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CLASSIFICATION OF DI-EMBEDDINGS OF
THE n-CUBE INTO Rn
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(communicated by Gunnar Carlsson)

Abstract
A di-embedding of the n-cube In into Rn is a map In → Rn

which is a dihomeomorphism onto its image. We show that such
a map is, up to a permutation of coordinates, an n-fold product
of 1-dimensional orientation preserving embeddings I1 → R.

Introduction

Geometric models for concurrent computing called progress graphs first appeared
in [2] where they were attributed to Dijkstra. Progress graphs were used in [1]
to prove the existence of deadlocks in certain types of concurrent systems. More
recently, progress graphs appear in the work of Fajstrup, Goubault, Raussen and
others [3, 5, 6] where various tools from algebraic topology are adapted to their
study. One works in the category of directed spaces, also known as locally partially
ordered spaces (abbreviated here as “LPO-spaces”), where execution paths in a
concurrent system correspond to dipaths (“directed paths”) in an LPO-space. In this
language, progress graphs are partially ordered spaces whose partial order is induced
by the Euclidean product partial order. An important problem is to determine when
two execution paths give the same result; in [3], it is argued that this is the case
when the corresponding dipaths are dihomotopic, i.e., homotopic through a family
of dipaths. The fundamental category of an LPO-space, analogous to the classical
fundamental groupoid, is constructed in [3]. Dihomeomorphism is the categorical
notion of isomorphism in the category of LPO-spaces, and the fundamental category
is a dihomeomorphism invariant. Various categories of fractions of the fundamental
category, as well as their corresponding component categories are studied in [7].
The reader is referred to [3, 5] for a treatment of ditopology (“directed topology”).

In this paper we show that the notion of dihomeomorphism is rather restrictive.
A di-embedding of the n-cube In =

∏n
i=1[0, 1] into Rn is a map In → Rn which

is a dihomeomorphism onto its image. Given a permutation σ of {1, . . . , n}, the
induced coordinate permutation σ∗ : Rn →Rn is the dihomeomorphism given by
σ∗(x1, . . . , xn) = (xσ(1), . . . , xσ(n)). We prove (see Theorem 2.5):
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Theorem. Let f : In → Rn be a di-embedding. Then there exists a coordinate per-
mutation σ∗ : Rn → Rn and orientation preserving embeddings qi : I1 → R such that
f = σ∗

(∏n
i=1 qi

)
.

This theorem reinforces the general belief that a workable notion of equivalence
between LPO-spaces which is weaker than dihomeomorphism would be useful.

As a corollary, we determine the structure of the group DiHomeo(In) of dihome-
omorphisms of In (see Corollary 2.10):

Corollary. There is an isomorphism of topological groups:

DiHomeo(In) ∼=
(
Homeo+(I1)

)n o Σn (semidirect product)

where the symmetric group Σn of permutations of {1, 2, . . . , n} acts on(
Homeo+(I1)

)n
, the n-fold product of the group of orientation preserving home-

omorphisms of the unit interval, by permuting factors.

1. Ditopology

For the convenience of the reader and to establish some basic terminology, we
recall some basic definitions concerning topological spaces with a compatible partial
order, [3, 5].

Given a set X with a partial order denoted by “6”, the associated partial order
relation is the set R = {(x, y) ∈ X ×X | x 6 y}.
Definition 1.1. A PO-space (“partially ordered space”) is a pair (X, 6) consisting
of a topological space X and a partial order 6 whose associated partial order relation
is closed as a subset of X ×X with the product topology.

A subset Z ⊂ X of a PO-space (X, 6) inherits a PO-space structure by giving
Z the subspace topology and by restricting the partial order to Z.

Example 1.2. The real line R1 is a PO-space with the usual topology and the usual
partial order (given by x 6 y if and only if y − x is non-negative). For a positive
integer n, let πi : Rn → R, i = 1, . . . , n, denote projection to the i-th factor. The
(Euclidean) product partial order on Rn is defined coordinatewise, i.e., for x, y ∈ Rn,
x 6 y if and only πj(x) 6 πj(y) for j = 1, . . . , n. The partial order relation, R ⊂
Rn × Rn, for this partial order is given by R =

⋂n
j=1{(x, y) ∈ Rn × Rn | πj(x) 6

πj(y)} which is a closed subset of Rn × Rn since each {(x, y) ∈ Rn × Rn | πj(x) 6
πj(y)} is clearly closed. Hence Rn with the usual topology and the product partial
order is a PO-space.

Definition 1.3. A dimap f : (X, 6) → (Y, 6) between two PO-spaces is a continu-
ous map f : X → Y which preserves partial order, i.e. for all u, v ∈ X, u 6 v implies
f(u) 6 f(v).

The category of PO-spaces is the category whose objects are PO-spaces and
whose morphisms are dimaps (categorical composition is composition of functions).
Isomorphisms in this category are called dihomeomorphisms, i.e.,
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Definition 1.4. A dimap f : X → Y is a dihomeomorphism if there is a dimap
g : Y → X such that gf is the identity of X and fg is the identity of Y .

A dimap of PO-spaces which is a homeomorphism of underlying topological
spaces need not be a dihomeomorphism, as in the following example.

Example 1.5. Let I2 = [0, 1]× [0, 1] ⊂ R2 and X = {(x, y) ∈ R2 | 0 6 y 6 1, y 6 x
6 y + 1} with PO-space structures inherited from product partial order on R2. The
map f : I2 → X defined by f(x, y) = (x + y, y) is a homeomorphism with inverse
g : X → I2 given by g(x, y) = (x− y, y). While f is a dimap, g is not a dimap.

Definition 1.6. A map f : X → Y between PO-spaces is a di-embedding if f is a
dihomeomorphism onto its image where f(X) inherits its PO-space structure from
Y .

Remark 1.7. A continuous map q : [a, b] → R, where a < b, is injective if and only
if it is strictly monotone. Hence any orientation preserving embedding q : [a, b] → R
is a di-embedding.

Let X be a topological space. The topological boundary of A ⊂ X, denoted by
bd(A), is bd(A) = A ∩Ac where Ac denotes the complement of A in X and for
C ⊂ X, C denotes the closure of C in X. For a subspace Y of X and A ⊂ X, let
bdY (Y ∩A) denote the topological boundary of Y ∩A in the subspace Y .

We record the following elementary lemma for use in Lemma 2.3.

Lemma 1.8. Let X be a topological space, Y a subspace of X and A ⊂ X. Then
bdY (Y ∩A) ⊂ bdX(A).

Proof. Observe that y ∈ bdY (Y ∩A) if and only if for every neighborhood Vy of y
in X we have Y ∩ Vy ∩A 6= ∅ and Y ∩ Vy ∩Ac 6= ∅ (where Ac is the complement
of A in X). These conditions imply that Vy ∩A 6= ∅ and Vy ∩Ac 6= ∅ and thus
y ∈ bdX(A).

2. Di-embeddings of standard n-rectangles into Rn

In this section we prove the main theorem of this paper (Theorem 2.5) and derive
some consequences (Corollaries 2.7, 2.9, 2.10, 2.11).

Let R ⊂ Rn × Rn be the partial order relation for the product partial order on
Rn (see Example 1.2). Recall that πi : Rn → R denotes projection to the i-th factor.

Lemma 2.1. The topological boundary of R in Rn × Rn is given by

bd(R) =
n⋃

j=1

{(x, y) ∈ R | πj(x) = πj(y)}.
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Proof. The complement of R in Rn × Rn is given by

Rc =
n⋃

j=1

{(x, y) ∈ Rn × Rn | πj(x) > πj(y)}.

The closure of Rc is given by:

Rc =
n⋃

j=1

{(x, y) | πj(x) > πj(y)} =
n⋃

j=1

{(x, y) | πj(x) > πj(y)}.

Hence

bd(R) = R ∩Rc = R ∩Rc =


n⋂

j=1

{(x, y) | πj(x) 6 πj(y)}

 ∩




n⋃

j=1

{(x, y) | πj(x) > πj(y)}



=
n⋃

j=1

{(x, y) ∈ R | πj(x) = πj(y)}.

For subset X of Rn, write R|X = R ∩ (X ×X). Note that R|X is the partial
order relation for the restriction of the product partial order on Rn to X.

A standard n-rectangle is a subset P of Rn of the form P =
∏n

i=1[ai, bi] where
each [ai, bi] is a closed interval with ai < bi. A straightforward adaptation of the
proof of Lemma 2.2 yields:

Lemma 2.2. Let P be a standard n-rectangle. The topological boundary of R in
P × P is given by

bdP×P (R|P ) =
n⋃

j=1

{(x, y) ∈ R|P | πj(x) = πj(y)}.

For 1 6 j 6 n and c ∈ R, define Hj
c = π−1

j ({c}), a hyperplane perpendicular to
the j-th coordinate axis. For a subset A ⊂ Rn, we write Hj

c (A) for Hj
c ∩A. Note that

Hj
c ∩Hj

d 6= ∅ if and only if c = d. Also observe that if j 6= k then Hj
c (P ) ∩Hk

d (P ) 6=
∅ where P =

∏n
i=1[ai, bi] is a standard n-rectangle and c ∈ [aj , bj ] and d ∈ [ak, bk].

Lemma 2.3. Let f : P → Rn be a di-embedding of a standard n-rectangle P =∏n
i=1[ai, bi]. Then for each index 1 6 j 6 n and c ∈ [aj , bj ] there exists an index

1 6 j(c) 6 n and a real number q(c) such that f(Hj
c (P )) ⊂ H

j(c)
q(c) .

Proof. Let S = f(P ). By hypothesis, f : P → S is a dihomeomorphism. In par-
ticular, f : P → S is a homeomorphism and so f × f : P × P → S × S is also a
homeomorphism. Let R ⊂ Rn × Rn be the partial order relation for the product
partial order on Rn (as in Lemma 2.1). Since f : P → S is a dihomeomorphism,
for all x, y ∈ P , f(x) 6 f(y) if and only if x 6 y and hence (f × f)(R|P ) ⊂ R|S
and (f × f)−1(R|S) ⊂ R|P . It follows that (f × f)(R|P ) = R|S because f × f is a
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bijection. Since f × f : P × P → S × S is homeomorphism,

(f × f)(bdP×P (R|P )) = bdS×S(R|S). (1)

Given c ∈ [aj , bj ], define points aj
c, bj

c ∈ Hj
c (P ) by πj(aj

c) = πj(bj
c) = c and

πi(aj
c) = ai, πi(bj

c) = bi for i 6= j. Observe that Hj
c (P ) = {x ∈ P | aj

c 6 x 6 bj
c}.

By Lemma 2.2, (aj
c, b

j
c) ∈ bdP×P (R|P ) and so (1) implies that (f(aj

c), f(bj
c)) ∈

bdS×S(R|S). By Lemma 1.8, bdS×S(R|S) ⊂ bd(R) and so Lemma 2.1 implies there
exists an index j(c) such that πj(c)(f(aj

c)) = πj(c)(f(bj
c)); denote this real num-

ber by q(c). Suppose x ∈ Hj
c (P ). Then aj

c 6 x 6 bj
c and so f(aj

c) 6 f(x) 6 f(bj
c)

since f is a dimap. It follows that πj(c)(f(aj
c)) 6 πj(c)(f(x)) 6 πj(c)(f(bj

c)) and thus
πj(c)(f(x)) = q(c), i.e., f(x) ∈ H

j(c)
q(c) .

For a positive integer n, denote n = {1, . . . , n}. Given a permutation σ of n, i.e.,
a bijection σ : n → n, the induced coordinate permutation, σ∗ : Rn →Rn, is the map
given by πj(σ∗(x)) = πσ(j)(x) for x ∈ Rn. Note that σ∗ is a dihomeomorphism with
inverse (σ−1)∗.

Lemma 2.4. Let P =
∏k

i=1[ai, bi] be a standard k-rectangle, where k > 1, and let
u : P → Rk be a map of the form u = τ∗

(∏k
j=1 gj

)
, where τ∗ : Rk → Rk is a coor-

dinate permutation and each gj : [aj , bj ] → R is an embedding, j = 1, . . . , k. Let
vi(P ) ∈ P , i = 0, 1, . . . , k, be the vertices v0(P ) = (a1, . . . , ak) and vi(P ) =
(a1, . . . , ai−1, bi, ai+1, . . . , ak), i = 1, . . . , k. Then the vectors u(vi(P ))− u(v0(P )),
i = 1, . . . , k, are non-zero and mutually orthogonal.

Proof. Since the coordinate permutation τ∗ : Rk → Rk is an orthogonal linear trans-
formation, it suffices to consider the case τ is the identity. Note that u(vi(P ))−
u(v0(P )) = (gi(bi)− gi(ai))ei, where ei is the i-th standard unit basis vector for
Rk, is not zero because gi is injective. The conclusion follows from the orthogonal-
ity of the standard basis.

Theorem 2.5. Let f : P → Rn be a di-embedding of a standard n-rectangle P =∏n
i=1[ai, bi]. Then there exists a coordinate permutation σ∗ : Rn → Rn and orienta-

tion preserving embeddings qi : [ai, bi] → R such that f = σ∗
(∏n

i=1 qi

)
.

Proof. The proof proceeds by induction on n. The case n = 1 follows from
Remark 1.7. Inductively, assume that the conclusion of the theorem is valid for
di-embeddings of standard (n− 1)-rectangles into Rn−1. We will need the following
strengthened version of Lemma 2.3:

Claim 2.6. For each integer 1 6 j 6 n, there exists 1 6 k 6 n such that for all
c ∈ [aj , bj ] there exists a real number q(c) such that f(Hj

c (P )) ⊂ Hk
q(c).

Proof of the Claim. By Lemma 2.3, given an integer 1 6 j 6 n and c ∈ [aj , bj ] there
exists an integer 1 6 k(c) 6 n and a real number q(c) such that f(Hj

c (P )) ⊂ H
k(c)
q(c) .

Let φ`
d : H`

d → Rn−1 denote the canonical dihomeomorphism given by

φ`
d(x1, . . . , x`−1, d, x`+1, . . . , xn) = (x1, . . . , x`−1, x`+1, . . . , xn).

Define Pj =
∏

i 6=j [ai, bi] (a standard (n− 1)-rectangle). Note that φj
c restricts to
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a dihomeomorphism Hj
c (P ) → Pj which we also denote by φj

c. By the induc-
tive hypothesis applied to φ

k(c)
q(c)f(φj

c)
−1 and Lemma 2.4, the n− 1 vectors wi(c) =

f((φj
c)
−1(vi(Pj)))− f((φj

c)
−1(v0(Pj))), i = 1, . . . , n− 1 (see Lemma 2.4 for the

notation vi(Pj)) are non-zero and orthogonal. Hence the cross product1

CP(w1(c), . . . , wn−1(c)) is a vector in Rn which is non-zero and orthogonal to the
hyperplane H

k(c)
q(c) . The set of unit vectors which are orthogonal to some hyperplane

of the form H`
d is the finite set S = {±ej | j = 1, . . . , n} where e1, . . . , en is the

standard basis for Rn. The function c 7→ CP(w1(c), . . . , wn−1(c))/||CP(w1(c), . . . ,
wn−1(c))||, where ||v|| denotes the length of v, is a continuous function with domain
[aj , bj ] taking values in the discrete set S, hence it is a constant and so k(c) is
independent of c, proving the claim.

In Claim 2.6, the integer k is uniquely determined by j. In order to verify this
assertion, suppose that for c ∈ [aj , bj ], f(Hj

c (P )) ⊂ Hk
q(c) and f(Hj

c (P )) ⊂ H`
r(c).

It follows that f(Hj
aj

(P )) ⊂ Hk
q(aj)

∩H`
r(aj)

. If k 6= ` then Hk
q(aj)

∩H`
r(aj)

∼= Rn−2

(where “∼=” denotes homeomorphism). Hj
aj

(P ) is homeomorphic to a standard
(n− 1)-rectangle and the restriction of f to Hj

aj
(P ) thus yields an embedding of

a standard (n− 1)-rectangle into Rn−2 contradicting Invariance of Domain2. Note
that the function c 7→ q(c) with the property f(Hj

c (P )) ⊂ Hk
q(c) for every c ∈ [aj , bj ]

is uniquely determined by j and f . Suppose c 7→ p(c) is another function with
the property f(Hj

c (P )) ⊂ Hk
p(c). Then Hk

q(c) ∩Hk
p(c) is not empty since it contains

f(Hj
c (P )) and so q(c) = p(c). We will use the notation qj(c) for q(c) to indicate its

dependence on j.
Claim 2.6 yields a function σ : n → n, where σ(j) is the unique integer for

which f(Hj
c (P )) ⊂ H

σ(j)
qj(c)

for all c ∈ [aj , bj ]. We show that σ is injective. Suppose

σ(j) = σ(k). Then f(Hj
c (P )) ⊂ H

σ(j)
qj(c)

for all c ∈ [aj , bj ] and f(Hk
d (P )) ⊂ H

σ(k)
qk(d)

for all d ∈ [ak, bk]. If j 6= k then Hj
c (P ) ∩Hk

d (P ) 6= ∅ and thus H
σ(j)
qj(c)

∩H
σ(k)
qk(d) 6= ∅.

Since σ(j) = σ(k), it follows that qj(c) = qk(d) for all for all c ∈ [aj , bj ] and d ∈
[ak, bk]. In particular, qj(c) is independent of c and so f(Hj

c (P )) ⊂ H
σ(j)
qj(aj)

for all

c ∈ [aj , bj ]. Since P = ∪cH
j
c (P ), it follows that f(P ) ⊂ H

σ(j)
qj(aj)

yielding an embed-

ding of the standard n-rectangle P into H
σ(j)
qj(aj)

∼= Rn−1, contradicting Invariance
of Domain. Thus σ is injective and hence bijective, i.e. a permutation, since n
is finite. Define h : P → Rn by h = (σ−1)∗f . Then h(Hj

c (P )) ⊂ Hj
qj(c)

for all c ∈
[aj , bj ] and 1 6 j 6 n. This condition is equivalent to πjh = qj(πj |P ) for 1 6 j 6 n
where πj |P : P → [aj , bj ] is projection. Hence each qj : [aj , bj ] → R is continuous

1For k > 2, the cross product of a (k − 1)-tuple of vectors w1, . . . , wk−1 in Rk, denoted

CP(w1, . . . , wk−1), is the vector
Pk

j=1(−1)j det(Aj)ej , where e1, . . . , ek is the standard basis

for Rk and det(Aj) is the determinant of the (k − 1)× (k − 1) matrix Aj obtained from the
(k − 1)× k matrix A whose i-th row is the vector wi by deleting the j-th column. If w1, . . . , wk−1

in Rk are linearly independent, then CP(w1, . . . , wk−1) is non-zero and orthogonal to each wi.
2Invariance of Domain is the assertion that a subset of Rn which is homeomorphic to an open
subset of Rn is itself an open subset of Rn; see Theorem 16 in Section 4.7 of [8]
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and h =
∏n

j=1 qj . Since h is an embedding and a dimap, so is each qj ; further-
more, by Remark 1.7 each qj is an orientation-preserving embedding. We conclude
f = σ∗

(∏n
j=1 qj

)
.

The special case n = 2 of Theorem 2.5 was proved in [4].

Corollary 2.7. Let f : P → Rn be a di-embedding of a standard n-rectangle P =∏n
i=1[ai, bi]. Then f(P ) is a standard n-rectangle.

Proof. The conclusion of the corollary is clear for a map of the form f =
σ∗

(∏n
j=1 qj

)
as in the conclusion of Theorem 2.5.

Remark 2.8. The proof of Theorem 2.5 shows that the di-embedding f : P → Rn

uniquely determines the permutation σ and the orientation-preserving embeddings
qj : [aj , bj ] → R, j = 1, . . . , n, such that f = σ∗

(∏n
j=1 qj

)
.

A standard open n-rectangle is a subset P of Rn of the form P =
∏n

i=1(ai, bi)
where each (ai, bi) is an open interval with ai < bi.

Corollary 2.9. Let f : P → Rn be a di-embedding of a standard open n-rectangle
P =

∏n
i=1(ai, bi). Then there exists a coordinate permutation σ∗ : Rn → Rn and

orientation-preserving embeddings qi : (ai, bi) → R such that f = σ∗
(∏n

i=1 qi

)
.

Proof. Let δ = 1
3 min{|bi − ai| | i = 1, . . . , n} and let Pm =

∏n
i=1[ai + δ/m, bi −

δ/m] for m > 1. Theorem 2.5 applied to the restriction of f to Pm, m > 1, and
Remark 2.8 yields the conclusion.

Let In =
∏n

i=1[0, 1] ⊂ Rn denote the unit n-cube. The group of dihomeomor-
phisms of In, denoted by DiHomeo(In), is a subgroup of the group of homeomor-
phisms of In. Let Homeo+(I1) denote the group of orientation preserving homeo-
morphisms of I1.

Corollary 2.10. There is an isomorphism of topological groups:

DiHomeo(In) ∼=
(
Homeo+(I1)

)n o Σn (semidirect product)

where the symmetric group Σn of permutations of n acts on
(
Homeo+(I1)

)n
by

permuting factors.

Proof. By Theorem 2.5,

DiHomeo(In) = {σ∗
( n∏

i=1

qi

) | σ ∈ Σn, qi ∈ Homeo+(I1), i = 1, . . . , n}.

The map DiHomeo(In)→ Σn given by σ∗
(∏n

i=1 qi

) 7→ σ is a group homomorphism,
which is split by σ 7→ σ∗, and its kernel is

(
Homeo+(I1)

)n
.

Let BG denote the classifying space of the topological group G. Since
Homeo+(I1) is contractible, Corollary 2.10 yields the following result.

Corollary 2.11. BDiHomeo(In) is homotopy equivalent to BΣn.

Remark 2.12. By Corollary 2.9, the corresponding versions of Corollaries 2.10 and
2.11 are valid for open cubes in place of closed cubes.
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