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ADDING INVERSES TO DIAGRAMS ENCODING ALGEBRAIC
STRUCTURES
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(communicated by J. F. Jardine)

Abstract

We modify a previous result, which showed that certain dia-
grams of spaces are essentially simplicial monoids, to construct
diagrams of spaces which model simplicial groups. Furthermore,
we show that these diagrams can be generalized to models for
Segal groupoids. We then modify Segal’s model for simplicial
abelian monoids in such a way that it becomes a model for
simplicial abelian groups.

1. Introduction

Much research has been done on various structures equivalent to topological or
simplicial groups. Classical examples include Thomason’s work with delooping
machines [27] and Stashefl’s group-like A..-spaces [26], while more modern examples
make use of the structure of algebraic theories theories [1, 2]. In [7], we focus instead
on simplicial monoids. In particular, we consider diagrams of spaces which essentially
give one of the spaces the structure of a monoid. While such a structure is given when
the diagram is the theory of monoids, we obtain a simpler diagram which, from the
viewpoint of homotopy theory, encodes the same structure.

Here we return to the original situation and ask if this construction can be mod-
ified to obtain a diagram encoding the structure of a simplicial group rather than a
simplicial monoid. After all, we need only to find a way to include inverses. In this
paper, we show that indeed we can represent simplicial groups in this manner.

Furthermore, as the construction for simplicial monoids generalizes to the many-
object case of simplicial categories, we can obtain models for simplicial groupoids as
well. In doing so, we extend a result relating simplicial categories to Segal categories
(essentially simplicial categories with composition only given up to higher homotopy)
to one relating simplicial groupoids to Segal groupoids.

One might ask, then, if there are other algebraic structures which can be modelled
in a similar way, in particular by some kind of diagram which is simpler than the
one given by the corresponding algebraic theory. An answer for the case of simplicial
abelian monoids is given by Segal’s category I' [24], although it does not provide the
relationship between strict and homotopy structures that we have in the non-abelian
situation. Here, we extend this construction to find a model for abelian groups.
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To obtain this result, we use work of Bousfield, in which he modifies the projec-
tions in the diagram for simplicial monoids, rather than the diagram itself, to encode
inverses and so model simplicial groups [11]. To model simplicial abelian groups, we
change the projections in the category I' encoding an abelian monoid structure in an
analogous way. It should be noted that Bousfield’s work includes models for n-fold
loop spaces, work which has been approached from another angle by Berger [4].

Of course, the question we answer here in these cases can be asked for many other
algebraic structures. For example, are there simple diagrams encoding the structure
of (commutative) rings? We can also ask about so-called multi-sorted algebraic struc-
tures, such as operads and group actions, for which we have models given by multi-
sorted algebraic theories [6]. We hope to find more such results in future work. In
related work, Barwick has found diagrams given by operator categories which model
certain kinds of algebraic structures [3].

In Sections 2 and 3, we review basic properties of model categories and some of
the model category structures that we use in this paper. In Section 4, we modify the
argument given in [7] for simplicial monoids to obtain a model for simplicial groups.
We extend this argument in Section 5 to simplicial groupoids with a fixed object
set. In Section 6, we summarize the construction of Bousfield’s alternative model for
simplicial groups. Finally, in Section 7, we summarize Segal’s argument for a model
for simplicial abelian monoids and modify it to obtain a model for simplicial abelian
groups.

Acknowledgements

I would like to thank Bernard Badzioch and Bill Dwyer for their helpful suggestions
for this paper, particularly with regard to the approach to simplicial abelian groups,
and Clark Barwick and Joachim Kock for conversations about the category TA°P. I
am also grateful to the referee for helpful comments and corrections.

2. Model category structures

In this section, we review the necessary tools from model categories that we will
need to prove our result for simplicial groups.

Recall that a model category structure on a category C is a choice of three dis-
tinguished classes of morphisms: fibrations, cofibrations, and weak equivalences. A
(co)fibration which is also a weak equivalence will be called an acyclic (co)fibration.
With this choice of three classes of morphisms, C is required to satisfy five axioms
MC1-MC5 [13, 3.3]. Here we only state MC4 and MC5, as they are used in the course
of the paper.

o (MC4) Ifi: A — B is a cofibration and p: X — Y is a fibration, then a dotted
arrow lift exists in any solid arrow diagram of the form

_—
7

A X

bk
/

B Y

—_—
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if either

1. pis a weak equivalence, or
2. i is a weak equivalence.

(In this case we say that i has the left lifting property with respect to p and that
p has the right lifting property with respect to i.)

e (MC5) Any map f can be factored two ways:

1. f = pi, where ¢ is a cofibration and p is an acyclic cofibration, and
2. f = qj, where j is an acyclic cofibration and ¢ is a fibration.

An object X in C is fibrant if the unique map X — x from X to the terminal
object is a fibration. Dually, X is cofibrant if the unique map ¢ — X from the initial
object to X is a cofibration. The factorization axiom MC5 guarantees that each
object X has a weakly equivalent fibrant replacement X and a weakly equivalent
cofibrant replacement X. These replacements are not necessarily unique, but they
can be chosen to be functorial in the cases we will use [17, 1.1.3].

The model category structures which we will discuss are all cofibrantly generated.
In a cofibrantly generated model category, there are two sets of morphisms, one of
generating cofibrations and one of generating acyclic cofibrations, such that a map is
a fibration if and only if it has the right lifting property with respect to the generating
acyclic cofibrations, and a map is an acyclic fibration if and only if it has the right
lifting property with respect to the generating cofibrations [15, 11.1.2]. The following
theorem is useful for proving the existence of a cofibrantly generated model structure
on a category.

Theorem 2.1 ([15, 11.3.1]). Let M be a category which has all small limits and
colimits. Suppose that M has a class of weak equivalences which satisfies the two-out-
of-three property (model category axiom MC2) and which is closed under retracts. Let
I and J be sets of maps in M which satisfy the following conditions:

1. Both I and J permit the small object argument [15, 10.5.15].
2. FEvery J-cofibration is an I-cofibration and a weak equivalence.
3. PBvery I-injective is a J-injective and a weak equivalence.

4. One of the following conditions holds:

(a) A map that is an I-cofibration and a weak equivalence is a J-cofibration, or
(b) A map that is both a J-injective and a weak equivalence is an I-injective.

Then there is a cofibrantly generated model category structure on M in which I is a
set of generating cofibrations and J is a set of generating acyclic cofibrations.

We now state the definition of a Quillen pair of model category structures. Recall
that for categories C and D a pair of functors
F:C—=D:R

is an adjoint pair if for each object X of C and object Y of D there is a natural isomor-
phism ¢: Homp(FX,Y) — Home(X, RY) [19, IV.1]. The adjoint pair is sometimes
written as the triple (F, R, ).
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Definition 2.2 ([17, 1.3.1]). If C and D are model categories, then an adjoint pair
(F, R, %) between them is a Quillen pair if one of the following equivalent statements
holds:

1. F preserves cofibrations and acyclic cofibrations.
2. R preserves fibrations and acyclic fibrations.

We now have the following definition of Quillen equivalence, which is the standard
notion of equivalence of model category structures.

Definition 2.3 ([17, 1.3.12]). A Quillen pair is a Quillen equivalence if for all cofi-
brant X in C and fibrant Y in D, a map f: FX — Y is a weak equivalence in D if
and only if the map ¢ f: X — RY is a weak equivalence in C.

We will use the following proposition to prove that our Quillen pairs are Quillen
equivalences. Recall that a functor F': C — D refiects a property if, for any morphism
f of C, whenever F'f has the property, then so does f.

Proposition 2.4 ([17, 1.3.16]). Suppose that (F, R,v) is a Quillen pair from C to
D. Then the following statements are equivalent:

1. (FyR,¢) is a Quillen equivalence.

2. R reflects weak equivalences between fibrant objects, and for every cofibrant X
in C the map X — R(FX)? is a weak equivalence.

Throughout this paper, we use the category of simplicial sets, denoted SSets.
Recall that a simplicial set is a functor A°? — Sets, where A denotes the cosimplicial
category whose objects are the finite ordered sets [n] = (0 — --- — n) and whose
morphisms are the order-preserving maps. The simplicial category A°P is then the
opposite of this category. Some examples of simplicial sets are, for each n > 0, the
n-simplex Al[n], its boundary A[n], and, for any 0 < k < n, the simplicial set V[n, k],
which is A[n] with the kth face removed [14, I.1]. More generally, a simplicial object
in a category C is a functor A° — C. In particular, a functor A°? — SSets is a
simplicial space or bisimplicial set [14, TV].

In a slight abuse of terminology, we use the term simplicial category to refer to a
simplicial object in the category of all (small) categories which satisfies the additional
condition that the face and degeneracy maps are the identity on all the objects. Such
an object is often called a category enriched over simplicial sets, since it is just a
category with a simplicial set of morphisms between any two objects. For any objects
X and Y in a simplicial category, we denote this simplicial set Map(X,Y’) and call it
a function complex. A simplicial category in this sense with all morphisms invertible
is called a simplicial groupoid.

We also use the notion of a simplicial model category M, or a model category
which is also a simplicial category satisfying two axioms [15, 9.1.6]. It is important
to note that a function complex in a simplicial model category is only homotopy
invariant in the case that X is cofibrant and Y is fibrant. For the general case, we
have the following definition:

Definition 2.5 ([15, 17.3.1]). A homotopy function complex Map”(X,Y) in a sim-
plicial model category M is the simplicial set Map(X,Y), where X is a cofibrant
replacement of X in M and Y is a fibrant replacement for Y.
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Several of the model category structures that we use are obtained by localizing a
given model category structure with respect to a map or a set of maps. Suppose that
P ={f: A— B} is a set of maps with respect to which we would like to localize a
model category M.

Definition 2.6. A P-local object W is a fibrant object of M such that for any
f: A— Bin P, the induced map on homotopy function complexes

f*: Map”(B, W) — Map" (A, W)

is a weak equivalence of simplicial sets. A map g: X — Y in M is then a P-local
equivalence if for every local object W, the induced map on homotopy function com-
plexes

g*: Map”™ (Y, W) — Map"(X, W)
is a weak equivalence of simplicial sets.

Theorem 2.7 ([15, 4.1.1]). Let M be a left proper cellular model category [15,
18.1.1, 12.1.1] and P a set of morphisms of M. There is a model category struc-
ture LpM on the underlying category of M such that:

1. The weak equivalences are the P-local equivalences.
2. The cofibrations are precisely the cofibrations of M.

3. The fibrations are the maps which have the right lifting property with respect to
the maps which are both cofibrations and P-local equivalences.

4. The fibrant objects are the P-local objects.

In this situation, we refer to the functorial fibrant replacement functor as a local-
ization functor.

When we are working with localized model category structures, the following theo-
rem can be used to prove that an adjoint pair is still a Quillen pair after localization.

Theorem 2.8 ([15, 3.3.20]). Let C and D be left proper, cellular model categories
and let (F,R,v) be a Quillen pair between them. Let S be a set of maps in C and
LgC the localization of C with respect to S. Then if LF'S is the set in D obtained by
applying the left derived functor of F to the set S [15, 8.5.11], then (F, R,v) is also
a Quillen pair between the model categories LsC and Ly,psD.

One important model category structure we will use is the standard one on the
category SSets of simplicial sets. In this case, a weak equivalence is a map of sim-
plicial sets f: X — Y such that the induced map |f]: |X| — |Y] is a weak homo-
topy equivalence of topological spaces. The cofibrations are monomorphisms, and the
fibrations are the maps with the right lifting property with respect to the acyclic cofi-
brations [14, 1.11.3]. This model category structure is cofibrantly generated; a set of
generating cofibrations is I = {A[n] — A[n] | n > 0}, and a set of generating acyclic
cofibrations is J = {V[n,k] = A[n] [n > 1,0 <k < n}.

3. Model categories of diagrams

The objects of all the categories we consider in this paper are given by diagrams
of spaces. Given any small category D, there is a category SSets? of D-diagrams
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in SSets, or functors D — SSets. We can obtain two model category structures on
SSetsP by the following results.

Theorem 3.1 ([14, IX 1.4]). Given the category SSetsP of D-diagrams of simplicial
sets, there is a simplicial model category structure SSets}D in which the weak equiva-
lences and fibrations are objectwise and in which the cofibrations are the maps which
have the left lifting property with respect to the maps which are both fibrations and
weak equivalences.

Theorem 3.2 ([14, VIII 2.4]). There is a simplicial model category SSets? in which
the weak equivalences and the cofibrations are objectwise and in which the fibrations
are the maps which have the right lifting property with respect to the maps which are
cofibrations and weak equivalences.

Given these general results, we now turn to the particular diagrams which we will
be considering in this paper. Let G be a simplicial group, by which we mean a sim-
plicial object in the category Grp of groups, or a functor A°? — Grp. However, here
we use an alternate viewpoint in which we use algebraic theories to define simpli-
cial groups. We begin with the definition of an algebraic theory. Some references for
algebraic theories include Chapter 3 of [10], the introduction to [1], and Section 3
of [6].

Definition 3.3. An algebraic theory 7 is a small category with finite products
and objects denoted T,, for n > 0. For each n, T, is equipped with an isomorphism
T, = (T1)™. Note, in particular, that T is the terminal object in T

Here we consider one particular theory, the theory of groups, which we denote
Ta. To describe this theory, we first consider the full subcategory of the category
of groups generated by representatives 7, of the isomorphism classes of free groups
on n generators. We then define the theory of groups 7o to be the opposite of this
category. Thus T,, which is canonically the coproduct of n copies of T} in the category
Ggrp of groups, becomes the product of n copies of T} in 7g. It follows that there
is a projection map py;: T, — 11 for each 1 <i < n in addition to other group
homomorphisms. In fact, there are such projection maps in any algebraic theory. We
use them to make the following definition.

Definition 3.4 ([1, 1.1]). Given an algebraic theory 7, a strict simplicial T-algebra
(or simply T-algebra) A is a product-preserving functor A: T — SSets. Here, “pro-
duct-preserving” means that for each n > 0 the canonical map

A(T,) — A(T)",

induced by the n projection maps T,, — 17, is an isomorphism of simplicial sets. In
particular, A(Tp) is the one-point simplicial set A[0].

In general, a T-algebra A defines a strict algebraic structure on the space A(T})
corresponding to the theory 7 [1, §1]. So, a 7g-algebra A defines a group structure
on the space A(Ty). In fact, the category of simplicial groups is equivalent to the
category of Tg-algebras [18], [20, I1.4].

We can also consider the case where the products are not preserved strictly, but
only up to homotopy.
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Definition 3.5 ([1, 1.2]). Given an algebraic theory 7, a homotopy T-algebra is a
functor X: 7 — SSets which preserves products up to homotopy. The functor X
preserves products up to homotopy if, for each n > 0 the canonical map

X(T) — X(Th)"

induced by the projection maps py, ;: T, — 11 for 1 < i < n is a weak equivalence of
simplicial sets. In particular, we assume that X (7p) is weakly equivalent to A[0].

We now consider the corresponding model category structures.

Proposition 3.6 (|20, 11.4], [23, 3.1]). Let T be an algebraic theory and Alg” the
category of T -algebras. Then there is a cofibrantly generated model category structure
on Alg” in which the weak equivalences and fibrations are levelwise weak equivalences
of simplicial sets, and the cofibrations are the maps with the left lifting property with
respect to the maps which are fibrations and weak equivalences.

We also need a model category structure for homotopy 7 -algebras. However, there
is no model category structure on the category of homotopy 7 -algebras itself since
this category does not have all small colimits. However, there is a model category
structure on the category of all 7-diagrams of simplicial sets in which the fibrant
objects are homotopy 7 -algebras. To obtain this structure, we begin by considering
the model category structure SS ets? on the category of all functors 7 — SSets. The
desired model structure can be obtained by localizing the model structure SSets?
with respect to a set of maps. We summarize this localization here; a complete descrip-
tion is given by Badzioch [1, §5].

Given an algebraic theory 7, consider the functor Homs(7),, —). We then have
maps

n
Dn: H Homy (71, —) — Homz (T, —)
i=1
induced from the projection maps in 7. We then localize the model category structure
on SSets? with respect to the set S = {p, | n > 0}. We denote the resulting model
category structure £LSSets” .

Proposition 3.7 ([1, 5.5]). The fibrant objects in LSSets” are the homotopy
T -algebras which are fibrant in SSets” .

We now have the following result by Badzioch which relates strict and homotopy
T -algebras.

Theorem 3.8 ([1, 6.4]). Given an algebraic theory T, there is a Quillen equivalence
of model categories between Alg”T and LSSets” .

We will find it convenient, however, to work in the situation where a homotopy
T-algebra X has X, precisely A[0] rather than just a space weakly equivalent to it.
The following two results are proved in [7] and [8] for the theory of monoids 7, but
their proofs hold for any algebraic theory 7.
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Proposition 3.9 ([7, 3.11]). Consider the category SSets? of functors T — SSets
such that the image of Ty is A[0]. There is a model category structure on SSets? in
which the weak equivalences and fibrations are defined levelwise and the cofibrations
are the maps with the left lifting property with respect to the acyclic fibrations.

Now, to obtain a localized model category £LSSets? , we need to modify the maps

Dn: ]_[HomT(Tl7 —) — Homy (T, —)
i=1

that we used to obtain £S8Sets? from SSets?. Since Homz (T}, —)o = A[0] for all
n 2 0, the only change we need to make to these maps is to take the coproduct
[1,, Hom (T3, —) in the category SSets?™ (as in [7, 3.6]). We then localize SSets™
with respect to the set of all such maps to obtain a model structure £LSSets? .

Since a fibrant and cofibrant object X in £SSets” has X, weakly equivalent
to A[0], it is not too surprising that we can instead use £LSSets? in the following
variation on Badzioch’s result:

Proposition 3.10 ([8]). There is a Quillen equivalence of model categories
L: LSSets? ——= Alg” : I,

where I denotes the inclusion functor and L is its left adjoint.

Now that we have established our definitions for simplicial groups, we turn to
reduced Segal categories and reduced Segal groupoids. These are simplicial spaces
satisfying some conditions, so, like the simplicial monoids, they are given by a diagram
of simplicial sets. We begin with the definition of a Segal precategory.

Definition 3.11. A Segal precategory is a simplicial space X such that X is a dis-
crete simplicial set. If Xy consists of a single point, then X is a reduced Segal precat-

€gory.
Now note that for any simplicial space X there is a Segal map

(anXn—>X1 XX0-~-><X0X1

n

for each n > 2, which we define as follows. Let o”: [1] — [n] be the map in A such
that o (0) = k and o*(1) = k + 1, defined for each 0 < k < n — 1. We can then define
the dual maps ay: [n] — [1] in A°P. For n > 2, the Segal map is defined to be the
map

On: Xy — Xq Xx, o Xx, X1

n
induced by the maps
X(ag): X — X;.
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Definition 3.12 ([16, §2]). A Segal category X is a Segal precategory X : AP —
SSets such that Xo = A[0] and such that for each n > 2 the Segal map

On: Xy — X1 Xxy - Xx, X1

n

is a weak equivalence of simplicial sets. If Xy = A[0], then X is a reduced Segal
category. Note that in this case we have X, ~ (X1)".

We now give model category structures on the category SSpo of Segal precate-
gories with a fixed object set. As in the case of homotopy 7 -algebras, there is no
model structure on the category of Segal categories, due to a lack of colimits.

Proposition 3.13 ([7, 3.7]). There is a model category structure on SSpo, which
we denote SSpo. ¢, in which the weak equivalences are levelwise weak equivalences of
simplicial sets, the fibrations are the levelwise fibrations of simplicial sets, and the
cofibrations are the maps with the left lifting property with respect to the maps which
are fibrations and weak equivalences.

Now, we would like to find a map ¢ with which to localize SSpp f so that the
fibrant objects are Segal categories. We first consider the map ¢ used by Rezk [21,
84] to localize simplicial spaces to obtain more general Segal spaces; we then modify
it so that the objects are in SSpp,¢. (Rezk’s Segal spaces satisfy the same product
condition as Segal categories. While they are not necessarily discrete in degree zero,
they have the additional requirement that they be Reedy fibrant.)

Using the maps o given above, Rezk defines the object

n—1
G(n)' = U oA
k=0

and the inclusion map ¢™ : G(n)" — Aln]*. His localization is with respect to the
coproduct of inclusion maps

v =[G — Al

n=1

However, in our case, the objects G(n)! and A[n]" are not necessarily in the cate-
gory SSpo. To modify them, we can replace each A[n]" with the objects A[n]%, where
z = (xog, - .., xy,) specifies the 0-simplices. Then, we define

n—1
Gn)h = |J AN, ..,
k=0

Now, we need to take coproducts not only over all values of n, but also over all
n-tuples of vertices.
So, we define for each n > 0 the map
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Then the map ¢ looks like
e=1Iw": I @n)L— ARL)).
n>1 zeOn+1

When the set O is not clear from the context, we will write ¢ to specify that we
are in SSpo.

For any simplicial space X there is a map

on = Map” (", X): Map" (] ] AlnlL, X) — Map" (] G(n)L, X).

x
More simply written, this map is

on: Xp — X1 Xx, - Xx, X1

n

and is precisely the Segal map given in the definition of a Segal category. Thus, the
map @ is the correct one to use for localizing the model category SSpo .

Proposition 3.14 ([7, 3.8]). Localizing the model category structure on SSpo ; with
respect to the map po results in a model category structure LSSpo,y on simpli-
cial spaces with a fixed set O in degree zero in which the weak equivalences are the
po-local equivalences, the cofibrations are those of SSpo,f, and the fibrations are the
maps with the right lifting property with respect to the cofibrations which are po-local
equivalences.

We will find it convenient to make our calculations in another model structure
with the same weak equivalences but in which all objects are cofibrant.

Theorem 3.15 ([7, 3.9]). There is a model category structure SSpo . on the category
of Segal precategories with a fized set O in degree zero in which the weak equivalences
and cofibrations are levelwise, and in which the fibrations are the maps with the right
lifting property with respect to the acyclic cofibrations. This model structure can then
be localized with respect to the map o to obtain a model structure which we denote

LESPo .
These two model category structures are in fact equivalent to one another.

Proposition 3.16 ([7, 3.10]). The adjoint pair given by the identity functor induces
a Quillen equivalence of model categories

[:SSpo)f o — CSSpOTC.
Let * denote the set with a single element. The main result of [7] is that we have

the following chain of Quillen equivalences, in which the top-most maps are the left
adjoints, which can be composed to form a single Quillen equivalence:

LSSp. ;= LSSets? = Alg™.
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4. A model for simplicial groups

We would like to extend the results of [7] to the case of simplicial groups rather
than simplicial monoids. In this section, we describe the modifications that need to
be made in order to encode the necessary inverses.

In the case of monoids, we consider functors A°? — SSets, where the category
AP has as objects finite ordered sets [n] = (0 — 1 — .-+ —n) for each n > 0 and
as morphisms the opposites of the order-preserving maps between them. Notice that
each [n] can be regarded as a category with n + 1 objects and a single morphism
i — j whenever ¢ < j.

Here, we consider instead a category, which we denote IA°?, whose objects are
given by small groupoids I[n] = (0= 15 --- 2 n) for n > 0. In other words, each
I[n] is a category with n + 1 objects and a single isomorphism between any two
objects. The morphisms of IA°Pare generated by two sets of maps: first, the opposite
of the order-preserving maps, as we have in A°P, and also by a “flip” morphism on
each I[n] which sends each i to n — 7. Note that in this case “order-preserving” should
be taken to mean in the standard numerical ordering of the objects of each I[n], even
though I[n] cannot be considered to be “ordered” by its morphisms in the same sense
that [n] is. Alternatively, thinking of IA°? as a subcategory of the category of the
category of all small groupoids, one should be aware that it is certainly not a full
subcategory.

To understand these maps better, we consider, for example, maps

I2=05152) — (05 1) =1I[1].

Because of the flips, we no longer have only order-preserving maps, but we do have a
preservation of “betweenness.” Thus, if 0 +— 1 and 2 +— 1, then it follows that 1 +— 1
also. In general, if we have a map I[n] — I[m] with 0 < i < j < k < n such that i — ¢
and k — ¢, for some 0 < ¢ < m, it follows that j — £ also.

In the case of A, the simplicial set A[n] is given by the representable functor
Homa (—, [n]). Similarly, we can define a simplicial set IA[n] which is given by the
representable functor Homya (—, I[n]). These “invertible n-simplices” are the stan-
dard building blocks of the spaces we consider here. In particular, every simplex
should be regarded as having a corresponding “inverse” simplex, even though this
terminology does not make sense in the usual way, since there is no notion of com-
position in a simplicial set. As with simplicial sets, we can consider the boundary of
IA[n], denoted IA[n], which consists the simplices of IA[n] of degree less than n.

Thus, we can define an invertible simplicial set to be a functor IA°? — Sets,
and, more generally, an invertible simplicial object in a category C to be a functor
IA°? — C. We denote the category of invertible simplicial sets by ISSets. We fur-
ther consider the case of invertible simplicial spaces, or functors IA°? — SSets.
Since there is a forgetful functor U: ISSets — SSets (respectively, U: SSets! A" —
SSetsA™"), we define a map f of invertible simplicial sets (respectively, spaces) to
be a weak equivalence if U(f) is a weak equivalence of simplicial sets (respectively,
spaces).

In particular, we define a Segal pregroupoid to be an invertible simplicial space X
such that the simplicial set X is discrete. A Segal pregroupoid is reduced if Xo = A[0].
To define a Segal groupoid, we need an analogue of the map ¢ which we used to define
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Segal categories. However, just as we defined the maps ay: [n] — [1] in A°P, we can
define maps By : I[n] — I[1] in IA°P. Thus, for any invertible simplicial space X and
n > 2, we can define the map

Ent Xy — Xy Xx - Xx, X1

induced by the maps

Thus, a Segal groupoid is a Segal pregroupoid X such that for each n > 2 the map
&, is a weak equivalence of invertible simplicial sets.

As we used the map po to localize the model structures SSpo r and SSpo ., we
can define an analogous map £» in this situation. To do so, we first define, for any
n > 2, the simplicial space IG(n)!, and z € O"! given by

n—1

IG(n),) = U ﬁkIA[l];k,er,

k=0

from which we get an inclusion

¢ I dGm) — 1Am]).

zeOn+1 o

Then we have the map

co=[1€" TI (G — AR]).

nzl zeOntl

Proposition 4.1. There is a model category structure ZSSpo ¢ on the category of
Segal pregroupoids with a fized set O in degree zero in which the weak equivalences and
fibrations are given levelwise. Similarly, there is a model category structure ZSSpo .
on the same underlying category in which the weak equivalences and cofibrations are
given levelwise. Furthermore, we can localize each of these model category structures
with the map o to obtain model structures TLSSpo.f and TLSSpo,. whose fibrant
objects are Segal groupoids.

Proof. We begin with the model structure ZSSpo, ¢, whose existence can be proved
analogously to that of SSpo ; [7, 3.7]. We first note that, in an abuse of notation,
we denote by K the constant invertible simplicial space given by a simplicial set K.
Furthermore, if x = (zo,...,7,) € O"T!, we denote by IA[n]!, the invertible simpli-
cial space with the constant simplicial set given by z in degree zero. Specifying the
vertices of an n-simplex in this way is necessary since we require all the morphisms
to be the identity on the objects.

Now, we are able to define the objects that we need in order to define sets of
generating cofibrations and generating acyclic cofibrations. First, define (I Py, )z to
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be the pushout of the diagram

|

(Ipm,n)r

A[m] X (IA[TL];)O —_— A[m] X IA[n];
(

IA[”];)O

Similarly, define (IQ,,n)z to be the pushout

(TA[n]S)o (IQm,n)e,
and (IR, nk)z to be the pushout
Vm, k] x (IA[n];)O — VIm, k] x IA[n];

l |

(IA[n]tg)O (IR k)

Now, we define the sets
It ={(IPns)s — (IQmn)z | myn =0,z € O™}

and
Jp ={(IRmni)s — IQmn)z | mn>0k>1ze0" "}

Then, applying Theorem 2.1 to these sets, we can obtain a cofibrantly generated
model category structure ZSSpo, f.

Similarly, by defining appropriate sets of maps, we can obtain generating cofibra-
tions and generating acyclic cofibrations for the model structure ZSSpo .. To define
these maps, note that the inclusion functor from the category of Segal pregroupoids
to the category of invertible simplicial spaces has a left adjoint which can be called
a reduction functor, since it “reduces” the space in degree zero to a discrete space.
Given an invertible simplicial space X, we denote its reduction by (X).,..

Now, we define sets

I = {(A[m] x IA[n), U A[m] x IA[n]}), — (Alm] x IA[n]L),}
and
Je ={(V[m, k] x IA[n]L U Alm] x TA[n]L), — (A[m] x IA[n]L), }.

Again, applying Theorem 2.1, we obtain the model structure ZSSpo . just as in [7,
3.9].

Finally, applying Theorem 2.7 with the map £» to each of these model category
structures, we can obtain model category structures ZLSSpo,r and TLSSpo .. O

As in the Segal category case, Proposition 3.16, we have the following result.
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Proposition 4.2. The adjoint pair given by the identity functor induces a Quillen
equivalence of model categories

ILSSpo,f =—= TLSSpo,c.

We now turn to the theory of groups 7. As with the theory of monoids, we have
model structures Alg7¢ and LSSets?¢ with Quillen equivalences

AlgTe = £8SetsTe,

as given in the previous section, where as before % denotes the set with one element.
Thus, we need only show that there is a Quillen equivalence

LSSetslc = TLSSp.

to prove the following theorem.

Theorem 4.3. The model category structure Alg”¢ is Quillen equivalent to the model
category structure ZLSSp. .

As in [7], we prove this theorem using several lemmas. Note that in the model
structure ZLSSp, ., we denote by L; the localization, or fibrant replacement functor.
(Again, it is convenient to make our calculations in this category rather than in
ZLSSp.. s because here every object is cofibrant.) Analogously, we denote by Lo the
localization functor in £LSSetsZ¢. We will make use of the following general result for
localizations.

Lemma 4.4 ([7, 4.1]). Let L be a localization functor on a model category M. Given
a small diagram of objects X, of M,

L(hocolim X,,) ~ Lhocolim(L(X,)).

The first step in the proof of the theorem is to show what the localization functor
L1 does to the invertible n-simplex IA[n]t. By Inerve(—)¢, we denote the invertible
nerve functor Hom(I[n], —).

Proposition 4.5. Let F,, denote the free group on n generators. Then in LSS ¢,
L1 IAn]L is weakly equivalent to Inerve(F,)! for each n > 0.

*

Proof. The proof is very similar to the one for reduced Segal categories [7, 4.2]. As
in that case, note that when n =0, IA[0]¢ is isomorphic to Imerve(Fp)t, which is
already a Segal groupoid.

Now we consider the case where n = 1. We want to show that the map

IA[1])E — Imerve(F)"

*

obtained by localizing with respect to the map ¢ is a weak equivalence in ZLSSp; ..
We first define a filtration Wy, of Inerve(F;)" whose set of j-simplices looks like

Ui (Inerve(F1)"); = {(l’"ll'“fv"j) DS k}

=1

where = and its “inverse” 2! denote the two nondegenerate Il-simplices of
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IA[1)t = ¥;. Thus, we have
IAL =0, CWUy C--- C Uy, C -+ C colimy ¥y
We can obtain ¥y from Wy by taking a pushout

[[IG2) — 1,

L

[[IA2) —— Ty,

*

where the coproducts on the left-hand side are taken over all maps IG(2)! — ¥; and

IG(2)L is as defined at the beginning of the section. This process serves to add in,
for example, a “composite” 1-simplex x? and the 2-simplex whose boundary consists
of 1-simplices x, =, and 22, as well as the inverses to these new simplices. Notice that
since we are working in ZLSSp ., the left-hand vertical map is an acyclic cofibration,
and therefore ¥; — Wy is an acyclic cofibration also [13, 3.14].

Similarly, to obtain ¥3 we will add extra 1-simplices, such as =2 in order to add a

3-simplex (z 7|z~ !|2~1). However, when taking the pushout, we do not want to start
with IG(3),, since we have already added some of the 1-simplices of this 3-simplex
when we localized to obtain W,. So, we define (IA[3]L)y, to be the part of TA[3]¢
contained in Wy. Then we have a pushout diagram

[TUIA[B]) v, —— ¥,

L]

[1IA[3]L Vs,

where the coproducts are taken over all maps (IA[3]L)y, — Ws. The map
(IA[3)L)w, — IA[3]L is a weak equivalence in ZLSSp.. . as follows. Consider the maps

1G(3)L— = (IA[3] ), — > IA[3]L.

For any local X, the functor Map(—, X) applied to any of the three above spaces
yields X7 x X7 x X7 ~ X3. The map « is a weak equivalence since it is just a patching
together of two localizations coming from the map IG(2)% — IT'A[2]L, which is a weak
equivalence since it is one of the maps with respect to which we are localizing. The
composite map [Ga is also a weak equivalence for the same reason. Thus, 3 is also
a weak equivalence by the two-out-of-three property for weak equivalences. Again,
since (IA[3]L)y, — IA[3]L is an acyclic cofibration in ZLSSp. ., the map ¥y — Uy
is an acyclic cofibration also.

For k > 1, we define (IA[k + 1]%)y, to be the piece of IA[k + 1]° already obtained
from previous steps of the filtration. Note that it always consists of two copies of
IA[k]L attached along a copy of TA[k — 1]%, so the same argument as for k = 2 shows
that the map (TA[k + 1]L)y, — IA[i +1]% is a weak equivalence. Hence, for each k

*
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we obtain Wy, via the pushout diagram

H(A[E+ 1Y) g, —— Vg

| |

[TAk+ 1], —— ¥rpa

with the coproducts given as before.
Now that we have defined each stage of our filtration, using the bar construction
notation shows how to map this local object to Imerve(F})t. For example,

(|27t | 2?) s (x,27 1 2%) € Fy x Fy x FY.
Using Lemma 4.4 we have that
~ Fy(Inerve(F;)")
Ly (hocolim(¥y,))
Ly (hocolim Ly (¥y,))
Ly (hocolim L1 (%))
~ [1L,(Vy)
~ L1(¥y)
~ L, (IA[1]Y).

nerve(Fy)

R

1

1R

Now, for n =2 (i.e., starting with TA[2]L), we have six 1-simplices, which we
call z, y, zy, =1, y~1, and (wy)~!, and two nondegenerate 2-simplices (z | y) and
(y=' | 271). Because we now have two variables, we need to define the filtration
slightly differently as ¥; = {{w1, ..., wi] | &(w1 ... wg) < i}, where the w;’s are (unre-
duced) words in z and y and ¢ denotes the length of a given word. Note that by
beginning with W, we start with fewer simplices than those of the 2-simplex we are
considering, but by passing to ¥s we obtain xy, (z | y) and their respective “inverses”
as well as additional nondegenerate simplices. (In fact, we are actually starting the
filtration with U; = IG(2)!.) The localizations proceed as in the case where n =1,
enabling us to map to Inerve(F,)?.

For n > 3, the same argument works as for n = 2, with the filtrations being defined
by the lengths of words in n letters. The resulting object is a reduced Segal category
weakly equivalent to IA[n]i. Hence, we have that for any n, LiIA[n]! is weakly
equivalent to Inerve(F,)!. O

We now define a functor J: IA°? — 74 induced by the invertible nerve construc-
tion on a group G. For an object I[n] of IA, define J°P(I[n]) = F,, where F,, denotes
the free group on n generators, say 1, ..., z,. In particular, J°P(I[0]) = Fp, the triv-
ial group. Since G has inverses, there is no difficulty in using the category IA°? rather
than A°P.

Taking the (invertible) nerve of a simplicial group G results in an invertible sim-
plicial space which at level k looks like

Inerve(G)y, = G¥ = Homg,,(F}, G).

Thus the invertible simplicial diagram Inerve(—) of representable functors
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Hom(F}, —) gives rise to an invertible cosimplicial diagram (i.e., a diagram given
by IA) of representing objects Tj.

To obtain an invertible simplicial diagram of free groups, we simply reverse the
direction of the arrows to obtain a functor J: IA°? — 7. This map induces a map
J*: 8Sets”é — SSets' " which can be restricted to a map J*: SSetsZ¢ — IZSSp,.
Notice that J* is the identity on objects but restricts from the morphisms of 74 to
those of TAP.

To obtain a left adjoint to J*, we use a left Kan extension. We state the following
definitions in a general context. Let p: C — D and G: C — SSets be functors.

Definition 4.6. If d is an object of D, then the over category or category of objects
over d, denoted (p | d), is the category whose objects are pairs (c, f), where c is
an object of C and f: p(c) — d is a morphism in D. If ¢’ is another object of C, a
morphism in the over category is given by a map ¢ — ¢’ which makes the resulting
triangular diagram commute.

Definition 4.7 ([15, 11.8.1]). Let p, ¢, and G be defined as above, and let f: p(c) — d
be an object in (p | d). The left Kan extension over p is a functor p,G: D — SSets
defined by

(p*G) (d) = COhm(pld)((cv f) = G<C))

Note that, since we are making calculations in the model structure ZLSSpo . in
which all objects are cofibrant, taking the left Kan extension is homotopy invari-
ant [12, 3.7].

Proposition 4.8 ([15, 11.9.3]). Let C — D be a functor. The functor SSets® —
SSetsP, given by sending G to the left Kan extension p.G, is left adjoint to the
functor SSetsP — SSetsC given by composition with p.

Thus, define J,: ZSSp, — SSetsZG to be the left Kan extension over J which
is left adjoint to J*. Note that even if G is a reduced Segal groupoid, J.(G) is not
necessarily local in £LS8Sets?¢. To obtain a Tg-algebra, we must apply the localization
functor Ly. So, we want to know what we get when we apply J, followed by Lo to a
reduced Segal groupoid.

Define IM k] to be the functor 7 — SSets given by F,, — Homry, (Fy, Fy,) = F}'.
Let H be the reduced Segal groupoid Inerve(Fy)*.

Lemma 4.9. In LSSets?¢, Ly J.(H) is weakly equivalent to IM[k].

Proof. The proof is similar to that of [7, 4.3]. It suffices to show that for any local
object X in £LS8Sets?e,

Map?, . setsTe (L2 H, X) =~ X (F)
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since Map” ¢, 7o (IM[K], X) is precisely X (F}). This fact can be shown in the fol-
lowing argument:
Map}ELSSets*TG (L2J*H’ X) = MapZSSets:{G (J*H’ X)
= Mapgﬁssp*,c (H,J"X)
~ Map ssp, . (LA, J*X)
~ Mapyrssp, . (TAK]L, J*X)
~ J* X[K]

Proposition 4.10. For any object X in IS8Sps ., we have that L1 X is weakly equiv-
alent to J*LoJ, X .

Proof. This proof is analogous to that of [7, 4.7]. First note that
X ~ hocolimyaer (I[n] — HIA[ni]t),
where the values of i depend on n. We begin by looking at L;X. Using Lemma 4.4,
we have the following:
L1 X ~ Ly hocolimaer (I[n] — [ IA[n:]%)
~ Ly hocolimgacr Ly (I[n] — [ [ TA[n]L)
~ Ly hocolimgaer (I[n] — nerve(Fs~,,)").

However, hocolimaer (I[n] — nerve(Fy-,,)") is already local, a fact which follows from
the fact that the homotopy colimit can be taken at each level, yielding a Segal pre-
groupoid in ZLSSp, . which is still a Segal groupoid.

Working from the other side of the desired equation, we obtain, using the fact that
left adjoints commute with homotopy colimits:

J*LyJ. X ~ J*LyJ. hocolimaer (Iln] — [ TA[ni]L)
~ J* Ly hocolimyaer Ji(I[n] — H IA[n;)Y)
~ J* Ly hocolimracr Lo J,(I[n] — [ [ TA[n.]L)
~ J* Ly hocolimyaer (I[n] — IM[Z ng)).

At each level, we have the same spaces as in the IA°?-diagram, but with maps
given by 7g rather than IA°P. Thus, applying the restriction map J* results in a
diagram with the same objects at each level, as we wished to show. O

Combining the above results, the following proposition can be proved just
as [7, 4.8].

Proposition 4.11. The adjoint pair
Jo: I8Sp.; ——= SSetsTc: J*

is a Quillen pair.
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Proof. We first show that the adjoint pair
Jo: 8Sp.; ——= SSetsTm . J*

is a Quillen pair. In both model categories, the fibrations and weak equivalences are
defined levelwise. Since the right adjoint J* preserves the spaces at each level, it must
preserve both fibrations and acyclic fibrations.

An application of Theorem 2.8 shows that we still have a Quillen pair after the
respective localizations. O

Proof of Theorem 4.3. First, we need to know that the right adjoint J* reflects weak
equivalences between fibrant objects. In each of the two localized model categories
ILSSpy, 5 and LSSetsIo | an object is fibrant if and only if it is local and fibrant in
the unlocalized model category. Therefore, in each case a weak equivalence between
fibrant objects is a levelwise weak equivalence. Since J* does not change the spaces
at each level, it must reflect weak equivalences between fibrant objects.

Finally, by Proposition 4.10, L1 X ~ J*LyJ, X for any functor X: A°? — SSets,
and in particular for any cofibrant X. O

Now composing the Quillen equivalences
TLSSp. s = LSSetsIc = AlgTe

(where the left adjoint functors are the topmost maps) results in a single Quillen
equivalence

ILSSp. ;= Alg’s.

5. Segal groupoids

In this section, we generalize the result on simplicial groups and reduced Segal pre-
groupoids to one on simplicial groupoids and Segal groupoids. While Segal groupoids
(and their n-categorical analogues) have been discussed in works by Hirschowitz and
Simpson [16, 25], we give an alternate but equivalent description of them.

Definition 5.1. A simplicial category is a category enriched over simplicial sets, or
a category in which there is a simplicial set of morphisms between any two objects.
A simplicial groupoid is a simplicial category enriched over invertible simplicial sets.

For convenience, we describe a modification of the categories A°P and TA°P. Let O
be a set. We define the category A¢) as follows. The objects are given by [n]u,,.. 2.,
where n > 0 and (o, ... 2,) € O™ The [n] should be thought of as in the simplicial
category A°P; however, recall that when we work with Segal categories we will require
all morphisms to preserve the objects. Therefore, we need to have a separate [n] for
each possible (n 4 1)-tuple of objects in O. The morphisms in A are those of AP
but depend on the choice of (zo,...,z,). Specifically, the face maps are

di: [n];COa-'wwn - [’/l - 1]$07~~~,51‘,~~’$n
and the degeneracy maps are
Si: [n]moy---,rn - [n + 1]$01-~~7I7’,—17mi7mi,xi+17~~-7$n'

Note that if O is the one-object set, then A is just A%,
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Similarly, we can describe the category IAZ. Note that in this case the flip map
is no longer a self-map (unless O consists of a single element), but instead a map
[Mag,n = [Man,.zo-

Now we can use this notation to describe Segal categories and Segal groupoids.
A Segal category with O in degree zero is a functor X : Ag) — SSets such that for
each n > 2 and (n + 1)-tuple (o, ..., 2,), the map

X([n]fo,-n,ﬂﬂn) - X([1]10711) XX[0]e """ XX[0]a,_y X([l]mw,—lyxn)

is a weak equivalence. Analogously, a Segal groupoid with O in degree zero is a functor
X: IAZE — SSets satisfying these same conditions.

Recall from Section 2 that we have model category structures LSSpo s and
LSSpo,. on the category of Segal precategories with O in degree zero, in each of
which the fibrant objects are Segal categories. Then, from Section 3, we have the
analogous model structures ZLSSpp, f and ZLSSpe ., whose fibrant objects are Segal
groupoids.

We would like to think of the category of simplicial categories, or the category
of simplicial groupoids, with object set O as a diagram category as well. To do so,
we need to define the notion of a multi-sorted algebraic theory. To see more details,
see [6].

Definition 5.2. Given a set S, an S-sorted algebraic theory (or multi-sorted theory)
T is a small category with objects T,» where o™ =< aq,...,a, > for a; € S and

n > 0 varying, and such that each T~ is equipped with an isomorphism

Ty = ﬁTai.
=1

For a particular o™, the entries «; can repeat, but they are not ordered. There exists
a terminal object Ty (corresponding to the empty object of S).

In particular, we can talk about the theory of O-categories, which we will denote by
Tocat, and the theory of O-groupoids, which we denote Z7pgq. To define these theories,
first consider the category OCat whose objects are the categories with a fixed object
set O and whose morphisms are the functors which are the identity map on the
objects. The objects of 7oc,: are categories which are freely generated by directed
graphs with vertices corresponding to the elements of the set O. This theory is sorted
by pairs of elements in O, corresponding to the morphisms with source the first
element and target the second. In other words, this theory is (O x O)-sorted [6, 3.5].
(In the one-object case, we get the ordinary theory of monoids, since a monoid is just
a category with one object.) We can then say that a simplicial category with object
set O is essentially a strict 7ocq¢-algebra, where the definitions of strict and homotopy
T-algebras for multi-sorted theories 7 are defined analogously to those for ordinary
algebraic theories. The objects of T7pgq are representatives of the isomorphism classes
of finitely generated free groupoids with object set O, and a simplicial groupoid is
essentially a strict 7ogq-algebra.

Again, we have a model structure Alg7 on the category of all 7-algebras and
a model structure SSets? on the category of all functors 7 — SSets, which can
be localized as before to obtain a model category structure £SSets” in which the
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local objects are homotopy 7 -algebras [6, 4.11]. For Tocat, we can define a category
SSetngC‘“ of functors Tocqt — SSets, which send Ty to [], A[0]. Making modifi-
cations as in the case of LSSets?™, we can define a model structure L',SSetsgoc‘”
which is Quillen equivalent to Alg7ocat [8]. Similarly, we can define ESSetsgogd and
show that it is Quillen equivalent to Alg7og4.

In particular, Theorem 3.8 for algebraic theories can be generalized to the case
of multi-sorted theories, and therefore we have that there is a Quillen equivalence of
model categories between Alg? and £LSSets? for any multi-sorted theory 7 [6, 5.1].
We can again use the version with the stricter requirement on degree zero to obtain
a Quillen equivalence

LSSetsgpe = AlgToce:,

Hence, the problem reduces to finding a Quillen equivalence between LSSpp ; and
LSSetskocer.

Theorem 5.3 ([7, 5.5]). The adjoint pair

Ju: L8Spo.f =—= LSSetskocer: J*

s a Quillen equivalence.

We can extend this result just as we did in the previous section to obtain a result
relating Segal groupoids with object set O to homotopy algebras over a multi-sorted
theory of groupoids with object set O.

The same methods can be used to prove the following.

Theorem 5.4. There exists an adjoint pair
Jo: ILSSpo,; =—= L8SetsP9: J*,

which is a Quillen equivalence.

Hence, composing Quillen equivalences results in a Quillen equivalence
AlgTet S TLSSpo .

The more general result that there is a Quillen equivalence between model struc-
tures on the category of all Segal precategories and the category of all small simplicial
categories [9, 8.6] can be extended to the groupoid situation, but we defer its proof
to the next paper [5].

6. An alternative model for simplicial groups

In this section, we summarize a result of Bousfield for modelling simplicial groups
with A by changing the projection maps and therefore the Segal maps [11]. This
approach is more convenient for adaptation to the case of abelian groups, as we show
in the next section.

Let us recall the way we used A to obtain a model for simplicial monoids. Given a
reduced Segal precategory X : A°? — SSets, the Segal map X,, — (X1)" was induced
by a¥: [1] — [n] in A for each 0 < k < n — 1, where o*(0) = k and o*(1) = k + 1.
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Heuristically, we are thinking of the (X7)" as a chain of k£ morphisms which has a
“composite” (at least up to homotopy) if the Segal map is to be a weak equivalence.

To consider a basic example, consider a 2-simplex with vertices {a,b,c} and
1-simplices {a — b,b — ¢,a — ¢}. The 2-chain here is a — b — ¢, the composite is
given by a — ¢, and the 2-simplex is defined by all three. The first projection map
sends the 2-simplex to a — b and the second projection sends it to b — c.

The idea behind Bousfield’s construction is to define these projections differently.
In the situation just described, the first projection remains the same. The second
projection, however, sends the 2-simplex to a — c¢. Thus, if we are going to fill in the
third 1-simplex, we get the “inverse” of the first projection composed with the second
projection.

To formalize this construction, we define in A the maps v*: [1] — [n] given by
0— 0and 1— k41 for all 0 < k < n. Again restricting to Segal precategories, we
can consider the Bousfield-Segal map v, : X,, — (X1)"™ induced by these maps. The
models for simplicial groups in this sense will be the reduced Segal categories for
which the Bousfield-Segal maps are weak equivalences of simplicial sets for all n > 2.
We call such simplicial spaces reduced Bousfield-Segal categories.

To give a localized model structure, we define for each k£ > 2 the simplicial space

k—1
H(k)L = [ Jy'AN)L € AlR]L.

i=1

Then, as in the previous situations, define the map

b= [T Hk)L — ALKLY).

k>1

Proposition 6.1. Localizing the model category structure SSp. 5 with respect to the
map Y. results in a model category structure LpSSp. s whose fibrant objects
are reduced Bousfield-Segal categories. There is also an analogous model structure
LpSSpy.c.

We denote by L g the localization functor in LgSSpo .. With some minor technical
changes, our proof that Segal categories model simplicial monoids generalizes to show
that Bousfield-Segal categories model simplicial groups. As with the previous proof,
the key point is the analogue of Lemma 4.5.

Proposition 6.2. Let F,, denote the free group on n generators. Then in LpSSPo ¢,
LpAln]t is weakly equivalent to nerve(F),)t.

Proof. In the case where n = 0, we have that A[0]% 2 nerve(Fp)*. So, we consider the
case where n = 1. As before, we define a filtration ¥4 C Wy C ... C W, C - .. We will
use a bar construction notation as before, but, as we are assuming each slot is given
by the image of a projection map, its meaning has changed as we have changed our
projection maps. The set of j-simplices (for j > 1) of ¥y is given by

U (nerve(F1)"); = {(2™ ]+ |2")}



ADDING INVERSES TO DIAGRAMS ENCODING ALGEBRAIC STRUCTURES 171

with the following additional conditions on the superscripts ny. As before, we require

J

=1
Furthermore, the construction imposes the following conditions depending on k. For
k=1,2, we have 0 < ny < 1. For k = 3, we have —1 < ny < 1. For all £ > 4, we have
—k + 1 < ng < k — 2. Note that our definition of ¥y coincides with that of A[1]} since
each has only one non-degenerate 1-simplex x and no nondegenerate 2-simplices. Thus
we have

AlllL =0, CWy C--- C Uy C ---colim,, V,y,.
Setting k = 2, we can take a pushout

[[H2)! —1,

L

[TA2]L —— ¥,

where the coproducts on the left-hand side are over the maps H(2), — ¥;. In doing

so0, we obtain the 1-simplex =% and 2-simplices given by (1| 1), (1| z), (x| 1), and
(x| ), where the third is the one which requires z=!. (Note that our use of the bar
construction notation has been adapted to our new projections.)

Then for k£ > 3, ¥y is obtained from ¥ _; by taking pushouts along the maps
[I(A[K]Y)w, , — [TA[K]L for each k > 3, where (A[k]L)y, , denotes the piece of
A'[k]. which we have already obtained. As usual, the coproduct is taken over all
maps (A[k]L)w,_, — Vr_1.

Then, we can use the inclusions

H(k). — (A[K])w, ., — A[K]L

*

to prove the fact that each map ¥,_; — Uy is a weak equivalence, as in the proof of
Lemma 4.5 or that of [7, 4.2]. O

The rest of the proof follows similarly to the one in Section 4. As in Section 5,
it can also be generalized to obtain a result for more general Segal groupoids. We
should note that Bousfield’s result was stated in terms of homotopy categories and
that his proof did not make use of model categories. Furthermore, he worked in more
generality, finding a model for n-fold loop spaces.

7. A model for simplicial abelian groups

In [24], Segal defines T'-spaces and shows that strict T'-spaces are equivalent to
simplicial abelian monoids. Here, we begin with his definition of the category T
Its objects are representatives of isomorphism classes of finite sets, and a morphism
S — T is given by a map 6: S — P(T) such that 6(a) and 6(3) are disjoint whenever
a # 3. (We denote by P(T") the power set, or set of all subsets of the set 7".)

We can then define the opposite category I'°P, which has the following description
of its own. It is the category with objects n = {0,1,...,n} for n > 0 and morphisms
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m — n such that 0 — 0. Here, we find it convenient to use both descriptions, depend-
ing on the situation.

Segal defines a I'-space X to be a functor I' — SSets such that Xy ~ A[0] and
the Segal map ¢r: X — (X1)* is a weak equivalence of simplicial sets. He further
mentions that if Xy = A[0] and if each Segal map ¢y, : X}, — (X;)* is an isomorphism
rather than a weak equivalence, i.e., if X is a strict I'-space, then X is essentially a
simplicial abelian monoid. (The following proof sketch is due to Badzioch.)

Proposition 7.1 ([24]). The category of strict T'-spaces is equivalent to the category
of simplicial abelian monoids.

Sketch of proof. First, recall that the category of simplicial abelian monoids is equiv-
alent the the category Alg74™ | where T4y, is the theory of abelian monoids.

Among the maps of I'°?, there are projections p,;: n — 1, where p, ;(k) =1 if
k =1 and 0 otherwise. Then there exists a projection-preserving functor I'? — T4,
where 74,; denotes the theory of abelian monoids. Given a strict I'-space X, it
is uniquely determined by each X,, the projection maps X,, — X;, and the map
X9 — X5 which is the image of the map 2 — 1 given by 0 +— 0 and 1,2+ 1. In
particular, this map Xo — X; induces (by induction) all maps X,, — X arising from
the morphisms n — 1 given by 0 +— 0 and i +— 1 for all 0 < ¢ < n.

Then, a strict I'-space gives the space X; the structure of an abelian monoid with
multiplication map given by the specified map Xs — X;. In particular, X; defines a
Tan-algebra t X which is given by the necessary X, for each n > 2 and the projection
maps. Then, notice that restricting the 74s-algebra tX to I'°P results in our original
X. In other words, if F' is the forgetful functor from the category of 74,s-algebras to
the category of strict I'°P-spaces, we have that tF(X) = X. Thus, the functors t and
X are inverse to one another. O

Segal defines a functor A — I" as follows. The object [n] is sent to n for each
n >0, and a map f: [m] — [n] is sent to the map #: m — n given by 0(i) = {j € n |
f(i —1) < j < f(i)}. In particular, the maps o : [1] — [n] are sent to maps : 1 — k
given by 0(1) = {k + 1}.

Now, we would like to know what happens if we define the projections as Bousfield
does. Given 7*: [1] — [n] in A, it is sent to the map j*: 1 — n given by j*(1) =
{1,...,k+ 1}. Thus, we can use the maps ji: 1 — n to define a modified version of
the conditions for a I'-space.

Now, a strict Bousfield T-space is a functor X : I'? — SSets such that X(0) =
A[0] and the maps X (n) — X(1)" induced by the maps j; for all 1 <k < n are
isomorphisms for all n > 2. Similarly, a (homotopy) Bousfield I'-space has X (0) con-
tractible and the above map a weak equivalence of simplicial sets. The above proof
for strict I'-spaces extends to this new situation.

Theorem 7.2. There is an equivalence between the category of strict Bousfield T'-
spaces and the category of simplicial abelian groups.

However, it is expected, in analogy with the original work of Segal [24], that the
(homotopy) Bousfield I'-spaces are not equivalent to simplicial abelian groups up to
homotopy. Since Segal shows that I'-spaces are equivalent to infinite loop spaces when
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they have homotopy inverses [24, 1.4], it is expected that the Bousfield I'-spaces are
equivalent to infinite loop spaces. Another interesting comparision to be made is with
the work of Schwinzl and Vogt [22].
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