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THE COHOMOLOGY OF MOTIVIC A(2)
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(communicated by J. Daniel Christensen)

Abstract
Working over an algebraically closed field of characteristic

zero, we compute the cohomology of the subalgebra A(2) of the
motivic Steenrod algebra that is generated by Sq1, Sq2, and
Sq4. The method of calculation is a motivic version of the May
spectral sequence.

Speculatively assuming that there is a “motivic modular
forms” spectrum with certain properties, we use an Adams-
Novikov spectral sequence to compute the homotopy of such a
spectrum at the prime 2.

1. Introduction

The purpose of this article is to present some algebraic calculations that are rele-
vant to motivic homotopy theory. Recent work [HKO] [DI] has shown that the Adams
and Adams-Novikov spectral sequences are useful for computing in the motivic sta-
ble homotopy category over an algebraically closed field of characteristic zero, after
completion with respect to the motivic F2-Eilenberg-Mac Lane spectrum HF2 that
represents motivic F2-cohomology.

This program is built upon work of Voevodsky [V1] [V2] [V3]. Voevodsky has
described the motivic F2-cohomology of an algebraically closed field of characteristic
zero, which we write as M2. He also described the motivic F2-Steenrod algebra A.
Much like the classical Steenrod algebra Acl, A is generated by elements Sqi, subject
to motivic versions of the Adem relations.

In this article, we take Voevodsky’s descriptions as given algebraic inputs, and we
carry out further algebraic computations. The motivic Adams spectral sequence takes
the cohomology of A, i.e., the ring ExtA(M2, M2), as input. Just as in the classical
situation, it is unlikely that we will ever have a complete description of this ring.
However, much can be said in low dimensions [DI].

Classically, one way to approximate difficult calculations over Acl is to consider
instead the subalgebra A(2)cl generated by Sq1, Sq2, and Sq4. It is possible to give
an explicit but lengthy description of the cohomology of A(2)cl [M2] [IS]. The main
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purpose of this article is to carry out the motivic version of this computation. Namely,
we completely describe the ring ExtA(2)(M2, M2).

The cohomology of A(2)cl is the E2-term of an Adams spectral sequence that con-
verges to the homotopy of tmf at the prime 2. The original sources of this material are
mostly unpublished work of Hopkins, Mahowald, and Miller [H1] [H2]. One might
optimistically hope to construct a motivic spectrum mmf, defined over algebraically
closed fields of characteristic zero, whose homotopy is similarly related to the coho-
mology of motivic A(2). This is a potential homotopical application of our algebraic
computations. In this article, we do not discuss any issues related to the existence of
mmf.

Although it is theoretically possible to compute the homotopy of tmf at the prime 2
by starting with Ext groups over A(2)cl and applying the Adams spectral sequence, it
is difficult in practice. The motivic version of this computation is significantly more
difficult. Even finding the E3-term of the spectral sequence requires a prohibitive
amount of bookkeeping, and there are a tremendous number of exotic extensions to
resolve.

Classically, a more efficient way to compute the homotopy of tmf at the prime
2 is to start with the cohomology of the elliptic curves Hopf algebroid and apply
the Adams-Novikov spectral sequence. This computation is entirely described in [B],
based on work of Hopkins and Mahowald [HM].

At the end of this paper, we carry out the motivic version of this computation. We
make several assumptions about motivic versions of the elliptic curves Hopf algebroid
and the motivic Adams-Novikov spectral sequence. Based on these assumptions, we
are able to describe the homotopy of the speculative motivic spectrum mmf at the
prime 2.

1.1. Organization of the paper

Section 2 gives a brief review of the algebraic objects under consideration. In
Section 3, we set up a motivic May spectral sequence that converges to the cohomology
of A(2). We also describe the E∞-term of this spectral sequence. In Section 4, we
compute Massey products and resolve all multiplicative extensions to give a complete
description of the cohomology of A(2) as a ring. Finally, Section 5 discusses an Adams-
Novikov spectral sequence and describes the homotopy of the speculative motivic
spectrum mmf.

The charts in Sections 3, 4, and 5 are the central contributions of the paper. We
highly recommend that the reader obtain the color versions of these charts, as they
are much easier to interpret.
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2. Background

In this section we review the basic algebraic facts about the objects under con-
sideration. We are working in categories of bigraded objects. In a bidegree (p, q), we
shall refer to p as the topological degree and q as the weight. The terminology is
motivated by the relationship between motivic cohomology and classical homotopy
theory.

Definition 2.1. The bigraded ring M2 is the polynomial ring F2[τ ] on one generator
τ of bidegree (0, 1).

The relevance of M2 is that it is the motivic F2-cohomology of an algebraically
closed field of characteristic zero [V1].

Definition 2.2. The motivic Steenrod algebra A is the M2-algebra generated by ele-
ments Sq2k and Sq2k−1 for all k > 1, of bidegrees (2k, k) and (2k − 1, k − 1) respec-
tively, where Sq0 is the identity, and satisfying the following relations for a < 2b:

Sqa Sqb =
∑

c

(

b − 1 − c

a − 2c

)

τ? Sqa+b−c Sqc .

The expression τ? stands for either 1 or τ . The distinction is easily determined by
consideration of bidegrees. For example, Sq2 Sq2 = τ Sq3 Sq1.

The relevance of A is that it is the ring of motivic F2-cohomology operations over
an algebraically closed field of characteristic zero [V2] [V3].

We consider M2 as an A-module, where Sqi acts trivially on M2 for i > 0. Since
M2 is concentrated in topological degree 0, this is the only possible action of A on
M2.

Definition 2.3. The algebra A(2) is the M2-subalgebra of A generated by Sq1, Sq2,
and Sq4.

Remark 2.4. The algebra A has a Milnor M2-basis consisting of elements of the form
PR, where R = (r1, r2, . . .) ranges over all finite sequences of non-negative integers.
Just as in the classical case, A(2) has an M2-basis consisting of elements of the form
PR, where R = (r1, r2, r3), 0 6 r1 6 7, 0 6 r2 6 3, and 0 6 r1 6 1. See [DI] for more
details on the motivic Milnor basis.

2.1. Ext groups
We will compute the tri-graded groups ExtA(2)(M2, M2).
We have

Ext
0,(0,∗)
A(2) (M2, M2) = Hom

(0,∗)
A(2)(M2, M2) = M2.

Here we abuse notation and write M2 where we really mean HomM2
(M2, M2), the

M2-dual of M2. The only important point is that now τ has bidegree (0,−1). For

fixed s and t, Ext
s,(t+s,∗)
A(2) (M2, M2) is a module over Ext

0,(0,∗)
A(2) (M2, M2). In particular,

it is an M2-module and therefore decomposes as a sum of modules of the form M2 or
M2/τk. In Section 2.2, we will explain that the free part coincides with Ext over the
classical version of A(2).
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2.2. Comparison with the classical Steenrod algebra
We write Acl and A(2)cl for the classical Steenrod algebra and its subalgebra

generated by Sq1, Sq2, and Sq4.
There is a ring map Acl → A that takes Sq2k and Sq2k−1 to τk Sq2k and τk Sq2k−1

respectively. After inverting τ , we have a map Acl ⊗F2
M2[τ

−1] → A[τ−1].

Lemma 2.5. The map Acl ⊗F2
M2[τ

−1] → A[τ−1] is an isomorphism.

In other words, the motivic Steenrod algebra and the classical Steenrod algebra
are essentially the same after inverting τ . The proof of this lemma is a straightfor-
ward algebraic exercise. Similarly, there is a ring isomorphism A(2)cl ⊗F2

M2[τ
−1] →

A(2)[τ−1] that takes Sq1, Sq2, and Sq4 to Sq1, τ Sq2, and τ2 Sq4 respectively.

Proposition 2.6. There are isomorphisms of rings

ExtA(M2, M2) ⊗M2
M2[τ

−1] ∼= ExtAcl
(F2, F2) ⊗F2

M2[τ
−1].

and

ExtA(2)(M2, M2) ⊗M2
M2[τ

−1] ∼= ExtA(2)cl(F2, F2) ⊗F2
M2[τ

−1].

The proof of Proposition 2.6 is given in [DI]. The idea is to use the isomorphism
of Lemma 2.5 and the flatness of M2 → M2[τ

−1].

Definition 2.7. The map

(−)cl : ExtA(M2, M2) → ExtAcl
(F2, F2)

is the localization map ExtA(M2, M2) → ExtA(M2, M2) ⊗M2
M2[τ

−1], followed by the
isomorphism ExtA(M2, M2) ⊗M2

M2[τ
−1] → ExtAcl

(F2, F2) ⊗F2
M2[τ

−1] of Proposi-
tion 2.6, followed by the map ExtAcl

(F2, F2) ⊗F2
M2[τ

−1] → ExtAcl
(F2, F2) that sends

τ to 1. The map

(−)cl : ExtA(2)(M2, M2) → ExtA(2)cl(F2, F2)

is defined similarly.

Remark 2.8. The point of Proposition 2.6 is that (−)cl induces an isomorphism from
the free part of ExtA(2)(M2, M2) to ExtA(2)cl(F2, F2), after tensoring over M2 with
F2. On the other hand, (−)cl applied to the non-free part of ExtA(2)(M2, M2), i.e., to

copies of M2/τk, is always zero.

Remark 2.9. In fact, (−)cl is actually a map of E2-terms of Adams spectral sequences,
so differentials are preserved. We will not need this result. See [DI] for more details.

3. The motivic May spectral sequence

In this section we begin our computation of ExtA(2)(M2, M2) by setting up a May
spectral sequence [M1] and finding the E∞-term of this spectral sequence. Elements
of ExtA(2)(M2, M2) will be graded in the form (s, a, w), where s is the stem, i.e.,
the topological degree minus the homological degree, a is Adams filtration, i.e., the
homological degree, and w is the weight.
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Let I be the two-sided M2-ideal of A(2) generated by Sq1, Sq2, and Sq4. Let
GrA(2) denote the associated graded algebra A(2)/I ⊕ I/I2 ⊕ I2/I3 ⊕ · · · . Elements
of GrA(2) will be graded in the form (m, t, w), where m is the May filtration, i.e.,
the I-adic valuation, t is the topological degree, and w is the weight.

We will first need to compute ExtGr A(2)(M2, M2). Elements of this ring will be
graded in the form (m, s, a, w), where m is the May filtration, s is the stem, i.e., the
topological degree minus the homological degree, a is the Adams filtration, i.e., the
homological degree, and w is the weight.

Proposition 3.1. There is a spectral sequence

E2 = Ext
(m,s,a,w)
Gr A(2) (M2,M2) ⇒ Ext

(s,a,w)
A(2) (M2, M2).

We shall refer to this as the motivic May spectral sequence. As usual, it can be
obtained by filtering the cobar complex by powers of I.

Let Icl be the ideal of A(2)cl generated by Sq1, Sq2, and Sq4, and let GrA(2)cl be
the associated graded algebra.

Proposition 3.2.

(a) The tri-graded algebras GrA(2) and GrA(2)cl ⊗F2
F2[τ ] are isomorphic.

(b) The quadruply-graded rings ExtGr A(2)(M2, M2) and ExtGr A(2)cl
(F2, F2) ⊗F2

M2

are isomorphic.

The point is that the E2-terms of the motivic and classical May spectral sequences
are very similar. Moreover, since the comparison map (−)cl of Definition 2.7 preserves
filtrations, it induces a map from the motivic May spectral sequence to the classical
May spectral sequence. This means that we can deduce information about differentials
in the motivic situation from known information in the classical situation.

The proposition can be proved just as in [DI]. The main point is that the τ
coefficients in the relations in A appear only on terms of higher filtration and thus
do not affect the associated graded algebra.

The classical ring ExtGr A(2)cl(F2, F2) is computed in [M2] using the May spectral
sequence. It is also computed in [IS] using a different method.

By Proposition 3.2 and the results in [M1], the ring ExtGr A(2)(M2, M2) is the coho-
mology of the differential graded M2-algebra M2[h10, h11, h12, h20, h21, h30], where the
differential is described in Table 1. See [DI] for an explanation of the degrees.

It is relatively straightforward to compute ExtGr A(2)(M2, M2) from the differentials
given in Table 1. Table 2 lists the generators.

Proposition 3.3. The ring ExtGr A(2)(M2, M2) is generated over M2 by the elements
listed in Table 2, subject to the relations

1. h0h1 = 0.

2. h1h2 = 0.

3. h2b20 = h0h0(1).

4. h2h0(1) = h0b21.

5. h0(1)2 = b20b21 + h2
1b30.

The proof of Proposition 3.3 is a straightforward lift of the analogous classical
computation because of Proposition 3.2(b).
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Table 1: Differentials for computing ExtGr A(2)(F2, F2)

x degree d(x)
h10 (1, 0, 1, 0) 0
h11 (1, 1, 1, 1) 0
h12 (1, 3, 1, 2) 0
h20 (2, 2, 1, 1) h10h11

h21 (2, 5, 1, 3) h11h12

h30 (3, 6, 1, 3) h10h21 + h20h12

Table 2: Generators for ExtGr A(2)(M2, M2)

generator degree description in terms of hij

h0 (1, 0, 1, 0) h10

h1 (1, 1, 1, 1) h11

h2 (1, 3, 1, 2) h12

b20 (4, 4, 2, 2) h2
20

b21 (4, 10, 2, 6) h2
21

b30 (6, 12, 2, 6) h2
30

h0(1) (4, 7, 2, 4) h20h21 + h11h30

3.1. E4-term of the motivic May spectral sequence

Having described the E2-term ExtGr A(2)(M2, M2) of the motivic May spectral
sequence, we are now ready to compute the higher terms. For dimension reasons, as
in the classical case, the odd differentials must vanish. In particular, E3 = E4.

The d2 differentials on the E2-term are easy to analyze. They are entirely deter-
mined by the facts that d2 commutes with the comparison map (−)cl and that d2

preserves the weight. Table 3 lists the d2 differentials on all of our generators. From
the data in this table, one can use the Leibniz rule to compute the d2 differential on
any element.

A straightforward computation now gives the E4-term of the motivic May spectral
sequence. The generators are listed in Table 4, and the relations are listed in the next
theorem.

Table 3: d2 differentials in the motivic May spectral sequence

x d2(x) x d2(x)
h0 0 b20 τh3

1 + h2
0h2

h1 0 b21 h3
2

h2 0 b30 τh1b21

h0(1) h0h
2
2



THE COHOMOLOGY OF MOTIVIC A(2) 257

Table 4: Generators of the E4-term of the motivic May spectral sequence

generator degree description in E2

h0 (1, 0, 1, 0) h0

h1 (1, 1, 1, 1) h1

h2 (1, 3, 1, 2) h2

P (8, 8, 4, 4) b2
20

c (5, 8, 3, 5) h1h0(1)
u (5, 11, 3, 7) h1b21

α (7, 12, 3, 6) h0b30

d (8, 14, 4, 8) h2
1b30 + b20b21

ν (7, 15, 3, 8) h2b30

e (8, 17, 4, 10) h0(1)b21

g (8, 20, 4, 12) b2
21

∆ (12, 24, 4, 12) b2
30

The notation is chosen to be compatible with the standard notation for elements
in the cohomology of the classical Steenrod algebra. In particular, ccl, dcl, ecl, and gcl

are the classical elements that are usually denoted by c0, d0, e0, and g. The element
Pcl is related to the classical Adams periodicity operator. The element ∆cl is related
to the element in the homotopy of tmf of the same name. The elements u, α, and ν
have no classical analogues and are given arbitrary names.

Theorem 3.4. The E4-term of the motivic May spectral sequence is generated over
M2 by the elements listed in Table 4, subject to the following relations:

1. h0h1, h1h2, h2
0h2 + τh3

1, h0h
2
2, h3

2.

2. τu, τh2
1c, τcd, τce, τcg.

3. h2
0ν + τh1d, h0h2ν + τh1e, h2

2ν + τh1g.

4. h2d + h0e, h2e + h0g, h2α + h0ν.

5. h0c, h2c, h0u, h2u, h1α, h1ν.

6. c2 + h2
1d, u2 + h2

1g, cu + h2
1e, e2 + dg.

7. ud + ce, ue + cg, νd + αe, νe + αg.

8. cα, cν, uα, uν.

9. α2 + h2
0∆, αν + h0h2∆, ν2 + h2

2∆.

10. h2
0d + Ph2

2, h0αd + Ph2ν, d2 + h4
1∆ + Pg.

Several observations can be made immediately. First, the E4-term contains the
polynomial ring M2[P,∆], and the E4-term is free as a module over M2[P,∆]. How-
ever, beware that the E4-term is not of the form M2[P,∆] ⊗M2

B, because of the
relations in part (10) of the theorem.

The E4-term also contains the polynomial ring M2[g], but the E4-term is not free
as a module over M2[g]. For example, h3

0g = 0, but h3
0 is not zero. However, the ideal

generated by g is free over M2[g].
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Table 5: Generators of the E∞-term of the motivic May spectral sequence

generator degree generator degree
h0 (1, 0, 1, 0) ν (7, 15, 3, 8)
h1 (1, 1, 1, 1) e (8, 17, 4, 10)
h2 (1, 3, 1, 2) g (8, 20, 4, 12)
P (8, 8, 4, 4) ∆h1 = 〈τ2g, h2, h1〉 (13, 25, 5, 13)
c (5, 8, 3, 5) ∆c = 〈h2, τ

2g, c〉 (17, 32, 7, 17)
u (5, 11, 3, 7) ∆u = 〈h2, τ

2g, u〉 (17, 35, 7, 19)
α (7, 12, 3, 6) ∆2 (24, 48, 8, 24)
d (8, 14, 4, 8)

Some parts of the E4-term are depicted in the chart on the next page. The hor-
izontal axis is the stem, and the vertical axis is the Adams filtration. Solid circles
indicate copies of M2, while open circles indicate copies of M2/τ . Vertical lines indi-
cate multiplication by h0, lines of slope 1 indicate multiplication by h1, and lines of
slope 1

3 indicate multiplication by h2. Dashed lines indicate that the multiplication
hits τ times a generator. For example, the relation h2

0h2 = τh3
1 occurs in the 3-stem.

Vertical arrows indicate infinite towers of copies of M2 connected by h0 multipli-
cations. Diagonal arrows indicate infinite towers of copies of M2/τ connected by h1

multiplications.

For legibility, we have omitted most of the multiples of P . We have only shown a
few elements (in red) to express multiplicative relations with elements that are not
multiples of P . We have also omitted the strict multiples of ∆ and ∆2.

(For readers with the color version of the chart, the green parts of the figure
consist of elements that are multiples of g, the blue parts consist of elements that
are multiples of g2, and the purple parts consist of elements that are multiples of g3.
Observe that the blue part is a shifted copy of the green part. Similarly, if the figure
were larger, the purple part would be another shifted copy.)

3.2. E∞-term of the motivic May spectral sequence

Having described the E4-term of the motivic May spectral sequence, we are now
ready to compute the E∞-term.

As for the d2 differentials, the d4 differentials commute with the comparison map
(−)cl to the classical May spectral sequence. The only generator that supports a d4

differential is ∆:

d4(∆) = τ2h2g.

A straightforward computation now gives the E5-term of the motivic May spectral
sequence. By inspection, there are no higher differentials, so E5 = E∞. The generators
of E∞ are listed in Table 5, and the relations are listed in the next theorem.

Although ∆ does not survive past E4, we shall write ∆ for the Massey product
operators 〈τ2g, h2,−〉 and 〈h2, τ

2g,−〉.
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Table 6: Multiplication table for E∞

c u α d ν e ∆h1 ∆c ∆u

c h2
1d h2

1e 0 cd 0 ud h1∆c h1d∆h1 h1e∆h1

u h2
1g 0 ce 0 cg h1∆u h1e∆h1 h1g∆h1

α α2 αd αν νd 0 0 0

d h3
1∆h1 + Pg αe de d∆h1 d∆c e∆c

ν ν2 αg 0 0 0

e dg e∆h1 d∆u g∆c

∆h1 h2
1∆

2 h1c∆
2 h1u∆2

∆c h2
1d∆2 h2

1e∆
2

∆u h2
1g∆2

Theorem 3.5. The E∞-term of the motivic May spectral sequence is generated over
M2 by the elements listed in Table 5, subject to the relations expressed in the multi-
plication table Table 6, as well as the following relations:

1. h0h1, h1h2, h2
0h2 + τh3

1, h0h
2
2, h3

2.

2. τu, τh2
1c, τh2

1∆c, τ∆u, τcd, τce, τcg, τd∆c, τe∆c, τg∆c, τ2h2g.

3. h2
0ν + τh1d, h0h2ν + τh1e, h2

2ν + τh1g, h0αν + τh2
1∆h1.

4. h2d + h0e, h2e + h0g, h2α + h0ν.

5. h0c, h2c, h0u, h2u, h1α, h1ν, h0∆h1, h2∆h1, h0∆c, h2∆c, h0∆u, h2∆u, h0ν
2,

h2ν
2.

6. h2
0d + Ph2

2, h0αd + Ph2ν, α2d + Pν2.

7. α2ν + τd∆h1, αν2 + τe∆h1, ν3 + τg∆h1, α4 + h4
0∆

2.

Note that the E∞-term is free as a module over M2[P,∆2]. It is not free as a
module over M2[g], but the ideal generated by g2 is free over M2[g].

Some parts of the E∞-term are depicted in the chart on the next page. The hor-
izontal axis is the stem, and the vertical axis is the Adams filtration. Solid circles
indicate copies of M2, open circles indicate copies of M2/τ , open circles with dots
indicate copies of M2/τ2, and open boxes indicate copies of M2/τ3. Vertical lines
indicate multiplication by h0, lines of slope 1 indicate multiplication by h1, and lines
of slope 1

3 indicate multiplication by h2. Dashed lines indicate that the multiplication
hits τ times a generator.

Most of the multiples of P are not shown. A few multiples of P are shown (in red)
to express multiplicative relations with elements that are not multiples of P . Also,
multiples of ∆2 are not shown.

(For readers with the color version of the chart, multiples of g are shown in green,
multiples of g2 are shown in blue, and multiples of g3 are shown in purple. If the
diagram were larger, the purple portion of the diagram would be a shifted copy of
the blue portion.)

Note the class de∆h1 in the 56-stem. Classically de∆h1 = α3g, but motivically we
oly have α3g = τde∆h1. Thus τde∆h1 is a multiple of g, but de∆h1 is not a multiple
of g.
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4. Computation of ExtA(2)(M2, M2)

With the E∞-term of the motivic May spectral sequence in hand from the previous
section, we have nearly computed ExtA(2)(M2, M2). It only remains to resolve some
hidden extensions in the multiplicative structure.

4.1. Massey products
In this section we compute some Massey products in ExtA(2)(M2, M2) that will be

needed to resolve the extension problems. All Massey products that we consider have
zero indeterminacy.

Lemma 4.1. In ExtA(2)(M2, M2),

1. τh2
1 = 〈h0, h1, h0〉.

2. h0h2 = 〈h1, h0, h1〉.

3. h2
2 = 〈h1, h2, h1〉.

There are several ways of understanding these formulas.
The simplest is to note that the comparison map (−)cl commutes with Massey

products, and these formulas are already known in ExtA(2)cl(F2, F2). From this, we
can deduce the motivic formulas also.

Another approach is to compute a minimal resolution for A(2) in low dimensions
and to compute Yoneda products and Massey products explicitly in terms of chain
maps.

Lemma 4.2. In ExtA(2)(M2, M2),

1. τd = 〈h0, h1, α〉.

2. τe = 〈h0, h1, ν〉.

3. τe = 〈h2, h1, α〉.

4. τg = 〈h2, h1, ν〉.

Proof. For the first formula, we have

h1〈h0, h1, α〉 = 〈h1, h0, h1〉α = h0h2α = τh1d.

In the relevant dimension, multiplication by h1 is injective, so τd = 〈h0, h1, α〉.
The proofs of the other formulas are similar.

Lemma 4.3. In ExtA(2)(M2, M2),

1. c = 〈h1, h0, h
2
2〉.

2. u = 〈h1, h2, h
2
2〉.

3. α = 〈h0, h1, h2, τh2
2〉.

4. h0d = 〈τh1c, h1, h2〉.

5. αe = 〈τg, c, h0〉.

6. αg = 〈τg, u, h0〉.

Proof. The formulas are already true in the E4-term of the motivic May spectral
sequence. They can be verified by computations with explicit cocycles. There are no
extension problems to resolve in passing from E4 to ExtA(2)(M2, M2).
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We remind the reader that ∆h1, ∆c, and ∆u are defined as follows.

Definition 4.4. In ExtA(2)(M2, M2),

1. ∆h1 = 〈τ2g, h2, h1〉.

2. ∆c = 〈h2, τ
2g, c〉.

3. ∆u = 〈h2, τ
2g, u〉.

4.2. Multiplicative Extensions
Lemma 4.5. In ExtA(2)(M2, M2), the elements τ∆u, τd∆c, τe∆c, and τg∆c are all
zero.

Proof. For the first element, note that τ〈u, τ2g, h2〉 ⊆ 〈0, τ2g, h2〉 = 0.
For the second element,

〈h2, τ
2g, c〉τd = h2〈τ

2g, c, τd〉,

which equals zero since 〈τ2g, c, τd〉 is zero for dimension reasons. The argument for
the last two elements is similar.

Lemma 4.6. In ExtA(2)(M2, M2), we have

1. d∆u = e∆c.

2. e∆u = g∆c.

Proof. We know from E∞ that e∆u equals either g∆c or g∆c + ταg2. We have
already shown that τ · g∆c and τ · e∆u are both zero, but τ3αg2 is non-zero. There-
fore, e∆u = g∆c.

The proof of the second formula is similar.

Lemma 4.7. In ExtA(2)(M2, M2), we have the following formulas:

1. h0∆c = τh0αg.

2. h0∆u = τh0νg.

3. h2∆c = τh0νg.

4. h2∆u = τh2νg.

Proof. For the first formula,

h0〈c, τ
2g, h2〉 = 〈h0, c, τg〉τh2 = τh2αe = τh0αg.

The proof of the second formula is similar.
The third and fourth formulas follow easily by multiplying the first and second

formulas by h2, using that multiplication by h0 is injective in the relevant dimensions.

Lemma 4.8. In ExtA(2)(M2, M2), we have the following formulas:

1. αc = τh2
0g.

2. νc = τh0h2g.

3. αu = τh0h2g.

4. νu = τh2
2g.



264 DANIEL C. ISAKSEN

5. α∆h1 = τ3eg.

6. ν∆h1 = τ3g2.

Proof. For the first formula,

α〈h1, h0, h
2
2〉 = 〈α, h1, h0〉h

2
2 = τdh2

2 = τh2
0g.

The other calculations are similar.

Lemma 4.9. In ExtA(2)(M2, M2), the products α∆c, α∆u, ν∆c, and ν∆u are all
zero.

Proof. For the first product,

α∆c = 〈h0, h1, h2, τh2
2〉∆c ⊆ 〈h0, h1, h2, τ

3h1eg〉 = 〈h0, h1, h2, 0〉 = 0.

The second product vanishes for similar reasons.

For the third product,

τν∆c = 〈h2, τ
2g, c〉τν = h2〈τ

2g, c, τν〉,

which is zero because 〈τ2g, c, τν〉 is zero for dimension reasons. Therefore, ν∆c does
not equal τανg since τ2ανg is not zero. The fourth product vanishes for similar
reasons.

Lemma 4.10. In ExtA(2)(M2, M2), we have the following formulas:

1. (∆h1)
2 = h2

1∆
2 + τ2ν2g.

2. ∆h1 · ∆c = h1c∆
2.

3. ∆h1 · ∆u = h1u∆2.

4. (∆c)2 = h2
1d∆2.

5. ∆c · ∆u = h2
1e∆

2.

6. (∆u)2 = h2
1g∆2.

Proof. For the first formula, we know from E∞ that (∆h1)
2 equals either h2

1∆
2 or

h2
1∆

2 + τ2ν2g. We have already shown that ν(∆h1)
2 = τ3g2∆h1 is non-zero, but

ν · h2
1∆

2 is zero. It follows that (∆h1)
2 = h2

1∆
2 + ν2g.

For the second formula, we know from E∞ that ∆h1 · ∆c equals either h1c∆
2 or

h1c∆
2 + τ4eg2. We have already shown that τg · ∆h1∆c and τg · h1c∆

2 are both
zero, but τg · τ4eg3 is non-zero.

For the third formula, we know from E∞ that ∆h1 · ∆u equals h1u∆2 or h1u∆2 +
τ4g3. We have already shown that τ · ∆h1∆u and τ · h1u∆2 are zero, but τ · τ4g3 is
non-zero.

For the fourth formula, we know from E∞ that (∆c)2 equals h2
1d∆2 or h2

1d∆2 +
τ2α2g2. Observe that

τ · (∆c)2 = 〈h2, τ
2g, c〉τ∆c = h2〈τ

2g, c, τ∆c〉,

which must be zero because 〈τ2g, c, τ∆c〉 is zero for dimension reasons. Also, τ · h2
1d∆2

is zero, but τ · τ2α2g2 is non-zero.
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For the fifth formula, we know from E∞ that ∆c · ∆u equals h2
1e∆

2 or h2
1e∆

2 +
τ2ανg2. We already know that τ · (∆c · ∆u) and τ · h2

1e∆
2 are zero, but τ · τ2ανg is

non-zero.
For the sixth formula, we know from E∞ that (∆u)2 equals h2

1g∆2 or h2
1g∆2 +

τ2ν2g2. We already know that τ · (∆u)2 and τ · h2
1g∆2 are zero, but τ · τ2ν2g2 is

non-zero.

Lemma 4.11. In ExtA(2)(M2, M2), we have τh2
1∆c = τ2h0dg but h2

1∆c does not
equal τh0dg.

Proof. From E∞, we know that h1 · h
2
1∆c is non-zero, but h1 · τh0dg is zero. There-

fore, h2
1∆c and τh0dg cannot be equal.

From E∞, we also know that h1∆c equals c∆h1. Therefore,

τh2
1∆c = τh1c∆h1 = τh1c〈h1, h2, τ

2g〉 = 〈τh1c, h1, h2〉τ
2g.

It follows that τh2
1∆c = τ2h0dg.

Lemma 4.12. In ExtA(2)(M2, M2), we have α4 = h4
0∆

2 + τ4Pg2.

Proof. From E∞, we know that α4 equals either h4
0∆

2 or h4
0∆

2 + τ4Pg2. We have
already shown that ∆h1 · α

4 equals

α3 · τ3eg = τ3α2e · νe = τ4d∆h1 · dg = τ4g∆h1(Pg + h3
1∆h1) = τ4Pg2∆h1.

However, ∆h1 · h
4
0∆

2 equals zero. It follows that α4 must equal h4
0∆

2 + τ4Pg2.

4.3. Ring structure of ExtA(2)(M2, M2)
Finally, we assemble the calculations made in the previous sections to compute

ExtA(2)(M2, M2) as a ring. The generators are listed in Table 7. All possible multi-
plicative extensions have been resolved in the previous section.

Table 7: Generators of ExtA(2)

generator degree generator degree
h0 (0, 1, 0) ν (15, 3, 8)
h1 (1, 1, 1) e (17, 4, 10)
h2 (3, 1, 2) g (20, 4, 12)
P (8, 4, 4) ∆h1 (25, 5, 13)
c (8, 3, 5) ∆c (32, 7, 17)
u (11, 3, 7) ∆u (35, 7, 19)
α (12, 3, 6) ∆2 (48, 8, 24)
d (14, 4, 8)
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Theorem 4.13. The ring ExtA(2)(M2, M2) is generated over M2 by the elements
listed in Table 7, subject to the relations expressed in the multiplication table below
(Table 8), as well as the following relations:

1. h0h1, h1h2, h2
0h2 + τh3

1, h0h
2
2, h3

2.

2. τu, τh2
1c, τh2

1∆c + τ2h0dg, τ∆u, τcd, τce, τcg, τd∆c, τe∆c, τg∆c, τ2h2g.

3. h2
0ν + τh1d, h0h2ν + τh1e, h2

2ν + τh1g, h0αν + τh2
1∆h1.

4. h2d + h0e, h2e + h0g, h2α + h0ν.

5. h0c, h2c, h0u, h2u, h1α, h1ν, h0∆h1, h2∆h1, h0∆c + τh0αg, h2∆c + τh0νg,
h0∆u + τh0νg, h2∆u + τh2νg, h0ν

2, h2ν
2.

6. h2
0d + Ph2

2, h0αd + Ph2ν, α2d + Pν2.

7. α2ν + τd∆h1, αν2 + τe∆h1, ν3 + τg∆h1, α4 + h4
0∆

2 + τ4Pg2.

Table 8: Multiplication table for ExtA(2)

c u α d ν

c h2
1d h2

1e τh2
0g cd τh0h2g

u h2
1g τh0h2g ce τh2

2g

α α2 αd αν

d h3
1∆h1 + Pg αe

ν ν2

e ∆h1 ∆c ∆u

c ud h1∆c h1d∆h1 h1e∆h1

u cg h1∆u h1e∆h1 h1g∆h1

α νd τ3eg 0 0

d de d∆h1 d∆c e∆c

ν αg τ3g2 0 0

e dg e∆h1 d∆u g∆c

∆h1 h2
1∆

2 + τ2ν2g h1c∆
2 h1u∆2

∆c h2
1d∆2 h2

1e∆
2

∆u h2
1g∆2

Some parts of ExtA(2)(M2, M2) are depicted in the chart on the next page. The
notation is the same as in the chart for the E∞-term of the motivic May spectral
sequence.

The most interesting difference occurs with ∆c. Note that ∆c supports exotic
multiplications by h0 and h2. Note also that τh2

1∆c is no longer zero; this is an exotic
τ -extension. In fact, h2

1∆c is the sum (h2
1∆c + τh0dg) + τh0dg, where the first term

is killed by τ and the second is killed by no power of τ .
Similarly to ∆c, the classes ∆u, d∆c, and e∆c all support exotic multiplications

by h0 and h2.
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4.4. An Adams spectral sequence?

At this point, it is natural to wonder whether the cohomology of A(2) is the E2-
term of an Adams spectral sequence that converges to the homotopy of some motivic
spectrum that is analogous to tmf.

Assuming that such a spectral sequence exists, it is possible to entirely determine
the d2-differentials using two tools. The first is a map

ExtA(M2, M2) → ExtA(2)(M2, M2)

induced by the inclusion A(2) → A, which ought to be a map of E2-terms of spectral
sequences. The second is the map (−)cl : ExtA(2)(M2, M2) → ExtA(2)cl(F2, F2), which
again ought to be a map of E2-terms of spectral sequences.

For example, comparison to the full motivic Steenrod algebra implies that d2(e) =
h2

1d [DI]. Then the relation ud = ce implies that d2(u) = h2
1c. Similar kinds of argu-

ments allow one to compute the entire d2 differential.

It is therefore possible to find explicitly the E3-term of this hypothetical spectral
sequence. Unfortunately, the E3-term contains a large non-free part, none of which
is seen in the classical situation. We will not here describe this messy calculation
any further. In Section 5, we present a simpler way of making the same speculative
calculation.

5. Adams-Novikov spectral sequence for “motivic modular

forms”

In this section, we make a leap of faith and assume that there exists a motivic
spectrum mmf, called “motivic modular forms”, defined over Spec C. We assume
that the topological realization of this motivic spectrum is the classical spectrum tmf.
We also assume that the homotopy of mmf can be computed by an Adams-Novikov
spectral sequence whose E2-term is the cohomology of a version of the elliptic curves
Hopf algebroid.

Recall that the elliptic curves Hopf algebroid localized at the prime 2 has the form
(Ãcl, Γ̃cl), where Ãcl is the ring Z(2)[a1, a3, a4, a6] and Γ̃cl = Ãcl[s, t] [B].

We write M(2) for the ring Z(2)[τ ], i.e., the 2-local motivic cohomology of a point.

Definition 5.1. The motivic elliptic curves Hopf algebroid localized at 2 is (Ã, Γ̃),
where Ã = M(2)[a1, a3, a4, a6] and Γ̃ = Ã[s, t]. The bidegree of ai is (2i, i), while the
bidegrees of s and t are (2, 1) and (6, 3) respectively.

The structure maps of (Ã, Γ̃) are defined to be compatible with the classical struc-
ture maps.

One may compute the cohomology of (Ã, Γ̃) as in [B, Section 7]. It turns out that
the weights introduce no new complications. The answer is essentially the same as the
classical answer, as shown in the chart on page 30 of [B]. In fact, the motivic answer
is equal to the classical answer tensored over Z(2) with M(2). Also, the generators are
assigned weights, but these are easy to determine. At location (s, t) of the chart, the
weight of the generator is s+t

2 .
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We now have the E2-term of a (speculative) spectral sequence for computing the
homotopy groups of mmf at the prime 2. Next we consider differentials and compute
the E∞-term.

We assume that the topological realization of mmf is tmf. This implies that the
motivic differentials are algebraically compatible with the classical differentials, i.e.,
they are equal after inverting τ . Using this fact, it turns out that the motivic dif-
ferentials are entirely determined by the classical differentials. However, one must be
careful with the weights. We describe this issue next.

The first classical differential is a d3 that hits h4
1. The input to this differential has

weight 3 (since it lies in the 5-stem and has filtration 1), but h4
1 has weight 4. It follows

that d3 hits τh4
1 in the motivic calculation, not h4

1 as in the classical calculation. As
a result, instead of finding that h4

1 = 0, we have that hk
1 is non-zero for all k > 0 but

τhk
1 = 0 for k > 4.

The same situation occurs for the h1-multiples of many of the classes in filtration
0. Classically, d3-differentials tell us that these classes are killed by h3

1. Motivically,
these classes are not killed by hk

1 for any k, but they are killed by τh3
1.

In order to simplify our discussion and make our diagrams legible, from here on
we shall ignore these classes in filtration 0 and their hk

1-multiples without further
mention.

Classically, the next differential is d5(∆) = h2g. Since ∆ has weight 12 while h2g
has weight 14, the motivic differential is d5(∆) = τ2h2g. We observe that h2g survives
the motivic calculation, but τ2h2g = 0.

The entire calculation proceeds similarly. Elementary bookkeeping with the weights
shows that a non-zero d2k+1-differential hits τk times a generator. In other words,
non-zero d2k+1-differentials produce classes that are killed by τk.

The results of the full analysis are shown in the three charts at the end of the
paper. These are the E∞-term of a (speculative) spectral sequence converging to the
2-complete homotopy groups of the (speculative) motivic spectrum mmf.

Boxes represent copies of Z2[τ ]. Solid dots represent copies of Z/2[τ ]. A number
k represents Z/2[τ ]/τk. A horizontal row of symbols at a single location represents
extensions by 2. For example, at location (3, 1) there is a copy of Z/4[τ ], and at
location (23, 5) there is a copy of Z/4[τ ]/τ2. More interestingly, at location (20, 4)
there is a copy of Z/8[τ ]; at location (40, 8) there is a copy of Z/8[τ ]/4τ2; and at
location (120, 24) there is a copy of Z/8[τ ]/(τ11, 2τ6, 4τ2).

Observe that if we ignore the numbers and just consider the boxes and solid dots,
we obtain the classical picture. This expresses the principle that the classical calcu-
lation is recovered by inverting τ .

Lines of slope 1 and 1/3 (in blue) show extensions by η and ν that are detected in
the E∞-term. They take generators to generators in the predictable way. The arrows
of slope 1 (in blue) indicate infinite sequences of elements that are connected by h1-
multiplications and are killed by τ . We have not shown them explicitly in order to
make the diagrams legible.

The other lines (in red) show exotic extensions by 2, η, and ν that are not detected
in E∞. Beware that these exotic extensions do not take generators to generators. The
first example occurs in the 3-stem, where 4ν = τη3. The next example is νe[25, 1] =
τ2ǫκ. As always, the required power of τ is easily determined by the weights. Here we
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write e[s, t] for the homotopy element that is represented by the generator in stem s
and filtration t. Note that ǫ and κ are names for e[8, 2] and e[20, 4].

The motivic calculation shows many more exotic extensions than the classical
calculation. However, all of the motivic extensions are easily implied by the classical
ones.

Remark 5.2. The classes e[124, 6], e[144, 10], e[164, 14], and e[184, 18] support non-
exotic η-extensions, but they support exotic η-extensions after multiplication by τ2.

The charts in [B] inadvertently failed to indicate exotic ν-extensions on e[122, 2],
e[142, 6], e[162, 10], and e[182, 14]. For completeness, we provide a proof.

Lemma 5.3. νe[122, 2] = τ9e[125, 21].

Proof. We need the following brackets:

e[25, 1] = 〈τ2κ, ν, η〉

e[122, 2] = 〈η, τ5κ3, τ6κ3〉.

These follow from Massey product calculations in the differential graded algebras
(E5, d5) and (E23, d23) respectively.

By Toda shuffling, we compute

ν · e[122, 2] = ν〈η, τ5κ3, τ6κ3〉

= 〈ν, η, τ5κ3〉τ6κ3

= τ6κ〈ν, η, τ5κ3〉κ2

= τ4〈τ2κ, ν, η〉τ5κ5

= τ9e[25, 1]κ5

= τ9e[125, 21].

Remark 5.4. One might be surprised to see that the classes e[162, 10] and e[182, 14]
are hit by exotic η-extensions, yet support exotic ν-extensions. More precisely, we
have

νηe[161, 3] = ν(τ3e[162, 10]) = τ12e[165, 29].

But τ11e[165, 29] = 0, so this is consistent with the fact that ην = 0.

Example 5.5. Note that π0,∗mmf is Z2[τ ]. Hence for any k, πk,∗mmf is a Z2[τ ]-module.
Consider π120,∗mmf. This module has 6 free generators of weight 60. These arise

in filtration 0; only one is shown on the chart.
In addition, π120,∗mmf contains many copies of Z/2[τ ]/τ ; these arise as h1-multiples

and are not shown explicitly on the chart.
Finally, π120,∗mmf contains a copy of Z/8[τ ]/(τ11, 2τ6, 4τ2), generated by κ6 with

weight 72.

Example 5.6. The Z2[τ ]-module π170,∗mmf contains a copy of

Z/8[x, y, z]/(τ2x, τ6y, τ11z, 2x = τ4y, 2y = τ6z),

where the generators x, y, and z have weights 88, 92, and 98 respectively.



T
H

E
C

O
H

O
M

O
L
O

G
Y

O
F

M
O

T
IV

IC
A

(2
)

2
7
1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

1

2

3

4

5

6

0 4 8 12 16 20 24 28 32 36 40 44 48 52

0

4

8

12

•
•
••

•
• •

•
•
• •

•••
•
•

22

3

2 •
2

•
• 2

••2
•
•

22

3

2 4

2

•
•
•

•
•
• •

•
•

2

3

•

•
••

•

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
0

1

2

3

4

5

6

7

8

9

10

48 52 56 60 64 68 72 76 80 84 88 92 96 100

0

4

8

12

16

20

4

2

•
4 2

••2
5

5

22

3

2 4

2

6

4 2

•62

5

5

22

3

2 4

2

6

4 2

•62

•
• •

•
•

2

3

4

4 4

•
5

2

3

4

4 4

•
••

•
•

• •
•

•
22

3

2

2 2

2

•
22

3

2

2

•

3

•
•
••

•



2
7
2

D
A

N
IE

L
C

.
IS

A
K

S
E
N

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

96 100 104 108 112 116 120 124 128 132 136 140 144 148

0

4

8

12

16

20

24

28

32

2

2

•62

5

5

22

3

2 4

2

6

4 2

11-62

5

5

22

3

2 4

2

6

4 2

11-62

5

5

22

3

2 4

4

•
5

2

3

4

4 4

•
5

2

3

4

4 4

11

5

2

3

2

2

•
22

3

2

2 2

2

•
22

3

2

2 2

2

3

3

•
•
••

•
• •

•
•

• •
••

•
•

22

3

2 •
2

•
• 2

•2
•

•
22

3

2 4

2

•
•

•
•

• •

•
2

3

•

••

•



T
H

E
C

O
H

O
M

O
L
O

G
Y

O
F

M
O

T
IV

IC
A

(2
)

2
7
372 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

144 148 152 156 160 164 168 172 176 180 184 188 192 196

0

4

8

12

16

20

24

28

32

36

40

4

2

2 4

2

6

4 2

11-62

5

5

22

3

2 4

2

6

4 2

11-62

5

5

22

3

2 4

2

6

4

11

5

2

3

4

4 4

11

5

2

3

4

4 4

11

5

2

3

4

4

2

2

•
22

3

2

2 2

2

11

22

3

2

2 2

2

11

22

3

2

3

3

3

•
4 2

•2
5

5

22

3

2 4

2

6

4 2

62

5

5

22

3

2 4

2

62

6

4 2

•
• •

•
2

3

4

4 4

5

2

3

4

4 4

••

•
•

• •
•

22

3

2

2 2

2

22

3

2

2



274 DANIEL C. ISAKSEN

References

[B] T. Bauer, Computation of the homotopy of the spectrum tmf, Geometry &
Topology Monographs 13 (2008) 11–40.

[DI] D. Dugger and D. C. Isaksen, The motivic Adams spectral sequence, preprint
(2009), arXiv:0901.1632.

[H1] M. J. Hopkins, Topological modular forms, the Witten genus, and the theo-
rem of the cube, Proc. International Congress of Mathematicians, Vol. 1, 2
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