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COFIBRATIONS IN THE CATEGORY OF
FROLICHER SPACES: PART I

BRETT DUGMORE aAnxp PATRICE PUNGU NTUMBA
(communicated by Ronald Brown)

Abstract

Cofibrations are defined in the category of Frolicher spaces
by weakening the analog of the classical definition to enable
smooth homotopy extensions to be more easily constructed,
using flattened unit intervals. We later relate smooth cofi-
brations to smooth neighborhood deformation retracts. The
notion of smooth neighborhood deformation retract gives rise
to an analogous result that a closed Frolicher subspace A of
the Frolicher space X is a smooth neighborhood deformation
retract of X if and only if the inclusion 7: A < X comes from a
certain subclass of cofibrations. As an application we construct
the right Puppe sequence.

1. Preliminaries

The purpose of this section is to briefly survey the notion of Frolicher spaces, and
to present our approach to homotopy theory in the category of Frolicher spaces.
Frolicher spaces arise naturally in physics, and generalize the concept of smooth
manifolds. A Frélicher space, or smooth space as initially called by Frolicher and
Kriegl [8], is a triple (X,Cx,Fx) consisting of a set X, and subsets Cx C X¥,
Fx C RX such that

o Fxolx ={foc| feFx,celx}CC®R)

o OCx :={f: X = R| foce C®[R) forall ce Cx} = Fx

o I'Fx ={c:R— X| foce C®(R)for all f € Fx} =Cx.

Frolicher and Kriegl [8], and Kriegl and Michor [11] are our main references for
Frolicher spaces. The following terminology will be used in the paper: Given a
Frolicher space (X,Cx, Fx), the pair (Cx,Fx) is called a smooth structure; the
elements of Cx and Fx are called smooth curves and smooth functions respectively.
The topology assumed for a Frolicher space (X,Cx,Fx) throughout the paper is
the initial topology 7# induced by the set Fx of functions. When there is no fear

of confusion, a Frolicher space (X,Cx,Fx) will simply be denoted X. The most
natural Frolicher spaces are the finite-dimensional smooth manifolds, where if X is
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such a smooth manifold, then Cx and Fx consist of all smooth curves R — X and
smooth functions X — R. Euclidean finite-dimensional smooth manifolds R"™, when
viewed as Frolicher spaces, are called Euclidean-Frolicher spaces. In the sequel, by
R™ n € N, we mean the Frolicher space R™, equipped with its usual smooth manifold
structure.

A Frolicher space X is called Hausdorff if and only if the smooth real-valued
functions on X are point-separating, i.e. if and only if 7x is Hausdorff.

A Frolicher structure (Cx,Fx) on a set X is said to be generated by a set
Fy CRX (resp. Cy € X®)if Cx = 'Fy and Fx = ®TF (resp. Fx = ®Cp and Cx =
I'®Cy). Note that different sets Fy C RX on the same set X may give rise to a
same smooth structure on X. A set mapping ¢: X — Y between Frolicher spaces
is called a map of Frolicher spaces or just a smooth map if for each f € Fy, the
pullback f o ¢ € Fx. This is equivalent to saying that for each ¢ € Cx, poc € Cy.
An injective smooth map ¢: X — Y is called an embedding if the smooth structure
on X is the initial structure corresponding to ¢; i.e. Cx = I'(Fy o ). The following
result is relevant.

Lemma 1.1. Let f: X =Y, and g: Y — Z be maps of Frolicher spaces. Suppose
that f is injective; therefore, if go f: X — Z is an embedding, then f is an embed-
ding too.

Some useful facts regarding Frolicher spaces can be gathered in the following

Theorem 1.2. The category FRL is complete (i.e. arbitrary limits exist), cocom-
plete (i.e. arbitrary colimits exist), and Cartesian closed.

Given a collection of Frolicher spaces { X; }icr, let X = [];<; X; be the set product
of the sets { X, }ier and m;: X — X, ¢ € I denote the projection map (z;);cs — ;.
The initial structure on X is generated by the set

FO = U{fOﬂ'iI f EFXi}.
i€l
The ensuing Frolicher space (X, T'Fy, pI'Fp) is called the product space of the family
{Xi}ier. Clearly,
IEFy ={c: R — X|if ¢(t) = (ci(t))ier, then ¢; € Cx, for every i € I}.

Now, let [}, ; X; be the disjoint union of sets {X;}icr, and tx,: X; — ), X; the
inclusion map. Place the smooth final structure on |#,.; X; corresponding to the

family {tx, }icr. The resulting Frolicher space is called the coproduct of {X;}ier,
denoted [];.; X;, and
Fllier Xi = {f: HXi — R| foreach i € I, f|x, € Fx,}
iel
is the collection of smooth functions for the coproduct.
Corollary 1.3. Let X, Y, and Z be Frolicher spaces. Then the following canonical
mappings are smooth.

o cv: C®(X,Y)x X =Y, (f,x) — f(x)
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ins: X - C®°(Y, X xY), x— (y—ins(z)(y) = (z,y))

comp: C*(Y,Z) x C°(X,Y) — C>®(X,Z), (g, f) —go f

fe: C®(X)Y) = C®(X,2), f(g) = fog, where f € C(Y, Z)

ge: C®(Z)Y) = C®°(X,Y), 9.(f) = fog, where g € C(X, Z).

Corollary 1.4. Let X, Y, and Z be Frolicher spaces. The mapping ¢: (X xY) x
Z—Xx (Y xZ),((xy),2)— (z,(y,2)), is an isomorphism.

Because of this isomorphism, the spaces (X xY) x Z and X x (Y x Z) are
denoted X xY x Z.
Given Frolicher spaces X, Y, and Z and in view of the cartesian closedness of
the category FRIL, the exponential law
C®(X xY,Z)=C®(X,C>(Y, 2))

holds. Because Fx = C*(X,R), it follows by cartesian closedness of FRIL that the
collection Fx can be made into a Frolicher space on its own right.

Finally we would like to show how to construct smooth braking functions, fol-
lowing Hirsch [9]. Smooth braking functions are tools that are behind most results
in this paper. In [12], it is shown that the function ¢: R — R given by

(u) 0 ifu<0
u) = _
v eT1 ifu>0

is smooth. Substituting 2 for w in the above function, one sees that the function

¥: R — R, given by
{0 ifz<o
vie) = {6;21 ifu>0
is smooth. Now, let us construct a smooth function a: R — R with the following
properties. Let 0 < a < b. a(t) should satisfy:
e a(t)y=0fort<a
e O0<aft)<lfora<t<b
e ( is strictly increasing for a <t < b
o a(t)=1fort>b.
Define a: R — [0, 1] by

fat y(z)dz
alt) = —F——F——,
Q f:fy(w)dac

where y(z) = ¢¥(x — a)(b — x).
In the sequel, the notation a,, 0 < € < %, will refer to a smooth braking function
with the following properties:

e a(t)y=0fort<e

e 0<at)<lfore<t<l—e

e « strictly increasing for e <t <1 —e€
o a.(t)=1for1—e<t.
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One might begin investigating homotopy theory in FRIL by simply following the
homotopy theory of topological spaces, replacing continuous functions with smooth
ones. One can certainly define the notion of a homotopy H: I x X — Y between
smooth maps H(0,—) and H(1,—) in this way. One can even get as far as the left
Puppe sequence (see [5]), but eventually difficulties begin to arise.

Extending functions defined on a subspace of a Frolicher space tends to be a
little tricky, and so the definition of a cofibration in FRL is one that needs careful
consideration. To do this we define a slightly weaker notion of cofibration than
the notion obtained from topological spaces. In addition, we define the mapping
cylinder of a smooth map f: X — Y using not the unit interval, but a modified
version called the weakly flattened unit interval, denoted I, which, as one can
show, is topologically homeomorphic to the unit interval. This modified structure
on the unit interval allows us to show that the inclusion of a space X into the
mapping cylinder of f: X — Y is a cofibration (in our weaker sense).

The weakly flattened unit interval is useful, but it also has its drawbacks. It would
be ideal to have a single structure on the unit interval that can be used throughout
our homotopy theory, but the weakly flattened unit interval is not suitable because
it has the rather restrictive property that a smooth map f: I — I on the usual unit
interval often does not define a smooth map f: I — I, unless the endpoints of the
interval are mapped to the endpoints. This restrictive property means that we only
use the flattened unit intervals where they are absolutely necessary.

2. Basic constructions of homotopy theory in FRL

In this section, we define the fundamental notions of homotopy theory in the
category FRIL, such as the homotopy relation and the mapping cylinder.

2.1. Flattened structures on the unit interval

We define two main Frolicher structures which we call the flattened unit inter-
val and the weakly flattened unit interval. Let (C;, F;) be the subspace struc-
ture induced on I by the inclusion I — R.

Definition 2.1. The Frolicher space (I, Cr, F1), where the structure (Cy, Fy) is the
structure generated by the set

F ={f € Fi| there exists 0<e< i with f(t) = f(0) fort € [0,¢) and
Ft) = £(1) forte (1-e1]},

is called the flattened unit interval.

It is easy to see that any continuous map c¢: R — [0, 1] defines a structure curve
on I if and only if it is smooth at every point ¢ € R, where ¢(¢) € (0,1).

We define the left (resp. right) flattened unit interval, denoted by I~ (resp.
I™), to be the Frolicher space whose underlying set is the unit interval [0,1], and
structure is the structure generated by the structure functions in F; that are con-
stant near 0 (resp. 1).
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Definition 2.2. The Frolicher space (I, Cr, F1), with the structure defined below, is
called the weakly flattened unit interval. The underlying set is the unit interval;
the structure (Cr, Fy) is generated by the family

F={feF]| tlir(% anf(t) =0, tlﬂirlni C(lit—nf(t) =0, n>1}
We call the property, for all f € F,
lim d—nf(t) =0, lim d—nf(t) =0,n>1,
t—0+ dt" t—1— dt"
the zero derivative property of f.

We shall prove that all structure functions on I have the zero derivative property;
in other words, F; = F. To that effect, we need the following lemma.

Lemma 2.3. Let ¢c: R — R be a smooth real-valued function at t =1tg, and let
f: R — R be a smooth real-valued function at t = c(to). Then,

mn

dt"

(f 0 )(to) = £ (c(to)) (€ (t0))" + terms of the form
af® (c(te)) (¢ (to))™ (¢ (t0))™ ... (D (tg)) ™,

where k < n and a € R. In addition, if a # 0, then at least one of ma, ms3, ..., My_1
s also mon-zero.

Proof. The proof is done by induction. For the sake of brevity, we call the term
£ (e(to))(c (to))™ the primary term for n, and the terms of the form

af ™ (e(to))( (t0))™ (" (t))™ ... ("D (ko)™

the lower order terms for n. The statement is true for n = 1 and for n = 2. Suppose
the result is true for n = k. To show that the result holds for n = k + 1, since

dk‘+1

W(f oc)(ty) = %(f(k)(c(to))(c’(to))k) + terms of the form

%(af(j)(c(to))(c’(to))ml (" (to))™ ... (C(k_1)<t0))mkfl),

where j < k+ 1 and a € R, we need only show that

d ] — m
%(af(”(C(to))(C’(to))ml(C"(to))m o (T ()™
gives rise to lower terms for n = k + 1, which is, by the way, straightforward. [

Theorem 2.4. Let F:= Fp = {f € Fy| lim;_,o+ %f(t) =0=lim;_,- (Z—if(t)}.

Proof. 1t is evident that F' C Fj. We must show the reverse inequality. Let 0 < €
< %, and 0 < M < 1. Consider the function cp;: R — R, given by

enm(t) = (1= ae([t]))Bar () + e (J2)),

where a.: R — R is a smooth braking function as defined in the Preliminaries, and
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Bur: R — R is given by

—Mt ift<0
t =
Paa (1) {t if £ > 0.
It is easily seen that cp; is continuous over all R, and smooth over all R except
at t = 0. Also note that 0 < cpr(t) < 1 for all t € R, and cps(t) = B (t) = 0 for all
0 <t <e. Now,

d d

%CM(t)— %B[\/j(t)—_M, for —e<t<0
d d

%CM(t) = %ﬁM(t) =1, for 0 <t <e

For n > 1, we have

d7L dn

)= —
a1 = g
We now show that cj; € I'F. To this end, let f € F. To show that focp: R — Ris
smooth, it is obvious that we need only concentrate on the point ¢ = 0, because f o ¢
is smooth at every t # 0. It follows for ¢ # 0, and n € N that Lemma 2.3 applies.
But as t — 0, cpr(t) — 07, and so, letting s = cps(t), we have

lim £ (exr () = lim 9 (s) =0,

s—0T

Bu(t) =0, for t € (—€,0)U(0,¢).

for all j € N, by the zero derivative property of f. Thus, as ¢ approaches the value
0, the primary term and all the lower order terms of C%( f ocar)(t) vanish, and we
have shown that f ocps is smooth at ¢ = 0. This implies that f ocpy € C°(R,R)
for all f € F. It follows that cp; € T'F.

We are now ready to show that F; C F'. To this end, suppose that we are given a
structure function f € Fy. We shall show that this f has the zero derivative property,
and is thus an element of F.

Since f € Fi, we know that f o c is a smooth real-valued function for every ¢ €
I'F. In particular, f o cps is smooth for all 0 < M < 1. Thus, for any n € N,

mn n

. d .
Jm g (feea)(t) = lim 2

(f oenr)(®).

Ast— 07, cp(t) — 0F; let us consider the lower order terms for n. Each term of
the form

af ™ ear(£))(chy ()™ (e ()™ - (e ()"
has some term (cs&) (t))™i, for some i > 1, with m; # 0. But lim, - cg\? (t) =0, if
i>1, and so

tim - af®(ear (8)) (chs (0)™ (4, (0)™ . (e~ ()™= =0,

t—0—
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So all the lower order terms fall away; therefore

n

i g =ea)(6) = Jim £ ear) o)

= lim ™) (ep(t))(—M)"

t—0—
= 1 (™) (&) (—M)"
= lim f(s)(~M)"
where s = cpz(t). In a similar way one shows that

mn

d
Jm (o can)®) = Jim £
But focys is smooth, therefore limy g+ £ (s)(—=M)™ = lim,_o+ £ (s), which
implies that lim,_ o+ £ (s) = 0.

We have shown that the zero derivative property of f holds for the left endpoint
of the unit interval. To show that the zero derivative property of f holds for the right
endpoint of f, note that dp;: R — R, dp(t) =1 — epr(t), is a smooth real-valued
function with d(0) =1, and 0 < dps(¢) < 1 for all ¢ € R. One can follow a similar
procedure to the above, using dys instead of ¢5; to show that lim, ;- f(™ =0. O

2.2. Some properties of smooth functions between the flattened unit
intervals

One has to be careful when dealing with the various flattened unit intervals. A
smooth function f: I — I from the R-Frolicher subspace unit interval I to itself
need not define a smooth function f: I — I, for example. Conversely, not every
smooth function f: I — I defines a smooth function f: I — I. In particular, we
need to be aware of the fact that addition and multiplication of functions when
defined between the various flattened unit intervals does not preserve smoothness,
as is the case with the usual unit interval.
Ezample 2.5. The function f: I — I, f(t) = %t is clearly smooth, but the corre-
sponding function f: I — I, given by the same formula, is not smooth. To see this,
let a: R — R be a smooth braking function with the properties that

e a(t)=—1,fort < -3

o a(t)=t, for -1 <t<1

e at)=1,fort> 3.
Define ¢: R — I by ¢(t) =1 — |a(t)]. The curve ¢ is smooth everywhere except at
t = 0, where ¢(0) = 1. However, every generating function g on I is constant near
1, and so the composite g o ¢ is smooth. Thus ¢ is a structure curve on I. Now, f o

c: R — Lis given by (foc)(t) = 3(1 — |a(t)]). Let h: I — R be a structure function
with the properties that

e h(s)=0,fors< 3
e h(s)=s, for
e h(s) =1, for

3
<S<Z

00|~y W=
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Then (hofoc)(t) = $(1 — |a(t)]) for t near 0, and is not smooth at ¢ = 0. Thus f
does not define a smooth function from I to I.

Example 2.6. The function f: I — I, given by f(t) = v/, is smooth, but the corre-
sponding f: I — I, given by the same formula, is not smooth. This follows from the
fact that f is smooth on the open interval (0,1), and a generating function g on I
is constant near 0 and 1. On the side, f: I — I is not smooth, because if c: R — I
is a structure curve with c(t) = t? near t = 0, then (f o ¢)(t) = |t| near t = 0, which
is not smooth on I at t = 0.

Ezample 2.7. The functions f,g: I= — I~ given by f(t) = % t and g(t) = i, are
both smooth, but the sum f(¢) + g(t) = 3/t + 1 is not smooth.

The following lemma follows from the definition of the Frolicher structures on
the various flattened unit intervals.

Lemma 2.8. Let f: I — I be a smooth function with the properties that f(0) =0
and f(1) = 1. Then the following maps are smooth:

A
I =1
CIE

° —1I

g

-1
o f: -1

The function defined in the following example is for later reference.

Ezample 2.9. Let H: I x I~ — I~ be given by H(t,s) = (1 — a(t))s, where a: R
— R is a smooth braking function with the properties that

e a(t)=0fort< g
e 0<a(t)<lforallteR
e a(t)=1fort> 2.

We show that H is smooth. To see this, let f: I" — R be a generating function on
I7. So f is constant near 0. Now, let ¢: R — I x I be a structure curve, given by
c(v) = (t(v), s(v)). The curve ¢ is a structure curve on I, and so is a smooth real-
valued function for all v € R, except possibly when ¢(v) = 0 or ¢(v) = 1. Similarly,
the curve s is a structure curve on I™, and so is smooth for all v € R except pos-
sibly when s(v) = 0. Now consider the composite H o c: R — I". Clearly, a(t(v))
is smooth for all v, since the only possible points for non-smoothness occur when
t(v) = 0ort(v) =1, and a(t(v)) is locally constant near these points. Consequently,
H o ¢ is smooth everywhere except possibly when s(v) = 0. Now, let us consider
foHoc: R— R; the only possible points for non-smoothness are those v in which
s1is 0, i.e. (Hoc)(v) =0.But f is a structure generating function on I, and so is
locally constant near 0. This shows that f o H o ¢ is smooth for all v € R, and thus
H is smooth.



Homology, Homotopy and Applications, vol. 9(2), 2007 421

2.3. Homotopy in FRL and related objects
Definition 2.10.

1. Let X be a Frolicher space, and zg, 1 € X. We say that z( is smoothly path-
connected to x; if there is a smooth path ¢: I — X such that ¢(0) = zo and
¢(1) = 2. We write 29 ~ x1. The relation ~ is called smooth homotopy
when it is applied to hom-sets.

2. Let f: X — Y be a map of Frolicher spaces. f is called a smooth homotopy
equivalence provided there exists a smooth map ¢: Y — X such that fog
~1ly and go f ~ 1x.

3. We denote the class of smooth cofibrations (defined in the following subsec-
tion) by cof and the class of smooth homotopy equivalences by we. We also
call the elements of these classes the cofibrations and weak equivalences
respectively, in keeping with Baues’s [1] terminology.

One can show that smooth homotopy is a congruence in RFFL. In practice, we say
that smooth maps f,g: X — Y are smoothly homotopic if there exists a smooth
map H: I x X — Y with H0,—) = f and H(1,—) =g¢. If A C X is subspace of
X, then we say that H is a smooth homotopy (rel A) if the map H has the addi-
tional property that H(¢,a) = a for each t € I and a € A. See Cherenack [6] and
Dugmore [7] for more detail regarding smooth homotopy.

The notion of deformation retract is fundamental to topological homotopy theory.
The following definitions are adapted for smooth homotopy, and will be needed at
a later stage.

Definition 2.11. Let A C X be a subspace of a Frolicher space X, and let i: A
— X denote the inclusion map. Then

1. We say that A is a retract of X if there exists a smooth map r: X — A such
that 7i = 14. We call r a retraction.

2. We call A a weak deformation retract of X if the inclusion 7 is a smooth
homotopy equivalence.

3. The subspace A is called a deformation retract of X if there exists a retraction
r: X — A such that ir ~ 1x.

4. The subspace A is called a strong deformation retract of X if there exists a
retraction r: X — A such that ir ~ 1x(rel A).

Definition 2.12. The mapping cylinder Iy of f: X — Y is defined by the following
pushout

X—Y
[
Ix X ——1Ij,

where 41: X — I x X is given by 41(z) = (1,z), for any x € X. We denote the
elements of I by [¢,z] or [y], where (t,z) e I x X and y € Y.
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Replacing I x X in the above pushout diagram by I x X or I x X, we obtain
the flattened mapping cylinder Iy and weakly flattened mapping cylinder Iy of f,
respectively. We use the same notation for elements of these flattened mapping
cylinders as described above for the mapping cylinder.

There is also a map ig: X — I x X, defined by ig(z) = (0,2) for x € X. This
induces an inclusion map iy: X — Iy, which identifies X with the Frolicher sub-
space i((X) of Ir. An inclusion is induced in a similar way for the flattened mapping
cylinders. If one identifies {0} x X to a point in the mapping cylinder I of a map
f: X — Y, then one obtains the mapping cone T of the map f. In a similar fash-
ion, we define the flattened mapping cone T and weakly flattened mapping
cone Ty of a smooth map f: X — Y.

We shall need the flattened double mapping cylinder I; ; later.

Definition 2.13. Given two smooth maps f: X — Y and g: X — Z, we define the
flattened double mapping cylinder I; ; of f and g by the pushout

If ——1Iy,
i
X——7,

g

where i is the inclusion into the flattened mapping cylinder.

2.4. Cofibrations in FRIL

A cofibration is a map i: A — X for which the problem of extending functions
from i(A) to X is a homotopy problem. In other words, if a map f: i(4) — Z
can be extended to a map f*: X — Z, then so can any map homotopic to f. For
topological spaces, the usual definition is phrased in a slightly more restrictive way.
The extension of a map g ~g f, for some homotopy H: I x i(A) — Z, is required to
exist at every level of the homotopy simultaneously. In other words, one requires each
H(t,—) to be extendable in such a way that the resulting homotopy H*: I x X — Z
is continuous.

We weaken this definition somewhat, to enable smooth homotopy extensions to
be more easily constructed using a flattening at the endpoints of the homotopy. This
enables us to characterize smooth cofibrations in terms of a flattened unit interval,
and then later to relate smooth cofibrations to smooth neighborhood deformation
retracts. Our definition of smooth cofibration, though different from Cap’s defini-
tion, see [2], leads to several classical results as does Cap’s. As pointed out by Cap,
the analogue of the classical definition of cofibration would not allow even {0} < I
to be a smooth cofibration. So, we have the following



Homology, Homotopy and Applications, vol. 9(2), 2007 428
Definition 2.14. A smooth map i: A — X is called a smooth cofibration if, corre-
sponding to every commutative diagram of the form

f

A—tsx-—1s7,

]

IxA

there exists a commutative diagram in FRIL of the form

A—sx-Tt.o
OXIAi /

IxA

in which G': I x A — Z is given by G'(t,a) = G(a.(t),a) for all t € I and a € A.
The mapping a.: R — R, where 0 < € < %7 is a braking function.

In the sequel, the corresponding homotopy G’ of the homotopy G: I x A — Z
in a cofibration i: A — X shall mean the map given by

G'(t,a) = G(ac(t),a),

where every 0 < € < % and a. is a braking function, but not necessarily a standard
braking one.

Lemma 2.15. Leti: A — X be a smooth cofibration; then i is an initial morphism
in FRIL. In addition, if A is Hausdorff, then i is injective.

Proof. Let us show that every smooth map f: A — R factors through 4, that is
for every f € Fa, there exists f € Fx such that f = f o 4. To this end, consider the
smooth map G: I x A — R, given by G(t,a) = tf(a). Clearly, 0|4 = G(0, —), where
0: X — R is the constant map 0. It follows that there is map F': I x X — R such
that F'o (17 x i) = G’. Then, clearly fi= F(1,—) has the desired property.

The remaining part of the proof of Proposition 3.3 in [2] holds verbatim here as
well. O

In this paper, we are interested only in cofibrations that are injective. Henceforth,
all cofibrations are assumed to be injective.

All topological cofibrations are inclusions, and this result is true for smooth
cofibrations too. The proof of the following lemma is essentially the same as the
proof given by James [10] for the topological result, although James’s proof is in
some sense dual to ours, using path-spaces in place of cartesian products and the
adjoint versions of our homotopies.

Lemma 2.16. A cofibration
A== X

is a smooth embedding. So in this case A can be identified with the subspace i(A).
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Proof. Let I; be a mapping cylinder of 4, and let j: X — I; be the standard inclusion
map. Consider the smooth map v: I — I,v(¢t) =1 —t¢, forallt € I, and the quotient
map ¢q: (I x A) U X — T;. We have the following commutative diagram

Ix A

q
1X1AT \
7 J

A X I[i,

('yxlA)o(lxlA)\L /

Ix A

where G(t,a) = [(1 — t,a)]. Notice that the map G is smooth. Since 7 is a cofibration,
we have the commutative diagram

X—j>]1i

Ix X<——1xA.
11)(2

Define U: X — I; by U(z) = F(1,z). We have U o4 = G'(1, —), where G'(1,a) =
[(0,a)], for every a € A. Thus, U o i defines the usual inclusion of A into the mapping
cylinder I;; hence, by Lemma 1.1, ¢ is an embedding. O

The result, provided in [2], that the inclusion of a unit sphere into the unit disc
is a smooth cofibration also holds in our context. Cap’s proof [2] is shortened after
suitable modifications.

Example 2.17. The inclusion i: S"~! < D" is a smooth cofibration.

Proof. Consider D™ as being embedded in the usual way in R™, and let G: I x
S"~1 — Z and f: D" — Z, where Z is an arbitrary Frolicher space, be smooth
maps such that G(0,z) = f(z), for all z € S"~ 1. Let || || be the usual norm on R".
Then the prescription consisting of = +— %, for £ # 0, and = — 0, for x =0,
clearly defines a smooth real-valued function on R™. Now, define F': [ x D" — Z

by setting
Fla.((1—t) + ol )| <

o=

F(tﬂx) =
Glac(2t —t2<flll), @), ] >

[l

N[

Since, for ||z|| = 4 and all ¢ € I, both parts in the definition of F' are equal, it follows
that F' is continuous. Moreover, since, for all ¢t € I, F(t,—) is obviously smooth on
the open disc of radius (1 + €)/2 and on the ring formed by all z with (1 —€)/2 <
llz|| <1, it follows that F'(¢,—) is smooth all over D", and hence F': I x D" — Z
is smooth.

It remains only to verify that F(0,2) = f(z), for all © € D", and F(t,x) =
G(ae(t),z), for all t € I and x € S"~!, which is obviously easy to show. O
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There is an equivalent formulation of Definition 2.14, given in the following
lemma.

Lemma 2.18. A smooth map
A== X
is a cofibration if and only if, for every smooth map h: (0 x X)U (I” x i(A)) — Z,

the following diagram

(0 x X)U (I~ x i(4) —= 7,

|

I xX
where j is the evident inclusion, exists in FRIL.

Proof. Suppose that the inclusion A > 5 X is a smooth cofibration, and sup-
pose that h: (0 x X)U (I” xi(A4)) — Z is a smooth map. We have the diagram

(0x X)U (I xi(A) —L>7.

|,
I xX

We need to fill in a smooth map G: I~ x X — Z which makes the resulting diagram
commute. To do this, notice that h[;-;(4) is smooth, and thus the corresponding
map h|ry;(a), using the usual unit interval, is also smooth. We have the following
diagram

i hlox x

A X

y
OxlAi /
h

IxA

where h = ho (17 x i), and h(0,—): X — Z is denoted as h|ox x. The fact that i is
a smooth cofibration yields the following FRL-commutative diagram:

hlox x

X———=Z

o] 7,

IxX<—1xA.
17 %1

Now, choose a smooth braking function §: R — R with the following properties:
o ((t)=0fort <
e 0 < f(t) <efor
o B(t) =t for e < t.

ol N|a

<t<e
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F may not be smooth on I~ x X due to the flattening requirements of the left
flattened unit interval. To correct this, set G(t,x) = F(3(t), ). Notice that the
insertion of this braking function does not affect the commutativity conditions of
G, since the only adjustments to F' occur in the first coordinate at points where the
map A’ is constant.

Now, assume the converse; i.e., to every smooth h: (0 x X)U (I” xi(A)) — Z,
there corresponds a commutative diagram

(0x X)U (I xi(4) —L=7.

A

We wish to show that the inclusion i: A — X is a cofibration; so assume we have
the following diagram

i f

A——X——=7.

]

IxA

Since i is injective, there exists the diagram

A—sx-T. 7,
Oxii /
G

I xi(A)

where G(t,i(a)) = G(a.(t),a). We denote by G* the mapping I~ x i(A) — Z that
corresponds to G: I x i(A) — Z; it is clear that G*: I~ x i(A) — Z is smooth.
Putting f = f o (0 x 1x), and since f o G*: (0 x X) U (I” x i(A)) — Z is smooth,
our hypothesis allows us to construct the diagram

(0% X)U (I~ x i(A) 2% 7

A

Since H is smooth on I~ x X, it defines a smooth map on I x X. One can verify
that the diagram

X—7

IxX<=—1IxA
1[)(1

commutes as required. O
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3. Smooth neighborhood deformation retracts

This section is concerned with the formulation of a suitable notion of smooth
neighborhood deformation retract. For topological spaces, the statement that a
closed subspace A of X is a neighborhood deformation retract of X is equivalent
to the statement that the inclusion i: A — X is a closed cofibration. We show
that in the category of Frolicher spaces there is a notion of smooth neighborhood
deformation retract that gives rise to an analogous result that a closed Frolicher
subspace A of the Frolicher space X is a smooth neighborhood deformation retract of
X if and only if the inclusion i: A — X comes from a certain subclass of cofibrations.
As an application, we construct the right Puppe sequence.

3.1. SNDR pairs and SDR pairs

The definition of ‘smooth neighborhood deformation retract’ that we adopt in
this paper is similar to the definition of ‘R-SNDR pair’ suggested in [7], but we
have modified the definition in order to retain only the essential aspects of ‘first
coordinate independence’ defined in [7].

We begin by defining the ‘first coordinate independence property’ of a function
on a product of a Frolicher space with T (or I7, IT).

Definition 3.1. Let i: A — X be a smooth map, and ¢: R — X a structure curve
on X. Define

A(c,i) = {t. € ¢ *(i(A))| there exists a sequence {t,} of real numbers
with lim,, e tn, = t. and each t, € c™1(X —i(A))}.

The points in A(c, i) are those values in R where the curve ‘enters’ i(A) from
X —i(A), or ‘touches’ a point in ¢(A) whilst remaining in X — i¢(A4) nearby. Now,
we are ready to define the ‘first coordinate independence property’ for a structure
function on a product.

Definition 3.2. Let i: A — X be a smooth map and suppose f: I x X — R is a
structure function on I x X. Let ¢: R — I x X, given by c(s) = (t(s),z(s)) have
the following properties:

1. The map z(s) is a structure curve on X.
2. For all € > 0, t(s) is a smooth real function on R — U, cp(s,i)[5« — €, 5« + €]

If, for every such map ¢, the composite f o c is a smooth real-valued function, then
we say that f: I x X — R has the first independence property (FCIP) with
respect
to 4.

Extending the definition, we say that a map g: I x X — Y has the FCIP with
respect to ¢ if the composite hog: I x X — R has the FCIP with respect to ¢ for
every h € Fy.

Notice that we can formulate a similar definition of the FCIP if we replace I
throughout by I~ or I'", leaving the rest of the definition unchanged. We will have
occasion to use this type of first coordinate independence property in the later part
of this work.
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Remark 3.3. Let i: A — X, and suppose that we are given a map g: Ix X — Y.
Let f: Y — R be a structure function on Y, and suppose that fog: I x X — R has
the FCIP with respect to ¢ for any such f. Then, given a smooth map h: Y — Z, the
composite f'ohog: I x X — R has the FCIP with respect to ¢ for any structure
function f’ on Z.

The above note applies equally well if g: I x X — Y or g: I™ x X — Y has the
FCIP with respect to ¢ when composed with a smooth function A on Y.

Ezxample 3.4.
1. Foranyi: A — X, the projection onto the second coordinate 7x: I x X — X
has the FCIP.
2. Let a: R — R be a smooth braking function with the properties that
e a(t)=0ift < %
e 0<at)<lif <t
o a(t)=1if 2 <t
Consider 0 —I~. Let H: IxI~ — I~ be given by H(t,s) = (1 — a(t))s.
Then, fo H: I x I~ — R has the FCIP with respect to the inclusion 0 — I,
for any f € Fi-.

Definition 3.5. Consider a smooth inclusion i: A < X. Suppose that there exists
a smooth map u: X — I, with u=1(0) = i(A). If there exists a smooth map H: I x
X — X that satisfies the following properties:

1. H has the FCIP with respect to i.

2. HO,z) =z forallz € X

3. H(t,x) =z for all (t,z) € I x i(A)

4. H(1,z) € i(A) for all z € X with u(z) < 1.
Then the pair (X, A) is called a smooth neighborhood deformation retract pair, or
SNDR pair for short.

If, in addition, H is such that H(1 x X) C i(A), then the pair (X, A) is called a
smooth deformation retract pair, or an SDR pair for short.

The subspace A is called a smooth neighborhood deformation retract or smooth

deformation retract of X if (X, A) is an SNDR pair or SDR pair, respectively.
The pair (u, H) is called a representation for the SNDR (or SDR) pair.

Ezxample 3.6.
1. The pair (X,0) is an SNDR pair. A representation is u(z) =1, H(t,z) = z,
foreacht € I and z € X.
2. The pair (X, X) is an SNDR pair. A representation is u(X) =0, H(t,z) = x,
foreacht € I and z € X.
Lemma 3.7. The pair (I7,0) is an SDR pair.

Proof. Let a: R — R be the smooth braking function of Examples 3.4. A represen-
tation for (I7,0) as an SDR pair is (u, H), where u: I- =T and H: IxI~ -1~
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are given by u(s) = s, and H(t,s) = (1 — «a(t))s. Clearly, the identity u: I~ — T is
smooth. And the map H, as shown in Example 2.9, is smooth and clearly has the
FCIP with respect to the inclusion, since whenever v approaches a value for which
s(v) = 0, one has

9((1 = a(t(v)))s(v)) = 9(0)

for v in a neighborhood of this value and g € Fy-. O
Lemma 3.8. The pair (I,{0,1}) is an SNDR pair.

Proof. A representation (u, H) for the SNDR pair can be given as follows. Define
u: I — T to be a bump function such that

e u(t)=0fort=0o0rt=1
e y(t)=1forte [l 3
o 0 < u(t) <1 otherwise,

and let 8: I — I be a braking function with the properties that 3(s) =0 for 0 < s
< %,and B(s) =1for 3 < s<1.Let 0 <e< 1 anddefine H: I xI— Iby H(t,s)
= (1 — a.(t))s + a.(t)B(s). It is clear that H(0,s) = s, H(t,0) =0, and H(¢,1) = 1.
Suppose that u(s) < 1. Then, s € [0, +) U (3, 1]. This implies that 3(s) = 0 or B(s)
= 1. We then have H(1,s) =0 or H(1,s) = 1, which means that H(1,s) € {0,1} if
u(s) < 1.

To see that H is smooth, let f: I — R be a generating function for the flattened
unit interval. The only possible points of non-smoothness are points where t = 0,1
and s = 0,1. The braking function a. ensures that H is locally constant in the ¢
variable whenever t is near 0 or 1, so no problem arises from the ¢ component. When
s is near s = 0, we have H(t,s) near 0, and so f o H is locally constant near any
(t,0). Similarly, when s is near s = 1, we have H(t,s) near 1, and fo H is again
locally constant near any (¢,1). O

We now show that the product of SNDR pairs is again an SNDR pair.

Theorem 3.9. Leti: A — X and j: B — Y be inclusion mappings. If (X, A) and
(Y, B) are SNDR pairs, then so is

(X XY, (X xB)U(AxY)).
If one of (X, A) or (Y, B) is an SDR pair, then so is the pair

(X xY, (X xB)U(AxY)).
Proof. Let a: R — I be a smooth braking function with the properties that a(t) = 0
for ¢t < i, and «a(t) =1 for ¢t > %, and let 3: R — R be a smooth increasing brak-
ing function with the properties that S(t) =t for ¢t < i, and B(t) =1 for t > %.
Suppose that (u, H) and (v,J) are representations for the SNDR pairs (X, A)

and (Y, B), respectively. Let u: X — I, and ©: Y — I be given by u(z) = S(u(x))
and T(y) = B(v(y)) respectively. Define w: X x Y — I by w(z,y) = u(z)v(y); w is
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clearly smooth. We have w=1(0) = (X x B) U (A x Y), as required. Define Q: I x
X xY — X xY as follows:
(H(a(t),2), J(alt) v
Qt,z,y) = { (H(a(t),z), J(a(Z)a(t),y) it D(y) > U(x),5(y) > 0
(H(a(F)a(t), 2), J (a(t),y) i u(x) >

u(w)

We must show that @ is a smooth map, with the first coordinate independence
property with respect to the inclusion (X x B)U (A X Y) — X x Y. We first con-
sider each part of the definition of @) separately. The first part is clearly smooth.
Let us verify that ) is smooth on the second part of its definition; the third part is
similar.

We need only focus on the component J(a(ﬂ(r)

v(y)
up J (a(ggig)a(t)w) is smooth individually, so we need only pay extra attention
to those parts that involve flattened unit intervals, remembering that addition and
multiplication on the flattened unit interval need not preserve smoothness, as is the
case for the usual unit interval.

So let us consider a(ggg), it is smooth except possibly when % approaches
0 or 1, since it is here that structure curves on the flattened unit interval need

not be smooth in the usual sense. Clearly, if u(x) approaches 0 and v(y) does not
5
v(y
If ©(y) approaches 0, then w(x) must approach 0 too. This situation is dealt with

later.

Ja(t),y). Each function making

approach 0, then the braking function « ensures that = 0 near such points.

Thus, @Q, in part two of the definition, is smooth, and one can show similarly
that @ in the third part of the definition is smooth as well.

Let us now consider the overlaps of the three parts of the definition of (). Observe
that if w(z) is in a sufficiently small neighborhood of (y), with u(x) # 0 and T(y)
# 0, then we have O‘(%E;))) = a(%g;) =1, and so the second and third parts of the
definition of @ coincide here. Thus, it remains only to show that @ is smooth as
u(x) and T(y) both approach 0.

If @ is smooth in each of its coordinates then it is smooth, so consider the
coordinate involving the map J. Let c: R — I x X x Y be a structure that is given
by ¢(s) = (t(s),z(s),y(s)). Then, the map ¢;: R — I x Y, given by

(alt(s))y(s)) if w(x(s)) = D(y(s)) = 0
cr(s) = 4 (a(ZEER)a(t(s)), y(s)) if B(y(s) > u(a(s)), D(y(s)) > 0
(alt(s)), y(s)) if w(x(s)) > B(y(s)), ©(x(s)) > 0

is a map satisfying the conditions of Definition 3.2, since its second coordinate is
smooth, but its first coordinate may be singular as T(y(s)) (and hence @(x(s)))
approaches 0. Since J has the first coordinate independence property, the map

(Jocr)(s) = § J(a(ZEER)a(t(s), y(s) it D(y(s)) > (x(s)), B(y(s)) > 0
if w P
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is smooth. In a similar way, the coordinate of ) involving H can be shown to be
smooth as u(z), and T(y) approach 0. Thus, Q o ¢ is smooth, and since c¢ is arbitrary,
@ is smooth.

We now verify that @ satisfies the required boundary conditions. When ¢ = 0,
all three lines defining @ reduce to (H(0,z),J(0,y)) = (x,y). Let x € A and y € B;
then u(z) = v(y) = 0. Therefore, Q reduces to (H(a(t),z), J(a(t),y)) = (z,y). If
x € Aand y ¢ B, then @ is given by the second part of its definition, which reduces
to (H(a(t),z),J(0,y)). The case when =z ¢ A and y € B is similar. If ¢t =1 and
0 <w(z,y) <1, then 0 <u(z) <1 and 0 < 7(y) < 1. Suppose that 0 < w(x) < 1.
Then either u(z) < o(y) or v(y) < u(z). If u(x) <o(y), then @ is given by the
second part of its definition, which reduces to (H(1,z), J(a(Z2),y)) € i(A) X Y.

If v(y) < w(x), then the third part of the definition of Q applig;) and @ reduces to
(H(a(28),2), J(1,y)) € X x j(B).

Finally, we must show that for any f € Fxxy, fo @ has the first coordinate
independence property with respect to the inclusion (X x B)U(AXxY) — X xY.
To this end, consider a map ¢: R - Ix X x Y, given by c(s) = (t(s), z(s), y(s)).
Let {s,} be a sequence of real numbers converging to s, with ¢(s,) € (X xY) —
(AxY)U(X x B)),and ¢(s«) € (AxY)U (X x B). There are three cases to con-

sider.

1. Suppose that c(s.) € A x B. Then x(s.) € A and y(s.) € B. The fact that H
and J have the first coordinate independence property with respect to ¢ and
j respectively means that each coordinate of @) is smooth, and so @ is smooth
at ¢(sx).

2. Suppose that c(s.) € A x Y, and that y(s.) ¢ B. Then at each of the points
c(8n), (Q o c)(sy) is given by the second part of the definition of Q, for n large
enough. Since x(s4) € A, the component of @ involving H is smooth, since H
has the first coordinate independence property. For any s in a neighborhood
of sy, 04(%883) = 0. Thus, the component of @ involving J is constant for s
in a neighborhood of s, and so is smooth there.

3. The case with ¢(s«) € X x B, and z(s«) ¢ A is similar to the second case
above.

For the last part of the theorem, suppose that (u, H) represent (X, A) as an SDR
pair. If we replace u by v’ = u, then (v/, H) also represent (X, A) as an SDR pair.
Making the above constructions now with «’ in place of w, it follows that w(z,y) < 1
for all (z,y) and so Q(1,z,y) € (X x B) U (A xY). This completes the proof. O

4. Cofibrations with FCIP

In this section, we show that for a subspace A C X that is closed in the underlying
topology, the inclusion i: A — X is a cofibration if and only if (X, A) is an SNDR
pair.

Definition 4.1. Let i: A — X be a cofibration. We call i a cofibration with
FCIP if any homotopy extension can be chosen to have the FCIP with respect
to <.
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Using the equivalent formulation of the notion of cofibration, which is given by
Lemma 2.18, we may restate Definition 4.1 as follows: A cofibration i: A — X is a
cofibration with the FCIP if and only if the map G that we may fill in to complete
the commutative diagram,

(0% X)U (I xi(A) L=y

7

ji - e
I xX
may be chosen to have the FCIP with respect to the inclusion .
We have the following result, which corresponds to a similar topological result.

Lemma 4.2. A smooth map i: A — X is a cofibration (with the FCIP) if and only
if (0x X)U (I~ xi(A)) is a retract of I~ x X (where the retraction r: I~ x X —
(0x X)U (I~ x i(A)) has the FCIP).

Proof. In the one direction, suppose that (0 x X) U (I” x i(A)) is a retract of I~
x X. For every map h: (0 x X)U (I~ xi(A)) — Y, we wish to complete the fol-
lowing diagram:

(0x X)U(I” xi(4) 2=y .

7

~
-
j -~
l Page!
-

I xX

By hypothesis, there exists r: I~ x X — (0 x X) U (I” x i(A)) such that roj = 1.
Define G = h o r. If r has the FCIP, then so does h o r.

Conversely, suppose that i: A — X is a cofibration (with the FCIP). Define
r:I"xX - (0xX)U(I xi(A)) by the prescription: r(t,z) = (¢,i(a)) if x =
i(a), and r(t,z) = (0,z) for all = ¢ i(A). Thus, roj = 1. If i is a cofibration with
the FCIP, then r has also the FCIP property. O

The next theorem shows the relationship between cofibrations, retracts and
SNDR pairs.

Theorem 4.3. Leti: A — X be an inclusion, with A closed in the underlying topol-
ogy of X. Then the following are equivalent.
1. The pair (X, A) is an SNDR pair.

2. There is a smooth retraction r: I- x X — (0 x X)U (I” x i(A)) with the
FCIP.

3. The map i: A — X is a cofibration with the FCIP.
Proof. To show that (1) and (2) are equivalent, note that the pair
(I x X, (0x X)U(I” xi(A4)))

is an SDR pair, as a consequence of Lemma 3.7 and Theorem 3.9. Let (w, Q) be a
representation for the pair (I7 x X, (0 x X) U (I” x i(A))) as an SDR pair, and let
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Q@ be constructed as in Theorem 3.9. Define
I xX - (0xX)U I xi(A4))

by r(t,z) = Q(1,t,x), where (t,x) € I~ x X. We observe that  has the FCIP, since
Q has this property, and @ has this property since each of its components has this
property.

The equivalence of (2) and (3) is Lemma 4.2.

We need only show that (2) implies (1). Let 7: I™ x X — (0 x X) U (I” x i(A))
be a retraction with the FCIP with respect to ¢. Define H: I x X — X by H(t,z) =
(mx or)(a(t), x), where mx is the projection onto the second coordinate, and a: R
— R is a braking function with the following properties: a(t) =0 for ¢t <0, a(t) =1
for t > %, and 0 < at) <1 for 0<t< %. This braking function is necessary to
ensure smoothness at the right endpoint of the flattened unit interval I. Smoothness
at the left endpoint is already taken care of by the fact that r is defined in terms
of the left flattened unit interval. The map H satisfies the following properties:

e H has the FCIP since r has this property.
o H(0,z) = (nx or)(0,z) =z, for z € X.
o H(t,z) = (mx or)(a(t),z) ==z, for x € A.

We now construct u: X — I. Let m1: I x X — I denote the projection onto I. Define
a smooth function 8: R — R by

0 ift<0
i6(t) =

po) {efz if ¢ > 0.
Now, define u: X — I by

_ Jy Blolt) — (m o) (L a)(xro ) alt). x))di.
Jo Bla(t)dt

u(z)

It is clear that u is a smooth mapping.

We now verify that (u, H) represents (X, A) as an SNDR pair.

(A) Let z € A. Clearly, (mror)(l,z) =1 and (mror)(a(t),xz) = a(t), and so
fol Bla(t) — (rror)(1,z)(mr o r)(a(t), z))dt = 0. Thus, u(x) =0, for all x € A.

(B) Suppose that z € X — A. Since 0 x (X — A) is open in the underlying topol-
ogyon (0 x X)U (I” x A), we may choose an open neighborhood W C 0 x (X — A)
of (0,z). Since r is continuous, there is a neighborhood V C I~ x X such that
r(V)CW C0x (X —A). Now, consider the mapping ¢,: I — I x X, given by
¢z (t) = (a(t), x), for each 2 € X. This is clearly smooth. Thus, there exists a neigh-
borhood U C I~ such that ¢,(U) C V. In other words, U x {z} C V. So, we have
(rror)(a(t),z) =0, for all t € U. Thus, we have

_ Jr_y ) = (mor)(L, @) (mr o r) (alt) @))di + [, Alalt))dt
Jy Bla(t))dt

Combining this with part (1), we deduce that u=1(0) = A.

> 0.
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(C) Suppose that z is such that u(z) < 1. There must be a neighborhood U of
I such that (7o r)(1,2)(mr o r)(a(t),z) > 0, for t € U. Thus (myor)(1,z) > 0, but
this implies that r(1,2) € I x A, and hence H(1,z) € A. The proof is complete. [

5. The mapping cylinder

In this section we show that the inclusion of X into the flattened mapping cylinder
I of amap f: X — Y is a cofibration with the FCIP.

Theorem 5.1. Let f: X — Y be a smooth map. Then, the pair Iy, X) is an SNDR
pair.

Proof. Let a: I — R be a smooth braking function with the following properties:
a(t) =0if0<t < 1, at) =1if 2 <t <1,0 < a(t) < 1, otherwise. Define two more
braking functions aj,as: I — R as follows: a1(0) =0, 0 < aq(t) <1 if 0 < ¢ < 2
ar(t) =1if 2 <t <1,and as(t) = 0if0 <t < 3, aa(t) = 1if £ < ¢ < 1. Now, define
u: Iy = I by u([t,z]) = a1(t) and u([y]) =1, for (¢,z) € Ix X and y € Y. Define
H:1Ix If — If by

{ (s,[t,z]) = [(1 — a(s))t + a(s)aa(t),z] if (t,x) eI x X
H(s, [y]) = [y] ifyey.

That u is smooth comes from the fact that u o g, where ¢ is the quotient map
¢: IxX)UY — Iy, issmooth when restricted to each component of the coproduct
IxX)uy.

To see that the map H: I x Iy — Iy is smooth, note that since we are working in
a cartesian closed category, products commute with quotients, i.e. if g is a quotient,
then so is 1 x ¢, where 1 is an identity map. Thus, we may think of H as being
defined on the space

IxIxX)u(IxY)

where ~ is the identification (¢,1,2) = (¢, f(x)) for t € I, and = € X. Since H o g,
where ¢ is the quotient map ¢: (IxIx X)U(IXY) — w, is smooth
when restricted to each component of the coproduct (IxIx X)U(IxY), H is

smooth on the quotient I x Iy.
We now verify that (u, H) is a representation for (I;, X) as an SNDR pair.

o u1(0)={[0,2]: z € X} =ip(X)
o H(0,[t,x]) =[t,z], forall t € I and z € X, and H(0,[y]) = [y], for all y € Y
o H(s,[0,2]) =1[0,z], forall s€ [ and x € X
o Ifu(t,z]) <1, then t < 3 and so a(t) = 0. Thus, H(1,[t,z]) = [0, z].
It is easy to show that H has the FCIP property. This completes the proof. O

Finally, we have the following important corollary.

Corollary 5.2. Given any smooth map f: X — Y, the inclusion X — Iy is a cofi-
bration with the FCIP.
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6. Baues’s first two cofibration axioms

The classes of morphisms in a cofibration category are the weak equivalences and
the cofibrations. A map which is both a cofibration and a weak equivalence is also
called a trivial cofibration; see [1] for details.

Lemma 6.1 (Composition Axiom).
1. The composition of two cofibrations is again a cofibration.

2. The product of a cofibration with an identity map is again a cofibration.

Proof.

1. Let X >—f>Y >L>W be two cofibrations, Z an arbitrary Frolicher

space, and let k: W — Z and K: I x X — Z be smooth maps such that
K(0,—) =koho f. Since f is a cofibration, there is a smooth map F: I x
Y — Z such that F(0,—) =koh and F(t, f(z)) = K'(t,x). Also, since h is a
cofibration and F(0,—) = ko h, we get a smooth map H: I x W — Z such
that H(0,—) =k and H(¢, h(y)) = F'(t,y) for all t € I and y € Y. By easy
verification, one has

H(t, hf(2) = F/(t, /()
= K((a 0 ) (1), 7).

2. Let A > X be a cofibration, and let Y and Z be arbitrary Frolicher
spaces. Let G: [ X AXY — Zand f: X XY — Z be smooth maps such that
fo(ix1ly)(a,y) = G(0,(a,y)) for all (a,y) € A x Y. By cartesian closedness,
we have the following commutative diagram:

At xTooxw2).

N

Ix A

Applying the cofibration property to the map 4 in the above diagram, we get
the following commutative diagram:

x —L oy, 2)

0><1Xi / T(G)'

IxX<—1xA.
IIXZ

Using cartesian closedness again and Lemma 1.4, one shows that there exists
a mapping F: I x X x Y — Z such that F (0, (x,y)) = f(x,y) for all (z,y) €
X xY,and F(t,(i(a),y)) = G'(t, (a,y)), as required. O

We now show that the Pushout Axiom (see [1]) is also satisfied in the category
FRL.
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Lemma 6.2 (Pushout Axiom). For a cofibration A — o x ,and a map f: A —
Y, there exists the pushout

i

A X

1

Y—=XUaY

7

in FRL, with i a cofibration. Moreover:
(a) If f is a weak equivalence, so is f.
(b) Ifi is a weak equivalence, so is i.
Proof. We define the adjunction space as usual, i.e. X L4 Y := (X UY)/ ~, where

~ is the identification defined by setting i(a) ~ f(a), for a € A. Next, we define
smooth maps

i X—=XUaY, 2 [2], z€X,

and

Y = XUaY, y—= [y, yev,

where [z], z € X, and [y], y € Y, denote equivalence classes under the above iden-
tification.

To show that ¢ is a smooth cofibration, suppose that we have a commutative
diagram

Y — s XYLz,
OXIYJ/ /
IxY

We wish to construct a commutative diagram as follows,
XUaY ———=7 (1)

OxlquYl _ P /F/ TG«/
I><(X|_|AY)<1—,‘I><Y.
X1

Since i is a cofibration and go foi=Go (0x 14), where G =Go (17 x f),
there exists a smooth map H: I x X — Z, such that Ho (0 x 1x) =go f, and

Ho(ly xi)=(G).Let F: I x (XU Y) — Z be a smooth map defined by setting
F(t, f(z)) = H(t,z), v € X

and

F(t,i(y) = G'(t,y), y € Y.
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It is easy to check that F' is well defined. Next, we verify that diagram (1) commutes:
F(0, f(z)) = H(0,2) = gf(z), = € X,
and

F(0,i(y)) = G(0,y) = gi(y)-
Thus, the left triangle of (1) commutes. The right triangle of (1) commutes by

definition of F'. Finally, since cartesian closedness of FRILL implies that the functor
I x — commutes with colimits, therefore

Ix(XUaY)~ (I xX)Upxa (IxY).

Again, since construct products commute with quotients in a cartesian closed topo-
logical category, it follows that 17 x f: I x X — (I x X)Usxa (I xY), and 17 x
it I XY — (I x X)Urxa (I xY) are quotients. Since F o (17 x f) = H, and F o
(17 x i) = G’ are smooth, F is smooth. O

Finally, we need to show that if i is a weak equivalence, then so is 7. We prove

this via the following sequence of lemmas.

Lemma 6.3. If A —' s X s a trivial cofibration, then A is a smooth deforma-
tion retract of X.

Proof. Let j: X — A be a homotopy inverse to 4, and let F': I x A — A be the
homotopy giving ji ~p 14. We have the commutative diagram

i J

A X A.

w2

Ix A

Since ¢ is a cofibration, there exists a smooth map G: I x X — A such that G(0, )
= j(x), for all z € X, and G(t,i(a)) = F'(t,a), for all t € I and a € A. Define k :=
G(1,-): X — A. It easily follows that ik ~ ij ~ 1x; the map i o G is the smooth
homotopy giving 1k =~ ij. O
Remark 6.4. The map k: X — A in the proof above is such that ko7 =14, that

is, k is a smooth retraction. Again, according to the above proof, the map G is a
smooth homotopy giving j ~¢g k.

Lemma 6.5. If A "> X s a trivial cofibration with the FCIP and A is closed
in the underlying topology of X, then A is a strong deformation retract of X.

Proof. Let j: X — A be a smooth homotopy inverse of 4, and let F': I x A — A and
G: I x X — X be smooth homotopies giving 14 ~p ji and 1x ~¢g ij, respectively.
By virtue of Remark 6.4, j is homotopic to a retraction; so, we might as well assume
from the start that j is a retraction.

Let P=IxX and Q= ({0,1} x X)U (I x A). Since {0,1} —-TI and A — X
are SNDR pairs (see Lemma 3.8 and Theorem 4.3, respectively), so is, by virtue of
Theorem 3.9, their product pair @ < P. Define H,: (0 x P)U (I x Q) — X by
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H.(s,0,z)=z,2€X,s€l

H.(s,1,2) =G(ac(l—s),z), v € X,sel
H,(s,t,i(a)) = G(a(l — s)ae(t),i(a)), a € A, s,t €1
H,(0,t,2) = G(ac(t),z), z € X, t € I.

A routine verification shows that H, is well defined, and the smooth braking function
a, ensures smoothness across the overlaps in the definition of H.,.

Since @ C P is closed and (P,Q) an SNDR pair, the inclusion j: @Q — P is a
cofibration with the FCIP. Thus, pictorially, we have the following diagram

Q—L >p-—Lox,

OXIQ\L —
H,

I x Qxz,

where H, = H.|1xq, and ¢ is obtained by solving the equation H.(0,t,j(z)) = ¢o
j(t,x), with x € X. Since j is a cofibration, H, admits an extension H: I x P — X.
The end value of H at s = 1 is the required strong retracting deformation. O

Corollary 6.6. If A — ' > X is a trivial cofibration and A a closed subspace of
X, then the subspace A C1; of the mapping cylinder 1; is a strong deformation
retract of 1;.

Proof. By Corollary 5.2, the pair (I;, A) is an SNDR pair, and hence the inclusion
h: A — I, is a cofibartion with the FCIP property. We also have the diagram

AL =X,
where r is the retraction given by Remark 6.4, and p is given by p([z]) = z, for
all x € X, and p([t,a]) =i(a), for all t € I and a € A. Next, let ¢: X — I, be the
quotient map x +— [z]. It is clear that pg = 1x. The smooth map H: I xI; — I,

given by

{ u[ a)) = [a(s) + (1 — a(s))t,a] s,t€landa € A
H = [z] s,telandx € X,

where a: I — R is the braking function such that: a(t) =0if 0 <t < 1, a(t) =1
if % <t <1,0< at) <1, otherwise, is clearly the smooth homotopy giving gp ~g
11,. Therefore, p is a weak equivalence. Since p and r are weak equivalences, so is
h, by Lemma 6.1. It follows that h is a trivial cofibration with the FCIP property,
and one applies Lemma 6.5 to complete the proof. O

Remark 6.7. Before we proceed, let us examine the construction of the strong
retracting deformation H(1,—,—): I x I; — I;, given by Lemma 6.5. Let j: I; — A
be given by j = rp, where p and r are maps defined in the proof of Corollary 6.6.
Using the definitions in the proof of Lemma 6.5, one shows that H(1,1[1,a]) = h(a).
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Lemma 6.8. Given the pushout diagram

A— X

s lf

Y —=XUaY,
3
if A is a strong deformation retract of X, then i is a weak equivalence.

Proof. Let F: I x X — X be the strong retracting deformation such that F(0, z)
=z, and F(1,7) € i(A). Define a map k: X — A by k(z) =i 'F(1,z). This is
smooth since i is an isomorphism of A onto i(A). Define j: X U4 Y — Y by j([z]) =
(f ok)(z), forallz € X, and j([y]) = v, for all y € Y. To see that j is well defined on
the adjunction, notice that j([i(a)]) = fki(a) = f(a) = j([f(a)]). Finally, we need to
verify that j is indeed a homotopy inverse to i. We have ji(y) = j([y]) = y. On the
other hand, ij([y]) = i(y) = [y]. Also, notice that 1x ~p-1 ik = ii 1 F(1,—), giving
us ij|x = ifk = fik ~ f. That is, ij([z]) ~ [z] for [z] € X U4 Y. Notice that this
smooth homotopy is well-defined on the adjunction because F' is a strong retracting
deformation. O

Theorem 6.9. Given the pushout diagram

A—" s

X
/ l
Y—=XU,Y

i

where i is a cofibration, if i is a weak equivalence, then 5o is 4.

Proof. This proof deals with three different quotient spaces, namely the adjunction
space X U4 Y, the mapping cylinder of ¢, I;, and the double mapping cylinder of
i and f, I; y. To make the proof easier to follow, we denote the elements of these
spaces as follows. A point in the adjunction X U4 Y is denoted by [z] or [y], where
[i(a)] = [f(a)]. A point in the mapping cylinder I; is denoted by (x) or (¢, a), where
(1,a) = (i(a)). A point in the double mapping cylinder I, ; is denoted by [z] or
[t,a] or [a], where we have [i(a)] = [1,a] and [f(a)] = [0, a].

For convenience, we shall sometimes abuse this notation in the following way. For
example, suppose that u € I;. We shall sometimes say that [u]| € I; ; when we really
mean that v = (t,a) or u = (z) and that [t,a] or [x], respectively, is an element in
I;. ;. We abuse notation with regard to the adjunction space in a similar way.

Consider the inclusion h: A < I;. Since i is a trivial cofibration, it follows from
Corollary 6.6 that h(A) is a strong deformation retract of I,. We then have a
homotopy F: I x I; — I; (rel h(A)), with the properties that F(0, (z)) = (x), and
F(1,(x)) € h(A), for all (x) € I,. Remark 6.7 shows that we may choose F' so that
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F(1,(i(a))) = F(1,(1,a)) = h(a). We have the following diagram

Ii*f>1i,f*k>XUAYa

P

A——Y

f

where h is the weak equivalence given by Lemma 6.8 and k is defined below. We
shall show that k is a weak equivalence, and that the right triangle is commutative
with our definition of k. This will imply that ¢ is a weak equivalence.

Define P: I x I, f — I, 5 by

P(s, [x]) = [F(s, (z))]
P(s,[t,a]) = [F(s, (t,a))]
P(s, [y]) = [yl
P is well defined, since P(s, [i(a)]) = [F (s, {i(a)))] = [F(s,{1,a))]. Also,

P(s,10,a]) = [F(s,(0,a))] = [0,a] = [f(a)].

[f
Now, define k: X Ua Y — I, s by k([z]) = [F(1,(z))], and k([y]) = [y]. Notice that
k is well defined. Next, define k: I; y — X U4 Y by k(u) = [P(1,u)], for u € IL; ;.
We now observe that k is a homotopy inverse to k:=[P(1,—)]. It is clear that
P(0,—) = 11, ;. Notice that

P(L |—J}-|) = |—F(1’ <a>>17

where F(1, (z)) € f(h(A)) C L ¢, and hence kk([z]) = k([x]) = P(1, []). Likewise
P(1L,[t,a]) = [F(1,(t a))], and so kk([t,a]) = P(1,[t,a]), and P(1,[y]) = [y] =
k’k’([y—l) Thus, 11@ ¥ ~p k’k’

For the other direction, first define ¢: I; y — X L4 Y by

e q([z]) = [2]
e q([t,a]) = [f(a)] = [i(a)]
e q([y]) = [yl

Clearly, ¢ is well defined. Notice that we have [x] = ¢P(0, [z]), and [y] = ¢P(0, [y])-
Thus, 1xu,y = ¢P(0,[—]). At the other endpoint, we have

P(1,[z]) = [P(1,[2])] = kk([z]),
and
qP(1,[y]) = [P(1, [y])] = k([y]) = kk([y]).

Thus, 1x.,y ~¢p kk. Clearly, ko h = 1.
We have shown that & is a weak equivalence. Since h is a weak equivalence, we
deduce by the Composition Axiom (cf. Lemma 6.1) that 7 is a weak equivalence. [J
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7. The exact sequence of a cofibration

Our aim in this section is to show how one can use SNDR pairs to prove the
existence of the right exact Puppe sequence. We state the result in Theorem 7.1
and break the proof of the result up into a number of lemmas. We follow the method
used by Whitehead [13] for the topological case.

Throughout this section we work in the category FRIL, of pointed Frolicher
spaces, and basepoint preserving smooth maps.

Theorem 7.1. Let W be an object in FRL,, and suppose that i: A — X is a cofi-
bration in FRIL,. For any basepoint o € A C X there is a sequence

k)" (ZJ
|

e AW T W X, W) EL A, W) ——

§*

-.H[ZA,W}L[T«QW}—)[X’W}

(A, W]

which is an exact sequence in SETS,, where j: X — T; is the inclusion discussed
in Paragraph 2.3 and k: T; — > A is the quotient map defined below.

It is, in fact, possible to prove that the sequence above is an exact sequence of
groups as far as [>_ A, W] and that the morphisms to this point are group homo-
morphisms, but we shall not do so here.

The reduced (flattened) suspension of a pointed Frolicher space X is defined
as

X =(1/{0,1}) A X,

where the reduced join is defined as for topological spaces with the identified set
taken as basepoint, and with 0 the basepoint of I.

In this section, whenever we refer to the suspension of a space, we mean the
reduced flattened suspension defined above.

Lemma 7.2. If (z, A) is an SNDR pair and p: X — X/A the quotient map, then
the sequence
A—>x I Xx/4

s right exact.
Proof. To show that the given sequence is right exact we must show that for any
Frolicher space W the following sequence is exact in SETS:

[X/A, W] [X, W] —— [4, W]
It is easy to see that im p* C ker ¢*. To see the reverse inclusion, let g: X — W be

an element of [X, W], with g|4 ~ wo (rel wg), where wy € W. Since A —— X is
an SNDR pair, the map ¢ is a cofibration, and so we may extend wq to a smooth map
g': X — W such that ¢’ ~ g. But ¢’ is constant on A, and so there exists a smooth
map g1: X/A — W such that p*(g1) = ¢’. This shows that ker ¢* C im p*. O
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Lemma 7.3. For any smooth map f: X — Y, the sequence

X*f>Y*l>Tf

1s right exact, where | is the usual inclusion of Y into the mapping cone; i.e. y
[yl € Ty

Proof. One can show that there is a homotopy commutative diagram

X*f>Y

; J
If Hp Tf,

where 4, j, and [ are the usual inclusions, and p is the quotient map that collapses
away {0} x X to a point. Since, by Theorem 5.1, (I, X) is an SNDR pair, it follows
from Lemma 7.2 that the sequence

X*i>1f*p>Tf

is right exact. It is fairly easy to show that j: Y — I is a homotopy equivalence.
Therefore, the sequence

X 4f> Y 4l> Tf
is right exact. O

Lemma 7.4. For any smooth map i: A — X, there is an infinite right exact se-
quence

A %

A X T;

where 1", n = 1, are inclusion maps.
Proof. The pair (T;, X) is an SNDR pair. The representation for the pair (I, X) in

Theorem 5.1 can be adapted to show this. One iterates the procedure of Lemmas 7.2
and 7.3. 0

One can easily see that there is an isomorphism between T,;/X and > A. Define
qg: T; — > A to be the map which identifies X C T; to a point, followed by the
isomorphism T;/X — > A.

Lemma 7.5. The sequence
-1
X——T,—34

is Tight exact.
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Proof. As noted above the pair (T;, X) is an SNDR pair. We have the commutative
diagram

it P

N

where p: T; — T;/X is the identification map, and go: T;/X — > A is an iso-
morphism. The top line of the diagram is right exact, by Lemma 7.2, and so the
sequence

is right exact. O

There is a commutative diagram

-1 -2
K K
X—=T,—>Tu ,

N

where ¢; is a homotopy equivalence. (See Whitehead [13] for more details of this
map.) Using commutative diagrams of this form, one can now proceed almost
exactly as one does in the topological situation, as in Whitehead [13] for exam-
ple, to get the following infinite right exact sequence:

it >q

Py S X > ST,

.1 q

A—s>x—" 5T, S A

n n,L-l
Z"AZ anL

The definition of right exactness now gives us the exact sequence of Theorem 7.1.
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