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Abstract
In his 1965 paper C. T. C. Wall demonstrated that if a CW

complex Y is finitely dominated, then the reduced projective
class group of Y contains an obstruction which vanishes if and
only if Y is homotopy equivalent to a finite CW complex. Wall
also demonstrated that such an obstruction is invariant under
homotopy equivalences. Subsequently Sum and Product Theo-
rems for this obstruction were proved by L. C. Siebenmann.

In his second paper on the subject Wall gives an algebraic
definition of the relative finiteness obstruction. If a CW complex
Y is finitely dominated rel. a subcomplex X, then the reduced
projective class group of Y contains an obstruction which van-
ishes if and only if Y is homotopy equivalent to a finite complex
rel. X.

In this paper we will use a geometric construction to reduce
the relative finiteness obstruction to the non-relative version.
We will demonstrate that the relative finiteness obstruction is
invariant under certain types of homotopy equivalences. We will
also prove the relative versions of the Sum and the Product
Theorems.

1. Introduction

The purpose of this paper is to provide a geometric reduction of Wall’s relative
finiteness obstruction [14] to his non-relative version [13]. The idea that such a reduc-
tion is possible as well as the choice of construction techniques used in this paper are
due to Chapman. We will employ a modification of the infinite mapping cylinder
construction used by Ferry in [7] to obtain a geometric description of the non-relative
obstruction. Our modification is similar to the technique used by Chapman in [5] and
involves a truncated version of the infinite mapping cylinder construction. As a result
we obtain relative versions of the sum and product theorems of [10].

We will start by reviewing the non-relative theory. In what follows all spaces are
assumed to be locally compact, separable and metric and all maps are continuous
functions.
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A map d : X −→ Y is a homotopy domination if there exists a map u : Y −→ X
such that du ' idY . We say that u is an inverse of d and that Y is dominated by X.
A CW complex is said to be finitely dominated if it is dominated by a finite complex.

Wall’s finiteness obstruction theory arises from the question: If Y is finitely domi-
nated, when is Y homotopy equivalent to some finite CW complex? Wall defines the
finiteness obstruction of a finitely dominated CW complex Y to be an element σ(Y )
of the reduced projective class group K̃0(Zπ1(Y )) and shows that σ(Y ) = 0 if and
only if Y is homotopy equivalent to a finite complex [13]. Wall also shows that σ(Y )
is an invariant of homotopy type. Siebenmann used finiteness obstruction to solve the
problem of putting a boundary on an open manifold [10]. He also obtained product
and sum theorems for the obstruction [10].

By a CW pair (Y,X) we mean a CW complex Y together with a subcomplex
X closed in Y . Let (Y,X) be a CW pair. Y is said to be finitely dominated rel. X
if there exists a compact CW complex K and a map d : X ∪K → Y such that d
is a homotopy domination rel. X (i.e., there exists a homotopy inverse u such that

du
ht' id with ht(x) = x for all x ∈ X). Equivalently, Y is finitely dominated rel. X

if the inclusion i : X ∪ C ↪→ Y is a homotopy domination rel. X for some compact
subcomplex C ⊂ Y . If Y is finitely dominated rel. X we say that (Y,X) is finitely
dominated.

Let (Y1, X) and (Y2, X) be CW pairs. Suppose there is a homotopy equivalence
f : Y1 → Y2 such that f |X : X → X is the identity. If there exists an inverse g such that

g|X : X → X is the identity, and homotopies Ft and Gt such that fg
Ft' id, gf

Gt' id
and Ft|X = id, Gt|X = id for all t, then we say that f is a homotopy equivalence
rel. X. If Y2 = X ∪K, where K is a finite complex, we say that Y1 is homotopy
equivalent rel. X to a finite complex.

Relative finiteness obstruction theory arises from the question: If Y is finitely
dominated rel. X, when is Y homotopy equivalent to a finite complex rel. X? Wall
uses relative chain complexes to define the relative finiteness obstruction of a finitely
dominated pair (Y,X) to be an element σ(Y,X) of K̃0(Zπ1(Y )) [14]. The obstruction
vanishes if and only if Y is homotopy equivalent rel. X to some X ∪K, where K is
finite. The relative finiteness obstruction plays a key role in infinite simple homotopy
theory [11].

We will reduce the relative finiteness obstruction to the ordinary finiteness obstruc-
tion and derive the relative versions of the sum and product formulas. The ideas for
the sum and product formulas came from Cohen who proves similar results for White-
head torsion in [6]. Statements of Theorem 4.15 and Lemma 4.17 are analogous to
Cohen’s 20.2 and 20.3. The striking similarity between formulas and results for the
relative finiteness obstruction and Whitehead torsion can be partially explained by
the Bass-Heller-Swan result which states that the reduced projective class group of
Y injects into the Whitehead group of Y × S1 [1].
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2. Preliminaries

2.1. Finiteness Obstruction
Let X be a connected complex. Let Zπ1(X) = Zπ denote the integral group ring.

The reduced projective class group of X, K̃0(Zπ1(X)), can be thought of as the
Grothendieck group of finitely generated projective Zπ-modules, modulo free mod-
ules [13]. Henceforth we will refer to K̃0(Zπ1(X)) as K̃0(X). The reduced projective
class group of a non-connected complex X is the direct sum of the reduced projective
class groups of the components of X [10].
K̃0 is a functor from the category of topological spaces and continuous functions

to the category of abelian groups and homomorphisms [10]. K̃0 satisfies the following
properties:

1. For any space X, K̃0(X) is an abelian group.
2. If f : X → Y is a continuous function then there is an induced homomorphism

f∗ : K̃0(X) → K̃0(Y ).
3. id∗ = id and (gf)∗ = g∗f∗.
4. K̃0 is a homotopy functor i.e., f ' g then f∗ = g∗.
5. K̃0 has compact support i.e.,

(a) If σ ∈ K̃0(X) then there exists a compact C ⊂ X and τ ∈ K̃0(C) such that
i∗(τ) = σ, where i : C ↪→ X is an inclusion.

(b) If C ⊂ X is compact, τ ∈ K̃0(C), and i∗(τ) = 0 ∈ K̃0(X) then there exists a
compact D ⊂ X such that C ⊂ D and j∗(τ) = 0 ∈ K̃0(D), where j : C ↪→ D
is an inclusion.

If X is a CW complex we can ensure that C and D are finite subcomplexes.
6. Let X, X ′, Y and Y ′ be finitely dominated spaces. Let f : X → X ′ and g : Y →

Y ′ be maps. There exists a pairing · : K̃0(X)× K̃0(Y ) −→ K̃0(X × Y ). This
pairing is natural in the sense that the following diagram commutes.

K̃0(X) × K̃0(Y ) ·−→ K̃0(X × Y )

yf∗
yg∗

y(f × g)∗

K̃0(X ′) × K̃0(Y ′)
·−→ K̃0(X ′ × Y ′)

Let d : K → X be a map. We will use πn(d) to denote πn(M(d),K × 1), where
M(d) is the mapping cylinder of d. We say that d is n-connected if K and X are
connected and πi(d) = 0 for 1 6 i 6 n.

Definition 2.1 ([13]). 1. We say that X satisfies F1 if π is finitely generated.
2. We say that X satisfies F2 if π is finitely presented, and for any finite complex

K2 and map φ : K2 → X inducing an isomorphism of fundamental groups, π2(φ)
is a finitely generated module over Zπ.

3. We say that X satisfies Fn (n > 3) if it satisfies Fn−1 and for any finite complex
Kn−1 and (n− 1)-connected map φ : Kn−1 → X, πn(φ) is a finitely generated
Zπ-module.
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Definition 2.2 ([13]). We say that X satisfies Dn if Hi(X̃) = 0 for i > n, and
Hn+1(X;B) = 0 for all coefficient bundles B.

The following is a statement of Wall’s theorem of [13] as it appears in [12].

Theorem 2.3. X is dominated by a finite complex if and only if X satisfies FN
and DN for some N > 3. In this case X satisfies Fn and Dn for all n > N . More-
over, given any n > N we can find an n-connected map D : L = Ln → X with L
finite. In this case πn+1(D) is finitely generated, projective over Zπ and the element
σ(X) = (−1)n+1[πn+1(D)] ∈ K̃0(X) depends only on the homotopy type of X. The
vanishing of σ(X) is necessary and sufficient for X to be homotopy equivalent to a
finite complex.

In the above theorem, D is an extension of a finite domination d : K → X, and L
is obtained by attaching a finite number of cells to K [13].

The finiteness obstruction is defined to be σ(X) = (−1)n+1[πn+1(D)]. Obstruction
may also be defined geometrically as in [7].

The finiteness obstruction satisfies the following properties:

1. Invariance (Wall [13])
If f : X → Y is a homotopy equivalence and both spaces are finitely dominated,
then f∗(σ(X)) = σ(Y ).

2. Sum Theorem (Siebenmann [10])
If X = X1 ∪X2, where X1, X2, X0 = X1 ∩X2 are finitely dominated, then X
is finitely dominated and

σ(X) = j1∗σ(X1) + j2∗σ(X2)− j0∗σ(X0),

where ji : Xj ↪→ X are inclusions.

3. Product Theorem (Siebenmann [10])
If X1 and X2 are finitely dominated, connected CW complexes then X1 ×X2

is finitely dominated and

σ(X1 ×X2) = σ(X1) · σ(X2) + χ(X2)j1∗σ(X1) + χ(X1)j2∗σ(X2),

where ji : Xi ↪→ X1 ×X2 are inclusions, and χ is the Euler Characteristic func-
tion.

2.2. Relative Finiteness Obstruction
We will reduce the relative finiteness obstruction to the ordinary obstruction as

follows. Given a finitely dominated pair (Y,X) we construct a CW pair (X ∪D′, X)
and a homotopy equivalence u : X ∪D′ → Y rel. X, where D′ is finitely dominated
and u(D′) is contained in a compact subset of Y . Then σ(Y,X) is defined to be
the image of σ(D′) in K̃0(Zπ1(Y )). This definition allows us to naturally deduce
the relative versions of the sum and product theorems from the non-relative versions
of [10].

1. Fundamental Property of Relative Finiteness Obstruction
σ(Y,X) = 0 if and only if Y is homotopy equivalent rel. X to a finite complex.
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2. Relative Invariance
If (Y,X) is finitely dominated and f : (Y,X) → (Y1, X1) is a homotopy equiva-
lence such that f |X : X → X1 is a homotopy equivalence, then (Y1, X1) is finitely
dominated and f∗(σ(Y,X)) = σ(Y1, X1).

3. Relative Sum Theorem
Suppose Y = Y1 ∪ Y2, Y0 = Y1 ∩ Y2 and X = X1 ∪X2, X0 = X1 ∩X2, where
X1 ⊂ Y1, X2 ⊂ Y2, and X0 ⊂ Y0, and each (Yi, Xi) is finitely dominated (i =
0, 1, 2). Then (Y,X) is finitely dominated and

σ(Y,X) = j1∗(σ(Y1, X1)) + j2∗(σ(Y2, X2))− j0∗(σ(Y0, X0)),

where ji : Yi ↪→ Y are inclusions.

4. Relative Product Theorem
If (Y1, X1) and (Y2, X2) are finitely dominated, path connected CW pairs, then
(Y1 × Y2, (Y1 ×X2) ∪ (X1 × Y2)) is finitely dominated and

σ(Y1 × Y2, (Y1 ×X2) ∪ (X1 × Y2)) = σ(Y1, X1) · σ(Y2, X2)+
χ(Y1, X1)j2∗σ(Y2, X2) + χ(Y2, X2)j1∗σ(Y1, X1),

where ji : Yi ↪→ Y1 × Y2 are inclusions.

2.3. Miscellaneous
A CW isomorphism between two CW complexes Y1 and Y2 is a homeomorphism

of Y1 onto Y2 such that the image of every cell of Y1 is a cell of Y2. A map is cellular
provided that it sends every cell into cell(s) of equal or lower dimension.

A direct mapping cylinder D(f) of a map f : X → X is the space formed from
the disjoint union of X × [n, n+ 1], where n is an integer, by identifying (x, n) ∈
X × [n− 1, n] with (f(x), n) ∈ X × [n, n+ 1] for each x ∈ X.

hhhhhhh
hhhhhhh

hhhhhhh
hhhhhhh

X X X

-1 0 1−∞ ∞

= D(f)

The Hilbert Cube is the countable infinite product

Q = Π∞i=1Ii,

where each Ii = [−1, 1]. Every separable metric space can be embedded into Q. Let
Q0 denote the Hilbert Cube with one point removed. It is easy to show that if a
space Z is an ANR, then there exists a proper embedding k : Z → Q0. (Let Z̃ be a
one-point compactification of Z. Embed Z̃ into Q. Remove the image of ∞ from Q.)
For more information on the Hilbert Cube, see [4].
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3. Preliminary Constructions

Definition 3.1. Let (Y,X) be a finitely dominated CW pair. Let D = D′ ∪X, where
D′ is a finitely dominated subcomplex of D. If there exists a homotopy equivalence
û : D → Y rel. X with homotopy inverse v̂ such that û(D′) is contained in a compact
set, then we say that (Y,X) is stable with respect to (D′, û, v̂). When inverse v̂ of û is
irrelevant, we will say that (Y,X) is stable with respect to (D′, û) or simply, stable.

The construction that we carry out will result in û(D′) being compact.
This section is devoted to the proof of the following theorem.

Theorem 3.2. Every finitely dominated CW pair is stable.

Let C ⊂ Y be a finite subcomplex such that X ∪ C ↪→ Y is a homotopy domi-
nation rel. X (i.e., ∃ a homotopy ht : Y → Y rel. X such that h0 = id and h1(Y ) ⊂
X ∪ C). Let e = h1|X∪C : X ∪ C → X ∪ C. Observe that e is the identity on X, so e
is cellular on X. By [9] e is homotopic rel. X to a cellular map. Thus we can assume
that e is cellular. Form the direct mapping cylinder D(e). By 3.5 of [6] D(e) is a CW
complex.

For the purpose of Lemma 3.3 and definitions of u and v we will refer to a point
of the direct mapping cylinder D(e) as (x, n+ t), where x ∈ X ∪ C, 0 6 t < 1 and n
is an integer. Subsequently we will refer to points of D(e) as (x, t), where t ∈ R.

Define maps

u : D(e) −→ Y, u(x, n+ t) = ht(x)
v : Y −→ D(e), v(y) = (h1(y), 0).

Lemma 3.3. uv ' idY and vu ' idD(e).

Proof. Observe that

uv = h1 ' id.

Define T : D(e) −→ D(e) by

T (x, n+ t) = (x, n+ t− 1).

We will first show that vu ' T .
Define ũ : D(e) −→ Y ×R and ṽ : Y ×R −→ D(e) by

ũ(x, n+ t) =

{
(x, n+ 2t) 0 6 t 6 1

2

(h2t−1(x), n+ 1) 1
2 6 t < 1

ṽ(y, n+ t) =

{
(h1(y), n+ 2t) 0 6 t < 1

2

(h1h2−2t(y), n+ 1) 1
2 6 t < 1.

We want to show that ṽũ ' T .
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Define a homotopy ψs : D(e) −→ D(e) by

ψs(x, n+ t) =





(h1(x), n+ 4t) 0 6 t < 1
4

(h1h2−4t+s(4t−1)(x), n+ 1) 1
4 6 t 6 1

2

(h1h2t−1+s(2−2t)(x), n+ 1) 1
2 6 t < 1.

Then

ψ0 = ṽũ

ψ1(x, n+ t) =

{
(h1(x), n+ 4t) 0 6 t < 1

4

(h1h1(x), n+ 1) 1
4 6 t < 1.

Let

θ(x, n+ t) = (h1(x), n+ t).

Then ψ1 ' θ via the homotopy

H3
s (x, n+ t) =

{
(h1(x), n+ t+ 3ts) 0 6 t 6 1

4

rs(h1(x), n+ t) 1
4 6 t < 1,

where

rs(x, n+ t) =

{
(x, n+ t+ s(1− t)) 0 6 s < 1
(h1(x), n+ 1) s = 1.

Now we need to show that T ' θ. Define Gs : D(e) → D(e) by

Gs(x, n+ t) =

{
(x, n+ t+ s) 0 6 s < 1− t

(h1(x), n+ t+ s) 1− t 6 s 6 1.

Observe that

G0(x, n+ t) = (x, n+ t) = id(x, n+ t)

G1(x, n+ t) = (h1(x), n+ t+ 1) = θT−1(x, n+ t).

Assuming that G is continuous we have id ' θT−1. Therefore T ' θ.
We now need to show that G is continuous. We will demonstrate that G is contin-

uous on a closed segment of the direct mapping cylinder. Continuity of G will follow
from the Pasting Lemma.

Let M1 be the mapping cylinder of e : X ∪ C → e(X ∪ C). Let M2 be the mapping
cylinder of e|e(X∪C) : e(X ∪ C) → e(e(X ∪ C)). Let M = M1 ∪M2 (1-level of M1 is
identified with the 0-level of M2).

Consider the following diagram:

((X ∪ C)× [0, 1])× I
F−→ (X ∪ C)× [0, 2]

yq = q1 × id
yq2

M1 × I
G|M1×I−→ M
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where the maps are defined as follows

F (x, n+ t, s) = (x, n+ t+ s)

q1(x, n+ t) =

{
(x, n+ t) n = 0
(h1(x), 1) n = 1

q2(x, n+ t) =





(x, n+ t) n = 0
(h1(x), n+ t) n = 1
(h1h1(x), 2) n = 2.

Observe that the diagram commutes. Since q is a proper continuous surjection it
follows that q is a quotient map.

To show continuity of G pick an open set U ⊂M , then

q−1(G−1(U)) = F−1(q−1
2 (U)) = (q2F )−1(U)

but (q2F )−1(U) is open since q2F is continuous. Therefore q−1(G−1(U)) is open. But
then G−1(U) is open because q is a quotient map. So G is continuous.

Let p = proj : Y ×R −→ Y . Define i : Y ↪→ Y ×R by i(y) = (y, 0). Let u′(x,
n+ t) = (ht(x), n+ t).

We have the following sequence of homotopies:

vu = ṽiu = ṽipu′
H1

s' ṽipũ
H2

s' ṽũ = ψ0
ψs' ψ1

H3
s' θ

Gs' T,

where

H1
s (x, n+ t) =

{
ṽ(hts(x), 0) 0 6 t 6 1

2

ṽ(h(2t−1)(1−s)+st(x), 0) 1
2 6 t < 1

H2
s (x, n+ t) =

{
ṽ(x, n+ 2t(1− s)) 0 6 t 6 1

2

ṽ(h(2t−1)(x), n+ (1− s)) 1
2 6 t < 1.

Finally we need to show that T ' idD(e). Observe that T is a homeomorphism.
Thus T = T−1TT ' T−1v(uv)u ' T−1vu ' T−1T = id.

Lemma 3.4. There exists a compact subcomplex V of X ∪ C such that C ⊂ Int(V )
and h1ht1ht2(C) ⊂ Int(V ) for all t1, t2 ∈ I.
Proof. Recall that h : Y × I → Y is a homotopy. Then h(C × I) ⊂ A for some com-
pact A ⊂ Y . Thus ht2(C) ⊂ A for all t2 ∈ I.

Also, h(A× I) ⊂ B for some compact B ⊂ Y . Thus ht1(A) ⊂ B for all t1 ∈ I.
Therefore there exists a compact subcomplex V such that C ⊂ Int(V ) and

h1ht1ht2(C) ⊂ h1ht1(A) ⊂ h1(B) ⊂ Int(V ) ⊂ X ∪ C.

Constructing D′

Choose a subcomplex V of X ∪ C as in Lemma 3.4. Let D′′ be the direct mapping
cylinder of e|V . Then D′′ ⊂ D(e).

Let X ′ be a finite subcomplex of X ∪ C containing V in its interior. Let D′ be
the direct mapping cylinder of e′ = e|X′ . Then D′ ⊂ D(e). Since e′ is cellular, D′ is
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a subcomplex of D = X ∪D′, where the union is taken by identifying X ′ ⊂ X with
X ′ × {0} ⊂ D′. Note that since vu(x, t) = v(ht(x)) = (h1ht(x), 0), we have vu(D′) ⊂
X ′ × {0}. Thus, D′ is finitely dominated.

C C C

¨

¢¡

§

V

¨

¢¡

§

X ′

hhhhhh
hhhhhh

hhhhhh
hhhhhh

Figure 1: D′

Lemma 3.5. The homotopy vu ' idD(e) restricts to vu|D′ ' idD′ .

Proof. If we use homotopies of Lemma 3.3 together with Lemma 3.4 it is easy to
check that the path of each element of D′ lies in D′.

Theorem 3.6. There exists a homotopy equivalence û : D′ ∪X → Y such that û(D′)
is compact.

Proof. We will treat D(e) as D′′ ∪ ((X \ V )×R).
Choose a map φ : X ′ \ Int(V ) → [0, 1] such that φ(Bd(X ′)) = 1 and φ(Bd(V )) = 0.

Define r : D(e) → D(e) by

r(x, t) =





(x, t) x ∈ V
(x, 0) x ∈ X \X ′

(x, 1
φ(x) − 1) x ∈ X ′ \ V , t > 1

φ(x) − 1

(x,− 1
φ(x) + 1) x ∈ X ′ \ V , t < − 1

φ(x) + 1

(x, t) x ∈ X ′ \ V , | t | 6 1
φ(x) − 1.

Clearly r is a strong deformation retraction, i.e., there exists a map (a horizontal
push)

gs : D(e) −→ D(e)

such that g0 = id, g1(D(e)) = r(D(e)) and gt|r(D(e)) = id. (See Figure 2) Thus,

X ∪D′ k
↪→ D(e)

is a homotopy equivalence with inverse r. (kr
gt' id, rk

gt|X∪D′' id.)
Let

û = uk = u|X∪D′
then

û : X ∪D′ −→ Y

is a homotopy equivalence with a homotopy inverse v′ = rv.
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C C C

¨

¢¡
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V

¨

¢¡

§

X ′

hhhhhh
hhhhhh

hhhhhh
hhhhhh

X

-

-

-

-

-

¾

¾

¾

¾

¾

Figure 2: Action of gs on D(e).

Each “cell” X ′ × I of the direct mapping cylinder D′ is compact. Therefore
û(X ′ × I) is compact. Because of the way u is defined, the images of all these “cells”
coincide in Y . Thus, û(D′) is compact in Y .

To complete the proof of Theorem 3.2 we need to show that û is a bounded
homotopy equivalence rel. X.

Theorem 3.7. Let (Y,X) be a CW pair. Let Z be a locally compact ANR contain-
ing X ′ as a closed subset. Suppose f : Z → Y is a homotopy equivalence such that
f |X′ : X ′ → X is a homeomorphism. Then there exists a homotopy inverse g such
that g|X : X → X ′ is a homeomorphism and gf ' idZ rel. X ′ and fg ' idY rel. X.

Proof. Let k : Z → Q0 be a proper embedding. Define f ′ : Z → Y ×Q0 by

f ′(z) = (f(z), k(z)).

It can be shown that f ′ is a proper embedding. Thus f ′(Z) is closed in Y ×Q0.
There exists some homotopy inverse g′ of f . Define r′ : Y ×Q0 → f ′(Z) ⊂ Y ×Q0

by
r′ = f ′g′πY ,

where πY is a projection map in the Y coordinate. Let i : f ′(Z) ↪→ Y ×Q0 be an
inclusion. Since ir′(y, t) = (fg′(y), kg′(y)) and fg′ ' id we have ir′ ' id.

Let G be a homotopy such that G0 = id and G1 = g′f . Let Ft = f ′Gt(f ′)−1|f ′(Z)

then for any (f(z), k(z)) ∈ f ′(Z) we have:

F0(f(z), k(z)) = f ′G0(f ′)−1|f ′(Z)(f(z), k(z)) = f ′G0(z) = f ′(z) = (f(z), k(z))

F1(f(z), k(z)) = f ′G1(z) = f ′g′f(z) = f ′g′πY (f(z), k(z))
= r′|f ′(Z)(f(z), k(z)) = r′i(f(z), k(z)).
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Therefore r′i ' id.
f ′(Z) is closed in Y ×Q0 therefore, by the Homotopy Extension Theorem, there

exists a homotopy H : (Y ×Q0)× I → Y ×Q0 such that H1 = r′ and Ht|f ′(Z) = Ft.
Let

r = H0.

Then r′ ' r and ri = idf ′(Z). Thus, r is a retraction homotopic to the identity. Using
the proof of Theorem 3.1 of [3] we can ensure that r ' id rel. f ′(Z).

Let w : Y → Q0 be a map which extends kf |−1
X . Define j : Y → Y ×Q0 by

j(y) = (y, w(y)).

Since Q0
∼= Q× [0, 1) is convex and wf |X′ = k|X′ , there is a straight line homo-

topy wf ' k rel. X ′. f ′(z) = (f(z), k(z)) and jf(z) = (f(z), wf(z)). Since the first
coordinates agree and other coordinates are joined by a homotopy rel. X ′ we conclude
that jf ' f ′ rel. X ′.

Define g : Y → Z by
g = (f ′)−1rj.

Then for any x ∈ X ⊂ Y we have

g(x) = (f ′)−1rj(x)
= (f ′)−1r(x,w(x))
= (f ′)−1r(f(f |−1

X (x)), k(f |−1
X (x)))

= (f ′)−1rf ′(f |−1
X (x))

= (f ′)−1f ′(f |−1
X (x))

= f |−1
X (x).

Thus, g|X : X → X ′ is a homeomorphism.
We will now show that fg ' idY rel. X and gf ' idZ rel. X ′. rj takes Y to f ′(Z).

Since f ′ is an embedding, every point of f ′(Z) can be expressed as (f(z), k(z)) in
terms of some z ∈ Z. But then we have

f(f ′)−1(f(z), k(z)) = f(z) = πY (f(z), k(z));

therefore,
fg = f(f ′)−1rj = πY rj.

r ' id therefore
πY rj ' πY j.

This homotopy can be chosen to be rel. X because for all x ∈ X we have

j(x) = (x,w(x)) = (f(f |−1
X (x)), k(f |−1

X (x))) = f ′(f |−1
X (x)) ∈ f ′(Z)

and the homotopy r ' id is rel. f ′(Z). But πY j = id; therefore, fg ' id rel. X.
Recall that jf ' f ′ rel. X ′ and that r|f ′(Z) = id. We have

gf = (f ′)−1rjf ' (f ′)−1rf ′ = (f ′)−1f ′ = id

with the homotopy taking place rel. X ′.
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Let v̂ be a homotopy inverse of û as in Theorem 3.7. Then (Y,X) is stable with
respect to (D′, û, v̂). This completes the proof of Theorem 3.2.

4. Relative Finiteness Obstruction: Definition and Properties

Definition 4.1. Let (Y,X) be a finitely dominated CW pair stable with respect to
(D′, u, v). Then we have

D′ i−→ D
u−→ Y,

where i is an inclusion map. This induces

K̃0(D′)
i∗−→ K̃0(D) u∗−→ K̃0(Y ).

D′ is finitely dominated, so σ(D′) ∈ K̃0(D′). Define the relative finiteness obstruction
σ(Y,X) by

σ(Y,X) = u∗i∗σ(D′).

Lemma 4.2. Let D = D′ ∪X be as in Definition 4.1. Then there exists a map

α : D → D such that α
Ft' id rel. X and Ft(D′) ⊂ D′, α(D) ⊂ X ∪ C, where C is

compact in D′.

Proof. D′ is finitely dominated, therefore there exists a finite subcomplex P of D′

and a map β : D′ → P such that iβ
ft' id (f0 = id, f1 = iβ).

Let X ′ = D′ ∩X. We can modify β = iβ : D′ → D′ so that β ' idD′ rel. X ′.
Choose finite subcomplexes V and W of D′ so that X ′ ⊂ Int(V ) ⊂ V ⊂ Int(W ).
Choose a map φ : W \ Int(V ) → [0, 1] such that φ(Bd(W )) = 1 and φ(Bd(V )) = 0.
Define f̃t : D′ → D′ by

f̃t(x) =





ft(x) x ∈ D′ \ Int(W )
x x ∈ V
fφ(x)t(x) x ∈W \ Int(V ).

Observe that f̃1 ' id rel. X ′. Extend f̃1 to α : D → D by the identity. Then α ' id
rel. X. Let C = P ∪W , then α(D) ⊂ X ∪ C.

Lemma 4.3. Let D1 = D′1 ∪X1, D2 = D′2 ∪X2 be as in Definition 4.1. Suppose
γ : D1 → D2 is a homotopy equivalence such that γ|X1 : X1 → X2 is a homeomor-
phism. Then there exists a homotopy equivalence f ′ : D1 → D2 with inverse g such
that

(1) gf ′
Ft' idD1 rel. X1, and Ft(D′1) ⊂ D′1 ∪K1, where K1 is compact in X1.

(2) f ′g
Gt' idD2 rel. X2, and Gt(D′2) ⊂ D′2 ∪K2, where K2 is compact in X2.

Proof. We will prove (1), the proof of (2) is similar. For i = 1, 2 let αi : Di → Di be
a homotopy equivalence rel. Xi such that αi(D′i) ⊂ Ci, where Ci is compact in D′i as
in Lemma 4.2. Let λit be a homotopy joining each αi with idDi (λi0 = id, λi1 = αi).
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Let τ be a homotopy inverse of γ as in Theorem 3.7 with τγ
Tt' idD1 rel.X1 (T0 = id,

T1 = τγ) and γτ ' idD2 rel. X2. Let

f ′ = γα1

g = τα2.

Clearly gf ′ = τα2γα1 ' id rel. X1 and f ′g = γα1τα2 ' id rel. X2.
Define Ft : D1 → D1 by

Ft(x) =





λ1
3t(x) 0 6 t 6 1/3
T3t−1α1(x) 1/3 6 t 6 2/3
τλ2

3t−2γα1(x) 2/3 6 t 6 1.

It is easy to check that Ft is continuous and that F0 = id and F1 = τα2γα1 = gf ′.
Now we show that Ft(D′1) ⊂ D′1 ∪K1 for some compact K1 ⊂ X1. For t ∈ [0, 1

3 ]
the homotopy stays in D′1, as in Lemma 4.2. For t ∈ [ 13 ,

2
3 ] observe that α1(D′1) ⊂ C1.

Therefore Ttα1(D′1) ⊂ T (C1 × I) which is compact. Finally, γα1(D′1) is contained in
some compact set C ⊂ D2. Therefore λ2

tγα1(D′1) ⊂ λ2(C × I) which is compact in
D2. Thus, τλ2

tγα1(D′1) ⊂ τλ2(C × I) which is compact in D1.

Corollary 4.4. Let (Y1, X1) and (Y2, X2) be finitely dominated CW pairs. Suppose
(Y1, X1) is stable with respect to (D′1, u1, v1), and (Y2, X2) is stable with respect to
(D′2, u2, v2), and suppose that there exists a homotopy equivalence f : Y1 → Y2 such
that f |X1 : X1 → X2 is a homeomorphism. Then there exists a homotopy equivalence
f ′ : D1 → D2 with homotopy inverse g such that conditions (1) and (2) of Lemma 4.3
are satisfied.

Proof. Let γ = v2fu1 and apply Lemma 4.3.

Corollary 4.5. Let all spaces and maps be as in Lemma 4.3 and Corollary 4.4. In
addition assume that f |X1 : X1 → X2 is a CW isomorphism. Then there exist a finite
subcomplex P1 ⊂ X1 and a finite subcomplex P2 ⊂ X2 such that f ′|D′1∪P1 : D′1 ∪ P1 →
D′2 ∪ P2 is a homotopy equivalence with homotopy inverse

g|D′2∪P2 : D′2 ∪ P2 → D′1 ∪ P1.

Proof. By Lemma 4.3 and Corollary 4.4 f ′ = v2fu1α1. Find a compact subcomplex
P1 of X1 such that K1 ⊂ P1 and K2 ⊂ f ′(P1). Observe that α1|X1 , u1|X1 and v2|X2

are identity maps. Thus f ′(P1) is a subcomplex. Let P2 = f ′(P1).

Theorem 4.6. Let all spaces and maps be as in Corollary 4.5. Then

f∗u1∗i1∗σ(D′) = u2∗i2∗σ(D′1),

where i1, i2 are inclusions.

Proof. By Corollary 4.5 there exist compact Pi ⊂ Xi, i = 1, 2, such that

v2fu1α1|D′1∪P1 : D′1 ∪ P1 → D′2 ∪ P2

is a homotopy equivalence rel. X1. Consider the following diagram where j1, j2, k1,
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k2 are inclusions. (Note that i1 = k1j1 and i2 = k2j2.)

D′1 D′2
yj1

yj2

D′1 ∪ P1

v2fu1α1|D′1∪P1−→ D′2 ∪ P2

yk1

yk2

D1
v2fu1α1−→ D2

yu1α1

xv1
yu2

xv2

Y1
f−→ Y2

This gives rise to

K̃0(D′1) K̃0(D′2)

yj1∗
yj2∗

K̃0(D′1 ∪ P1)
(v2fu1α1|D′1∪P1

)∗−→ K̃0(D′2 ∪ P2)

yk1∗
yk2∗

K̃0(D1)
(v2fu1α1)∗−→ K̃0(D2)

y(u1α1)∗
xv1∗

yu2∗
xv2∗

K̃0(Y1)
f∗−→ K̃0(Y2)

Each Pi is compact, therefore σ(Pi) = σ(D′i ∩ Pi) = 0. Thus by the Sum The-
orem [10] σ(D′i ∪ Pi) = ji∗σ(D′i). Since v2fu1α1|D′1∪P1 is a homotopy equivalence
(v2fu1α1|D′1∪P1)∗σ(D′1 ∪ P1) = σ(D′2 ∪ P2) which gives us:

(v2fu1α1|D′1∪P1)∗j1∗σ(D′1) = j2∗σ(D′2)

k2∗(v2fu1α1|D′1∪P1)∗j1∗σ(D′1) = k2∗j2∗σ(D′2) = i2∗σ(D′2)

(v2fu1α1)∗k1∗j1∗σ(D′1) = i2∗σ(D′2)
v2∗f∗u1∗i1∗σ(D′1) = i2∗σ(D′2)

u2∗v2∗f∗u1∗i1∗σ(D′1) = u2∗i2∗σ(D′2)
f∗u1∗i1∗σ(D′1) = u2∗i2∗σ(D′2).
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The following corollary shows that σ(Y,X) is well defined by demonstrating that
σ(Y,X) is independent of the choice of D′.

Corollary 4.7. Suppose (Y,X) is a finitely dominated CW pair stable with respect
to (D′, u, v) and (D′1, u1, v1). Then u∗i∗σ(D′) = u1∗i1∗σ(D′1).

Proof. In the above proof let Y1 = Y2 = Y and let f = id.

Corollary 4.8 (Weak Invariance). Let (Y1, X1) and (Y2, X2) be finitely dominated
CW pairs. Suppose there exists a homotopy equivalence f : Y1 → Y2 such that

f |X1 : X1 → X2

is a CW isomorphism. Then f∗σ(Y1, X1) = σ(Y2, X2).

Lemma 4.9. Let (Z,Z0) be a CW pair such that Z0 is finite. Suppose Z is homotopy
equivalent to some finite CW complex K. Then there exists a finite CW complex P
such that Z0 ⊂ P and there is a homotopy equivalence P → Z rel. Z0.

Proof. There exist maps f : Z → K, g : K → Z such that gf ' id and fg ' id. Let
P = M(f |Z0). Consider maps

P
r−→ K

g−→ Z,

where r is the collapse to the base along the rays of the mapping cylinder. Since g
and r are both homotopy equivalences, gr is also a homotopy equivalence.

Observe that gr|Z0 = gf |Z0 ' idZ0 . By the Homotopy Extension Theorem gr is
homotopic to some g′ such that g′|Z0 = idZ0 . g

′|Z0 : Z0 → Z0 is a homeomorphism.
Thus, by Proposition 3.2 of [3], there exists f ′ such that f ′g′ ' id rel. Z0 and g′f ′ ' id
rel. Z0.

Theorem 4.10 (Fundamental Property of the Relative Finiteness Obstruction). Let
(Y,X) be a finitely dominated CW pair. Then σ(Y,X) = 0 if and only if X ↪→ Y can
be extended to a homotopy equivalence X ∪ P → Y rel. X where P is a finite CW
complex such that P ∩X is a subcomplex of both X and P .

Proof. Suppose X ↪→ Y can be extended to a homotopy equivalence u : X ∪ P →
Y . Since P is a finite CW complex, (Y,X) is stable with respect to (P, u). Thus
σ(Y,X) = u∗i∗σ(P ). But P is finite, therefore σ(P ) = 0 and σ(Y,X) = 0.

Conversely, assume σ(Y,X) = 0. Suppose that (Y,X) is stable with respect to
(D′, u, v). Then we have:

u∗i∗σ(D′) = 0
v∗u∗i∗σ(D′) = 0
(vu)∗i∗σ(D′) = 0

i∗σ(D′) = 0 ∈ K̃0(D).

Since D′ is finitely dominated, σ(D′) ∈ K̃0(D′). There exists a compact subset A
of D′, an inclusion map j : A ↪→ D′ and τ ∈ K̃0(A) such that σ(D′) = j∗(τ). Thus
i∗σ(D′) = i∗j∗(τ) = 0 ∈ K̃0(D).

There exists a compact set B such that A ⊂ B ⊂ D and an inclusion map α : A ↪→
B such that α∗(τ) = 0. Without loss of generality we may assume that X ∩D′ ⊂ B.
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By the Sum Theorem

σ(D′ ∪B) = ω1∗σ(D′) + ω2∗σ(B)− ω3∗σ(D′ ∩B),

where ω1, ω2 and ω3 are appropriate inclusions. But B and D′ ∩B are compact
therefore ω2∗σ(B) = ω3∗σ(D′ ∩B) = 0.

To show that ω1∗σ(D′) = 0 recall that σ(D′) = j∗(τ). Observe that ω1j = βα,
where β : B ↪→ D′ ∪B is an inclusion. Thus,

β∗α∗(τ) = ω1∗j∗(τ)

but α∗(τ) = 0; therefore,

ω1∗σ(D′) = ω1∗j∗(τ) = β∗α∗(τ) = 0.

Thus, σ(D′ ∪B) = 0 and D′ ∪B is homotopy equivalent to some finite CW complex
K.

Let Z = D′ ∪B and Z0 = (D′ ∪B) ∩X. By Lemma 4.9 there exists a finite CW
complex P such that Z0 ⊂ P , and there is a homotopy equivalence P → Z rel. Z0.
We can extend this homotopy equivalence to the rest of X by the identity to obtain
a homotopy equivalence P ∪X → Z ∪X = D rel. X. But D ' Y rel. X. Therefore
P ∪X ' Y rel. X.

Theorem 4.11. Let (Y,X) be a CW pair. Suppose Y is finitely dominated rel. X,
and X is finitely dominated, then Y is finitely dominated and

σ(Y ) = σ(Y,X) + i∗σ(X),

where i : X ↪→ Y is an inclusion map.

Proof. There exists a finite subcomplex C of Y such that the inclusion i : X ∪ C ↪→
Y is a homotopy domination. C and X ∩ C are finite therefore they are finitely
dominated. By the Sum Theorem X ∪ C must be finitely dominated. Thus there
exists a finite CW complex P such that P

f→ X ∪ C is a homotopy domination. But
then if : P → Y is also a homotopy domination.
σ(Y,X) = u∗j∗σ(D′) where D′ and u are such that (Y,X) is stable with respect to

(D′, u), and j : D′ ↪→ D′ ∪X is an inclusion. It follows from the Sum Theorem that
D′ ∪X is finitely dominated and

σ(D′ ∪X) = j∗σ(D′) + k∗σ(X)− 0,

where k : X ↪→ D′ ∪X is an inclusion.
Applying u∗ to both sides we get

u∗σ(D′ ∪X) = u∗j∗σ(D′) + u∗k∗σ(X).

But u is a homotopy equivalence therefore u∗σ(D′ ∪X) = σ(Y ). Since u is the identity
on X we have u∗k∗σ(X) = i∗σ(X) which yields the desired result.

Corollary 4.12. If Y is finitely dominated with respect to ∅, then Y is finitely dom-
inated and σ(Y, ∅) = σ(Y ).

Lemma 4.13. Let (Y,X) and (Y ′, X ′) be CW pairs. Suppose Y ′ is finitely dominated
rel. X ′ and there exists a homotopy equivalence f : Y ′ → Y such that f |X′ : X ′ → X
is a homeomorphism. Then Y is finitely dominated rel. X.
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Proof. By Theorem 3.7 there exists a homotopy inverse g : Y → Y ′ such that gf '
idY ′ rel. X ′, fg ' idY rel. X, and g|X = f−1|X .
Y ′ is finitely dominated rel. X ′, therefore there exists a compact subcomplex C ′

of Y ′ such that the inclusion i : X ′ ∪ C ′ ↪→ Y ′ is a homotopy domination rel. X ′. Let
h be homotopy inverse of i. Then there exists a homotopy Ht such that H0 = idY ′ ,
H1 = ih and Ht|X′ = id.

Define Gt by

Gt = fHtg : Y −→ Y.

Then

G0 = fg ' idY rel.X

and

G1(Y ) = fhg(Y ) ⊂ fh(Y ′) ⊂ f(X ′ ∪ C ′) = X ∪ f(C ′).

Theorem 4.14 (Relative Sum Theorem). Let (Y1, X1), (Y2, X2) be finitely domi-
nated CW pairs. Let Y = Y1 ∪ Y2, X = X1 ∪X2, Y0 = Y1 ∩ Y2, X0 = X1 ∩X2. Sup-
pose that (Y0, X0) is finitely dominated. Then (Y,X) is finitely dominated and

σ(Y,X) = j1∗σ(Y1, X1) + j2∗σ(Y2, X2)− j0∗σ(Y0, X0),

where ji : Yi ↪→ Y (i = 0, 1, 2) are inclusions.

Proof. Case 1. X0 = X ∩ Y0.
For i = 0, 1, 2 we have hit : Yi → Yi such that hi0 = idYi , h

i
1(Yi) ⊂ Ci ∪Xi where

each Ci is compact in Yi, and hit|Xi = idXi .
Using the Homotopy Extension Theorem we can extend h0

t to kit : Yi → Yi (i = 1, 2)
in such a way that kit|Xi = id.

Next we want to modify hit (i = 1, 2) so that hit|X0∪C0 = id. Observe that we
already have hit|X0 = id (i = 1, 2). We will perform the modification of h1

t . Modifica-
tion of h2

t is similar.
There exist finite subcomplexes V and K of Y1 such that C0 ⊂ Int(V ) and

V ⊂ Int(K). Choose a map φ : K \ Int(V ) → [0, 1] such that φ(Bd(K)) = 1 and
φ(Bd(V )) = 0.

Define

h̃1
t (y) =





h1
t (y) y ∈ Y1 \ Int(K)
y y ∈ V
h1
φ(y)t(y) y ∈ K \ Int(V ).

Observe that h̃1
0 = id, h̃1

t |X1∪C0 = id and h̃1
1(Y1) ⊂ P1 ∪X1 for some compact P1 ⊂

Y1. Similarly, we can modify h2
t so that h̃2

0 = id, h̃2
t |X2∪C0 = id and h̃2

1(Y2) ⊂ P2 ∪X2

for some compact P2 ⊂ Y2.
Define

f it (y) =

{
ki2t(y) 0 6 t 6 1/2
h̃i2t−1k

i
1(y) 1/2 6 t 6 1.

Then f i is continuous and f1
t = f2

t for all y ∈ Y0.
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Let

ft(y) =

{
f1
t (y) y ∈ Y1

f2
t (y) y ∈ Y2.

Observe that f1(Y ) ⊂ (P1 ∪ P2) ∪X and the inclusion (P1 ∪ P2) ∪X ↪→ Y is a
homotopy domination rel. X.

There exists a finite CW complex M such that P1 ∪ P2 ⊂M . Then M ∪X ↪→ Y is
a homotopy domination rel. X. Let Mi = M ∩ Yi, then Mi ∪Xi ↪→ Yi is a homotopy
domination rel. Xi because Pi ⊂Mi.

Using the mapping cylinder constructions we can define Di and D′i (i = 0, 1, 2)
such that (Yi, Xi) is stable with respect to (D′i, ui) and D1 ∩D2 = D0.

Recall that ui(y, t) = f it (y) (i = 0, 1, 2). Since f1
t = f2

t for all y ∈ Y0, u1 agrees
with u2 on Y0. Thus we can define u by

u(y) =

{
u1(y) y ∈ D1

u2(y) y ∈ D2.

Then u(y, t) = ft(y). Let D = D1 ∪D2 and D′ = D′1 ∪D′2. Then (Y,X) is stable
with respect to (D′, u).

Let the following be inclusions:

D′i
δi
↪→ D′

θ
↪→ D

D′i
αi
↪→ Di

βi
↪→ D.

Then

σ(Y1 ∪ Y2, X1 ∪X2) = u∗θ∗σ(D′)
= u∗θ∗δ1∗σ(D′1) + u∗θ∗δ2∗σ(D′2)− u∗θ∗δ0∗σ(D′0)
= u∗β1∗α1∗σ(D′1) + u∗β2∗α2∗σ(D′2)− u∗β0∗α0∗σ(D′0)
= j1∗(u|D1)∗α1∗σ(D′1) + j2∗(u|D2)∗α2∗σ(D′2)
− j0∗(u|D0)∗α0∗σ(D′0)
= j1∗u1∗α1∗σ(D′1) + j2∗u2∗α2∗σ(D′2)− j0∗u0∗α0∗σ(D′0)
= j1∗σ(Y1, X1) + j2∗σ(Y2, X2)− j0∗σ(Y0, X0).

Case 2. X0 6= X ∩ Y0.
We will separate those parts of X1 and X2 which do not intersect in Y0 and apply

Case 1.
Consider Y1 × [0, 1]. We will identify Y1 with Y1 × {0}. Construct a reduced prod-

uct Y1 ×X0 [0, 1] by identifying (x, t) with (x, 0) for all x ∈ X0 and t ∈ [0, 1]. Observe
that Y1 ×X0 [0, 1] is a CW complex andX1 × {0},X1 × {1} are subcomplexes. Clearly
Y1 ×X0 [0, 1] is finitely dominated rel. X1 × {0}.

There exists a homeomorphism f : Y1 ×X0 [0, 1] → Y1 ×X0 [0, 1] such that f(y, 0) =
(y, 1) for all y ∈ Y1. f |X1×{0} : X1 × {0} → X1 × {1} is a homeomorphism. Thus, by
Lemma 4.13, Y1 ×X0 [0, 1] is finitely dominated rel. X1 × {1}.

We can repeat this process for Y2 ×X0 [−1, 0]. Then Y2 ×X0 [−1, 0] is finitely dom-
inated rel. X2 × {−1}.
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Let

Y ′1 = Y1 ×X0 [0, 1]
Y ′2 = Y2 ×X0 [−1, 0]
Y ′ = Y ′1 ∪ Y ′2
X ′

1 = X1 × {1}
X ′

2 = X2 × {−1}
X ′ = X ′

1 ∪X ′
2.

Observe that Y ′1 ∩ Y ′2 = Y0 and X ′
1 ∩X ′

2 = X0. Since Y ′i is finitely dominated
rel. X ′

i (i = 1, 2) and Y0 is finitely dominated rel. X0, by Case 1 we know that Y ′ is
finitely dominated rel. X ′.

Let p : Y ′ → Y be the projection to the zero level. Then p is a homotopy equivalence
such that its restriction to X ′ is a homeomorphism. By Lemma 4.13, Y is finitely
dominated rel. X.

By Case 1,

σ(Y ′, X ′) = k1∗σ(Y ′1 , X
′
1) + k2∗σ(Y ′2 , X

′
2)− k0∗σ(Y ′0 , X

′
0).

Finally, by Weak Invariance

σ(Y,X) = p∗σ(Y ′, X ′)
= j1∗(p|Y ′1 )∗σ(Y ′1 , X

′
1) + j2∗(p|Y ′2 )∗σ(Y ′2 , X

′
2)− j0∗(p|Y ′0 )∗σ(Y ′0 , X

′
0)

= j1∗σ(Y1, X1) + j2∗σ(Y2, X2)− j0∗σ(Y0, X0),

where ki, ji (i = 0, 1, 2) are appropriate inclusions.

Theorem 4.15. Let (Z, Y,X) be a CW triple. Suppose Z is finitely dominated rel. Y
and Y is finitely dominated rel. X. Then Z is finitely dominated rel. X and

σ(Z,X) = σ(Z, Y ) + i∗σ(Y,X),

where i : Y ↪→ Z is an inclusion map.

Proof. There exists a compact subcomplex C of Z such that the inclusion i : Y ∪ C ↪→
Z is a homotopy domination rel. Y . We are given that Y is finitely dominated rel. X.
C is finite, therefore C is finitely dominated. Thus, by the Relative Sum Theorem,
Y ∪ C is finitely dominated rel. X. X ⊂ Y therefore Z is finitely dominated rel. X.
σ(Z, Y ) = u∗j∗σ(D′) where D′ and u are such that (Z, Y ) is stable with respect

to (D′, u) and j : D′ ↪→ D′ ∪ Y is an inclusion.
D′ is finitely dominated, therefore D′ is finitely dominated rel. ∅. Y is finitely

dominated rel. X. D′ ∩ Y is compact. So it follows from the Relative Sum Theorem
that D′ ∪ Y is finitely dominated rel. ∅ ∪X = X and

σ(D′ ∪ Y,X) = j∗σ(D′) + k∗σ(Y,X)− 0,

where k : Y ↪→ D′ ∪ Y is an inclusion.
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Applying u∗ to both sides we get

u∗σ(D′ ∪ Y,X) = u∗j∗σ(D′) + u∗k∗σ(Y,X).

But u is a homotopy equivalence such that u|X = id, therefore by Weak Invari-
ance u∗σ(D′ ∪ Y,X) = σ(Z,X). Since u is the identity on Y we have u∗k∗σ(Y,X) =
i∗σ(Y,X) which yields the desired result.

Corollary 4.16. Let (Y1, Y2, . . . , Yk) be a CW k-tuple. Suppose that for n = 1, . . . ,
k − 1 each Yn is finitely dominated rel. Yn+1. Then Y1 is finitely dominated rel. Yk
and

σ(Y1, Yk) = σ(Y1, Y2) +
k−1∑
n=2

in∗σ(Yn, Yn+1),

where in : Yn ↪→ Y1 are inclusions.

Lemma 4.17. Suppose (Y,X) and (Z,X) are CW pairs such that Y ∩ Z = X and Y
is finitely dominated rel. X, then (Y ∪ Z,Z) is finitely dominated and σ(Y ∪ Z,Z) =
i∗σ(Y,X) where i : Y ↪→ Y ∪ Z is an inclusion.

Proof. (Y ∪ Z,Z) can be written as (Y ∪ Z,X ∪ Z). Observe that (Y,X), (Z,Z)
and (Y ∩ Z,X ∩ Z) are finitely dominated. Thus, by the Relative Sum Theorem,
(Y ∪ Z,X ∪ Z) is finitely dominated and we have:

σ(Y ∪ Z,Z) = σ(Y ∪ Z,X ∪ Z)
= i∗σ(Y,X) + j∗σ(Z,Z)− k∗σ(Y ∩ Z,X ∩ Z)
= i∗σ(Y,X) + 0− 0
= i∗σ(Y,X).

Lemma 4.18. Let (Y,X) and (Y1, X1) be CW pairs such that (Y,X) is finitely dom-
inated. Suppose that X is a subcomplex of X1 and i : X ↪→ X1 is a homotopy equiva-
lence rel. X. If f : Y → Y1 is a homotopy equivalence rel. X, then (Y1, X1) is finitely
dominated and f∗σ(Y,X) = σ(Y1, X1).

Proof. Define f̃ : Y ∪X1 → Y1 by

f̃ |Y = f, f̃ |X1 = id

then f̃ is a homotopy equivalence. By Theorem 3.7 f̃ is a homotopy equivalence
rel. X1. By Lemma 4.17 (Y ∪X1, X1) is finitely dominated. But f̃ is a homotopy
equivalence such that f̃ |X1 : X1 → X1 is a homeomorphism. Therefore by Lemma 4.13
(Y1, X1) is finitely dominated.

By Lemma 4.17 σ(Y ∪X1, X1) = j∗σ(Y,X), where j : Y ↪→ Y ∪X1 is an inclusion.
Since f̃ is a homotopy equivalence rel. X1 and f̃ |X1 is a CW isomorphism, by Weak
Invariance we have

f̃∗σ(Y ∪X1, X1) = σ(Y1, X1),

but

f̃∗σ(Y ∪X1, X1) = f̃∗j∗σ(Y,X) = f∗σ(Y,X).
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Theorem 4.19 (Invariance). Let (Y,X) and (Y1, X1) be CW pairs such that (Y,X) is
finitely dominated. Suppose f : Y → Y1 is a homotopy equivalence such that f |X : X →
X1 is a homotopy equivalence. Then (Y1, X1) is finitely dominated and f∗σ(Y,X) =
σ(Y1, X1).

Proof. f : X → X1 is a homotopy equivalence; therefore, f : X → X1 × {0} ⊂ X ×
[0,∞) is homotopic to a proper homotopy equivalence f ′ : X → X1 × [0,∞) [4, Lem-
ma 21.1]. LetM be the mapping cylinder of f ′|X . Let Ft : X →M be a homotopy such
that F0 = f |X and F1 = idX . Form Y1 ∪M by attachingM to Y1 alongX1 × {0}. Use
the Homotopy Extension Theorem to extend Ft to F̃t : Y → Y1 ∪M so that F̃t|X = Ft
and F̃0 = f .

Let g be a homotopy inverse of f . Let c : Y1 ∪M → Y1 be a map such that c|Y1 = id
and c|M is a collapse of M to X1 × [0,∞) followed by a collapse of X1 × [0,∞) to
X1 × {0}. Then F̃0 is a homotopy equivalence with a homotopy inverse gc. Since
F̃0 ' F̃1, F̃1 is also a homotopy equivalence. Observe that F̃1|X = id, therefore by
Theorem 3.7, F̃1 is a homotopy equivalence rel. X. Also, X ↪→M is a homotopy
equivalence rel. X.

By Lemma 4.18 (Y1 ∪M,M) is finitely dominated. Therefore there exists ht : Y1 ∪
M → Y1 ∪M such that h0 = id, ht|M = id and h1(Y1 ∪M) ⊂M ∪ C for some com-
pact subcomplex C. Consider

Ht = cht|Y1 : Y1 → Y1,

H0 = idY1 , Ht|X1 = id and H1(Y1) ⊂ X1 ∪ c(C), where c(C) is compact. It follows
that (Y1, X1) is finitely dominated.

Also by Lemma 4.18 we have

F̃1∗σ(Y,X) = σ(Y1 ∪M,M).

But by Lemma 4.17,
σ(Y1 ∪M,M) = i∗σ(Y1, X1),

where i : Y1 ↪→ Y1 ∪M is an inclusion. Thus, we have

F̃1∗σ(Y,X) = i∗σ(Y1, X1)

c∗F̃1∗σ(Y,X) = c∗i∗σ(Y1, X1),

but cF̃1 ' f because cF̃1 ' cF̃0 = cf = f , so

f∗σ(Y,X) = σ(Y1, X1).

Theorem 4.20 (Relative Product Theorem). Let (Y1, X1) and (Y2, X2) be finitely
dominated, path connected CW pairs. Then

(1) (Y1 × Y2, (Y1 ×X2) ∪ (X1 × Y2))

is finitely dominated and

(2) σ(Y1 × Y2, (Y1 ×X2) ∪ (X1 × Y2)) = σ(Y1, X1) · σ(Y2, X2)+
χ(Y1, X1)j2∗σ(Y2, X2) + χ(Y2, X2)j1∗σ(Y1, X1),

where ji : Yi ↪→ Y1 × Y2 (i = 1, 2) are inclusions.
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Proof. For i = 1, 2 suppose that (Yi, Xi) is stable with respect to (D′i, ui). Let Di =
D′i ∪Xi. Let X ′

i = Xi ∩D′i. Note that by following the original constructions we can
insure that each X ′

i is compact.
(1) We will start by showing that (D1 ×D2, (D1 ×X2) ∪ (X1 ×D2)) is finitely

dominated. The following figure will be helpful.

X2

X1

D′2

D′1

Figure 3: D1 ×D2

Observe that

D1 ×D2 = (D′1 ×D′2) ∪ [(X1 ×D2) ∪ (D1 ×X2)].

Each D′i is finitely dominated by the definition; thus,

(D′1 ×D′2, ∅)
is finitely dominated.

Clearly

((X1 ×D2) ∪ (D1 ×X2), (X1 ×D2) ∪ (D1 ×X2))

is finitely dominated.
Finally we need to demonstrate that

((D′1 ×D′2) ∩ [(X1 ×D2) ∪ (D1 ×X2)], ∅)
is finitely dominated. But

(D′1 ×D′2) ∩ [(X1 ×D2) ∪ (D1 ×X2)] = (X ′
1 ×D′2) ∪ (D′1 ×X ′

2).

This is finitely dominated by the Sum Theorem since each term of the union is
finitely dominated by the Product Theorem [10] while the intersection is a compact
set X ′

1 ×X ′
2.

It is clear that

u1 × u2 : D1 ×D2 → Y1 × Y2

is a homotopy equivalence rel. X1 ×X2. Thus, it restricts to a homotopy equivalence

u1 × u2|(D1×X2)∪(X1×D2) : (D1 ×X2) ∪ (X1 ×D2) → (Y1 ×X2) ∪ (X1 × Y2).

The desired result follows from Invariance.
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(2) We will first derive the formula for σ(D1 ×D2, (D1 ×X2) ∪ (X1 ×D2)). We
will use inc to denote any appropriate inclusion.

σ(D1 ×D2, (D1 ×X2) ∪ (X1 ×D2))
= inc∗σ(D′1 ×D′2, ∅) + inc∗σ((X1 ×D2) ∪ (D1 ×X2), (X1 ×D2) ∪ (D1 ×X2))
− inc∗σ((X ′

1 ×D′2) ∪ (D′1 ×X ′
2), ∅)

= inc∗(σ(D′1) · σ(D′2)) + χ(D′1)inc∗σ(D′2) + χ(D′2)inc∗σ(D′1)
− inc∗σ(X ′

1 ×D′2)− inc∗σ(D′1 ×X ′
2) + inc∗σ(X ′

1 ×X ′
2)

= inc∗(σ(D′1) · σ(D′2)) + χ(D′1)inc∗σ(D′2) + χ(D′2)inc∗σ(D′1)
− χ(X ′

1)inc∗σ(D′2)− χ(X ′
2)inc∗σ(D′1)

= inc∗(σ(D′1) · σ(D′2)) + (χ(D′1)− χ(X ′
1))inc∗σ(D′2) + (χ(D′2)

− χ(X ′
2))inc∗σ(D′1)

= inc∗(σ(D′1) · σ(D′2)) + χ(D′1, X
′
1)inc∗σ(D′2) + χ(D′2, X

′
2)inc∗σ(D′1)

= inc∗(σ(D′1) · σ(D′2)) + χ(Y1, X1)inc∗σ(D′2) + χ(Y2, X2)inc∗σ(D′1).

Applying (u1 × u2)∗ we get

σ(Y1 × Y2, (Y1 ×X2) ∪ (X1 × Y2))
= (u1 × u2)∗σ(D1 ×D2, (D1 ×X2) ∪ (X1 ×D2))
= (u1 × u2)∗inc∗(σ(D′1) · σ(D′2)) + χ(Y1, X1)(u1 × u2)∗inc∗σ(D′2)

+ χ(Y2, X2)(u1 × u2)∗inc∗σ(D′1)
= u1∗inc∗σ(D′1) · u2∗inc∗σ(D′2) + χ(Y1, X1)inc∗u2∗inc∗σ(D′2)

+ χ(Y2, X2)inc∗u1∗ic∗σ(D′1)
= σ(Y1, X1) · σ(Y2, X2) + χ(Y1, X1)j2∗σ(Y2, X2) + χ(Y2, X2)j1∗σ(Y1, X1).

If in the above theorem we let (Y2, X2) be (K, ∅) where K is (1) finite or (2) finitely
dominated, then the result reduces to

σ(Y1 ×K,X1 ×K) = χ(K)j1∗σ(Y1, X1)(1)
σ(Y1 ×K,X1 ×K) = σ(Y1, X1) · σ(K) + χ(Y1, X1)j2∗σ(K)

+ χ(K)j1∗σ(Y1, X1).
(2)

It is interesting to note that if (Y1, X1) and (Y2, X2) are finitely dominated, (Y1 ×
Y2, X1 ×X2) may not be finitely dominated. For example, let

Z = {(x, y) | (x− 2n)2 + y2 = 1, n = 0, 1, 2, . . .}.
Clearly, (Z,Z) is finitely dominated. Let (Y,X) be a finitely dominated pair satisfying
the following condition: For any homotopy domination C ∪X ↪→ Y , X is not a strong
deformation retract of C ∪X. Then (Z × Y, Z ×X) is not finitely dominated.
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