣkRPn) is non-trivial. Therefore, we
have w2r (α) = 0. We thus obtain W (α) = 1 and conclude that ΣkRPn is W-trivial if
n + k < 16 (n + k 6= 4, 8). This completes the proof of the proposition.

Finally, we consider the third case: k = 6. The result is as follows.

Proposition 3.5. Σ6RPn is not W-trivial if and only if n = 2 or 3.

Proof. The proof is very similar to that of the preceding proposition. Considering
the cofibration S7 i−→ Σ6RP 2 j−→ S8, we see that Σ6RP 2 is not W-trivial in exactly
the same way as before. Let us consider the cofibration Σ6RP 2 i−→ Σ6RP 3 j−→ S9.
Since K̃O(Σ6RP 2) is a finite group (precisely, Z2), we see from the exact sequence
that i∗ : K̃O(Σ6RP 3)→ K̃O(Σ6RP 2) is epimorphic. Since Σ6RP 2 is not W-trivial,
as shown above, it follows from Lemma 1.7 that Σ6RP 3 is not W-trivial either. Thus
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the “if” part of the proposition follows. Next, we show that Σ6RPn is W-trivial for
n 6= 2, 3.

Case 1 : n > 10.
By [3, Theorem 1], we have K̃O(Σ6RPn−1) = 0 when n + 6 = 2r (r > 4). Hence

j∗ : K̃O(S2r

)→ K̃O(Σ6RPn) is epimorphic, from which we see by Lemma 1.7 that
Σ6RPn is W-trivial when n + 6 = 2r (r > 4). Therefore, it follows from Lemma 3.2
that Σ6RPn is W-trivial for all n > 10.

Case 2 : 1 6 n < 10 (n 6= 2, 3).
Obviously Σ6RPn is W-trivial when n = 1. So we suppose that n > 4. For a vec-

tor bundle α over Σ6RPn, the smallest integer such that w2r (α) is (possibly) non-
zero is 8. Hence, from Lemma 3.3, we have Sqjw8(α) = 0 for 0 < j < 4. Since Sq1

acts trivially on H8(Σ6RPn), we use Sq2 in place of Sq1. Indeed, Sq2 : H8(Σ6RPn)
→ H10(Σ6RPn) is non-trivial since n > 4. Therefore, we have w8(α) = 0, so that we
obtain W (α) = 1. Thus Σ6RPn is W-trivial when 4 6 n < 10. This completes the
proof of the proposition.

The proof of Theorem 1.4 is completed by Propositions 3.1, 3.4 and 3.5.

4. Proof of Theorem 1.6

In this section, we investigate whether or not ΣkFPn is W-trivial for F = H.
Because of Corollary 1.2, we have only to consider the case when 0 < k 6 8. Then,
unless k = 4 or 8, ΣkHPn has no cells of dimension a power of 2, so that we have
H2r

(ΣkHPn) = 0 for all r > 0. Thus, from Lemma 1.8, the possibility for ΣkHPn not
to be W-trivial is only when k = 4 or 8. Therefore, Theorem 1.6 follows if we prove
the following proposition.

Proposition 4.1.

(1) Σ4HPn is not W-trivial for all n > 1.
(2) Σ8HPn is W-trivial for all n > 1.

Proof. First, let us consider the cofibration S8 i−→ Σ4HPn j−→ Σ4(HPn/S4). Since
Σ3(HPn/S4) has cells only of dimension 3 or 7 modulo 8, we have K̃O(Σ3(HPn/S4))
= 0 from the Atiyah-Hirzebruch spectral sequence [2]. Hence, i∗ : K̃O(Σ4HPn)
→ K̃O(S8) is epimorphic. Since S8 is not W-trivial, it follows from Lemma 1.7 that
Σ4HPn is not W-trivial. This proves (1).

Next we prove (2). Let us consider the cofibration

Σ8HPn−1 i−→ Σ8HPn j−→ S4n+8.

Since K̃O(S4n+7) = 0, i∗ : K̃O(Σ8HPn)→ K̃O(Σ8HPn−1) is epimorphic. Hence, we
see that if Σ8HPn is W-trivial, then Σ8HPn−1 is also W-trivial. Thus, it suffices
to prove that Σ8HP 2m

is W-trivial for all m > 3. Now, let α be a vector bundle
over Σ8HP 2m

. Abusing notation, let i denote the inclusion Σ8HP 2 ↪→ Σ8HP 2m

.
From [7, Theorem 4.3], Σ8HP 2 is W-trivial. Since i∗ : H16(Σ8HP 2m

)→ H16(Σ8HP 2)
is monomorphic, we obtain w16(α) = 0. Let r be the smallest integer such that w2r (α)
is (possibly) non-zero. Then, we have r > 5 from the above argument. Also note
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that r 6 m + 2 since 2r 6 8 + 4 · 2m and r > 5. Now let us consider the operation
Sq8 : H2r

(Σ8HP 2m

)→ H2r+8(Σ8HP 2m

). Since
(
2r−2−2

2

) ≡ 1 (mod 2) and r 6 m + 2,
this operation is non-trivial. On the other hand, by Lemma 3.3, we have Sq8w2r (α)
= 0 since r > 5. Therefore, we obtain w2r (α) = 0 and conclude that W (α) = 1. This
completes the proof.

5. Proof of Theorem 1.5

Finally, in this section, we investigate whether ΣkCPn is W-trivial or not. If k is
odd, then ΣkCPn has no cells of dimension a power of 2. Thus, from Lemma 1.8 and
Corollary 1.2, the possibility of ΣkCPn being not W-trivial is only when k = 2, 4, 6
or 8. For k = 2 or 4, we have the following result.

Proposition 5.1. Σ2CPn and Σ4CPn are not W-trivial for all n > 1.

Proof. First we consider Σ2CPn. Analogously to the proof of Proposition 3.1, we
consider the exact sequence

0←− K̃(S2 ∨ CPn) i∗←− K̃(S2 × CPn)
j∗←− K̃(Σ2CPn)←− 0

and the stable class of (p∗1ν − 1)⊗C (p∗2η − 1). Here, ν is the Hopf vector bundle over
S2 considered as a complex (line) bundle, while η is the canonical complex line bundle
over CPn. Then, we can take a complex vector bundle α over Σ2CPn such that j∗α
is stably equivalent to (p∗1ν − 1)⊗C (p∗2η − 1). By Lemma 2.1, in H∗(S2 × CPn;Z),

C(j∗α) = C((p∗1ν − 1)⊗C (p∗2η − 1))

= 1 + c1(ν)× ((1 + c1(η))−1 − 1)

= 1 + s× (−t + t2 − t3 + · · · ),
where s and t are generators of H2(S2;Z) and H2(CPn;Z), respectively. Hence we
have j∗c2(α) = −s× t 6≡ 0 (mod 2) for n > 1. Therefore we have w4(α) 6= 0, so that
Σ2CPn is not W-trivial for n > 1.

Similarly for Σ4CPn, let us consider the exact sequence

0←− K̃(S4 ∨ CPn) i∗←− K̃(S4 × CPn)
j∗←− K̃(Σ4CPn)←− 0.

Let ν2 be a complex vector bundle whose stable class is a generator of K̃(S4). We
can take ν2 as dimCν2 = 2. From the previous argument, considering S4 as Σ2CP 1,
we see that c2(ν2) = −s2, where s2 is the generator of H4(S4;Z) corresponding to
s× t. Now we take a complex vector bundle α over Σ4CPn such that j∗α is stably
equivalent to (p∗1ν2 − 2)⊗C (p∗2η − 1). By Lemma 2.1, in H∗(S4 × CPn;Z) we have

C(j∗α) = C((p∗1ν2 − 2)⊗C (p∗2η − 1))

= 1 + c2(ν2)× ((1 + c1(η))−2 − 1)

= 1− s2 × (−2t + 3t2 − 4t3 + · · · ).
Hence we have j∗c4(α) = −3 s2 × t2 6≡ 0 (mod 2) for n > 2. Therefore we have w8(α)
6= 0, so that Σ4CPn is not W-trivial for n > 2.
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Here, before we proceed to consider ΣkCPn for k = 6 or 8, we need to prepare a
lemma concerning Steenrod operations. For a non-negative integer m, let α(m) denote
the number of ones in the dyadic expansion of m. It is easy to see that if m and ` are
positive integers such that

(
m
`

) ≡ 1 (mod 2), then α(m + `) 6 α(m). Also, we clearly
have α(2`+1 − k) = α(2` − k) + 1 for any integer k with 0 < k 6 2`, whence we have
α(2r−1 − k) > α(2j−1 − k) for positive integers j and r with j < r. Thus, we obtain
the following lemma.

Lemma 5.2. If k > 0, any Steenrod operation ϕ : H2j

(Σ2kCPn)→ H2r

(Σ2kCPn) is
trivial for j < r.

Now, we are ready to consider ΣkCPn for k = 6 or 8. We have the following result.

Proposition 5.3. Σ6CPn and Σ8CPn are W-trivial for all n > 1.

Proof. Let α be a vector bundle over ΣkCPn, where k = 6 or 8, and let r be the small-
est integer such that w2r (α) is (possibly) non-zero. Clearly we have r > 3 when k = 6,
and r > 4 when k = 8. Since Sq2w8(α) = 0 by Lemma 3.3 and also Sq2 : H8(Σ6CPn)
→ H10(Σ6CPn) is non-trivial, we have w8(α) = 0. So we may suppose that r > 4 also
when k = 6. To prove w2r (α) = 0 for r > 4, the above method fails depending on the
value of n + k. So we use secondary operations. Let T (α) be the Thom space of α

and denote the Thom class by U ; U ∈ Hm(D(α), S(α)) = H̃m(T (α)), where
m = dim α. Since Sq`U = w`(α)U (` > 0), we have Sq`U = 0 for ` < 2r. Since
r > 4, secondary operations on U are defined. Indeed, for integers i, j with
0 6 i 6 j < r (i 6= j − 1), Φi,j(U) ∈ Hm+d(i,j)(T (α)) is defined with an indeterminacy
Qm+d(i,j)(T (α); i, j), where d(i, j) = 2i + 2j − 1, and the following formula holds:

[Sq2r

U ] =
∑

06i6j<r
i6=j−1

ai,jΦi,j(U) modulo
∑

06i6j<r
i 6=j−1

ai,jQ
m+d(i,j)(T (α); i, j),

where each ai,j is a certain Steenrod operation (see [1, Theorem 4.6.1]). Now let us
investigate each summand in this decomposition of Sq2r

U . We divide into two cases
depending on whether i is zero or not.

Case 1 : i 6= 0.
In this case, d(i, j) is odd, so that we have Hd(i,j)(ΣkCPn) = 0 (k = 6, 8). Hence,

by the Thom isomorphism, we have Hm+d(i,j)(T (α)) = 0, so that Φi,j(U) = 0 and
Qm+d(i,j)(T (α); i, j) = 0.

Case 2 : i = 0.
In this case, d(i, j) = 2j . Therefore, it follows that ai,j is an operation Hm+2j

(T (α))
→ Hm+2r

(T (α)). We claim that the following diagram commutes, where the vertical
maps are the Thom isomorphisms.

Hm+2j

(T (α))
ai,j−−−−→ Hm+2r

(T (α))

∼=
x ∼=

x
H2j

(ΣkCPn)
ai,j−−−−→ H2r

(ΣkCPn).

In fact, for x ∈ H∗(ΣkCPn) and h 6 2r − 2j , we have Sqh(xU) = Sqhx · U by the
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Cartan formula since Sq`U = w`(α)U = 0 for 0 < ` < 2r. Thus we have ai,j(xU)
= ai,jx · U for x ∈ H2j

(ΣkCPn), so that the diagram commutes. Now, in the above
diagram, the lower ai,j is trivial by Lemma 5.2. Therefore, we see that the upper ai,j

is also trivial.
Therefore, from the arguments in Cases 1 and 2, we obtain [Sq2r

U ] = 0 modulo 0,
that is, Sq2r

U = 0. Since Sq2r

U = w2r (α)U , we conclude that w2r (α) = 0. This com-
pletes the proof of the proposition.

The proof of Theorem 1.5 is completed by Propositions 5.1 and 5.3.
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