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MODELS AND VAN KAMPEN THEOREMS FOR

DIRECTED HOMOTOPY THEORY
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Abstract
We study topological spaces with a distinguished set of paths,

called directed paths. Since these directed paths are generally
not reversible, the directed homotopy classes of directed paths
do not assemble into a groupoid, and there is no direct ana-
log of the fundamental group. However, they do assemble into
a category, called the fundamental category. We define models
of the fundamental category, such as the fundamental bipartite
graph, and minimal extremal models which are shown to gener-
alize the fundamental group. In addition, we prove van Kampen
theorems for subcategories, retracts, and models of the funda-
mental category.

1. Introduction

1.1. Directed spaces and directed homotopies
The field of directed algebraic topology studies directed spaces. That is, topolog-

ical spaces together with a (local) order, or more generally, spaces together with a
subset of allowed paths, called directed paths. In either approach, the directed paths
are generally not reversible. Consequently, the directed homotopy classes of directed
paths behave much differently from the usual homotopy classes of paths (see Exam-
ple 1.3). As many topologists are unfamiliar with directed algebraic topology, we give
a leisurely introduction, which includes the main new constructions and results of
this paper.

A motivation for this study comes from the field of concurrent (parallel) computing,
in which multiple processes have access to shared resources. A directed space models
the state space of such a system, and the directed paths model the execution paths.
General relativity provides another possible application. For more details, the reader
is referred to the papers [9, 14].

A number of categorical settings have been used to develop directed algebraic topol-
ogy. These include partially ordered spaces (pospaces) [4, 6], local pospaces [5, 9, 23],
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preordered spaces [16], local preordered spaces [19], d-spaces [15, 21], flows [10], and
cubical complexes (also known as higher-dimensional automata) [7, 8, 11, 20]. Here
we work in the general setting of Grandis’ d-spaces.

Definition 1.1 ([15]). A d-space is a topological space X together with a set dX of
paths γ : [0, 1]→ X, called directed paths or dipaths satisfying the following axioms:

1. for all x ∈ X, the constant path cx(t) = x is in dX,

2. dX is closed under reparametrization: if γ ∈ dX and f : [0, 1]→ [0, 1] is contin-
uous and non-decreasing then γ ◦ f ∈ dX, and

3. dX is closed under concatenation: if γ1, γ2 ∈ dX and γ1(1) = γ2(0), then γ ∈ dX
where γ(t) = γ1(2t), for 0 6 t 6 1

2 , and γ(t) = γ2(2t− 1), for 1
2 6 t 6 1.

Since f : [0, 1]→ [0, 1] in (2) above need not be onto, subpaths of dipaths are also
dipaths. A morphism of d-spaces f : X → Y , called a dimap, is a continuous map
which preserves dipaths. That is, f(dX) ⊆ dY , where f(γ) = f ◦ γ.

Example 1.2.

• Any topological space X is a d-space with dX equal to the set of all paths
in X.

• Let ~I = (I, dI) where I is the closed interval [0, 1] and dI is the set of all non-
decreasing continuous maps I → I. Dipaths in d-space X coincide with dimaps
~I → X.

• Let ~S1 be the unit circle together with all counterclockwise paths.

• Given two d-spaces X and Y , then X × Y is a d-space with

d(X × Y ) = dX × dY where (f, g)(t) = (f(t), g(t)).

• If X is a d-space and A ⊆ X, then A is a d-space with dA equal to the subset
of paths in dX whose image is in A.

An advantage of using d-spaces over the more commonly used preordered spaces
is that we can model loops, such as with ~S1.

A d-homotopy between dimaps f, g : X → Y is a dimap H : X × ~I → Y such that

for all x ∈ X, H(x, 0) = f(x), and H(x, 1) = g(x). We write H : f
≃
−→ g and H0 = f

and H1 = g. Notice that this notion is not symmetric. To obtain an equivalence
relation we take the transitive symmetric closure and say that f is d-homotopic to g

if they are linked by a chain of d-homotopies, f
≃
−→ f1

≃
←− f2

≃
−→ · · ·

≃
−→ g.

Given a dipath γ from a to b, let [γ] denote the equivalence class of dimaps γ′ : ~I
→ X with γ′(0) = a, γ′(1) = b and γ′ d-homotopic to γ relative to {a, b}. That is, we
insist that the d-homotopies linking γ′ and γ leave the endpoints fixed. Call this a
directed homotopy class of directed paths from a to b, or more simply, a homotopy
class of dipaths.

Example 1.3. The directed paths up to directed homotopy of a d-space are very dif-
ferent from the paths up to homotopy of the underlying topological space.

For example, an undirected path γ : I → X need not be homotopic relative to its
endpoints to a directed path in a d-space X. Consider the following example, which
is a subspace obtained from ~I × ~I by removing two squares.
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Furthermore, directed paths in a space that is contractible in the undirected sense
are not necessarily d-homotopic. In the following figure we have two non-homotopic
dipaths in a contractible d-space obtained from ~I × ~I × ~I by removing two isothetic
parallelepipeds which intersect the boundary of X.

1.2. The fundamental category
In trying to understand the directed paths in a directed space, X, a basic object

of study is the fundamental category, ~π1(X). Its objects are the points in X, and for
a, b ∈ X, the morphisms ~π1(X)(a, b) are given by the directed homotopy classes of
directed paths from a to b. The undirected version of this definition results in the
fundamental groupoid, in which all morphisms are invertible. When X is a d-space
the only invertible morphisms in the fundamental category are the homotopy classes
for reversible dipaths.

In usual undirected algebraic topology, the fundamental groupoid is often simplified
to the fundamental group by identifying the isomorphism classes of objects. That is,
the fundamental group is the skeleton of the fundamental groupoid. However, for
d-spaces where the only reversible paths are the constant paths, the fundamental
category is its own skeleton.

This is a central difficulty, and has led to considerable research in directed alge-
braic topology. The goal is to reduce the fundamental category, which typically has
uncountably many objects, to some considerably smaller and preferably finite struc-
ture that still contains ‘the essential information’.

One approach, explored by Fajstrup, Goubault, Haucourt, and Raussen [6, 13, 18],
is to use the calculus of fractions or generalized equivalences to reduce the fundamen-
tal category to its component category. Here we follow Grandis’ approach [16, 17]
and look for a (possibly finite) full subcategory of the fundamental category that will
provide an adequate model of the fundamental category.

Now we introduce some new notation that will be useful. Similar notation has been
used for fundamental groupoids.

Notation 1.4. Let ι : A →֒ X be the inclusion of a subspace. Let ~π1(X,A) denote
the full subcategory of ~π1(X) generated by A. That is, ~π1(X,A) has as objects the
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points in A, and for a, b ∈ A, ~π1(X,A)(a, b) = ~π1(X)(a, b). Let ~π1(ι) : ~π1(X,A)→
~π1(X) denote the inclusion. For x ∈ X we simplify ~π1(X, {x}) to ~π1(X,x).

1.3. Fundamental bipartite graphs
We introduce a new full subcategory of the fundamental category that is useful for

many of the d-spaces that appear in applications.

Definition 1.5. The objects of a category C have a preorder defined by x 6 y if and
only if there exists a morphism from x to y. Call an object a ∈ C minimal if x 6 a
implies x = a. Similarly, define b ∈ C to be maximal if b 6 x implies b = x. Say that
an object is extremal if it is either maximal or minimal. Let Extrl(C) denote the set
of all extremal objects in C. For a d-space X we will sometimes let Extrl(X) denote
Extrl(~π1(X)). Define the fundamental bipartite graph of X to be ~π1(X,Extrl(X)). To
view this category as a bipartite graph, we ignore the identity maps.

Example 1.6. Let X be the subspace of ~I × ~I in the left-hand figure. Its fundamen-
tal bipartite graph has two vertices and four edges. We remark that the branching
information is lost in this graph.

b

b

a

b

b ba b

1.4. Past retracts and future retracts
In order to simplify the fundamental category, one obvious approach to the homo-

topy theorist is to apply directed homotopies to the underlying space.

Definition 1.7. Call a directed map H : X × ~I → X a future homotopy flow if H0 =
IdX and a past homotopy flow if H1 = IdX . For a future (past) homotopy flow let f
equal H1 (H0). A future (past) homotopy flow induces a functor

~π1(X)→ ~π1(im f) ∼= ~π1(X, im f).

Raussen [21] has carefully studied these flows.
A fruitful generalization at the level of the fundamental category is given by the

following definition. In Section 2 we will see that our definition is equivalent to the
categorical definition given by Grandis [16].

Definition 1.8. A future retract of ~π1(X) is a subspace A ⊆ X together with a homo-
topy class of dipaths [γx] for all x ∈ X, with γx(0) = x and γx(1) =: x+ ∈ A such that
for all homotopy classes of dipaths [γ] : x→ a where a ∈ A, there is a unique mor-
phism making the following diagram commute.

a

x x+
[γx]

[γ]

(1.1)

We also insist that for a ∈ A, [γa] = [Ida].
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Example 1.9. In this example we describe a future retract of the square annulus, a
subspace of ~I × ~I. For all the points x in the lower-left square, x+ = a and for the
remaining points y, y+ = b. So A = {a, b}. We can think of the future retract as
pushing points forward in time in a way so that no decisions are made with respect
to the future.

b

b

b

b

a

b

x y

We should not be unduly concerned that these retracts are not induced by con-
tinuous maps. For in the classical undirected case, the skeleton functor from the
fundamental groupoid of S1 to π1(S

1) is not induced by a continuous map.
We remark that the definition implies that there is a unique morphism making the

following diagram commute.

x y

x+ y+

[γ]

[γx] [γy ]

[γ]+.

By uniqueness, [Idx]+ = [Idx+ ] and [β ◦ α]+ = [β]+ ◦ [α]+. That is, we have a functor
P+ : ~π1(X)→ ~π1(X,A). Also note that P+~π1(ι) = Id~π1(X,A).

Dually, one has past retracts, which induce a functor P− : ~π1(X)→ ~π1(X,A). For
an explicit definition, see Definition 2.2.

1.5. Extremal models
Just as we took the transitive symmetric closure of d-homotopies, we are led to

consider chains of past and future retracts. In Definition 2.7, we will generalize our
previous definitions of future retracts and past retracts to full subcategories of the
fundamental category. This allows us to define the following new model of a d-space
X.

Definition 1.10. An extremal model of X is a chain of future retracts and past
retracts

~π1(X)
P+

1−−→ ~π1(X,X1)
P−

2−−→ ~π1(X,X2)
P+

3−−→ · · ·
P±

n−−→ ~π1(X,A), (1.2)

(where A ⊆ · · · ⊆ X2 ⊆ X1 ⊆ X) such that Extrl(X) ⊆ A. Call an extremal model
minimal if there are no non-trivial future or past retracts ~π1(X,A)→ ~π1(X,A′) such
that Extrl(X) ⊆ A′.

Example 1.11. Let X be a non-empty path-connected topological space. Let dX be
the set of all paths in X and choose x ∈ X. Then ~π1(X) is the fundamental groupoid,
and ~π1(X,x) is the fundamental group. If X = {x} then Extrl(X) = {x}, but other-
wise Extrl(X) is empty. Set [γx] = [Idx] and for all other y ∈ X choose a homotopy
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class [γy] of paths from y to x. This induces a functor ~π1(X)→ ~π1(X,x) which is the
skeleton functor, a future retract, a past retract, and a minimal extremal model.

Example 1.12. Here we give three examples of an extremal model obtained from a
future retract followed by a past retract. In each case, we have included the generating
non-identity morphisms in the final figure.

1. The square annulus:

b

b

a

b

b

b

a

b

b

b

a

b

2. The Swiss flag:

b

b

b

b

a

b

c

d

b

b

b

b

a

b

c

d

b

b

b

b

a

b

c

d

3. The directed square with two holes in series:

b

b

b

a

b

c

b

b

b

a

b

c

b

b

b

a

b

c

In all three cases we obtain a minimal extremal model. The first two are in fact equal
to the fundamental bipartite graph. Notice that in the third example, we also have
the branching information which is lost in the fundamental bipartite graph.

Example 1.13. Let x ∈ ~S1. The category ~π1(~S
1, x) is isomorphic to the commutative

monoid of non-negative integers under addition. For y ∈ ~S1, let [γy] be the homotopy
class of dipaths from y to x such that no proper subpath of γy is a dipath from y to

x. This defines a future retract of ~π1(~S
1). The induced functor

P+ : ~π1(~S
1)→ ~π1(~S

1, x) ∼= (N,+)

is a minimal extremal model.

The simple proof of the following is in Section 3.

Proposition 1.14. An extremal model induces an injection of fundamental bipartite
graphs.

We will see that if a d-space X is a compact pospace, then this map is in fact an
isomorphism (Theorem 3.3).
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1.6. Directed van Kampen theorems

One of the main tools for calculating the fundamental group and the fundamental
groupoid is the Seifert-van Kampen theorem. A version of this theorem also applies
to the fundamental category. It was proved by Goubault for local pospaces [14] and
by Grandis for d-spaces [15]. These proofs follow R. Brown’s proof of the usual van
Kampen theorem for groupoids [1, 2, 3].

Let X1,X2 ⊆ X be d-spaces with X equal to the union of the interiors of X1 and
X2. Let X0 = X1 ∩X2. Then

X0 X2

X1 X

i1

i2

j1

j2

is a pushout in the category of d-spaces.

Theorem 1.15 ([15]). The induced commutative diagram

~π1(X0) ~π1(X2)

~π1(X1) ~π1(X)

~π1(i1)

~π1(i2)

~π1(j1)

~π1(j2)

is a pushout in the category of small categories.

We prove one version of this theorem for full (co)reflective subcategories, and
another for future retracts and past retracts. Let X1,X2 ⊆ X be d-spaces with
X equal to the union of the interiors of X1 and X2, and X0 = X1 ∩X2. Let A1, A2 ⊆ A
be d-spaces with A = Int(A1) ∪ Int(A2) and A0 = A1 ∩A2. Assume that for k =
1, 2, 3, Ak ⊆ Xk. So, we have the following commutative diagram of d-spaces.

A0 A2

A1 A

X0 X2

X1 X (1.3)

Theorem 1.16. Given compatible future retracts (solid arrows)

~π1(X0, A0) ~π1(X2, A2)

~π1(X1, A1) ~π1(X,A)

~π1(X0) ~π1(X2)

~π1(X1) ~π1(X)

the top square, induced by (1.3), is a pushout of categories, and there is an induced
retraction (dotted arrow) on the pushouts, which makes the diagram commute.
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The dual statement holds for past retracts.

We prove a more general version of Theorem 1.16 (Theorem 4.7), for triples A ⊆
B ⊆ X. This allows us to apply the theorem inductively to obtain an analogous
theorem for chains of compatible future retracts and past retracts (Theorem 4.9). We
use this to obtain a van Kampen theorem for extremal models (Theorem 4.10). A
simple application is given in Example 4.11.

2. Preliminaries

2.1. Directed spaces and topological spaces
We start by briefly relating directed spaces to topological spaces. Let Top and

dTop denote the categories of topological spaces, and d-spaces, respectively.

Lemma 2.1. The underlying functor U : dTop→ Top, given by U(X, dX) = X and
U(f) = f has a left adjoint F given by the constant paths. That is, F (X) = (X, dX)
where dX is the set of constant paths and F (f) = f . The functor U also has a right
adjoint, G, given by all paths. That is, G(X) = (X, dX) where dX is the set of all
(ordinary) paths in X, and G(f) = f .

Proof. The following are natural isomorphisms:

dTop(FX, (Y, dY )) ∼= Top(X,Y )

and

Top(X,Y ) ∼= dTop((X, dX), GY ).

2.2. Future retracts and past retracts
For the convenience of the reader, we define past retracts explicitly.

Definition 2.2. A past retract of ~π1(X) is a subspace A ⊆ X together with a directed
homotopy class of dipaths [γx] with γx(1) = x and γx(0) =: x− ∈ A such that for any
[γ] : a→ x with a ∈ A, there is a unique morphism making the following diagram
commute.

x− x

a

[γx]

[γ]

Again, we also insist that for a ∈ A, [γa] = [Ida]. We obtain a functor P− : ~π1(X)→
~π1(X,A), with P−(~π1(ι)) = Id~π1(X,A).

Example 2.3. The following past retract is dual to the previous example of a future
retract.

b

b

a

b
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We now show that future retracts and past retracts have a succinct categorical
definition. In fact, this is how they were first defined by Grandis [16] (who defined
them for the fundamental category of a preordered space). Recall that a future retract
induces a functor P+ : ~π1(X)→ ~π1(X,A) with P+(~π1(ι)) = Id~π1(X,A), and that a past
retract induces a functor P− : ~π1(X)→ ~π1(X,A) with P−(~π1(ι)) = Id~π1(X,A).

Proposition 2.4. There is a bijection between future retracts ι : A ⊆ X and adjunc-
tions

P+ : ~π1(X) ⇆ ~π1(X,A) : ~π1(ι)

with P+(~π1(ι)) = Id~π1(X,A).

Proof. (⇒) We have already shown that a future retract defines a functor

P+ : ~π1(X)→ ~π1(X,A)

with P+(~π1(ι)) = Id~π1(X,A). The assignment ηx : x
[γx]
−−→ x+ is universal from x to

~π1(ι), and determines a natural transformation η : Id~π1(X) → ~π1(ι)P
+. Therefore P+

is the left adjoint of ~π1(ι).

(⇐) Assume we are given an adjunction P+ : ~π1(X) ⇆ ~π1(X,A) : ~π1(ι). For x ∈ X,
the unit ηx : x→ x+ is universal from x to ~π1(ι). That is, there is a unique morphism
making the following diagram commute.

x x+

a

ηx

Since the inclusion of the full subcategory ~π1(X,A) has a left adjoint, we say that
~π1(X,A) is a full reflective subcategory of ~π1(X). Dually, past retracts are equivalent
to full coreflective subcategories.

Proposition 2.5. There is a bijection between past retracts ι : A ⊆ X and adjunc-
tions

~π1(ι) : ~π1(X,A) ⇆ ~π1(X) : P−

with P−(~π1(ι)) = Id~π1(X,A).

Remark 2.6. It follows that for future retracts and past retracts we have the following
natural isomorphisms. For x ∈ X and a ∈ A,

~π1(X,A)(x+, a) ∼= ~π1(X)(x, a),

~π1(X)(a, x) ∼= ~π1(X,A)(a, x−).

Generalizing Definitions 1.8 and 2.2 in the present language, we have:

Definition 2.7. A future (past) retract of ~π1(X,A) is a full (co)reflective subcategory
~π1(X,B), with P±(~π1(ι)) = Id~π1(X,A).
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3. The fundamental bipartite graph

Let X have an extremal model: a chain of future retracts and past retracts

~π1(X)
P+

1−−→ ~π1(X,X1)
P−

2−−→ ~π1(X,X2)
P+

3−−→ · · ·
P±

n−−→ ~π1(X,A),

such that Extrl(X) ⊆ A.

Proposition 3.1. An extremal model induces an injection of fundamental bipartite
graphs.

Proof. By definition, Extrl(~π1(X)) ⊆ A. For a ∈ A, since ~π1(X,A) is a subcategory
of ~π1(X), if a /∈ Extrl(~π1(X,A)) then a /∈ Extrl(~π1(X)). Combining these two facts
we obtain that

Extrl(~π1(X)) ⊆ Extrl(~π1(X,A)).

Thus ~π1(X,Extrl(~π1(X))) is a subcategory of ~π1(X,Extrl(~π1(X,A))).

The map induced by future retracts and past retracts on the fundamental bipartite
graph is not surjective in general. For example, take the unit interval [0, 1] and all
(undirected) paths, and let x ∈ [0, 1]. Then the map [0, 1]→ {x} induces a past and
future retract. However Extrl([0, 1]) is empty while Extrl({x}) = {x}.

We will show that if a d-space X is a compact pospace, then this map is in fact
an isomorphism.

Definition 3.2. A pospace is a topological space X, together with a reflexive, tran-
sitive, anti-symmetric relation 6, such that 6 is a closed subset of X ×X in the
product topology.

Given a d-space X, the fundamental category ~π1(X) induces a preorder on X.
Assume that this order makes X into a compact pospace. Let

~π1(X)
P+

1−−→ ~π1(X,X1)
P−

2−−→ ~π1(X,X2)
P+

3−−→ · · ·
P±

n−−→ ~π1(X,A) (3.1)

be an extremal model of X in which for 1 6 i 6 n, Xi is compact.

Theorem 3.3. Such an extremal model of a compact pospace induces an isomorphism
of fundamental bipartite graphs.

Proof. Let X be as above. Our proof is by induction on the number of retracts in
the extremal model.

Let P : ~π1(X)→ ~π1(X,B) be an extremal model as in (3.1) and let

P+ : ~π1(X,B)→ ~π1(X,A)

be a future retract. By Proposition 3.1, P+ ◦ P is injective on extremal points. We
will show that P+ : Extrl(~π1(X,B)) ։ Extrl(~π1(X,A)). It will follow by induction

that P+ ◦ P : Extrl(~π1(X))
∼=
−→ Extrl(~π1(X,A)).

Let a be a maximal point in ~π1(X,A). Let b ∈ B, with a 6 b. Then a 6 b 6 b+.
Since b+ ∈ A and a is maximal in ~π1(X,A), a = b+. Since 6 is anti-symmetric, it
follows that a = b. Therefore, a is maximal in ~π1(X,B). Thus the maximal points in
~π1(X,A) are also maximal in ~π1(X,B).
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Let a be a minimal point in ~π1(X,A). Since A ⊆ B, a ∈ B. By assumption ~π1(X)
induces an order 6 on X such that X is a pospace. Order B with the order induced
by 6. This coincides with the order induced by ~π1(X,B). It is well known and easy
to check that the induced order on a subspace of a pospace gives it the structure of
a pospace. By assumption, B is compact. Since B is a compact pospace, there is a
minimal point b ∈ ~π1(X,B) such that b 6 a [12, Proposition VI-5.3], [22]. Since P+

is a future retract, b+ 6 a. Since a is minimal in ~π1(X,A) and b+ ∈ A it follows that
a = b+.

We remark that the compact condition is necessary. Consider R with dR all non-
decreasing paths [0, 1]→ R. Then the induced order is the usual total order on R and
it makes R into a pospace. There is a future retract P+ from R to the non-negative
real numbers R>0, where x+ = x if x > 0 and x+ = 0 if x < 0. However Extrl(R) is
empty while Extrl(R>0) = {0}.

4. Directed van Kampen theorems

We start this section by proving a version of the Seifert-van Kampen theorem for
full subcategories of the fundamental category (Theorem 1.16). Our proof follows
Grandis’ proof of the van Kampen theorem for d-spaces [15], which in turn follows
R. Brown’s proof of the usual van Kampen theorem for groupoids [1, 2, 3]. Instead
of working with A ⊆ X and the full subcategory ~π1(X,A) of ~π1(X), we work in the
more general setting A ⊆ B ⊆ X and the full subcategory ~π1(X,A) ⊆ ~π1(X,B). The
former can be obtained from the latter by setting B = X.

Next we prove a van Kampen theorem for past and future retracts. Finally we
prove a van Kampen theorem for chains of past retracts and future retracts. As a
corollary, we obtain a van Kampen theorem for extremal models.

Let X1,X2 ⊆ X be d-spaces with X equal to the union of the interiors of X1 and
X2. Let X0 = X1 ∩X2. With these statements we assume that the d-space structure
on X is induced by the d-space structures on X1 and X2. That is, dipaths in X are
concatenations of dipaths in X1 and X2.

Similarly, let A1, A2 ⊆ A be d-spaces with A = Int(A1) ∪ Int(A2) and let B1, B2

⊆ B be d-spaces with B = Int(B1) ∪ Int(B2). Let A0 = A1 ∩A2 and B0 = B1 ∩B2.
Assume that for k = 1, 2, 3, Ak ⊆ Bk ⊆ Xk. Thus we have the following commutative
diagram of d-spaces.

A0 A2

A1 A

B0 B2

B1 B

X0 X2

X1 X

i′2

i′1
j′
2

j′
1

ι0

ι1

ι2

ι i2

i1

j2
j1

(4.1)
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Furthermore, assume that ~π1(Xk, Ak) ⊆ ~π1(Xk, Bk) is a full reflective subcategory
for k = 0, 1, 2 and that the following diagram commutes, where P+

k denotes the reflec-
tions.

~π1(X0, A0) ~π1(X2, A2)

~π1(X1, A1)

~π1(X0, B0) ~π1(X2, B2)

~π1(X1, B1)

P+

0
P+

2

P+

1

(4.2)

The following is our main lemma. We assume (4.1) and (4.2) with Bk = Xk for
k = 0, 1, 2.

Lemma 4.1. Let [γ] ∈ ~π1(X,A). Then there exist γ1, . . . , γn with [γi] ∈ ~π1(X1, A1)
or ~π1(X2, A2) such that [γ] = [γ1] + · · ·+ [γn], where + denotes concatenation.

Proof. Let [γ] ∈ ~π1(X,A) with γ(0) = a and γ(1) = a′. By the Lebesgue number
lemma, there is a number n such that γ

([

i−1
n

, i
n

])

⊆ Xki
where ki ∈ {1, 2} for all

i = 1, . . . , n. Let xi = γ( i
n
), i = 0, . . . , n. Let γi : ~I → X be given by γi(t) = γ( i−1+t

n
).

Then γ = γ1 + · · ·+ γn, γi : ~I → Xki
and [γi] ∈ ~π1(Xki

). The only remaining problem
is that we do not have [γi] ∈ ~π1(Xki

, Aki
).

Let [γi]
+ denote P+

ki
[γi]. These maps of paths induce maps xi 7→ x+

i which are well
defined by the commutativity of (4.2). Composing the commutative diagrams

xi−1 x+
i−1

xi x+
i

[γi] [γi]
+

we obtain

[γ] = [γ1] + · · ·+ [γn] = [γ1]
+ + · · ·+ [γn]+,

where [γi]
+ ∈ ~π1(Xki

, Aki
).

Theorem 4.2. The following diagram is a pushout of categories.

~π1(X0, A0) ~π1(X2, A2)

~π1(X1, A1) ~π1(X,A).

~π1(i
′
1)

~π1(i
′
2)

~π1(j
′
1)

~π1(j
′
2)

Proof. Let C be a category. Assume φk : ~π1(Xk, Ak)→ C for k = 1, 2 such that
φ1~π1(i

′
1) = φ2~π1(i

′
2). Let [γ] ∈ ~π1(X,A) with γ(0) = a and γ(1) = a′. Now we apply

Lemma 4.1 to [γ]. Define F [γ] = φk1
[γ1] + · · ·+ φkn

[γn], where addition is given by
composition in C.

We first remark that F does not depend on the choice of ki. If im(γi) ⊂ X1 ∩X2 =
X0, then the compatibility of φ1 and φ2 ensures that φ1[γi] = φ2[γi].
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Next, F does not depend on the choice of n: given another suitable m, consider
the partition into nm pieces.

Finally, F does not depend on the choice of representative γ. Consider another
γ̃ ≃ γ. Again, apply Lebesgue’s number lemma to I × I to suitably decompose the
homotopy from γ to γ̃ into homotopies contained in either X1 or X2. Now apply the
suitable choice of P+

1 or P+
2 to each of these. Use the resulting set of homotopies in

~π1(X1, A1) and ~π1(X2, A2) to obtain

F [γ] = F [γ1] + · · ·+ F [γn] + F [Ida′ ] = F [Ida] + F [γ̃1] + · · ·+ F [γ̃n] = F [γ̃].

Therefore F is well defined.

For functoriality, notice that F preserves compositions: if γ, γ′ have decompositions

γ = γ1 + · · ·+ γn and γ′ = γ′

1 + · · ·+ γ′

m,

then γ + γ′ has decomposition

γ1 + · · ·+ γn + γ′

1 + · · ·+ γ′

m.

The uniqueness of F is by construction.

Lemma 4.3. Given the following commutative solid-arrowed diagram, let F and F ′

be the pushout maps.

~π1(X0, A0) ~π1(X2, A2)

~π1(X1, A1) ~π1(X,A)

~π1(X0, B0) ~π1(X2, B2)

~π1(X1, B1) ~π1(X,B)

C

~π1(ι2)

~π1(ι1)

~π1(ι)
φ′

2

φ2

φ′
1

φ1

F ′

F

Then F ′ = F~π1(ι).

Proof. Let [γ] ∈ ~π1(X,A). Apply Lemma 4.1 to [γ].

F ′[γ] = φ′

k1
[γ1] + · · ·+ φ′

kn
[γn]

= φk1
~π1(ιk1

)[γ1] + · · ·+ φkn
~π1(ιkn

)[γn]

= φk1
[γ1] + · · ·+ φkn

[γn]

= F [γ]

= F~π1(ι)[γ]

Let Cat denote the category of categories.
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Theorem 4.4. The following diagram is a pushout in the arrow category on Cat.

~π1(X0, A0) ~π1(X2, A2)

~π1(X1, A1) ~π1(X,A)

~π1(X0, B0) ~π1(X2, B2)

~π1(X1, B1) ~π1(X,B)

Proof. Let F : C→ D be a functor between categories C and D. We wish to show
that given the solid-arrowed commutative diagram below, there are unique maps G
and H making the diagram commute.

~π1(X0, A0) ~π1(X2, A2)

~π1(X1, A1) ~π1(X,A)

~π1(X0, B0) ~π1(X2, B2)

~π1(X1, B1) ~π1(X,B)

C

D

F

φ′
2

φ′
1

G

H

Since the top and bottom squares are pushouts, there are unique maps G and H
making the top and bottom commute. For commutativity it remains to show that
the following diagram commutes.

~π1(X,A) C

~π1(X,B) D.

G

~π1(ι)

H

F

Since FG is the pushout map of the following diagram

~π1(X0, A0) ~π1(X2, A2)

~π1(X1, A1) ~π1(X,A)

D

Fφ2

Fφ1

FG

Lemma 4.3 tells us that FG = H~π1(ι).

Finally, non-uniqueness of (G,H) would contradict the uniqueness of G and H.
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Given the commutative diagram (4.2) recall that ~π1(X,B) and ~π1(X,A) are the
pushouts of the bottom two arrows and the top two arrows respectively. We will
define a functor P+ : ~π1(X,B)→ ~π1(X,A) and show that it is the pushout in the
arrow category of Cat.

~π1(X0, A0) ~π1(X2, A2)

~π1(X1, A1) ~π1(X,A)

~π1(X0, B0) ~π1(X2, B2)

~π1(X1, B1) ~π1(X,B)

~π1(ι
′
2)

~π1(ι
′
1)

P+

1

~π1(i2)

~π1(i1)

P ′
2

~π1(j
′
1)

~π1(j
′
2)

~π1(j2)

~π1(j1)

P+

(4.3)

Definition 4.5. Define P+ : ~π1(X,B)→ ~π1(X,A) as follows. For x ∈ ~π1(X,B),

P+ : x 7→

{

~π1(j
′
1)P

+
1 x if x ∈ B1,

~π1(j
′
2)P

+
2 x if x ∈ B2.

Is this well defined? If x ∈ B1 ∩B2 = B0, then they agree by the commutativity of
the solid and dashed arrows in (4.3). Let [γ] ∈ ~π1(X,B). By Lemma 4.1 there exist
γ1, . . . , γn with [γi] ∈ ~π1(Xki

, Bki
) for ki ∈ {1, 2} such that

[γ] = [γ1] + · · ·+ [γn].

Define

P+[γ] = ~π1(j
′

k1
)P+

k1
[γ1] + · · ·+ ~π1(j

′

kn
)P+

kn
[γn].

This is well defined by the same argument as in the proof of Theorem 4.2. It will be
convenient to denote P+(x) and P+[γ] by x+ and [γ]+ respectively.

Lemma 4.6. Let [γ] ∈ ~π1(X,B) with γ(0) = x, γ(1) = y. Then the following diagram
commutes.

x x+

y y+

[γ] [γ]+

Proof. Let γ1, . . . , γn be as in Definition 4.5. Let [γi]
+ denote ~π1(j

′

ki
)P+

ki
[γi]. Com-

posing the commutative diagrams

xi−1 x+
i−1

xi x+
i ,

[γi] [γi]
+

we obtain the desired result.
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Theorem 4.7. In (4.3), P+ is a pushout in the arrow category on Cat.

Proof. The theorem follows by the same argument as the one used to prove Theo-
rem 4.4.

Theorem 4.8. Assume that P+
k is the left adjoint of ~π1(ιk) for k = 0, 1, 2. Then

there is an adjunction

P+ : ~π1(X,B) ⇆ ~π1(X,A) : ~π1(ι).

Proof. The unit η : 1~π1(X,B) → ~π1(ι)P
+ is a natural transformation by Lemma 4.6.

The counit ǫ : P+~π1(ι)→ 1~π1(X,A) is given by the identity. Finally, ǫx+ ◦ P+(ηx+) =
Idx+ and ~π1(ι)(ǫa) ◦ ηa = Ida.

Assume that for k = 0, 1, 2 we have chains of future retracts and past retracts

Pk : ~π1(Xk,0)
P+

k,1

−−−→ ~π1(Xk,0,Xk,1)

P−

k,2

−−−→ ~π1(Xk,0,Xk,2)
P+k,3
−−−−→ · · · → ~π1(Xk,0,Xk,n)

that are compatible. That is, for ℓ = 1, . . . , n, X1,ℓ ∩X2,ℓ = X0,ℓ, Xℓ = Int(X1,ℓ) ∪
Int(X2,ℓ), and the diagrams corresponding to (4.2), but with P0,ℓ, P1,ℓ and P2,ℓ,
commute. Apply Theorem 4.2 to obtain pushouts ~π1(X0,Xℓ) for ℓ = 1, . . . , n. Then
use Definition 4.5 for each ℓ = 1, . . . , n, to obtain

P : ~π1(X0)
P+

1−−→ ~π1(X0,X1)
P−

2−−→ ~π1(X0,X2)
P+

3−−→ · · · → ~π1(X0,Xn).

Apply Theorem 4.7 inductively to obtain the following.

Theorem 4.9. The pushout of compatible chains of future retracts and past retracts
is a chain of future retracts and past retracts.

It remains to apply this result to extremal models.

Theorem 4.10. The pushout of compatible compact extremal models is an extremal
model.

Proof. It remains to show that if we have compatible extremal models, P1 : ~π1(X1)→
~π1(X1, A1) and P2 : ~π1(X2)→ ~π1(X2, A2), with Extrl(X1) ⊆ A1 and Extrl(X2) ⊆ A2,
then the pushout P : ~π1(X)→ ~π1(X,A) (Theorem 4.9) satisfies Extrl(X) ⊆ A.

Let x ∈ Extrl(X), where X = Int(X2) ∪ Int(X2). Without loss of generality, we
assume that x ∈ X1. Then x ∈ Extrl(X1) — otherwise this would contradict x ∈
Extrl(X). Therefore, since P1 is an extremal model, x ∈ A1 ⊆ A.

Example 4.11. Let X1 be the subspace of ~I × ~I obtained by removing the two squares
(0.1, 0.3)× (0.4, 0.6) and (0.7, 0.9)× (0.4, 0.6). Let X2 be the d-space obtained by

removing (0.4, 0.6)× (0.4, 0.6) from ~I × ~I and identifying (0.2, y) and (0.8, y) for y ∈
[0, 1]. Let A1 = {(0, 0), (0.3, 0), (0.5, 0), (0.5, 1), (0.7, 1), (1, 1)} and let A2 = {(0, 0),
(0.2, 0) = (0.8, 0), (0.2, 1) = (0.8, 1), (1, 1)}. Let X be obtained from X1 and X2 by

identifying [0.3, 0.5]× ~I in X1 with [0, 0.2]× ~I in X2 and [0.5, 0.7]× ~I in X1 with

[0.8, 1]× ~I in X2.
Let P+

1,1, P−

1,2, P+
2,1, and P−

2,2 be the future retracts and past retracts of X1 and X2

indicated below.
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b b b

b b b

b b b

b b b

b b

b

Then (P+
1,1, P

−

1,2) and (P+
2,1, P

−

2,2) are compatible extremal models. Then combining
~π1(X1, A1) and ~π1(X2, A2), we obtain ~π1(X,A). These fundamental categories are
generated by the graphs below.

b b b

b b b

b b

b b

b b b

b b b
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