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REMARKS ON FINITE SUBSET SPACES

SADOK KALLEL and DENIS SJERVE

(communicated by J. Daniel Christensen)

Abstract
This paper expands on and refines some known and less

well-known results about the finite subset spaces of a simplicial
complex X including their connectivity and manifold structure.
It also discusses the inclusion of the singletons into the three-
fold subset space and shows that this subspace is weakly con-
tractible but generally non-contractible unless X is a cogroup.
Some homological calculations are provided.

1. Statement of results

Let X be a topological space (always assumed to be path-connected), and k a
positive integer. It has become increasingly useful in recent years to study the space

SubnX := {{x1, . . . , x`} ⊂ X | ` 6 n}
of all finite subsets of X of cardinality at most n [1, 3, 9, 15, 19, 23]. This space is
topologized as the identification space obtained from Xn by identifying two n-tuples
if and only if the sets of their coordinates coincide [4]. The functors Subn(−) are
homotopy functors in the sense that if X ' Y , then Subn(X) ' Subn(Y ). If k 6 n,
then Subk X naturally embeds in Subn X. We write jn : X ↪→ Subn X for the inclusion
given by jn(x) = {x}.

This paper takes advantage of the close relationship between finite subset spaces
and symmetric products to deduce a number of useful results about them.

As a starting point, we discuss cell structures on finite subset spaces. We observe
in Section 3 that if X is a finite d-dimensional simplicial complex, then Subn X is an
nd-dimensional CW-complex and of which Subk X for k 6 n is a subcomplex (Propo-
sition 3.1). Furthermore, SubX :=

∐
n>1 Subn X has the structure of an abelian CW-

monoid (without unit) whenever X is a simplicial complex.
In Section 4 we address a connectivity conjecture stated in [25]. We recall that

a space X is r-connected if πi(X) = 0 for i 6 r. A contractible space is r-connected
for all positive r. In [25] Tuffley proves that Subn X is n− 2-connected and conjec-
tures that it is n + r − 2-connected if X is r-connected. We are able to confirm his
conjecture for the three-fold subset spaces. In fact we show
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Theorem 1.1. If X is r-connected, r > 1 and n > 3, then Subn X is r + 1-connected.

In Section 5 we address a somewhat surprising fact about the embeddings

Subk X ↪→ Subn X, k 6 n.

A theorem of Handel [9] asserts that the inclusion j : Subk(X) ↪→ Sub2k+1(X) for
any k > 1 is trivial on homotopy groups (i.e. “weakly trivial”). This is, of course,
not enough to conclude that j is the trivial map, and in fact it need not be. Let
Subk(X, x0) be the subspace of Subk X of all finite subsets containing the base-
point x0 ∈ X. Handel’s result is deduced from the more basic fact that the inclusion
jx0 : Subk(X, x0) ↪→ Sub2k−1(X, x0) is weakly trivial. The following theorem implies
that these maps are often not null-homotopic.

Theorem 1.2. The embeddings

jx0 : X ↪→ Sub3(X,x0), x 7→ {x, x0}
and

j : X ↪→ Sub3(X), x 7→ {x},
are both null-homotopic if X is a cogroup. If X = S1 × S1 is the torus, then both j
and jx0 are non-trivial in homology and are hence essential.

For a definition of a cogroup, see Section 5. In particular, suspensions are cogroups.
The second half of Theorem 1.2 follows from a general calculation given in Section 5
which exhibits a model for Sub3(X,x0) and uses it to show that its homology is
an explicit quotient of the homology of the symmetric square SP2X by a submod-
ule determined by the coproduct on H∗(X). One deduces, in particular, a homo-
topy equivalence between Sub3(ΣX,x0) and the reduced symmetric square SP

2
(ΣX)

(cf. Section 2.1 and Proposition 5.6). The methods in Section 5 are taken up again
in [12] where an explicit spectral sequence is devised to compute H∗(Subn X) for any
finite simplicial complex X and any n > 1.

The final two sections of this paper deal with manifold structures on Subn X and
top homology groups. It is known that Sub2 X = SP2X is a closed manifold if and
only if X is closed of dimension 2. This is a consequence of the fact that SP2(Rd) is
not a manifold if d > 2, while SP2(R2) ∼= R4 [20]. The following complete description
is due to Wagner [26]:

Theorem 1.3. Let X be a closed manifold of dimension d > 1. Then Subn X is a
closed manifold if and only if either
(i) d = 1 and n = 3, or
(ii) d = 2 and n = 2.

This result is established in Section 7 where we use, in the case d > 2, the con-
nectivity result of Theorem 1.1, one observation from [17] and some homological
calculations from [13]. In the case d = 1, we reproduce Wagner’s cute argument.
Furthermore in that section, we refine a result of Handel’s [9] on the top homology
groups of Subn X when X is a manifold. We point out that if X is a closed orientable



REMARKS ON FINITE SUBSET SPACES 231

manifold of dimension d > 2, then the top homology group Hnd(Subn X) is trivial if
d is odd and is Z if d is even. This group is always trivial if X is not orientable (see
Section 6).
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2. Basic constructions

All spaces X in this paper are path-connected, paracompact, and have a chosen
basepoint x0.

The way we will think of Subn X is as a quotient of the n-th symmetric product
SPnX. This symmetric product is the quotient of Xn by the permutation action of the
symmetric group Sn. The quotient map π : Xn −→ SPnX sends (x1, . . . , xn) to the
equivalence class [x1, . . . , xn]. It will be useful sometimes to write such an equivalence
class as an an abelian product x1 · · ·xn, xi ∈ X. There are topological embeddings

jn : X ↪→ SPnX, x 7→ xxn−1
0 . (1)

The finite subset space Subn X is obtained from SPnX through the identifications

[x1, . . . , xn] ∼ [y1, . . . , yn] ⇐⇒ {x1, . . . , xn} = {y1, . . . , yn}.
In multiplicative notation, elements of Subn X are products x1x2 · · ·xk with k 6 n,
and subject to the identifications x2

1x2 · · ·xk ∼ x1x2 · · ·xk.
The topology of Subn X is the quotient topology inherited from SPnX or Xn [9].

When X is Hausdorff, this topology is equivalent to the so-called Vietoris finite
topology whose basis of open sets are sets of the form

[U1, . . . , Uk] := {S ∈ Subn X | S ⊂
k⋃

i=1

Ui and S ∩ Ui 6= ∅ for each i},

where Ui is open in X [26]. When X is a metric space, Subk X is again a metric
space under the Hausdorff metric, and hence it inherits a third and equivalent topol-
ogy [26]. In all cases, for any topology we use, continuous maps between spaces induce
continuous maps between their finite subset spaces.

Example 2.1. Of course Sub1 X = X and Sub2 X = SP2X. Generally, if ∆n+1X ⊂
SPn+1X denotes the image of the fat diagonal in Xn+1, that is

∆n+1X := {xi1
1 . . . xir

r ∈ SPn+1X | r 6 n,
∑

ij = n + 1 and ij > 0},
then there is a map

q : ∆n+1X −→ Subn X, xi1
1 . . . xir

r −→ {x1, . . . , xr},
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and a pushout diagram

∆n+1X
i //

q

²²

SPn+1X

²²
Subn X // Subn+1 X.

(2)

This is quite clear since we obtain Subn+1 X by identifying points in the fat diagonal
to points in Subn X. In particular, when n = 2, we have the pushout

X ×X
i−−−−→ SP3 Xyq

y
SP2 X −−−−→ Sub3 X,

(3)

where q(x, y) = xy and i(x, y) = x2y. The homology of Sub3(X) can then be obtained
from a Mayer-Vietoris sequence. Some calculations for the three-fold subset spaces
are in Section 5.

There are two immediate and non-trivial consequences of the above pushouts.
Albrecht Dold shows in [7] that the homology of the symmetric products of a CW-
complex X only depends on the homology of X. The pushout diagram in (2) shows
that, in the case of the finite subset spaces, this homology also depends on the coho-
mology structure of X. This general fact for the three- and four-fold subset spaces is
further discussed in [22].

The second consequence of (2) is that it yields an important corollary.

Corollary 2.2. Subn X is simply connected for n > 3.

Proof. We use the following known facts about symmetric products: π1(SPnX) ∼=
H1(X;Z) whenever n > 2, and the inclusion jn : X ↪→ SPnX induces the abelianiza-
tion map at the level of fundamental groups. (P.A. Smith [21] proves this for n = 2,
but his argument applies for n > 2 [22].) For n > 3, consider the composite

X
α−→ ∆nX

i−→ SPnX

with α(x) = [x, x0, . . . , x0]. The induced map jn∗ = i∗ ◦ α∗ on π1 is surjective, as we
pointed out, and hence so is i∗. Assume we know that π1(Sub3(X)) = 0. Then the
fact that i∗ is surjective implies immediately, by the Van-Kampen theorem and the
pushout diagram in (2), that π1(Sub4 X) = 0. By induction, we see that π1(Subn X)
= 0 for larger n. Therefore, we need only establish the claim for n = 3. For that we
apply Van Kampen to diagram (3). Consider the maps

τ : x0 ×X ↪→ X ×X
i−→ SP3X

and

β : X × x0 → X ×X
q−→ SP2X.

Now i(x, y) = x2y so that τ(x0, x) = x2
0x = j3(x) and β(x, x0) = xx0 = j2(x). Since

the jk’s are surjective on π1 it follows that τ and β are surjective on π1. Therefore,
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for any classes u ∈ π1(SP3 X) and v ∈ π1(SP2 X), ∃ a class w ∈ π1(X ×X) such that
i∗(w) = u and q∗(w) = v. This shows that π1(Sub3 X) = 0.

This corollary also follows from [5, 25], where it is shown that Subn X is (n− 2)-
connected for n > 3. However, the proof above is completely elementary.

2.1. Reduced constructions
For the spaces under consideration, the natural inclusion Subn−1 X ⊂ Subn X is

a cofibration [9]. We write SubnX := Subn X/Subn−1 X for the cofiber. Similarly,
SPn−1X embeds in SPnX as the closed subset of all configurations [x1, . . . , xn] with
xi at the basepoint for some i. We set SP

n
X := SPnX/SPn−1X, the symmetric smash

product.
Note that even though SP2X and Sub2 X are the same, there is an essential differ-

ence between their reduced analogs. The difference here comes from the fact that the
inclusion X ↪→ Sub2 X is the composite X

∆−→ X ×X −→ SP2X ∼= Sub2 X, where ∆
is the diagonal, while j2 : : X ↪→ SP2X is the basepoint inclusion.

Example 2.3. When X = S1, SP2(S1) is the closed Möbius band. If we view this
band as a square with two sides identified along opposite orientations, then S1 =
SP1(S1) ↪→ SP2(S1) embeds into this band as an edge (see figures on p. 1124 of [23]).
Hence this embedding is homotopic to the embedding of an equator, and so SP

2
(S1)

is contractible. On the other hand, S1 = Sub1(S1) embeds into Sub2(S1) = SP2(S1)
as the diagonal x 7→ {x, x} = [x, x], which is the boundary of the Möbius band, and
so Sub2(S1) = RP 2.

Example 2.4. When X = S2, SP2(S2) is the complex projective plane P2, SP1(S2) =
P1 is a hyperplane, and SP

2
(S2) = S4. On the other hand, Sub2(S2) has the following

description: Write P1 for C ∪ {∞}. Then Sub2(S2) is the quotient of P2 by the image
of the Veronese embedding P1 −→ P2, z 7→ [z2 : −2z : 1], ∞ 7→ [1 : 0 : 0]. To see this,
identify SPn(C) with Cn by sending (z1, . . . , zn) to the coefficients of the polynomial
(x− z1) · · · (x− zn). This extends to the compactifications to give an identification of
SPn(S2) with Pn ([10, Chapter 4]). When n = 1, (z, z) is mapped to the coefficients
of (x− z)(x− z), that is to (z2,−2z). Note that the diagonal S2 −→ SP2(S2) = P2

is multiplication by 2 on the level of H2 so that, in particular, H4(Sub2(S2)) = Z,
H2(Sub2(S2)) = Z2, and all other reduced homology groups are zero.

3. Cell decomposition

If X is a simplicial complex, then there is a standard way to pick a Sn-equivariant
simplicial decomposition for the product Xn so that the quotient map Xn −→ SPnX
induces a cellular structure on SPnX. We argue that this same cellular structure
descends to a cell structure on Subn X. The construction of this cell structure for the
symmetric products is fairly classical [14, 18]. The following is a review and slight
expansion:
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Proposition 3.1. Let X be a simplicial complex. For n > 1, there exist cellular
decompositions for Xn, SPn X and Subn X so that all of the quotient maps

Xn → SPn X → Subn X

and the concatenation pairings + are cellular

SPr X × SPs X
+−−−−→ SPr+s Xy

y
Subr X × Subs X

+−−−−→ Subr+s X.

(4)

Furthermore, the subspaces ∆n, SPn−1 X ⊂ SPn X and Subn−1 X ⊂ Subn X are
subcomplexes.

Proof. Both SPnX and Subn X are obtained from Xn via identifications. If for some
simplicial (hence cellular) structure on Xn, derived from that on X, these identifica-
tions become simplicial (i.e. they identify simplices to simplices), then the quotients
will have a cellular structure and the corresponding quotient maps will be cellular
with respect to these structures.

As we know, one obtains a nice and natural Sn-equivariant simplicial structure on
the product if one works with ordered simplicial complexes [8, 14, 18]. We write X•
for the abstract simplicial (i.e. triangulated) complex of which X is the realization.
So we assume X• to be endowed with a partial ordering on its vertices which restricts
to a total ordering on each simplex. Let ≺ be that ordering. A point w = (v1, . . . , vn)
is a vertex in Xn

• if and only if vi is a vertex of X•. Different vertices

w0 = (v01, v02, . . . , v0n), . . . , wk = (vk1, vk2, . . . , vkn) (5)

span a k-simplex in Xn
• if, and only if, for each i, the k + 1 vertices v0i, v1i, . . . , vki

are contained in a simplex of X and v0i ≺ v1i ≺ · · · ≺ vki. We write $ := [w0, . . . , wk]
for such a simplex.

The permutation action of τ ∈ Sn on $ = [w0, . . . , wk] is given by

τ$ = [τw0, . . . , τwn].

This is a well-defined simplex since the factors of each vertex

wj = (vj11, vj22, . . . , vjnn)

are permuted simultaneously according to τ, and hence the order ≺ is preserved. The
permutation action is then simplicial and SPnX inherits a CW-structure by passing
to the quotient.

Fact 1. If a point p := (x1, x2, . . . , xn) ∈ Xn is such that xi1 = xi2 = · · · = xir , then p
lies in some k-simplex $ whose vertices [w0, . . . , wk] are such that vji1 = vji2 = · · · =
vjir for j = 0, . . . , k. This implies that the fat diagonal is a simplicial subcomplex. It
also implies that any permutation that fixes such a point p must fix the vertices of
the simplex it lies in and hences fixes it pointwise. In other words, if a permutation
leaves a simplex invariant then it must fix it pointwise.

Fact 2. If p = (x1, x2, . . . , xn) ∈ $ is a simplex with vertices w0, . . . , wk as in (5),
and if π : Xn −→ Xi is any projection, then π(p) lies in the simplex with vertices
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π(w0), . . . , π(wk) (which may or may not be equal). For instance, π(p) := (x1, . . . , xi)
lies in the simplex with vertices (v01, v02, . . . , v0i), . . . , (vk1, vk2, . . . , vki).

We are now in a position to see that Subn X is a CW-complex. Recall that
Subn X = Xn/∼, where

(x1, . . . , xn) ∼ (y1, . . . , yn) ⇐⇒ {x1, . . . , xn} = {y1, . . . , yn}.
Clearly, if (x1, . . . , xn) ∼ (y1, . . . , yn), then τ(x1, . . . , xn) ∼ τ(y1, . . . , yn) for τ ∈ Sn.
We wish to show that these identifications are simplicial. Let us argue through an
example (the general case being identical). We have the identifications in Sub6 X:

p := (x, x, x, y, y, z) ∼ (x, x, y, y, y, z) =: q. (6)

By using Fact 2 applied to the projection, skipping the third coordinate and then
Fact 1, we can see that p and q lie in simplices with vertices of the form

(v1, v1, ?, v2, v2, v3).

By using Fact 1 again, p lies in a simplex σp with vertices of the form

(v1, v1, v1, v2, v2, v3),

while q lies in a simplex σq with vertices of the form (v1, v1, v2, v2, v2, v3). It follows
that the identification (6) identifies vertices of σp with vertices of σq, and hence
identifies σp with σq as desired.

In conclusion, the quotient Subn X inherits a cellular structure and the composite

Xn π−→ SPnX
q−→ Subn X

is cellular. Since the pairing (4) is covered by Xr ×Xs −→ Xr+s, which is simplicial
(by construction), and since the projections are cellular, the pairing (4) must be
cellular.

Remark 3.2. We could have worked with simplicial sets instead [5]. Similarly, Mos-
tovoy (private communication) indicates how to construct a simplicial set Subn X out
of a simplicial set X such that | Subn X| = Subn |X|. This approach will be further
discussed in [12].

The following corollary is also obtained in [5].

Corollary 3.3. For X a simplicial complex, Subk X has a CW-decomposition with
top cells in k dim X, so that H∗(Subk X) = 0 for ∗ > k dim X.

We collect a couple more corollaries

Corollary 3.4. If X is a d-dimensional complex with d > 2, then the quotient map
SPn X → Subn X induces a homology isomorphism in top dimension nd.

Proof. When X is as in the hypothesis, Subn−1 X is a codimension d subcomplex
of Subn X and since d > 2, Hnd(Subn X) = Hnd(Subn X, Subn−1 X). On the other
hand, Proposition 3.1 implies that ∆nX is a codimension d subcomplex of SPnX so
that Hnd(SPnX) ∼= Hnd(SPnX,∆nX) as well. But according to diagram (2), we have
the homeomorphism

SPnX/∆nX ∼= Subn X/Subn−1 X.

Combining these facts yields the claim.
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Corollary 3.5. Both SPk X and the fat diagonal ∆k ⊂ SPk X have the same con-
nectivity as X, and this is sharp.

Proof. If X is an r-connected ordered simplicial complex, then X admits a simplicial
structure so that the r-skeleton Xr is contractible in X to some point x0 ∈ X. With
such a simplicial decomposition we can consider Liao’s induced decomposition Xk

• on
Xk and its r-skeleton Xk

r . Note that

Xk
r ⊂

⋃

i1+···+ik6r

Xi1 ×Xi2 × · · · ×Xik
⊂ (Xr)k.

If F : Xr × I −→ X is a deformation of Xr to x0, then F k is a deformation of (Xr)k;
hence Xk

r , to (x0, . . . , x0) in Xk, and this deformation is Sk equivariant. Since the
r-skeleton of SPkX is the Sk-quotient of Xk

r , it is then itself contractible in SPkX,
and this proves the first claim. Similarly, the simplicial decomposition we have intro-
duced on Xk includes the fat diagonal Λk as a subcomplex with r-skeleton
Λk

r := Λk ∩Xk
r . The deformation F k preserves the fat diagonal and so it restricts

to Λk and to an equivariant deformation F k : Λk
r × I −→ Λk. This means that the

r-skeleton of q(Λk) =: ∆k ⊂ SPkX is itself contractible in ∆k, and the second claim
follows. This bound is sharp for symmetric products since when X = S2,
SP2(S2) = P2. It is sharp for the fat diagonal as well since ∆3X ∼= X ×X has exactly
the same connectivity of X.

4. Connectivity

As we have established in Corollary 2.2, finite subset spaces Subn X, n > 3, are
always simply connected. In this section we further relate the connectivity of Subk X
to that of X. We first need the following useful result proved in [11]:

Theorem 4.1. If X is r-connected with r > 1, then SP
n
X is 2n + r − 2-connected.

Example 5.7 shows that SP
2
(Sk) is k + 1-connected as asserted. Note that

SP
2
(S2) = S4

is 3-connected, so Theorem 4.1 is sharp.

Corollary 4.2 ([18, Corollary 4.7]). If X is r-connected, r > 1, then

H∗(X) ∼= H∗(SPn X)

for ∗ 6 r + 2. This isomorphism is induced by the map jn adjoining the basepoint.

Proof. We give a short proof based on Theorem 4.1. By Steenrod’s homological split-
ting [18]

H∗(SPnX) ∼=
n⊕

k=1

H∗(SPkX, SPk−1X) =
n⊕

k=2

H̃∗(SP
k
X)⊕H∗(X) (7)

with SP0X = ∅, but H̃∗(SP
k
X) = 0 for ∗ 6 2k + r − 2. The result follows.
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Remark 4.3. Note that Corollary 4.2 cannot be improved to r = 0 (i.e. X-connected).
It fails already for the wedge X = S1 ∨ S1 and n = 2 since SP2(S1 ∨ S1) ' S1 × S1

(see [13]) and hence H2(SP2(S1 ∨ S1)) 6∼= H2(S1 ∨ S1). Note also that (7) implies
that H∗(X) embeds into H∗(SPnX) for all n > 1, a fact we will find useful below.

Proposition 4.4. Suppose X is r-connected, r > 1. Then Subk X is r + 1-connected
whenever k > 3.

Proof. Write x0 ∈ X for the basepoint and assume k > 3. Remember that the Subk X
are simply connected for k > 3 (Corollary 2.2) so by the Hurewicz theorem if they
have trivial homology up to degree r + 1, then they are connected up to that level.
We will now show by induction that H∗(Subk X) = 0 for ∗ 6 r + 1. The first step
is to show that H∗(SPkX,∆k) = H∗(Subk X, Subk−1 X) = 0 for ∗ 6 r + 1. We write
i : ∆k ↪→ SPkX for the inclusion.

From the fact that ∆k and SPkX have the same connectivity as X (Corollary 3.5),
their homology vanishes up to degree r which implies similarly that the relative
groups are trivial up to that degree. On the other hand, X embeds in ∆k via
x 7→ [x, x0, . . . , x0] (this is a well-defined map since k > 3) and, since the compos-
ite jk : X −→ ∆k i−→ SPkX is an isomorphism on Hr+1 (Corollary 4.2), we see that
the map i∗ : Hr+1(∆k) −→ Hr+1(SPkX) is surjective. Hence, Hr+1(SPkX,∆k) = 0.

Now since 0 = H∗(SPkX,∆k) = H∗(Subk X, Subk−1 X) for ∗ 6 r + 1, it follows
that

H∗(Subk−1 X) ∼= H∗(Subk X) for ∗ 6 r

and that

Hr+1(Subk−1 X) → Hr+1(Subk X) is surjective.

So if we prove that H∗(Sub3 X) = 0 for ∗ 6 r + 1, then by induction we will have
proved our claim.

Consider the homology long exact sequences for

(Sub3 X, Sub2 X) and (SP3X,∆3X),

where again we identify ∆3X with X ×X. We obtain commutative diagrams

−−−→ Hr+2(Sub3 X, Sub2 X) −−−→ Hr+1(Sub2 X) i∗−−−→ Hr+1(Sub3 X) −−−→ 0

∼=
x q∗

x π∗

x
−−−→ Hr+2(SP3 X,X2) −−−→ Hr+1(X2) α∗−−−→ Hr+1(SP3 X) −−−→ 0,

where α(x, y) = x2y and π : SP3X −→ Sub3 X is the quotient map. We want to show
that i∗ = 0 so that by exactness Hr+1(Sub3 X) = 0. Now q∗ is surjective since the
composite

X −→ X × {x0} ↪→ X ×X −→ SP2X = Sub2 X

induces an isomorphism on Hr+1 by Corollary 4.2. Showing that i∗ = 0 comes down,
therefore, to showing that π∗ ◦ α∗ = 0. But note that for r > 1, which is the con-
nectivity of X, classes in Hr+1(X ×X) are necessarily spherical and we have the
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following commutative diagram:

πr+1X × πr+1(X)
∼=−−−−→ πr+1(X ×X) −−−−→ πr+1(Sub3(X))

yh

yh

Hr+1(X ×X) π∗◦α∗−−−−→ Hr+1(Sub3(X)),

where h is the Hurewicz homomorphism. The top map is trivial since when restricted
to each factor πr+1(X) it is trivial according to the useful Theorem 5.1 below (or to
Corollary 5.2). Since h is surjective, π∗ ◦ α∗ = 0 and Hr+1(Sub3 X) = 0 as desired.

5. The three-fold finite subset space

There are many subtle points that come up in the study of finite subset spaces. We
illustrate several of them through the study of the pair (Sub3 X, X). The three-fold
subset space has been studied in [17, 19, 23] for the case of the circle and in [24] for
topological surfaces.

Again all spaces below are assumed to be connected. We say a map is weakly
contractible (or weakly trivial) if it induces the trivial map on all homotopy groups.
The following is based on a cute argument well explained in [9] or ([3, §3.4]).

Theorem 5.1 ([9]). Subk(X) is weakly contractible in Sub2k+1(X).

Caveat 1. A map f : A −→ Y being weakly contractible does not generally imply
that f is null homotopic. Indeed let T be the torus and consider the projection
T −→ S2 which collapses the one-skeleton. Then this map induces an isomorphism
on H2 but is trivial on homotopy groups since T = K(Z2, 1). Of course, if A = Sk

is a sphere, then “weakly trivial” and “null-homotopic” are the same since the map
A −→ Y represents the zero element in πkY . For example, in ([6, Lemma 3]), the
authors explicitly construct an extension of the inclusion Sn ↪→ Sub3(Sn) to the disk
Bn+1 −→ Sub3(Sn), ∂Bn+1 = Sn. This section argues that this implication does not
generally hold for non-suspensions.

Caveat 2. When comparing symmetric products to finite subset spaces, one has to
watch out for the fact that the basepoint inclusion SPk(X) −→ SPk+1(X) does not
commute via the projection maps with the inclusion Subk(X) −→ Subk+1(X). This
has already been pointed out in Example 2.3 and is further illustrated in the corollary
below.

Corollary 5.2. The composite

SPk(X) −→ SP2k+1(X) −→ Sub2k+1(X)

is weakly trivial.

Proof. This map is equivalent to the composite

SPk(X) −→ Subk(X)
µ−→ Subk+1(X,x0) ↪→ Sub2k+1(X), (8)

where µ({x1, . . . , xk}) = {x0, x1, . . . , xk}, x0 is the basepoint of X and Subk+1(X, x0)
is the subspace of Subk+1(X) of all subsets containing this basepoint. Note that µ is
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not an embedding as pointed out in [24] but is one-to-one away from the fat diagonal.
The key point here is again ([9, Theorem 4.1]) which asserts that the inclusion

Subk+1(X, x0) ↪→ Sub2k+1(X, x0)

is weakly contractible. This in turn implies that the last map in (8) is weakly trivial
as well and the claim follows.

Caveat 3. For n > 2, one can embed X ↪→ Subn(X) in several ways. There is of
course the natural inclusion j giving X as the subspace of singletons. There is also,
for any choice of x0 ∈ X, the embedding jx0 : x 7→ {x, x0}. Any two such embeddings
for different choices of x0 are equivalent when X is path-connected (any choice of a
path between x0 and x′0 gives a homotopy between jx0 and jx′0). It turns out, however,
that j and jx0 are fundamentally different. The simplest example was already pointed
out for S1, where Sub2(S1) was the Möbius band with j being the embedding of the
boundary circle while jx0 is the embedding of an equator.

One might ask the question whether it is true that j is null-homotopic if and
only if jx0 is null-homotopic? This is at least true for suspensions as the next lemma
illustrates.

Recall that a co-H space X is a space whose diagonal map factors up to homotopy
through the wedge; that is there exists a δ such that the composite

X
δ−→ X ∨X ↪→ X ×X

is homotopic to the diagonal ∆: X −→ X ×X,x 7→ (x, x). A cogroup X is a co-H
space that is co-associative with a homotopy inverse. This latter condition means

there is a map c : X −→ X such that X
δ−→ X ∨X

∇(c∨1)−−−−−→ X is null-homotopic. This
is in fact the definition of a left inverse but it implies the existence of a right inverse
as well [2]. If X is a cogroup, then for every based space Y , the set of based homotopy
classes of based maps [X,Y ] is a group. The suspension of a space is a cogroup and
there exist several interesting cogroups that are not suspensions ([2, §4]).

Write jx0 : X ↪→ Sub3(X,x0) for the map x 7→ {x, x0}. Its continuation to Sub3(X)
is also written jx0 .

Lemma 5.3. Suppose X is a cogroup. Then the embeddings jx0 : X ↪→ Sub3(X, x0)
and j : X ↪→ Sub3(X) are null-homotopic.

Proof. The argument in [9] extends to this situation. We deal with jx0 first. This is
a based map at x0. Its homotopy class [jx0 ] lives in the group G = [X, Sub3(X,x0)].
The following composite is checked to be again jx0 :

jx0 : X
∆−→ X ×X

jx0+jx0−−−−−→ Sub3(X, x0).

This factors up to homotopy through the wedge

ι : X
δ−→ X ∨X

jx0∨jx0−−−−−→ Sub3(X, x0).

Of course [ι] = [jx0 ], but observe that [ι] = 2[jx0 ] by definition of the additive struc-
ture of G. This means that [jx0 ] = 2[jx0 ]; thus [jx0 ] = 0 and jx0 is trivial (through a
homotopy fixing x0)
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Let us now apply this to the inclusion j : X ↪→ Sub3(X) which is assumed to be

based at x0. We also denote the composite X
jx0−−→ Sub3(X,x0) −→ Sub3 X by jx0 .

Using the co-H structure as before, we get the homotopy commutative diagram

X
∆−−−−→ X ×X

yδ

yj+j

X ∨X
jx0∨jx0−−−−−→ Sub3(X).

Since jx0 was just shown to be null homotopic, then so is j = (j + j) ◦∆.

Let us now turn to the second part of Theorem 1.2.

5.1. The space Sub3(X,x0)
The preceding discussion shows the usefulness of looking at the based finite subset

space Subn(X, x0). We start with a key computation. Write ∆ for the diagonal X −→
SP2X, x 7→ [x, x], and identify the image of j∗ : H∗(X) ↪→ H∗(SP2(X)) with H∗(X)
by the Steenrod homological splitting (7).

Lemma 5.4. Let X be a compact cell complex. Then

H∗(Sub3(X, x0)) = H∗(SP2 X)/I

where I is the submodule generated by ∆∗c− c, c ∈ H∗(X) ↪→ H∗(SP2 X).

Proof. Start with the map α : SP2(X) −→ Sub3(X,x0), [x, y] 7→ {x, y, x0}, which is
surjective and generically one-to-one (i.e. one-to-one on the subspace of points [x, y]
with x 6= y). Observe that α([x, x]) = α([x, x0]). This implies that Sub3(X, x0) is
homeomorphic to the identification space

SP2(X)/ ∼, [x, x] ∼ [x, x0], ∀x ∈ X. (9)

In order to compute the homology of this quotient we will replace it with the following
space:

W2(X) := SP2(X) tX × I/ ∼,

[x, x] ∼ (x, 1), [x, x0] ∼ (x, 0), [x0, x0] ∼ (x0, t).
(10)

It is not hard to see that (9) and (10) are homotopy equivalent. We can easily see
that these spaces are homology equivalent as follows (this is enough for our purpose):
There is a well-defined map

g : W2(X) −→ SP2(X)/ ∼
sending [x, y] 7→ [x, y], (x, t) 7→ [x, x0]. The inverse image g−1([x, y]) = [x, y] if x 6= y
and both points are different from x0. The inverse image of [x, x] or [x, x0] is an
interval when x 6= x0, hence contractible, and it is a point when x = x0. In all cases,
preimages under g are acyclic and hence g is a homology equivalence by the Begle-
Vietoris theorem. The homology structure of Sub3(X, x0) can be made much more
apparent using the form (10) and this is why we have introduced it.

Let (C∗(SP2(X)), ∂) be a chain complex for SP2(X) containing C∗(X) as a
subcomplex and for which the diagonal map X −→ SP2X is cellular. Associate to
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c ∈ Ci(X) a chain |c| in degree i + 1 representing I × c ∈ Ci+1(I ×X) if c 6= x0 (the
0-chain representing the basepoint). We write |C∗(X)| for the set of all such chains.
The geometry of our construction gives a chain complex for W2(X) as follows:

C∗(W2(X)) = C∗(SP2(X))⊕ |C∗(X)| (11)

with boundary d such that d(c) = ∂c and

d|c| = c−∆∗(c)− |∂c|.
This comes from the formula for the boundary of the product of two cells which is in
general given by ∂(σ1 × σ2) = ∂(σ1)× σ2 + (−1)|σ1|σ1 × ∂(σ2). We check indeed that
d ◦ d = 0. To compute the homology we need to understand cycles and boundaries in
this chain complex. Write a general element of (11) as α + |c|. The boundary of this
element is ∂α + c−∆∗(c)− |∂c| and it is zero, if and only if, ∂α = ∆∗(c)− c and
|∂c| = 0. That is, if and only if, c is a cycle and ∆∗(c)− c is a boundary. This means
that in H∗(SP2(C)), ∆∗(c) = c. We claim this is not possible unless c = 0. Indeed, if
c is a positive dimensional (homology) class, then ∆∗(c) = c⊗ 1 +

∑
c′ ⊗ c′′ + 1⊗ c

in H∗(X ×X) and hence in H∗(SP2(C)), ∆∗(c) = 2c +
∑

c′ ∗ c′′ where by definition
c′ ∗ c′′ = q∗(c′ ⊗ c′′) and q : X ×X −→ SP2(X) is the projection. This can never be
equal to c since

∑
c′ ∗ c′′ ∈ H∗(SP2X,X).

To recapitulate, α + |c| is a cycle if and only if α is a cycle and c = 0. The only cycles
in C∗(W2(X)) are those that are already cycles in the first summand C∗(SP2(X)).
On the other hand, among these classes the only boundaries consist of boundaries in
C∗(SP2(X)) and those of the form ∆∗(c)− c with c a cycle in C∗(X) (in particular
the only 0-cycle is represented by x0). This proves our claim.

Remark 5.5 (Added in revision). We could have noticed alternatively the existence
of a pushout diagram

X ∨X
f−−−−→ SP2 X

yfold

yα

X
jx0−−−−→ Sub3(X, x0),

where f(x, x0) = [x, x] is the diagonal and f(x0, x) = [x, x0]. We can in fact deduce
Lemma 5.4 from this pushout. We can also deduce that Sub3(X, x0) is simply con-
nected if X is. This useful fact we use to establish Proposition 5.6 next.

Note that Lemma 5.4 above says that H∗(Sub3(X,x0)) only depends on H∗(X)
and on its coproduct (i.e. on the cohomology of X). When X is a suspension the
situation becomes simpler. The following result is a nice combination of Lemmas 5.3
and 5.4.

Proposition 5.6. There is a homotopy equivalence Sub3(ΣX, x0) ' SP
2
(ΣX).

Proof. When X is a suspension, all classes are primitive so that ∆∗(c) = 2c for all
c ∈ H∗(X). Combining Steenrod’s splitting (7),

H∗(SP2X) ∼= H∗(X)⊕H∗(SP2X, X),

with Lemma 5.4, we deduce immediately that H∗(Sub3(ΣX, x0)) ∼= H∗(SP
2
(ΣX)).

Both spaces are simply connected (by Remark 5.5 and Theorem 4.1) and so it is
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enough to exhibit a map between them that induces this homology isomorphism.
Consider the map α : SP2(ΣX) −→ Sub3(ΣX,x0), [x, y] 7→ {x, y, x0} as in the proof of
Lemma 5.4. Its restriction to ΣX is null-homotopic according to Lemma 5.3 and hence
it factors through the quotient SP

2
(ΣX) −→ Sub3(ΣX, x0). By inspection of the

proof of Lemma 5.4 we see that this map induces an isomorphism on homology.

Example 5.7. A description of SP
2
(Sk) is given in ([10, Example 4K.5]) from which

we infer that
Sub3(Sk, x0) ' Σk+1RP k−1, k > 1.

This generalizes the calculation in [24] that Sub3(S2, x0) ' S4.

5.2. Homology calculations
We determine the homology of Sub3(T, x0) and Sub3(T ) where T is the torus

S1 × S1. Symmetric products of surfaces are studied in various places (see [13, 24]
and references therein). Their homology is torsion free and hence particularly simple
to describe. We will write q : Xn −→ SPnX throughout for the quotient map and

q∗(a1 ⊗ . . .⊗ an) = a1 ∗ a2 ∗ · · · ∗ an

for its induced effect in homology. (Since our spaces are torsion free we identify
H∗(X × Y ) with H∗(X)⊗H∗(Y ).)

Corollary 5.8. The inclusion j : Sub2(T, x0) ↪→ Sub3(T, x0) is essential.

Proof. We will show that j∗ is non-trivial on H2(Sub2(T, x0)) = H2(T ) = Z. Here
H∗(T ) is generated by e1, e2 in dimension one, and by the orientation class [T ] in
dimension two. The groups H∗(SP2T ) are given as follows [13] (the generators are
indicated between brackets):

H̃∗(SP2T ) =





Z{γ2}, dim4
Z{e1 ∗ [T ], e2 ∗ [T ]}, dim3
Z{[T ], e1 ∗ e2}, dim2
Z{e1, e2}, dim1,

(12)

where γ2 is the orientation class [SP2T ] (SP2(T ) is a compact complex surface). Then
[T ] ∗ [T ] = 2γ2. Let ∆ be the diagonal into the symmetric square

X
∆−→ X ×X

q−→ SP2(X).

Since
∆∗([T ]) = [T ]⊗ 1 + e1 ⊗ e2 − e2 ⊗ e1 + 1⊗ [T ],

q∗([T ]⊗ 1) = q∗(1⊗ [T ]) = [T ]

and
q∗(e1 ⊗ e2) = −q∗(e2 ⊗ e1) = e1 ∗ e2,

we see that
∆∗([T ]) = 2[T ] + 2e1 ∗ e2. (13)
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We can consider the composite

jx0 : T
∆−→ SP2T

α−→ Sub3(T, x0) = SP2T/ ∼ ,

where α is as in the proof of Lemma 5.4. According to Lemma 5.4, using the expression
of the diagonal in (13), there are classes a = α∗[T ], b = α∗(e1 ∗ e2) with a = −2b 6= 0.
But (jx0)∗[T ] = (α ◦∆)∗[T ] = α∗([T ]) = a, and this is non-zero as desired.

Remark 5.9. We can of course complete the calculation of H∗(Sub3(T, x0)) from
Lemma 5.4. Under α∗, ei 7→ 0 (primitive classes map to 0), e1 ∗ e2 7→ b, [T ] 7→ a =
−2b, ei ∗ [T ] 7→ ci, and γ2 7→ d, so that

H1 = 0, H2 = Z{a}, H3 = Z{c1, c2}, H4 = Z{d}.
It is equally easy to write down the homology groups for Sub3(S, x0) for any genus
g > 1 surface, orientable or not.

Next we analyze the inclusion T ↪→ Sub3 T in the case of the torus (compare [24]).
The starting point is the pushout (3) and the associated Mayer-Vietoris sequence

· · · −→ H∗(T × T )
q∗⊕i∗−−−−→ H∗(SP2T )⊕H∗(SP3T )

g∗−π∗−−−−→
H∗(Sub3 T ) −→ H∗−1(T × T ) −→ · · · ,

where q : T × T −→ SP2T is the quotient map, i(x, y) = x2y, g : SP2T ↪→ Sub3 T is
the inclusion (here we have identified SP2T with Sub2 T ) and π : SP3T −→ Sub3 T is
the projection. We focus on degree 2 and follow [13] for the next computations.

We have H2(T × T ) = Z2 generated by [T ]⊗ 1 and 1⊗ [T ], H2(SP2T ) = Z2 =
H2(SP3T ) generated by a class of the same name [T ] = q∗([T ]⊗ 1) = q∗(1⊗ [T ]) and
by e1 ∗ e2 ; see (12). To describe the effect of i∗ we write it as a composite

i : T × T
∆×1−−−→ T × T × T

q−→ SP3T.

This gives i∗([T ]⊗ 1) = 2[T ] + 2e1 ∗ e2 as in (13), while i∗(1⊗ [T ]) = [T ]. The Mayer-
Vietoris then looks like

· · · −→ Z2 q∗⊕i∗−−−−→ Z2 ⊕ Z2 g∗−π∗−−−−−→ H2(Sub3 T ) −→ H1(T × T ) −→ · · ·
(1, 0) 7−→ ((1, 0), (2, 2))
(0, 1) 7−→ ((1, 0), (1, 0)).

This sequence is exact. Observe that the class ((2, 2), (0, 0)) is not in the kernel of
g∗ − π∗ because it cannot be in the image of q∗ ⊕ i∗. This means that g∗(2, 2) 6= 0.
This is all we need to derive the non-nullity of the map j : X ↪→ Sub3 X.

Corollary 5.10. j∗([T ]) 6= 0.

Proof. The inclusion j is the composite

j : T
∆−→ T × T

π−→ SP2T
g−→ Sub3 T

so that j∗([T ]) = g∗(2, 2), and this is non-trivial as asserted above.
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6. The top dimension

Using facts about orientability of configuration spaces of closed manifolds ([11] for
example), we slightly elaborate on [9] and ([24, Theorem 3]).

Proposition 6.1. Suppose M is a closed manifold of dimension d > 2. Then

Hnd(SPnM ;Z) =

{
Z, if d even and M orientable
0, if d odd or M non-orientable.

For mod-2 coefficients, Hnd(SPnM ;F2) = F2. In all cases, the map

Hnd(SPnM) −→ Hnd(Subn M)

is an isomorphism (Corollary 3.4).

Proof. When d = 2 the claim is immediate since, as is well known, SPnM is a closed
manifold (orientable if and only if M is; see [26]). Generally our statement follows
from the fact that SPn(X) is an orbifold with codimension > 1 singularities, and
hence its top homology group is that of a manifold. More explicitly, in our case, let us
denote by B(M, n) the configuration space of finite sets of cardinality n in M ; that
is

B(M, n) = SPnM −∆n = Subn M − Subn−1 M,

where ∆n is the singular set consisting of tuples with at least one repeated entry
(the image of the fat diagonal as defined in Section 2). By Poincaré duality suitably
applied ([11, Lemma 3.5])

Hi(B(M, n);±Z) ∼= Hnd−i(SPnM,∆n;Z), (14)

where ±Z is the orientation sheaf. By definition,

Hi(B(M,n),±Z) = Hi(HomBrn(M)(C∗(B̃(M, n)),Z))

where Brn(M) = π1(B(M, n)) is the braid group of M , B̃(M, n) is the universal cover
of B(M, n) and the action of the class of a loop on Z is multiplication by ±1 according
to whether the loop preserves or reverses orientation. It is known that B(M, n) is
orientable if and only if M is orientable and even-dimensional ([11, Lemma 2.6]).
That is, we can replace ±Z by Z if M is orientable and d is even.

Since ∆n is a subcomplex of codimension d in SPnM , we have

Hnd−i(SPnM,∆n) ∼= Hnd−i(SPnM) for i < d− 1.

In particular, for i = 0 we obtain

H0(B(M, n);±Z) ∼= Hnd(SPnM ;Z). (15)

If M is even-dimensional and orientable, then

H0(B(M,n);±Z) ∼= H0(B(M, n);Z) = Z,

since B(M, n) is connected if dim M > 2. If dim M is odd or M is non-orientable, then
B(M, n) is not orientable and H0(B(M, n);±Z) = 0, because H0(B(M,n);±Z) is the
subgroup {m ∈ Z | gm = m, ∀g ∈ Z[π1(B(M, n)]}. This establishes the claim for the
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symmetric products and hence for the finite subset spaces according to Corollary 3.4.

Example 6.2. For k > 2 we have H2k(SP2Sk) = H2k(SP
2
Sk) = Hk−1(RP k−1) (see

Example 5.7) and this is Z or 0 depending on whether k is even or odd as predicted
by Proposition 6.1.

6.1. The case of the circle
When M = S1, Proposition 6.1 is not true anymore since SPnS1 ' S1 for all

n > 1, while Subn(S1) is either Sn or Sn−1 depending on whether n is odd or
even [15, 23]. In this case, it is still possible to explicitly describe the quotient map
SPn(S1) −→ Subn(S1).

A beautiful theorem of Morton asserts that the multiplication map

SPn+1(S1) −→ S1

is an n-disc bundle ηn over S1 which is orientable if and only if n is even [16]. A close
scrutiny of Morton’s proof shows that the sphere bundle associated to ηn consists of
the image of the fat diagonal ∆n+1, i.e. the singular set. If Th(ηn) is the Thom space
of ηn, then

Th(ηn) = SPn+1(S1)/∆n+1 = Subn+1 S1/ Subn S1. (16)

Since ηn is trivial when n = 2k is even, it follows that

Th(η2k) = S2k ∧ S1
+ = S2k+1 ∨ S2k. (17)

However, as pointed out above, Sub2k+1(S1) ' S2k+1. The map

SP2k+1(S1) −→ Sub2k+1(S1)

factors through the Thom space (17) and the top cell maps to the top cell. Combining
(16) and (17), it is immediate to see that

Lemma 6.3. The map Th(η2k) −→ Sub2k+1(S1), restricted to the first wedge sum-
mand in (17), induces a map S2k+1 −→ Sub2k+1(S1) which is a homotopy equiva-
lence.

7. Manifold structure

In this last section we prove Theorem 1.3. We distinguish three cases: when the
dimension of the manifold is d > 2, d = 2 or d = 1.

Lemma 7.1. Suppose X is a manifold of dimension d > 2. Then Subn X is never a
manifold if n > 2.

Proof. Consider the projection Xn −→ Subn X given by identifying tuples whose
sets of coordinates are the same. This projection restricts to an n! regular covering
between the complements πn : Xn − Λn −→ Subn X − Subn−1 X, where Λn as before
is the fat diagonal in Xn. Suppose Subn X is a manifold of dimension nd (necessar-
ily). Pick a point in Subn−1 X and an open chart U around it. Now U ∼= Rnd and
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Y = U ∩ Subn−1 X is a closed subset in U . We can apply Alexander duality to the
pair (Y, U) and obtain

Hnd−i−1(U − Y ) ∼= Hi(Y ).

But Y ⊂ Subn−1(X) is an open subspace in a simplicial complex of dimension
(n− 1)d; therefore Hnd−2(Y ) = 0 (since d > 2) and so H1(U − Y ) = 0. We can now
use an elementary observation of Mostovoy [17] to the effect that since U − Y is
covered by π−1

n (U − Y ), a connected étale cover of degree n!, then it is impossible for
H1(U − Y ) to be trivial since the monodromy gives a surjection π1(U − Y ) −→ Sn,
and hence a non-trivial map H1(U − Y ) −→ Z2.

Theorem 2.4 of [26] shows that our Lemma 7.1 is valid if d = 2 and n > 2 as
well. As opposed to the geometric approach of Wagner, we provide below a short
homological proof of this result.

Lemma 7.2. Suppose X is a closed topological surface. Then Subn X is a manifold
if and only if n = 2.

Proof. We will show that if n > 3, then Subn(X) cannot even have the homotopy type
of a closed manifold by showing that it does not satisfy Poincaré duality. We rely on
results of [13] that give a simple description of a CW-decomposition of a space ŜP

n
X

homotopy equivalent to SPnX when X is a two-dimensional complex. Since X is a
closed two-dimensional manifold, it has a cell structure of the form X =

∨r
S1 ∪D2

where D2 is a two-dimensional cell attached to a bouquet of circles. Each circle cor-
responds in the cellular chain complex for ŜP

n
X to a one-dimensional cell generator

ei, 1 6 i 6 r, while the two-dimensional cell is represented by D. This chain com-
plex has a concatenation product ∗ : C∗(ŜP

r
X)⊗ C∗(ŜP

s
X) −→ C∗(ŜP

r+s
X) under

which these cells map to product cells. The full cell complex for ŜP
n
X is made up of

all products of the form

ei1 ∗ · · · ∗ ei`
∗ SPkD, i1 + · · ·+ i` + k 6 n,

where ir 6= is if r 6= s, and where SPkD is a 2k-dimensional cell represented geomet-
rically by the k-th symmetric product of D2. The boundary ∂ is a derivation and is
completely determined on generators by ∂ei = 0 and ∂SPnD = ∂D ∗ SPn−1D.

If X =
∨r

S1 ∪D is a closed manifold, then in mod-2 homology, ∂D = 0 (the
top cell). This implies of course that ∂SPnD = 0 (the top cell of SPnX), while
H2n−1(SPnX,Z2) ∼= Zr

2 with generators ei ∗ SPn−1D. This shows, in particular, that
H2n−1(SPnX;Z2) 6= 0 if r > 1, that is if X is not the two sphere. Observe that this
calculation is compatible with Theorem 2 of [24].

Now we know that Subn X is simply connected if n > 3. Suppose Subn X is a closed
manifold, then by Poincaré duality, H2n−1(Subn X;Z2) = H1(Subn X;Z2) = 0. But
recall the pushout diagram (2) and its associated Mayer-Vietoris exact sequence

H2n−1(∆n) −→ H2n−1(Subn−1 X)⊕H2n−1(SPnX)
−→ H2n−1(Subn X) −→ H2n−2(∆n) −→ · · · .

Since ∆n and Subn−1 X are (2n− 2)-dimensional subcomplexes of Subn X, their
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homology in degree 2n− 1 vanishes. The sequence above becomes

0 −→ H2n−1(SPnX) −→ H2n−1(Subn X) −→ H2n−2(∆n) −→ · · ·
and H2n−1(SPnX) injects into H2n−1(Subn X). When H1(X) 6= 0, that is when X is
not the sphere, H2n−1(Subn X) is non-trivial contradicting Poincaré duality.

We are left with the case Subn(S2) and n > 3. Here we have to rely on a calculation
of Tuffley [24] who shows that

H2n−2(Subn(S2)) = Z⊕ Zn−1. (18)

But Subn(S2) is 2-connected according to Theorem 1.1 and Poincaré duality is vio-
lated in this case as well.

Remark 7.3. A computation of the homology of Subn(S2) for all n and various field
coefficients will appear in [12]. It is however straightforward using the Mayer-Vietoris
sequence for the pushout (3) to show that

H̃∗(Sub 3S2) ∼=
{
Z, ∗ = 6
Z⊕ Z2, ∗ = 4.

(19)

Similar computations appear in [5, 22, 24].

Finally we address the case d = 1. Write I = [0, 1], İ = (0, 1). First of all SPn(I) ∼=
In. In fact, this is precisely the n-simplex since any point of SPn(I) can be written
uniquely as an n-tuple (x1, . . . , xn) with 0 6 x1 6 · · · 6 xn 6 1. The quotient map
q2 : SP2(I) −→ Sub2(I) is a homeomorphism and hence every interior point of Sub2(I)
has a manifold neighborhood. The same for n = 3 since SP3(I) is the three simplex

{(x1, x2, x3) | 0 6 x1 6 x2 6 x3 6 1}
with four faces: F1 : {x1 = 0}, F2 : {x1 = x2}, F3 : {x2 = x3} and F4 : {x3 = 1}, and
the quotient map q3 : SP3(I) → Sub3(I) identifies the faces F2 and F3. Such an iden-
tification gives again I3 and Sub3(İ) is this simplex with two faces removed [19]. For
n > 3, the corresponding map qn identifies various faces of the simplex SPn(I) to
obtain Subn(I), but this fails to give a manifold structure on the quotient for there
are just too many “branches” that come together at a single point in the image of
the boundary of this simplex. This is made precise below.

Lemma 7.4. Subn(S1) is a closed manifold if and only if n = 1, 3.

Observe that if n is even, then Subn S1 cannot be a closed manifold for a simple
reason: no closed manifold of dimension n can be homotopic to a sphere of dimension
n− 1.

Proof of Lemma 7.4 following [26, Theorem 2.3]. Let M be a manifold and D a disc
neighborhood of a point x ∈ M . Then an open neighborhood of x ∈ Subn(M) is
Subn(D). So if Subn(D) is not a manifold, then neither is Subn(M). To prove
Lemma 7.4 we will argue as in [26] that Subn(R) is not a manifold for n > 4.
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For a metric space X (with metric d), non-empty subsets S, T ⊂ X, and fixed
elements s ∈ S, t ∈ T, we define

d(s, T ) = inf{d(s, t) | t ∈ T},
d(S, t) = inf{d(s, t) | s ∈ S}.

Then the Hausdorff metric D on Subn(X) is defined to be

D(S, T ) := sup{d(s, T ), d(t, S) | s ∈ S, t ∈ T}.
Thus D(S, T ) < ε means that each s ∈ S is within an ε-neighborhood of some point
in T and each t ∈ T is within an ε-neighborhood of some point in S.

We wish to show that Subn(R) for n > 4 is not homemorphic to Rn. Pick S =
{1, 2, . . . , n− 1} in Subn−1(R) and for each i consider the open set Ci (in the Haus-
dorff metric) of all subsets {p1, . . . , pn−1, qi} ∈ Subn(R) such that pj ∈ (j − 1

2 , j + 1
2 )

and qi ∈ (i− 1
2 , i + 1

2 ). We then see that Ci is the subset with one or two points in
the 1

2 -neighborhood of i and a single point in the 1
2 -neighborhood of j for i 6= j. Note

that Ci ⊂ U where U = {T ∈ Subn(R) | D(S, T ) < 1/2}. Observe that

C1 = Sub2

(
1
2
,
3
2

)
×

(
3
2
,
5
2

)
× · · · ×

(
n− 1− 1

2
, n− 1 +

1
2

)
.

This is an n-dimensional manifold with boundary V = U ∩ Subn−1(R), and in fact
one has

Ci =
{

T ∈ U : T ∩
(

i− 1
2
, i +

1
2

)
has 1 or 2 points

}
∪ V.

Clearly C1 ∪ C2 ∪ · · · ∪ Cn−1 = U and, more importantly, all these open sets have
a common boundary at V ; i.e. Ci ∩ Cj = V . If n > 4, we can choose at least three
such Ci, say C1, C2, C3. Then C1 ∪ C2 is an open n-dimensional manifold (union
over the common boundary V ). It must be contained in the interior of Subn(R) and
hence must be open there if Subn(R) were to be an n-dimensional manifold. But
C1 ∪ C2 is not open in Subn(R) since every neighborhood of {1, 2, . . . , n− 1} must
meet C3 − V which is disjoint from C1 ∪ C2 (i.e. “too many” branches come together
at that point).

We conclude this paper with the following cute theorem of Bott, which is the most
significant early result on the subject:

Corollary 7.5 (Bott). There is a homeomorphism Sub3(S1) ∼= S3.

Proof. It has been known since Seifert that the Poincaré conjecture holds for Seifert
manifolds; that is, if a Seifert 3-manifold is simply connected then it is homeomorphic
to S3.1 Clearly Sub3(S1) is a Seifert manifold where the action of S1 on a subset is by
multiplication on elements of that subset. Since it is simply connected (Corollary 2.2),
the claim follows. Note that the S1-action has two exceptional fibers consisting of the
orbits of {1,−1} and {1, j, j2} where j = e2πi/3 (compare [23]).

1We thank Peter Zvengrowski for reminding us of this fact.
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