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EXTENSIONS OF WEYL AND SCHUR FUNCTORS

MARCIN CHAÃLUPNIK

(communicated by Nicholas J. Kuhn)

Abstract
We study Ext-groups in the category of strict polynomial

functors. The main result is a computation of the Ext-groups
between twisted Weyl and Schur functors for a large class of
Young diagrams.

1. Introduction

This paper is a third part of my work on homological algebra in the category P of
strict polynomial functors. An ultimate goal of this series of papers is computing Ext-
groups between simple objects in P. I plan to approach this goal by computing the
Ext-groups between Frobenius twisted Weyl and Schur functors first. This problem
seems to be easier and I believe that once solved, it will be possible, by using ideas
of [C3], to extend the computations to the case of two twisted Schur functors and
then to simples.

Hence we focus on the groups Ext∗P(W (i+j)
µ , S

(i)
λ ) for Young diagrams µ, λ of

weights respectively d and dpj . In [C1, Th. 6.1], I computed these groups for j = 0.
In the present article we start investigating the case of diagrams of different weights,
which is substantially more difficult. The main result (Theorem 4.4) computes the
Ext-groups between smaller Weyl and larger Schur functors in the case when λ can
be obtained by a certain process of enlargement Fk from a diagram of weight equal to
the weight of µ. The main new ingredient is the use of the Schur-de Rham complex
(studied in detail in [C2]) which allows one to pass from larger to smaller diagrams.

The paper is organized as follows. In Section 2, after recalling some results and
notations from [C1, C2], the main theorem is formulated. Section 3 contains technical
constructions and lemmas needed for its proof. Theorem 4.4 is proved in Section 4.
The paper is concluded by a short discussion of the case of arbitrary diagrams in
Section 5.
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2. Notation and formulation of the main theorem

We start by recalling some standard combinatorial notions, mainly in order to fix
notation. We shall consider Young diagrams, i.e., finite, weakly decreasing sequences
of positive integers pictured, as usual, as sets of boxes arranged into rows of lengths
given by the numbers in the sequence. For a Young diagram λ = (λ1, . . . , λk), we call
the numbers λi its rows, and the numbers λ̃j := #{i : λi > j} its columns. In fact,
the sequence (λ̃1, . . . , λ̃λ1) forms another Young diagram denoted λ̃ and called the
conjugate diagram. The sum

∑k
i=1 λi is called the weight of λ and is denoted |λ|. There

is a natural linear ordering on the set of Young diagrams called the lexicographical
ordering. We say that µ is lexicographically smaller than λ (notation: µ < λ) if, for
the smallest i such that µi 6= λi, we have µi > λi (we explain this strange convention
in [C1, §2]).

All said above may be generalized in a straightforward way to the case of skew
Young diagrams. A skew Young diagram λ of weight d is a pair of Young diagrams
λ′ ⊆ λ′′ (i.e., λ′i 6 λ′′i for all i) with |λ′′| − |λ′| = d. This should be imagined as the
set of boxes of λ′′ which do not belong to λ′. Such a pair is often denoted by λ′′/λ′

but we shall prefer, whenever possible, one-letter notation to make formulae simpler.
Moreover, for skew diagrams λ = λ′′/λ′, µ = µ′′/λ′ where λ′, λ′′, µ′′ are “solid” (i.e.,
not skew) Young diagrams and µ′′ ⊆ λ′′, we define a skew diagram λ/µ := λ′′/µ′′.

Throughout this article we work in the category P of strict polynomial functors
over a fixed field k of characteristic p > 0 (cf. [FS, §2]). The simplest examples of strict
polynomial functors are d-fold tensor, exterior, symmetric and divided power functors
denoted respectively by Id,Λd, Sd, Dd. We recall that in a positive characteristic, the
last two Sd(V ) := (V ⊗d)Σd

(coinvariants of the permutation action of the symmetric
group) and Dd(V ) := (V ⊗d)Σd (invariants of this action) are not isomorphic functors.
It is also convenient to label tensor products of such functors by skew Young diagrams.
Namely, for λ/µ = (λ1, . . . , λk)/(µ1, . . . , µk), we put Λλ/µ := Λλ1−µ1 ⊗ · · · ⊗ Λλk−µk

and we define Sλ/µ and Dλ/µ analogously. Moreover, for a skew Young diagram λ
we define the Schur functor Sλ to be the image of the composition of natural trans-
formations Λλ −→ Id −→ S

eλ, where the arrows are respectively the comultiplication
and multiplication map (cf. [ABW, §11.1]). We call the epimorphism Λλ −→ Sλ and
monomorphism Sλ −→ S

eλ the structural maps. For a strict polynomial functor F we
can form its i-fold Frobenius twist F (i) defined by the formula F (i)(V ) := F (V (i)),
where V (i) stands for the space V with the action of scalars induced by i-times itera-
tion of the Frobenius homomorphism, i.e., x.v := xp

i

v (see [FS, §1]). We also have a
contravariant involution in P called Kuhn duality. We put F#(V ) := (F (V ∗))∗ and it
is easy to see that (Sd)# = Dd, (Λd)# = Λd and more generally (Sλ)# = Wλ. Finally,
we recall from, e.g., [C1, p. 779] that Sλ are injective objects in P and any F ∈ P
has a finite injective resolution by sums of Sλ; dually, Dλ are projective objects in P
and any F ∈ P has finite projective resolution by sums of Dλ.

We now recall some technical tools introduced in [C1, §2.2] which will be used
heavily in the present paper. For any skew diagram λ, the functor in n variables

(V1, . . . , Vn) 7→ Sλ(V1 ⊕ · · · ⊕ Vn)
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has a filtration Mα1⊆···⊆αn−1⊆λ, with ordering coming from the (n− 1)-fold lexico-
graphic ordering, i.e., to compare sequences (α1, . . . , αn−1) and (α′1, . . . , α′n−1) we
pick the smallest i such that αi 6= α′i and compare lexicographically αi and α′i. We
recall again that αi may be skew; hence, for example, αi ⊆ αi+1 means that we have
αi = αi

′
/β, αi+1 = αi+1′/β for αi

′
, αi+1′ , β solid and αi

′ ⊆ αi+1′ .
The associated graded object of this filtration is

⊕

α1⊆···⊆αn−1⊆λ
Sα1(V1)⊗ Sα2/α1(V2)⊗ · · · ⊗ Sλ/αn−1(Vn).

We also have an analogous filtration for Weyl functors and for Frobenius twisted
Schur or Weyl functors. We call this filtration the Decomposition Formula.

This filtration yields a spectral sequence called the Decomposition Spectral Se-
quence. Let F1, . . . , Fn ∈ P. Then there is a spectral sequence converging to

Ext∗P(F1 ⊗ · · · ⊗ Fn, S
(i)
λ ),

whose E1-term has the form

Est1 =
⊕

s1+···+sn=s+t

Exts1P (F1, S
(i)
α1 )⊗ · · · ⊗ Extsn

P (Fn, S
(i)
λ/αn−1),

where t stands for the place of (α1, . . . , αn−1) in the (n− 1)-fold lexicographic order-
ing.

Analogous sequences also exist for

Ext∗P(F1 ⊗ · · · ⊗ Fn,W
(i)
λ ),

Ext∗P(S(i)
λ , F1 ⊗ · · · ⊗ Fn),

etc.
The Decomposition Formula for λ = (1d) and λ = (d) reduces to the well-known

formulae:

Sd(V1 ⊕ · · · ⊕ Vn) =
⊕

s1+···+sn=d

Ss1(V1)⊗ · · · ⊗ Ssn(Vn),

Dd(V1 ⊕ · · · ⊕ Vn) =
⊕

s1+···+sn=d

Ds1(V1)⊗ · · · ⊗Dsn(Vn),

Λd(V1 ⊕ · · · ⊕ Vn) =
⊕

s1+···+sn=d

Λs1(V1)⊗ · · · ⊗ Λsn(Vn).

In these cases, the Decomposition Spectral Sequence also splits and we get the fol-
lowing isomorphisms for Ext-groups:

Ext∗P(Sd, F1 ⊗ · · · ⊗ Fn) =
⊕

s1+···+sn=d

Ext∗P(Ss1 , F1)⊗ · · · ⊗ Ext∗P(Ssn , Fn),

Ext∗P(Dd, F1 ⊗ · · · ⊗ Fn) =
⊕

s1+···+sn=d

Ext∗P(Ds1 , F1)⊗ · · · ⊗ Ext∗P(Dsn , Fn),

Ext∗P(Λd, F1 ⊗ · · · ⊗ Fn) =
⊕

s1+···+sn=d

Ext∗P(Λs1 , F1)⊗ · · · ⊗ Ext∗P(Λsn , Fn).
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In many cases these formulae simplify even more thanks to the decomposition of
abelian categories

P '
∞⊕

d=0

Pd,

where Pd stands for the full subcategory of P consisting of strict polynomial functors
homogeneous of degree d [FS, §1]. Thus, since Sd, Dd,Λd ∈ Pd, we get for Fj ∈ Psj

:

Ext∗P(Sd, F1 ⊗ · · · ⊗ Fn) = Ext∗P(Ss1 , F1)⊗ · · · ⊗ Ext∗P(Ssn , Fn),

Ext∗P(Dd, F1 ⊗ · · · ⊗ Fn) = Ext∗P(Ds1 , F1)⊗ · · · ⊗ Ext∗P(Dsn , Fn),

Ext∗P(Λd, F1 ⊗ · · · ⊗ Fn) = Ext∗P(Λs1 , F1)⊗ · · · ⊗ Ext∗P(Λsn , Fn).

Similarly to the general case, analogous formulae also hold for Sd, Dd,Λd as covari-
ant variable and for Frobenius twisted functors. All these special instances of the
Decomposition Formula and Decomposition Spectral Sequence will be referred to as
the Exponential Formula.

We now recall a calculation achieved in [C1]. We are interested in the groups
Ext∗P(F (i), G(i)) for F,G ∈ Pd because they are closely related (for large i) to the
groups Ext∗GLn(k)(F (kn), G(kn)) (see [C1, §1]). Let Ai denote the graded k-space
which is one-dimensional in even degrees smaller than 2pi and 0 elsewhere (in fact
Ai ' Ext∗P(I(i), I(i)) [FS, Th. 4.5]), and let Bi := A⊗di ⊗ kΣd, where kΣd is the k-
group algebra for the symmetric group Σd (in fact Bi ' Ext∗P(Id(i), Id(i)) [C1, §4]).
We shall regard Bi as a kΣd-bimodule with the left action diagonal and right on
the group algebra only (see Section 3 and [C1, §4]). Let, at last, sµ, sλ be evident
symmetrizations of Schur functors Sµ, Sλ. A symmetrization of a functor F is, roughly
speaking, a functor from kΣd-modules to k-modules which should be applied to V ⊗d

in order to get F(V). Thus, for example, sλ is a functor which takes a kΣd-module
M to the image of the composition ((M)alt)Σλ −→M −→ (M)Σeλ , where

Σλ := Σλ1 × · · · × Σλs ,M
alt := M ⊗ sgn

(cf. [C1, §3]). Then

Theorem 2.1 ([C1, Th. 6.1]).

Ext∗P(W (i)
µ , S

(i)
λ ) ' sλ(sµ(Bi)),

where we apply sµ to the left Σd-structure on Bi and then sλ to the resulting right
Σd-module.

Now it is quite natural to try and generalize the above computation to the case of
Ext∗P(W (i+j)

µ , S
(i)
λ ) for λ of weight dpj . Unfortunately, in general, the pair W (j)

µ , Sλ
does not satisfy the Ext-condition of [C1, Th. 4.4]; hence we should not hope for
description of these groups in terms of symmetrizations applied to Bi like in [C1,
Thms. 4.4, 6.1].

On the other hand, when we look back at the fundamental computation of
Ext∗P(Dd(i), Sd(i)) [FFSS, Th. 4.5], we see that the authors also consider Ext-groups
for diagrams of different weights. In fact, they compute groups Ext∗P(Dd(i+j), Sdp

j(i))
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by decreasing induction on j (i+ j being fixed). The induction step in the proof is
achieved by computing hyperExt-groups with coefficients in the de Rham complex
Sdp

j(i) whose cohomology is a smaller but more twisted de Rham complex Sdp
j−1(i+1).

This point was my motivation for [C2]: if one wants to compute the Ext-groups for
more general Schur functors, then one needs a generalization of the de Rham complex
for more general diagrams. Such a generalization, called the Schur-de Rham complex,
was introduced and studied in [C2]. Namely, for any skew diagram λ of weight d we
have a complex Sλ of strict polynomial functors homogeneous of degree d (for λ = (1d)
we get the de Rham complex Sd). The cohomology of the Schur-de Rham complex
reflects deep combinatorial properties of a diagram. In particular, Sλ is acyclic if the
p-core of λ (cf. [JK, Chap. 2.7]) is non-trivial [C2, Fact 4.3], while when the p-core is
trivial, H∗(Sλ) seems to be related to a certain p-tuple of diagrams associated with
λ and called the p-quotient of λ (cf. [JK, Chap. 2.7]). I have succeeded in making
this relationship precise in one important case.

Definition 2.2 ([C2, §5]). Let Fk(λ) for 0 6 k 6 p− 1 denote the diagram with
trivial p-core and p-quotient whose only non-trivial diagram is the kth which is λ (for
a skew diagram λ = λ′′/λ′ we put Fk(λ) := Fk(λ′′)/Fk(λ′)).

As it was explained in [C2, §5], Fk(λ) is a diagram of weight p|λ| built out of
λ in the following manner. We replace boxes in λ lying above the principal diag-
onal with horizontal strips (p), boxes below the diagonal are replaced by vertical
strips (1p) and finally boxes from the diagonal are replaced by segments of shape
(k + 1, 1p−k−1) [C2, §5]. Thus Fk(λ) may be thought of as a kind of p-times enlarge-
ment of λ, e.g., F0((d))) = (pd), Fp−1((1d)) = (1pd), (a number k causes some shifts
in cohomology). Now we have

Theorem 2.3 ([C2, Th. 5.3]).

H∗(SFk(λ)) ' S(1)
λ [hk(λ)];

the shift in grading hk(λ) is given by the formula hk(λ) = (p− 1)fλ + keλ, where eλ
is the number of boxes of λ lying on the principal diagonal and fλ is the number of
boxes lying above it.

Observe that this theorem generalizes the Cartier Theorem H∗(Sdp) ' Sd(1) used
in [FFSS], since S(1dp) = S(dp) and F0((1d)) = (1dp).

Now we are ready to formulate our main result.

Theorem 2.4 (Theorem 4.4 below). For any diagrams µ, λ of weight d, and any
i, j, k, we have isomorphisms of graded vector spaces:

Ext∗P(W (i+j)
µ , S

(i)

F j
k (λ)

) ' sλ(sµ(Bij))[h
j
k(λ)] ' sµ(sλ(Bij))[h

j
k(λ)].

The shift is given by the formula hjk(λ) = (pj − 1)fλ + k p
j−1
p−1 eλ, where eλ is the num-

ber of boxes of λ lying on the principal diagonal and fλ is the number of boxes lying
above it.
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Moreover, for any transformation of symmetrizations φ : wµ −→ wµ′ , the induced
map

(φ(i+j))∗ : Ext∗P(W (i+j)
µ′ , S

(i)

F j
k (λ)

) −→ Ext∗P(W (i+j)
µ , S

(i)

F j
k (λ)

)

is equal to

φ#(sλ(Bij))[h
j
k(λ)] : sµ′(sλ(Bij))[h

j
k(λ)] −→ sµ(sλ(Bij))[h

j
k(λ)].

In the above theorem F jk means the j-fold iteration of the operation Fk and Bij =
A⊗dij ⊗ kΣd for the graded k-space Aij , which is one-dimensional in degrees divisible
by 2pj and smaller than 2pi+j and 0 elsewhere (in fact Aij ' Ext∗P(I(i+j), Sp

j(i)) [FS,
Th. 4.5], and Bij ' Ext∗P(Id(i+j), (Sp

j(i))⊗d) by the Exponential Formula).
Our theorem is a natural generalization of [C1, Th. 6.1]. Also its proof is a mixture

of ideas appearing in the proofs of [FFSS, Th. 4.5], [C1, Th. 4.4], [C1, Th. 6.1]. First
we prove the theorem for µ = (1d) inductively by using the Schur-de Rham complex
and then we get the general case by resolving the first variable by divided powers.
The first step is much more difficult. The problem is that we would like to lift some
constructions from functors associated to λ to those associated to F jk (λ) and this may
be difficult. For example, lexicographic properties of diagrams do not guarantee us
any more the existence of maps SF j

k (λ) −→ SF
j
k (eλ) or ΛF

j
k (λ) −→ SF j

k (λ), which could

serve as analogies of structural maps Sλ −→ S
eλ or Λλ −→ Sλ. Luckily, we do not

need maps between functors but merely between their Ext-groups. But the Schur
functors associated to diagrams which form combinatorial obstacles for constructing
the analogies of structural maps turn out to have trivial Ext-groups. The situation
resembles that in [C2] where only after neglecting some acyclic complexes we were
able to construct maps on cohomology (in fact, as we will see, the combinatorics in
both contexts is similar). In order to make considerations of this sort precise and
functorial we shall use a formalism of localization of derived category which will be
discussed in the next section.

3. Acyclic functors and localization

We start this section by recalling the notion of localization of derived category and
pointing out a large class of functors which are trivial in the localized category. Then
we construct analogs of structural maps for enlarged diagrams and compute some
induced maps of Ext-groups.

3.1. Localization of derived category and acyclic functors
Let DP denote the derived category of P. This is a triangulated category (i.e.,

an additive category with a certain family of diagrams called distinguished triangles
and a self-equivalence called shift subject to some axioms) and there is an additive
functor i : P −→ DP yielding an isomorphism

ExtnP(X,Y )) ' HomDP(i(X)[n], i(Y ))

for any X,Y ∈ P, where i(X)[n] stands for the n-fold shift of i(X) (for basics on
triangulated and derived categories see, e.g., [GM]).
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We need a version of localization at a given object in P, which works in the context
of triangulated categories.

Definition 3.1. Given an object A ∈ P, we say that a triangulated category DPA
is an A-localization of the derived category DP if there exists a functor L : DP −→
DPA such that:

• L preserves distinguished triangles and shifts.
• For all X ∈ P,n > 0, L induces an isomorphism

HomDP(i(A)[n], i(X)) ' HomDPA
(L(i(A))[n], L(i(X))).

• If f : X −→ Y in P induces an isomorphism

f∗ : ExtnP(A,X) ' ExtnP(A, Y )

for all n > 0, then (L ◦ i)(f) is an isomorphism.

The existence of such a localization is well known (see, e.g., [Ne, Chap. 2.1]. The
second condition allows us to carry over calculations of Ext-groups to the local-
ized category; hence from now on we shall not distinguish between ExtnP(A,X),
HomDP(i(A)[n], i(X)) and HomDPA(L(i(A))[n], L(i(X))) denoting them all just by
ExtnP(A,X). The most important is the third condition. Thanks to it, some impor-
tant maps on Ext-groups which are not induced by any morphisms in P turn out to
be induced by morphisms in DPA. A typical application is when we have a filtration
{Bi}ki=1 of object C ∈ P and ExtnP(A,B1) = 0 for all n > 0. Then B1 is a trivial
object in DPA (since inclusion f : 0 −→ B1 induces isomorphism on ExtnP(A,−)-
groups). Thus we get a non-trivial morphism p : B2/B1 −→ C in DPA.

Before formulating our first, rather formal lemma, we recall that F (i) (e.g., Sd(i),
Λd(i) etc.) always means the i-fold Frobenius twist of the functor F .

Lemma 3.2. For any diagram µ of weight d, we have the following isomorphisms in
the category DP

W
(i+j)
µ

S
(i)

F j
k (λ)

' Λdp
j(i)[hjk(λ)],

for an arbitrary diagram λ of weight d consisting of a single row, and

S
(i)

F j
k (λ′)

' Sdp
j(i)[hjk(λ′)],

for an arbitrary diagram λ′ of weight d consisting of a single column.
The shift is given by the formula hjk(ρ) = (pj − 1)fρ + k p

j−1
p−1 eρ, where eρ is the

number of boxes of ρ lying on the principal diagonal and fρ is the number of boxes
of ρ lying above it (we recall that ρ may be a skew diagram; hence its shape does not
determine its position with respect to the main diagonal).

Proof. Since the proofs for λ and λ′ are analogous, we focus on the case of a one-row
diagram λ. The idea of proof is similar to that of [C2, Lemma 7.1]. We start with
recalling some useful constructions from [C2, §§4,7]. We call a skew Young diagram
a skew hook when it does not contain a clock of shape (2, 2) and is connected, i.e., we
can join every two boxes by a path consisting of boxes where each two consecutive



34 MARCIN CHAÃLUPNIK

boxes have a common edge. Hence the set of boxes of a skew hook can be linearly
ordered by saying that the smaller of two boxes is one which is placed higher or more
to the right. We say that “pj-slices in a skew hook are placed horizontally” when for
each i the (ipj + 1)th box with respect to the linear ordering lies to the left of the
(ipj)th box. We observe that F jk (λ) for λ of weight d consisting of a single row is a
skew hook with pj-slices placed horizontally.

We shall prove our assertion for a slightly wider class of diagram than it was stated
in Lemma 3.2, namely for the class of skew hooks of weight dpj with pj-slices placed
horizontally. The proof goes by induction on the number of rows in our skew hook α.
In order to get the assertion for a diagram α, we consider the exact sequence

0 −→ S
(i)
α/(α1)|h(α1) −→ S

(i)
α/(α1) ⊗ Λα1(i) −→ S(i)

α −→ 0,

where α/(α1)|h(α1) is the diagram obtained from α by putting its first row to
the right of the second row (see [C2, pp. 715–716]). The existence and exactness
of this sequence may be proved by the argument used in [C2, Lemma 7.1]. Since
the pj-slices of α are placed horizontally, the number α1 cannot be divisible by pj .
Thus Ext∗P(F (i+j),Λα1(i)) = 0 for any homogeneous F because Λα1(i) ∈ Pα1pi , while
pi+j |deg(F (i+j)). Hence, in the Decomposition Spectral Sequence

Est1 =
⊕

s1+s2=s+t

Exts1P (W (i+j)
β , S

(i)
α/(α1))⊗ Exts2P (W (i+j)

µ/β ,Λα1(i)))

=⇒ Exts+tP (W (i+j)
µ , S

(i)
α/(α1) ⊗ Λα1(i))

all the rows in E1 are trivial. Therefore we conclude that

Ext∗P(W (i+j)
µ , S

(i)
α/(α1) ⊗ Λα1(i)) = 0.

This means that S(i)
α/(α1) ⊗ Λα1(i) is a trivial object in DP

W
(i+j)
µ

and we get an iso-

morphism S
(i)
α/(α1)|h(α1) ' S

(i)
α [−1] in the localized derived category. But α/(α1)|h(α1)

is a skew hook with pj-slices placed horizontally and has less rows than α, so we can
apply the induction hypothesis to it. The final formula for shift comes from the fact

that F jk ((1)) = (k p
j−1
p−1 + 1, 1p

j−1−k pj−1
p−1 ).

We now focus on the problem of finding functors which are trivial in the localized
category.

Lemma 3.3. Assume that for some A ∈ P, s, i, j satisfying s > i+ j, and for some
diagram λ, we have Ext∗P(A(s), S

(i)

F j
k (λ)

) 6= 0. Then λ has a trivial p-core.

Proof. The proof falls naturally into three parts.

1. If the assertion holds for A1 and A2 and all s > i+ j, then it does so for
A1 ⊗A2. Assume that Ext∗P(A(s0)

1 ⊗A
(s0)
2 , S

(i0)

F
j0
k (λ)

) 6= 0. By the Decomposition

Spectral Sequence, there must exist α0 ⊂ F j0k (λ) such that Ext∗P(A(s0)
1 , S

(i0)
α0 )

and Ext∗P(A(s0)
2 , S

(i0)

F
j0
k (λ)/α0

) are non-trivial. Hence, according to the assertion

for A2 (and j = 0), F j0k (λ)/α0 has a trivial p-core. Then, by [C2, Fact 6.1], there
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exists α1 ⊂ F j0−1
k (λ) such that α0 = Fk(α1). Using our assertion again, this time

for j = 1, we conclude that F j0−1
k (λ)/α1 has a trivial p-core; hence there exists

α2 ⊂ F j0−2
k (λ) such that α1 = Fk(α2) etc. until we get that α = F j0k (αj0) and

αj0 , λ/αj0 have trivial p-cores. Therefore, also λ has a trivial p-core.

2. A = Dd(t). We proceed by induction on d. Let d = 1 and assume that the p-
core of λ is non-trivial. Since we are going to consider both the classical Schur
complex and the Schur-de Rham complex introduced in [C2] we will call the
former the Schur-Koszul complex (but we denote both the complexes by Sλ).
We start with taking the twisted Schur-de Rham complex S(i+j)

λ . We recall
from [ABW, Cor. V.1.14] that the lth degree component of S(i+j)

λ has a filtra-
tion with associated graded object

⊕
|α|=lW

(i+j)
eα ⊗ S

(i+j)
λ/α . Since by [C2, Fact

4.3] S(i+j)
λ is acyclic and Ext∗P(I(s+t), B ⊗ C) = 0 for all homogeneous functors

B,C of positive degree [FS, Th. 2.13], the spectral sequence of this filtration

Ekl1 = Extk+l
P (I(s+t), (S(i+j)

λ )l) =⇒ hExtk+l
P (I(s+t),S(i+j)

λ )

(hExt∗P(I(s+t),S(i+j)
λ ) stands here for the hyperExt-groups of I(s+t) with coef-

ficients in the complex S(i+j)
λ (see, e.g., [CE, Chap. XVII]) converges to 0 and

may have non-trivial the first or last column only. Hence we obtain

Ext∗P(I(s+t), S
(i+j)
λ ) ' Ext∗+|λ|−1

P (I(s+t),W
(i+j)
eλ ).

Applying the same argument to the Schur-Koszul complex, we get a shift in the
opposite direction

Ext∗P(I(s+t), S
(i+j)
λ ) ' Ext∗−|λ|+1

P (I(s+t),W
(i+j)
eλ ).

But by the hypothesis s > i+ j we know that |λ| > 1. This means that

Ext∗P(I(s+t), S
(i+j)
λ ) = 0 = Ext∗P(I(s+t),W

(i+j)
eλ ).

Then we shall show in a similar manner that

Ext∗P(I(s+t), S
(i+j−1)
Fk(λ) ) = 0.

This time the Schur-de Rham complex S(i+j−1)
Fk(λ) is not acyclic, but since by [C2,

Th. 5.3] the second spectral sequence converging to hExt∗P(I(s+t),S(i+j−1)
Fk(λ) ) is

trivial, we still have the shift of grading between Ext∗P(I(s+t), S
(i+j−1)
Fk(λ) ) and

Ext∗P(I(s+t),W
(i+j−1)

Fk(eλ)
), which gives the desired vanishing of the Ext-groups.

Repeating this argument we get Ext∗P(I(s+t), S
(i+j−q)
F q

k (λ)
) = 0 for larger and larger

q. At last, for q = j, we obtain our assertion.
The proof of the induction step on d is similar. We assume the assertion for

all d < d0. In order to get it for d0 we look at the spectral sequences converging
to hExt∗P(Λd0(s+t), S

(i+j)
λ ) (equipped with the de Rham differential). By the

induction hypothesis and Part 1, the second spectral sequence is trivial. Since
for the same reason the first sequence has at most two non-trivial columns, we
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get the shift of grading. The shift in the opposite direction is provided by the
Koszul complex.

3. The general case. For arbitrary A we take a resolution by products of divided
powers. By Parts 1 and 2, the assertion holds for all functors in the resolution.
Therefore it also holds for A.

Remark. Observe that even for s = 1, i = j = 0, Lemma 3.3 is not obvious. For solid
λ it follows from the fact that each twisted functor belongs to the trivial block and the
Nakayama Conjecture for P [Do]. But this argument fails for skew diagrams.

We are going to use this lemma to derive a powerful criterion for detecting functors
with trivial Ext-groups.

Fact 3.4. If for some β ⊆ F jk (λ) and some A ∈ P, Ext∗P(A(i+j), S
(i)

F j
k (λ)/β

) is non-

trivial, then β = F jk (α) for some α ⊆ λ.

Proof. Assume that the above Ext-group is non-trivial. Then, by Lemma 3.3 (for
j = 0), the p-core of β is trivial. Hence, by [C2, Fact 6.1] we get β = Fk(β′). Iterating
this argument we obtain our assertion (we have used a similar trick in the proof of
Part 1 of Lemma 3.3).

Observation 3.5. It seems that we had been doing the same work many times in the
proofs of Lemma 3.3 and Fact 3.4. Let us look more closely at the underlying com-
binatorics. Since we are interested in multi-twisted functors, we should (in contrast
to [C2]) consider the operation F jk of j-fold enlargement of a diagram. It is completely
analogous to Fk, the only difference is that we replace boxes by “pj-hooks” instead of
“p-hooks”. Namely, to build F jk (λ) out of λ, we replace boxes in λ lying above the diag-
onal by the horizontal strips of length pj, those below it by vertical ones, and we replace

boxes lying on the diagonal by segments of shape F jk ((1)) = (k p
j−1
p−1 + 1, 1p

j−1−k pj−1
p−1 ).

Therefore it would be tempting to derive Fact 3.4 from the “pj-analogue” of [C2,
Fact 6.1] which obviously holds. Unfortunately it is not true that if Ext∗P(A(j), Sλ) is
non-trivial, then λ has a trivial pj-core (see Fact 5.2).

3.2. Structural maps for enlarged diagrams and related Ext-groups

Our next goal is to construct maps ΛF
j
k (λ) −→ SF j

k (λ), SF j
k (λ) −→ SF

j
k (eλ) which

could play roles of the structural maps Λλ −→ Sλ, Sλ −→ S
eλ . It will turn out that

the construction which fails in the category P is possible in the localized cate-
gory. In fact, an attempt to construct an arrow ΛF

j
k (λ) −→ SF j

k (λ) in the category

P breaks down because the diagram F jk ((λ1, . . . , λl−1)) is not the lexicographically
smallest subdiagram of a given weight in F jk ((λ1, . . . , λl)) etc. But we shall show
that all smaller diagrams give trivial objects in DP

W
(i+j)
µ

. To see this, let us take

β ⊆ F jk (λ) such that Ext∗P(W (i+j)
µ , S

(i)
β ⊗ S

(i)

F j
k (λ)/β

) 6= 0. Then, by the Decomposition

Spectral Sequence, there exists γ ⊆ µ of weight |β|/pj such that Ext∗P(W (i+j)
γ , S

(i)
β )⊗

Ext∗P(W (i+j)
µ/γ , SF j

k (λ)/β) is non-trivial. Hence, by Fact 3.4, β = F jk (α). But among

diagrams of the form F jk (α′), our diagram is the smallest (of a given weight). This
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observation (note that the underlying combinatorics is completely analogous to that
of the “Homological Decomposition Formula” in [C2, §6]) enables us to construct the
arrow

F
j(i)
k (φλ) : ΛF

j
k (λ)(i) −→ S

(i)

F j
k (λ)

in the category DP
W

(i+j)
µ

, and by a similar reasoning, the map

F
j(i)
k (ψλ) : S(i)

F j
k (λ)

−→ SF
j
k (eλ)(i).

Next, observe an interesting fact, that the composition F
j(i)
k (ψλ) ◦ F j(i)k (φλ) exists

already in P, for it is equal to the composition of the “comultiplication” and “mul-
tiplication”: ΛF

j
k (λ)(i) −→ IF

j
k (λ)(i) −→ SF

j
k (eλ)(i). In the last formula IF

j
k (λ)(i) stands

for the tensor product of twisted Schur functors corresponding to the pj-slices in
F jk (λ) (we recall the interpretation of the operation F jk in terms of pj-hooks given in
Observation 3.5). The first arrow is the tensor product of F j(i)k (φ(λs)) for all rows of
λ, while the second is the product of F j(i)k (ψ(eλs)) for all columns of λ. It is easy to
see (and we have taken advantage of this in [C2, §7]) that for diagrams consisting of
a single row (or column) the combinatorial obstacles for the existence of maps in P
disappear.

Similarly, in a dual situation we define the “structural maps”:

F
j(i)
k (φ#

λ ) : W (i)

F j
k (λ)

−→ ΛF
j
k (λ)(i),

F
j(i)
k (ψ#

λ ) : DF j
k (λ)(i) −→WF j

k (eλ)(i),

whose composition exists in P. The constructions of the structural maps for Schur
and Weyl functors have a common generalization to the case of Schur complexes. We
recall that the lth degree component of SF j

k (λ) has a filtration with associated graded
object

⊕

|β|=l
Weβ ⊗ SF j

k (λ)/β .

Hence, applying the above constructions degree-wise, we get the “graded structural
maps”

F
j(i)
k (φ•λ) : ΛF j

k (λ)(i) −→ S(i)

F j
k (λ)

and

F
j(i)
k (ψ•λ) : S(i)

F j
k (λ)

−→ SF
j
k (eλ)(i),

whose composition also exists in P.
Moreover, thanks to Lemma 3.2 and [FFSS, Th. 4.5], we are able to describe the

maps induced on Ext-groups by these compositions. A convenient way of writing all
these formulae is to express them as results of applications of various symmetrizations
to the Σd-bimodule Bij . We recall from Section 2 that Aij ' Ext∗P(I(i+j), Sp

j(i)),
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Bij ' Ext∗P(Id(i+j), (Sp
j(i))⊗d), and Bij = A⊗dij ⊗ k[Σd]. The graded space Bij is en-

dowed with a structure of Σd-bimodule given by the formula known from [C1, §4]

σ.a1 ⊗ · · · ⊗ ad ⊗ eτ .λ := aσ−1(1) ⊗ · · · ⊗ aσ−1(d) ⊗ eστλ.

We also recall from Section 2 and [C1, §4] some useful symmetrizations: sλ(M) :=
(M)Σλ

, dλ(M) := (M)Σλ , λλinv(M) := (Malt)Σλ . Then, slightly generalizing the re-
sults of [FFSS, §4.5] by means of the Exponential Formula and Lemma 3.2, we
obtain

Fact 3.6. The following isomorphisms of graded vector spaces hold:

Ext∗P(Dd(i+j),ΛF
j
k (λ)(i)) ' λλinv(s

d(Bij))[h
j
k(λ)] = Λλ(Aij)[h

j
k(λ)],

Ext∗P(Dd(i+j), SF
j
k (λ)(i)) ' sλ(sd(Bij))[h

j
k(λ)] = Sλ(Aij)[h

j
k(λ)],

Ext∗P(Dd(i+j), DF j
k (λ)(i)) ' dλ(sd(Bij))[h

′j
k (λ)] = Dλ(Aij)[h

′j
k (λ)],

Ext∗P(Λd(i+j),ΛF
j
k (λ)(i)) ' λλinv(λ

d
inv(Bij))[h

j
k(λ)] = Dλ(Aij)[h

j
k(λ)],

Ext∗P(Λd(i+j), SF
j
k (λ)(i)) ' sλ(λdinv(Bij))[h

j
k(λ)] = Λλ(Aij)[h

j
k(λ)],

the shifts are given by the formulae:

hjk(λ) = (pj − 1)fλ + k
pj − 1
p− 1

eλ,

h′jk (λ) = (pj − 1)(2d− fλ)− k
pj − 1
p− 1

eλ,

where eλ, fλ denote respectively the number of boxes lying on and above the main
diagonal.

Under these identifications, the map induced on Ext∗P(Dd(i+j),−) by the map
F
j(i)
k (ψλ) ◦ F j(i)k (φλ) is equal to ψλ ◦ φλ(sd(Bij))[h

j
k(λ)] = ψλ ◦ φλ(Aij)[h

j
k(λ)], and

the one induced by F j(i)k (φ#
λ ) ◦ F j(i)k (ψ#

λ ) is equal to

φ#
λ ◦ ψ#

λ (sd(Bij))[h
′j
k (λ)] = φ#

λ ◦ ψ#
λ (Aij)[h

′j
k (λ)].

Similarly, F j(i)k (ψλ) ◦ F j(i)k (φλ) induces on Ext∗P(Λd(i+j),−) the map

φ#
λ ◦ ψ#

λ (sd(Bij))[h
j
k(λ)] = φ#

λ ◦ ψ#
λ (Aij)[h

j
k(λ)].

By applying these formulae degree-wise and using the Exponential Formula we get
formulae for the Ext-groups with coefficients in the respective graded functors. Taking
the convention Ext∗P(F,C•) :=

⊕
s Ext∗P(F,Cs) (we do not consider any hyperExt-

groups here!) we obtain

Fact 3.7. The following isomorphisms of bigraded vector spaces hold:

Ext∗P(Dd(i+j),ΛF j
k (λ)(i))) ' λλ(sd(Bij))[h

j
k(λ)] = Λλ(Aij)[h

′j
k (λ)],

Ext∗P(Dd(i+j),SF
j
k (λ)(i)) ' sλ(sd(Bij))[h

j
k(λ)] = Sλ(Aij)[h

j
k(λ)],

where λλ, sλ mean the self-evident graded Σd-functors. Under these isomorphisms,
the map induced on Ext∗P(Dd(i+j),−) by the composition F j(i)k (ψ•λ) ◦ F j(i)k (φ•λ) is equal
to ψ•λ ◦ φ•λ(Aij).
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4. The main theorem

We outlined in Section 2 the strategy of computing Ext∗P(W (i+j)
µ , S

(i)

F j
k (λ)

). First

we compute Ext∗P(Dµ(i+j), S
(i)

F j
k (λ)

) by manipulating the second variable and using

Fact 3.7. Then we take a twisted projective resolution of the first variable and get
the general formula. The first step is much more difficult because the operation F jk
is involved here. Although we have succeeded in constructing the “structural arrow”
F jk (ψλ), I was not able to conduct the proof along the lines of the proof of [C1,
Th. 4.3]. The problem is that after lifting a resolution to the level of F jk it is difficult
to show that we have obtained an exact complex in the sense of the triangulated
structure in DPDµ(i+j) . Thus I was forced to come back to ideas of [FLS, FS, FFSS],
and prove the formula inductively using the (Schur)-de Rham complex. The difference
with [FFSS] is that we perform induction by decreasing the number of twists (the
starting point is provided by [C1, Th. 6.1]).

Theorem 4.1. For any diagram λ of weight d, the map

F
j(i)
k (ψ•λ) : S(i)

F j
k (λ)

−→ SF
j
k (eλ)(i)

induces a monomorphism

(F j(i)k (ψ•λ))∗ : Ext∗P(Dd(i+j),S(i)

F j
k (λ)

) −→ Ext∗P(Dd(i+j),SF
j
k (eλ)(i)),

whose image is Sλ(Aij)[h
j
k(λ)] (we recall that for a complex C•, Ext∗P(F,C•) means

just
⊕

s Ext∗P(F,Cs)).
The shift is given by the formula hjk(λ) = (pj − 1)fλ + k p

j−1
p−1 eλ, where eλ is the

number of boxes of λ lying on the principal diagonal and fλ is the number of boxes
lying above it.

Under the above and Lemma 3.7 identifications, the map

(F j(i)k (φ•λ))∗ : Ext∗P(Dd(i+j),ΛF j
k (λ)(i)) −→ Ext∗P(Dd(i+j),S(i)

F j
k (λ)

),

is equal to
φ•λ(Aij)[h

j
k(λ)] : Λλ(Aij)[h

j
k(λ)] −→ Sλ(Aij)[h

j
k(λ)].

Proof. We prove our theorem for all integers k simultaneously by a double induction:
the external on d and internal on j. Since the case d = 1 is trivial, we can turn to the
induction step. We shall show our assertion for given j, d (d > 1) assuming it for all
d′, j′ such that d′ < d, or d′ = d, j′ < j.

We start with the case j = 0, which requires a slightly different argument from that
for j > 0. In order to determine the group Ext∗P(Dd(i), (S(i)

λ )l) (l refers to the grading
in the Schur complex) we consider a filtration on (S(i)

λ )l with associated graded object⊕
|α|=lW

(i)
eα ⊗ S

(i)
λ/α (cf. [ABW, Cor. V.1.14]). The spectral sequence of this filtration

takes the form

Est1 =
⊕

u+v=s+t

ExtuP(Dl(i),W
(i)
eα )⊗ ExtvP(Dd−l(i), S(i)

λ/α) =⇒ Exts+tP (Dd(i), (S(i)
λ )l),

where t is the position of α in the lexicographic ordering of subdiagrams in λ of
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weight l. Thanks to [C1, Cor. 5.3] we know the groups E∗∗1 . In particular, they are
concentrated in even total degrees (because Extodd

P (Dd(i), F (i)) = 0 by [C1, Th. 4.3]).
Therefore, the differentials in this spectral sequence are trivial and we obtain

Ext∗P(Dd(i), (S(i)
λ )l) '

⊕

|α|=l
Ext∗P(Dl(i),W

(i)
eα )⊗ Ext∗P(Dd−l(i),W (i)

λ/α)

'
⊕

|α|=l
(Weα ⊗ Sλ/α)(Ai0) = Slλ(Ai0).

To get the part of the theorem which concerns the maps φ•(i)λ and ψ•(i)λ , we observe
that it follows from the construction of the filtration that it is compatible with these
maps (in fact this filtration is a special case of the filtration giving the Decomposition
Formula for Schur complexes [ABW, Cor. V.1.14]). Hence we may apply the induc-
tion hypothesis to all factors in the sum for 0 < l < d. But the cases l = 0 and l = d
require some additional argument. In the first case the required description of the
maps (φ(i)

λ )∗ and (ψ(i)
λ )∗ easily follows from [C1, Th. 6.1]. But the case l = d is more

difficult. Namely, the fact that (ψ#(i)
λ )∗ : Ext∗P(Dd(i), D

eλ(i)) −→ Ext∗P(Dd(i),W
(i)
λ )

and (φ#(i)
λ )∗ : Ext∗P(Dd(i),W

(i)
λ ) −→ Ext∗P(Dd(i),Λλ(i)) are respectively epic and mo-

nic follows from [C1, Lemma 6.4]. But once we know this, the required description
follows from the fact that (φ#(i)

λ ◦ ψ#(i)
λ )∗ : Ext∗P(Dd(i), D

eλ(i)) −→ Ext∗P(Dd(i),Λλ(i))
may be, by [C1, Th. 6.1], identified with φ#(i)

λ ◦ ψ#(i)
λ (Ai0). This completes the proof

for j = 0.
We now focus on the case j > 0. Let EI , EII be respectively the first and the

second spectral sequence of hyperExt of Dd(i+j) with coefficients in the Schur-de
Rham complex S(i)

F j
k (λ)

. We have

(EI)st1 = ExtsP(Dd(i+j), (S(i)

F j
k (λ)

)t) =⇒ hExts+tP (Dd(i+j),S(i)

F j
k (λ)

),

(EII)st2 = ExtsP(Dd(i+j), Ht(S(i)

F j
k (λ)

)) =⇒ hExts+tP (Dd(i+j),S(i)

F j
k (λ)

).

Similarly, let D be the spectral sequence of hyperExt of Dd(i+j) with coefficients in
the Schur-Koszul complex S(i)

F j
k (λ)

. We have

Dst
1 = ExtsP(Dd(i+j), (S(i)

F j
k (λ)

)t) =⇒ 0.

We shall compare these spectral sequences with the sequences E′I , E
′
II , D

′ defined
analogously for the complex SF

j(i)
k (eλ).

We first examine the sequence EII . Thanks to [C2, Th. 5.3] and the induction
hypothesis for j′ = j − 1, we have

(EII)st2 = ExtsP(Dd(i+j), Ht(S(i)

F j
k (λ)

)∗)

= ExtsP(Dd(i+j), (S(i+1)

F j−1
k (λ)

)t−h
1
k(F j−1

k (λ)))

' Sλ(Ai+1,j−1),

and we know that F j−1(i+1)
k (ψ•λ) induces a monomorphism (EII)2 −→ (E′II)2, which
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may be identified with the map

ψ•λ(Ai+1,j−1)[h1
k(F j−1

k (λ))] : Sλ(Ai+1,j−1)[h1
k(F j−1

k (λ))]

−→ Seλ(Ai+1,j−1)[h1
k(F j−1

k (λ))].i

Moreover, as we remember from the proof of [FFSS, Th. 4.5], there is only one non-
trivial differential in the sequence E′II . Hence (E′II)2 may be viewed as a complex. This
complex is the Schur-Koszul complex Seλ(δ)[h1

k(F j−1
k (λ))] associated to a (shifted)

sequence Ai+1,j−1:

0 −→ Ai+1,j−1
δ−→ Ai+1,j−1 −→ 0,

whose differential δ is a differential in the sequence EII for d = 1. It easily follows from
the acyclicity of the Schur-Koszul complex associated to the identity map [ABW,
V.1.5] that for a general f : V −→W we have H∗(Sλ(f)) = Sλ(f ′) as graded functors,
where f ′ : ker(f) −→ coker(f) is an arbitrary map (we recall that the vector spaces
in a Schur complex depend merely on the source and target of the map). Thus, since
it was shown in [FS, Th.4.5] that H∗(Ai+1,j−1) = Aij , we obtain

hExt∗P(Dd(i+j),SF
j
k (eλ)(i)) ' Seλ(Aij)[h1

k(F j−1
k (λ))]

which is yet another translation of the calculations of [FFSS] into a more invariant
language. The most important consequence of this point of view is that we still have

hExt∗P(Dd(i+j),S(i)

F j
k (λ)

) ' Sλ(Aij)[h1
k(F j−1

k (λ))]

and we get an inclusion

f : hExt∗P(Dd(i+j),S(i)

F j
k (λ)

) −→ hExt∗P(Dd(i+j),SF
j
k (eλ)(i)).

We now turn to the spectral sequences EI , D. We look at the first pages of these
sequences. In the lth column we have the group Ext∗P(Dd(i+j), (S(i)

F j
k (λ)

)l). Applying to

the second variable the filtration described in [ABW, Cor. V.1.14], we get a spectral
sequence converging to Ext∗P(Dd(i+j), (S(i)

F j
k (λ)

)l). The first term of this sequence is

Est1 =
⊕

u+v=s+t

ExtuP(Dl(i+j),W
(i)

F̃ j
k (α)

)⊗ ExtvP(Dd−l(i+j), S(i)

F j
k (λ/α)

),

where t is the position of α in the lexicographic ordering of subdiagrams in λ of weight
l/pj (the rows with numbers indivisible by pj are trivial by Fact 3.4). We note that
the groups appearing in this spectral sequence are known by the induction hypothesis
for various d′ < d (we also use here the theorem for Fp−1−k), unless l = 0, dpj . Our
task will be to show that the differentials in this sequence are trivial. The situation
is slightly more complicated than that for j = 0, because this time it does not suffice
to observe that Aij is concentrated in even degrees. We should also show that the
lowest Ext-degrees of non-trivial elements in all rows have the same parity. To this
end, we compute the smallest u+ v for which there exists a non-trivial element in

ExtuP(Dl(i+j),W
(i)

F̃ j
k (α)

)⊗ ExtvP(Dd−l(i+j),W (i)

F j
k (λ/α)

).
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This degree, by the induction hypothesis on d (since l, d− l < d), is equal to

(l − fα − eα)(pj − 1) + eα

(
2(pj − 1)− (p− 1− k)

pj − 1
p− 1

)

+ (fλ − fα)(pj − 1) + (eλ − eα)k
pj − 1
p− 1

.

Now we observe that, since the multiplicities of eα and fα are always even, the
parity of the whole expression does not depend on α. Therefore, we get for all l 6= 0, dpj

Ext∗P(Dd(i+j), (S(i)

F j
k (λ)

)l) '
⊕

|α|=l
Ext∗P(Dl(i+j),W

(i)

F̃ j
k (α)

)⊗ Ext∗P(Dd−l(i+j),W (i)

F j
k (λ/α)

)

'
⊕

|α|=l
(Weα ⊗ Sλ/α)(Aij) ' Slλ(Aij).

In the further part of the proof, shifts of grading will not play an essential role, so we
shall skip them in order to simplify notation.

Let
X := ker(Ext∗P(Dd(i+j),S(i)

F j
k (λ)

) −→ Ext∗P(Dd(i+j),SF
j
k (eλ)(i))).

By the induction hypothesis for d′ < d and the previous considerations, X is concen-
trated in the two extreme columns of EI and D. We denote by X0 its part contained
in the 0th column and by X1 the part contained in the (dpj)th column. Let ∂ mean
the differential in the spectral sequence D. Since the sequence D converges to 0,
∂dp

j

(X1) ⊂ X0. Thus we see that X1 must be trivial up to the Ext-degree dpj − 2.
We now turn to the sequence EI . We denote by Y the subset of the 0th column of
(EI)1 consisting of elements surviving to infinity. Since, as we know from [FFSS,
Th. 4.5], the differentials in E′I are trivial; there are no elements outside Y up to
Ext-degree dpj − 2. It means that there are no differentials in the sequence EI up to
the total degree dpj − 2. Hence, for s 6 dpj − 2, we have

hExtsP(Dd(i+j),S(i)

F j
k (λ)

) =
s⊕
q=0

ExtqP(Dd(i+j), (S(i)

F j
k (λ)

)s−q)

'
(
s−1⊕
q=0

(Ss−qλ (Aij))q
)
⊕ ExtsP(Dd(i+j), S

(i)

F j
k (λ)

).

But, on the other hand, as we remember from the analysis of the spectral sequence
EII ,

hExtsP(Dd(i+j),S(i)

F j
k (λ)

) '
s⊕
q=0

(Ss−qλ (Aij))q.

Hence we get

dim(ExtsP(Dd(i+j), S
(i)

F j
k (λ)

)) = dim((S0
λ(Aij))s = dim((Sλ(Aij))s).

But since the last space is a subquotient of the first, we obtain

ExtsP(Dd(i+j), S
(i)

F j
k (λ)

) ' (Sλ(Aij))s.
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It also means that X0 is trivial up to degree dpj − 2. We now come back to the
sequence D. On account of the last calculation we get that X1 is trivial up to degree
2(dpj − 2). This, when we turn again to EI , enables us to enlarge the range of degrees
in which Y is trivial to 2(dpj − 2). As result we obtain the required computation of
ExtsP(Dd(i+j), S

(i)

F j
k (λ)

) and the triviality of X0 up to degree 2(dpj − 2). Iterating this

argument (strictly speaking we apply here the third induction, this time on Ext-
degree) we conclude that X = 0,

Ext∗P(Dd(i+j), S
(i)

F j
k (λ)

) ' Sλ(Aij),

and that the differentials in EI are trivial. The last two facts also show, by dimension
counting, that

Ext∗P(Dd(i+j),W
(i)

F̃ j
k (λ)

) 'Weλ(Aij).

This completes the proof of the description of the groups Ext∗P(Dd(i+j),S(i)

F j
k (λ)

). The

last part of the theorem (concerning the arrow F jk (φ•λ)) easily follows from the facts
we have already proved.

Remark 4.2. Thanks to the Exponential Formula one can immediately generalize
Theorem 4.1 to the formula

Ext∗P(Dµ(i+j), S
(i)

F j
k (λ)

) ' sλ(sµ(Bij))[h
j
k(λ)] ' sµ(sλ(Bij))[h

j
k(λ)]

for an arbitrary diagram µ. We remind the reader that the case of Weyl and Schur
functors is very special (see the discussion after [C1, Lemma 6.2]), and we have two
alternative descriptions of the Ext-groups here (in general, Σd-functors applied to left
and right Σd-structures need not commute (see the example given in the proof of [C1,
Th. 4.3])). We shall use both descriptions: the first in the proof of Theorem 4.4, the
second in the proof of Fact 4.3.

Now, we would like to generalize this computation of Ext-groups to the case of
an arbitrary Weyl functor in the first variable. Observe however, that the method
of the proof of Theorem 4.1 does not work in this case, because it would require a
computation of Ext-groups between two Weyl functors which does not fit our scheme.
Luckily, this time we can apply the machinery developed in [C1, §3], since there are
no problems with transformations of the first variable.

Therefore, we should start with understanding the functoriality of the computa-
tions achieved in Theorem 4.1.

Fact 4.3. For any transformation of symmetrizations φ : dµ −→ dµ
′
the induced mor-

phism

φ(i+j)∗ : Ext∗P(Dµ′(i+j), S
(i)

F j
k (λ)

) −→ Ext∗P(Dµ(i+j), S
(i)

F j
k (λ)

)

is equal to φ#(sλ(Bij)).
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Proof. We consider a commutative diagram (strictly speaking coming from the mor-
phisms in the category DPDµ(i+j)⊕Dµ′(i+j))

Ext∗P(Dµ′(i+j), S
(i)

F j
k (λ)

)
φ(i+j)∗
−−−−−→ Ext∗P(Dµ(i+j), S

(i)

F j
k (λ)

)

F
j(i)
k (ψλ)∗

y
yF j(i)(ψλ)∗

Ext∗P(Dµ′(i+j), SF
j
k (eλ)(i))

φ(i+j)∗
−−−−−→ Ext∗P(Dµ(i+j), SF

j
k (eλ)(i)).

Identifying known groups and arrows we get (up to shift) the diagram

sµ
′
(sλ(Bij))

φ(i+j)∗
−−−−−→ sµ(sλ(Bij))

sµ′ (ψλ(Bij))

y
ysµ(ψλ(Bij))

sµ
′
(sλ(Bij))

φ#(sλ(Bij))−−−−−−−−→ sµ(sλ(Bij)).

Of course, replacing the top arrow by φ#(sλ(Bij)) does not affect the commutativity
of the diagram. This, thanks to the monomorphicity of the right vertical arrow, gives
our assertion.

We have now all the ingredients we need for the proof of our main result.

Theorem 4.4. For any diagrams µ, λ of weight d, and any i, j, k, we have isomor-
phisms of graded vector spaces:

Ext∗P(W (i+j)
µ , S

(i)

F j
k (λ)

) ' sλ(sµ(Bij))[h
j
k(λ)] ' sµ(sλ(Bij))[h

j
k(λ)].

The shift is given by the formula hjk(λ) = (pj − 1)fλ + k p
j−1
p−1 eλ, where eλ is the num-

ber of boxes of λ lying on the principal diagonal and fλ is the number of boxes lying
above it.

Moreover, for any transformation of symmetrizations φ : wµ −→ wµ′ , the induced
map

(φ(i+j))∗ : Ext∗P(W (i+j)
µ′ , S

(i)

F j
k (λ)

) −→ Ext∗P(W (i+j)
µ , S

(i)

F j
k (λ)

)

is equal to

φ#(sλ(Bij))[h
j
k(λ)] : sµ′(sλ(Bij))[h

j
k(λ)] −→ sµ(sλ(Bij))[h

j
k(λ)].

Proof. The proof consists of slightly rearranged elements of the proofs of [C1, The-
orems 4.4, 6.1].

We take a finite resolution of Wµ by sums of products of divided powers starting
with ψ#

µ . Then we twist it i+ j times and apply the functor Ext∗P(−, S(i)

F j
k (λ)

). In the

resulting complex

0 → Ext∗P(W (i+j)
µ , SF j

k (λ))
ψ#∗

µ−−−→ Ext∗P(Deµ(i+j), SF j
k (λ))

φ∗1−→ Ext∗P(Dµ1(i+j), SF j
k (λ)) →

all the groups and arrows starting with the second spot are known by Theorem 4.1
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and Fact 4.3. Hence we have the commutative diagram (in which we omit shifts)

0 −→ sλ(sµ(Bij))
-

ψµ(sλ(Bij))

sλ(s
eµ(Bij))

-
φ
#
1 (sλ(Bij))

sλ(s
µ1

(Bij)) −→
↓ ↓

0 −→ Ext∗P(W
(i+j)
µ , S

F
j
k
(λ)

)
ψ#∗

µ−→ Ext∗P(Deµ(i+j), S
F

j
k
(λ)

)
φ∗1−→ Ext∗P(Dµ1(i+j), S

F
j
k
(λ)

) −→

where the vertical arrows are isomorphisms. We now observe that by arguments used
in the proof of [C1, Th. 4.4], the top row is exact (because it is isomorphic to the
sequence (*) in [C1, p. 786] for F = Wµ, G = Sλ, f = wµ, g = sλ). This means that
the bottom row is exact starting from the third term. Hence, by standard hyperExt-
argument we get the exactness of the whole bottom row (see [C1, top of p. 785]).
Thus our diagram can be completed by an isomorphism

f : sλ(sµ(Bij)) −→ Ext∗P(W (i+j)
µ , SF j

k (λ)).

We get the assertion concerning functoriality in a similar fashion to that of [C1,
Th. 4.4]; we then finish the proof by the arguments from the proof of [C1, Th. 6.1].

Remark 4.5. We said nothing about the functoriality with respect to the second vari-
able in Theorem 4.4. The reason is that one cannot expect good properties of any
morphism SF j

k (λ) −→ SF j
k (λ′). It seems reasonable to consider only maps somehow

“induced” by maps Sλ −→ Sλ′ , but then we encounter a problem caused by the fact
that the shape of a slice which determines the shift in Ext-grading depends on the
position of a box with respect to the main diagonal. We shall illustrate this point by
a simple example. For p = 2 we have a non-trivial transformation ρ : S2 −→ Λ2. Thus
we would expect that the induced map

ρ∗ : Ext∗P(D2(i+1), S
(i)
F0((12))) −→ Ext∗P(D2(i+1), S

(i)
F0((2)))

is equal to ρ(Ai1). But this cannot happen because h1
0((12)) 6= h1

0((2)).

5. Toward the general case

We now turn to the general situation. Our ultimate goal is to compute the groups
Ext∗P(W (i+j)

µ , S
(i)
λ ) for arbitrary diagrams µ, λ such that |µ| = d, |λ| = dpj . By the

methods of Section 4, it should be easy to reduce the problem to computing
Ext∗P(Dd(i+j), S

(i)
λ ), and the latter groups should be equal to (Ext∗P(Id(i+j), S

(i)
λ ))Σd

.
Therefore, if one wants, at least, to understand terms in which the answer should
be given, then the most important thing is to describe a structure of Σd-module on
Ext∗P(Id(i+j), S

(i)
λ ) coming from permuting factors in the tensor product. Let us look

more closely at the first non-trivial case i = 0, j = 1. Thus we focus on the groups
Ext∗P(Id(1), Sλ) for a diagram λ of weight dp. By the earlier considerations, this
group is trivial if λ has a non-trivial p-core, and if λ = Fk(λ′) then, according to
Theorem 4.4,

Ext∗P(Id(1), Sλ) ' sλ′(B01)[h1
k(λ′)] = sλ′(kΣd)[h1

k(λ′)] = Spλ′ [h
1
k(λ′)]
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(we recall that Spλ means the Specht module associated to the diagram λ, cf. [C1, §3],
[JK, Chap. 7.1]). In order to understand the situation of a diagram with a trivial
p-core but having p-quotient consisting of several diagrams we shall develop notation
introduced in [C2, §4]. We say that R = {λ = α0 ⊃ α1 ⊃ · · · ⊃ αd = ∅} is a decom-
position of λ into slices if for every 1 6 s 6 d, the diagram αs is obtained from αs−1

by removing a rim p-hook. In such a situation we call skew hooks χs = αs−1 \ αs
the slices of this decomposition. We recall from [C2, §4] that it may happen that
different decompositions produce the same set of slices (in fact this is always the case
if λ = Fk(λ′)). Let{Rt}lt=1 be the family of decompositions of λ into slices ordered
lexicographically and let (χ1

t , . . . , χ
d
t ) be the sequence of slices for Rt. Then in the

Decomposition Spectral Sequence converging to Ext∗P(Id(1), Sλ) we have

E∗t1 = Ext∗P(I(1), Sχ1
t
)⊗ · · · ⊗ Ext∗P(I(1), Sχd

t
) ' k[h(Rt)− t],

where the shift h(Rt) is given by the formula h(Rt) =
∑
i h(χit), and h(χit) is equal

to the number of columns in χit minus 1. We shall show that the differentials in this
spectral sequence are trivial. To do this, it suffices to show that all the numbers
h(Rt) have the same parity. But the last statement follows from the fact that the
number (−1)h(Rt) is equal to “the sign of the permutation taking the natural ordering
of beads before moving them to the configuration corresponding to the core and
after it” [JK, p. 81]. For the reader who does not like beads and runners we can
give a less elementary argument. Namely, it follows from the Muranghan-Nakayama
formula [JK, p. 60] that the value of the character of Spλ on a permutation being
a sum of d cycles of length p equals

∑
t(−1)h(Rt). On the other hand this value is

computed in [JK, p. 83] as ±f(λ) where f(λ) is the number of decompositions of λ
into slices. Therefore all the numbers (−1)h(R) must be equal (of course, beads are
hidden in the proof of the formula in [JK, p. 83]). Thus we have shown that

dim(Ext∗P(Id(1), Sλ)) = f(λ).

Moreover, it follows from [JK, Th. 7.27] that for λ with a trivial p-core and p-quotient
(q0(λ), . . . , qp−1(λ)) we have

f(λ) = dim((Spq0(λ)⊗ · · · ⊗ Spqp−1(λ)) ↑ Σd),

where ↑ Σd means the induced kΣd-module. This formula is intriguing, because it
suggests the structure of Σd-module on Ext∗P(Id(1), Sλ), which we need to understand.
Unfortunately, it is impossible that there is an isomorphism of Σd-modules

Ext∗P(Id(1), Sλ) ' (Spq0(λ)⊗ · · · ⊗ Spqp−1(λ)) ↑ Σd,

because the left-hand side is a sum of its homogeneous components, while there is no
such decomposition of the right-hand side. But some numerical experiments suggest
that, at least in some special cases, the situation might even be simpler.

Conjecture 5.1. There is an isomorphism of Σd-modules

Ext∗P(Id(1), Sλ) '
⊕
α

Nα;q0(λ),...,qp−1(λ) Spα,

where Nα;q0(λ),...,qp−1(λ) is the multiplicity of Spα in the Littlewood-Richardson decom-
position of (Spq0(λ)⊗ · · · ⊗ Spqp−1(λ)) ↑ Σd.
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We finish this discussion by making one remark concerning the case j > 1. The
strong interplay between j-fold Frobenius twist of the first variable and the enlarge-
ment F jk of the second variable which we have observed many times (see Observation
3.5) could suggest that the group Ext∗P(Dd(1), Sλ) is non-trivial only for λ of the form
F jk (λ′) (this is true for j = 1). But the simplest possible example shows that this is
not the case.

Fact 5.2. For p = 2,

dim(ExtnP(I(2), S(2,2))) =

{
1 n = 1, 2,
0 otherwise.

Proof. By the Littlewood-Richardson Rule [Bo] we have a filtration of S(2,1) ⊗ S(1)

with associated graded object S(3,1) ⊕ S(2,2) ⊕ S(2,12). Hence in the spectral sequence
of this filtration for Ext∗P(I(2),−), which converges to Ext∗P(I(2), S(2,1) ⊗ S(1)) = 0 we
have three non-trivial rows in E1:

E∗01 = Ext∗P(I(2), S(3,1)) = Ext2
P(I(2), S(3,1)) ' k[2],

E∗11 = Ext∗+1
P (I(2), S(2,2)),

E∗21 = Ext∗+2
P (I(2), S(2,12)) = Ext1

P(I(2), S(2,12)) ' k[−1].

Thus we see, that there are two possibilities: either the groups we are interested in have
the description predicted by our assertion, or they are trivial. To rule out the second
possibility, we consider the spectral sequences converging to hExt∗P(I(2),S(2,2)) (we
take the Schur-de Rham complex here). If our groups were trivial, then the whole first
term of the first spectral sequence would be trivial (the triviality of all columns except
the first and last one follows from Ext∗P(I(2)), F ⊗G) = 0 for |F |, |G| > 0; hence the
triviality of the last column follows from the exactness of the Schur-Koszul complex).
Therefore the second spectral sequence would converge to 0. But according to [C2,
Fact 8.1], the second term of this sequence has four non-trivial columns in which we
have the groups Ext∗P(I(2),Λ2(1)), hence it cannot converge to 0. This contradiction
finishes the proof.
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