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Abstract

We describe a way of representing finite biquandles with n ele-
ments as 2n X 2n block matrices. Any finite biquandle defines
an invariant of virtual knots through counting homomorphisms.
The counting invariants of non-quandle biquandles can reveal
information not present in the knot quandle, such as the non-
triviality of the virtual trefoil and various Kishino knots. We also
exhibit an oriented virtual knot which is distinguished from both
its obverse and its reverse by a finite biquandle counting invari-
ant. We classify biquandles of order 2, 3 and 4 and provide a URL
for our Maple programs for computing with finite biquandles.

1. Introduction

Much recent work has been done on the knot invariants defined by counting
homomorphisms from a knot quandle into a finite target quandle (9], [3], etc.). A
quandle is the algebraic structure obtained by assigning a generator to each arc in
an oriented knot diagram with a binary operation at each crossing — specifically,
set ¢ = a>b when b is the overcrossing arc, a the arc on the right-hand side of b
when looking in the positive direction of the oriented! arc b, and c is the arc on
the left-hand side of b. The axioms are then derived from the Reidemeister moves,
resulting in an algebraic structure which is an invariant of knot type. It is well-
known that the knot quandle is a complete invariant of classical knot type up to
reflection, though in general quandle-equivalent knots need not be ambient isotopic.

One way of strengthening the resulting invariant is to repeat the procedure used
to derive the quandle definition from knot diagrams with semiarcs in place of arcs
— instead of dividing our oriented knot diagram into arcs by breaking the diagram
at the undercrossing points, we now also break it at overcrossing points. These
semiarcs are oriented edges in the underlying 4-valent graph of the knot diagram.
If we think of the two inbound semiarcs as the inputs to binary operations, then at
each crossing, we have two output semiarcs; since there are two types of crossings,
this yields four binary operations. Comparing the semiarc labels around the edge
of the circle before and after a minimal set of oriented Reidemeister moves gives us
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a set of axioms. The resulting algebraic structure is called a biquandle; see [2], [6],
[4], and [12], for example.

In this paper, we study finite biquandles using a matrix notation similar to the
quandle matrix notation in [8]; these finite biquandles define invariants of virtual and
classical knots via homomorphism counting much like finite groups and finite quan-
dles. The paper is organized as follows: in Section 2, we give the biquandle definition
and prove some results about finite biquandles. In Section 3, we define the biquan-
dle counting invariant and our biquandle matrix notation. In Section 4, we exhibit
finite biquandles whose counting invariants distinguish the virtual trefoil and vari-
ous Kishino knots from the unknot, and a biquandle whose counting invariant distin-
guishes a virtual knot from its reflection and from its reverse (sometimes called the
knot inverse). In Section 5, we describe our algorithms for finding finite biquandles
and computing the counting invariant, and we give a classification of finite biquandles
with up to 4 elements. A file containing the Maple code used to obtain these results
can be obtained at the first author’s website at www.esotericka.org/quandles. We
wish to thank the referee for helpful suggestions and comments.

2. Biquandles
We begin by recalling a definition from [12].

Definition 2.1. A biquandle is a set B with four binary operations B x B — B
denoted by

(a,b) — ab, a®, a, and ay
respectively, satisfying the following 20 axioms:

(1) For every pair of elements a,b € B, we have

(i) a=a®, (i)b=0b, (ii)a=a", and (iv)b=by;.

(2) Given elements a,b € B, there are elements x,y € B such that

i)z =a", (i)a=2b (ii)d="0bz, (iv)y=d", (v)a=y" and (vi)b= bya.
(3) For every triple a,b,c € B we have:

(i) @™ = a®", (i) cha = Carp,» (i) (ba) @ = (b)ass,

(iv) ¥ = 0, (v) ey = e and (vi) () = (0%) ey

(4) Given an element a € B, there are elements x,y € B such that
() r =a,, (i)a=2% (ii)y=d’, and (iv)a=ya.

The operations with bars are called left operations and the operations without bars
are right operations. The operations denoted by subscripts are lower operations
while those denoted by superscripts are upper operations.

This definition is obtained by dividing an oriented knot or link diagram at every
crossing point to obtain a collection of semiarcs. These semiarcs are the edges of the
knot diagram considered as a 4-valent graph enhanced with crossing information.
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Figure 1: Biquandle operations at crossings

The two inbound semiarcs then operate on each other to yield the two outbound
semiarcs, with different operations at positive and negative crossings as depicted in
Figure 1. The axioms are then transcriptions of a minimal set of oriented Reidemeis-
ter moves which are sufficient to generate any other oriented Reidemeister move.
Axioms (1) and (2) come from the direct and reverse type I moves respectively,
axiom (3) comes from the two type III moves with all positive and all negative
crossings, and axiom (4) comes from the type I move.

Remark 2.2. There is an alternate notation (see [2] and [4]) which is both more
general and simpler in some ways than the biquandle notation we use in this paper.
Specifically, a switch on X is a map S: X x X — X x X of the form S(a,b) =
(ba, a®) which satisfies the Yang-Baxter equation

(S x Id)(Id x S)(S x Id) = (Id x §)(S x Id)(Id x S).

The direct Reidemeister IT move then requires that S be invertible, with the inverse
given by S™!(a,b) = (b, az). A biquandle is then an invertible switch which satisfies
the extra conditions coming from the type I and reverse type II moves. For the
purpose of finding finite biquandles by filling in their matrices, as we will describe
later, the notation in Definition 2.1 is perhaps more useful.

Proposition 2.3. Let B be a biquandle and define the obverse of B, Obu(B), to be
the algebra obtained from B by interchanging the right operations with the left ones,
and let the flip of B, Flip(B), be the algebra obtained by interchanging the upper
operations with the lower operations. Then Obv(B), Flip(B) and Obv(Flip(B)) =
Flip(Obv(B)) are also biquandles.

Proof. Here, we only need to observe that the set of axioms is symmetrical under
the operation of interchanging the right and left operations and upper and lower
operations. Inspection shows that this holds for Axioms (1), (3) and (4). To see that
Axiom (2) also satisfies this symmetry, consider the following equivalent reformula-
tion of Axiom (2):

(2’.) Given elements a,b € B, there are elements z,y, ¢,d € B such that

(i) c=bz, (i) z=ac (i) a=2" (iv)b=cqa and

V) d=b,, (i)y=a, )a=y", (vi)b=ds
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We will also need the following definition (see [10] or [5]):

Definition 2.4. A quandle is a set Q with a binary operation (a, b) — a’ such that
(i) Foralla € @, a* =a,
(ii) For all a,b € Q, there is a unique ¢ € @ such that a = ¢, and
(iii) For all a,b,c € Q, a*® = a®".

The uniqueness in Axiom (ii) implies that the map f,: Q@ — Q given by fy(a) = a”

is a bijection; the inverse map is denoted fb_l(a) = ab, and it is an easy exercise to

show that @ forms a quandle under the operation (a,b) — a®, called the dual of Q.
Axiom (ii) may then be reformulated as

(ii") For every a,b € Q we have a”® = a = q.

As expected, we have the following:

Definition 2.5. A map ¢: B; — Bs is a biquandle homomorphism if it preserves
all four biquandle operations, that is

6(a") = ¢(a)*™), 4(a") = 6(a)*®, d(ap) = B(a)g), and  B(az) = (a5
A bijective biquandle homomorphism is a biquandle isomorphism.

The knot biquandle of the obverse of a knot is the obverse of the biquandle of
the original knot. The knot biquandle of the flip of a knot, that is, of the knot
viewed from the other side of its supporting surface, is the flip of the biquandle
of the original knot. If a knot is classical, then flipping is an ambient isotopy and
the resulting biquandle must be isomorphic to its flip. If a virtual knot is non-
classical, however, the flip of its biquandle may not be isomorphic to the original
knot biquandle.

Definition 2.6. A biquandle B is self-obverse if B is isomorphic to Obv(B). B is
self-Flip if B is isomorphic to Flip(B).

Proposition 2.7. Let B be a biquandle. Then the automorphism groups Aut(B),
Aut(Obv(B)), Aut(Flip(B)) and Aut(Flip(Obv(B))) = Aut(Obv(Flip(B))) are all
isomorphic.

Proof. Let ¢: B — B be an automorphism. Then for all a,b € B, we have ¢(a’) =

$(a)?®, ¢(a®) = $(a)*®), d(ap) = d(a)y@). and ¢(az) = ¢(a);g;. Then, when
viewed as a map from Obv(B) to itself, switching the right and left operations
both before and after applying the map ¢ gives us back the same set of equalities,
and ¢ € Aut(Obv(B)). Similarly for the other cases. O

To define biquandle presentations in terms of generators and relations, for a finite
set X, we start by defining the set of biquandle words in X, BW (X), to be the set
which includes all elements of X together with all finite strings of the forms

a’, ag, ay, az, X(a,b), Y(a,b), Fz(a) and Fy(a)

where a,b € BW(X). Then the free biquandle on X is the set of equivalence classes
in BW(X) under the equivalence relation generated by the relations required by
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the biquandle axioms above, e.g. a®® ~ a®®" | X(a,b) ~ abm7 Fx(a) ~ apg(a),
etc. A finitely presented biquandle is then the quotient of the free biquandle on
a finite set X by the equivalence relation generated by a finite list of equivalences
of biquandle words, which we may call explicit relations to distinguish them from
the implicit relations required by the biquandle axioms. See [13] for more on the
universal algebra of biquandles.

For any virtual knot diagram K, we obtain a presentation of the knot biquandle
by assigning a distinct generator to every semiarc and obtaining a pair of relations
at every crossing according to the diagrams in Figure 1. The knot biquandle is then
quotient of the free biquandle on the set of semiarcs in the virtual knot diagram
by the set of relations at each crossing; it is an invariant of virtual isotopy by
construction.

Definition 2.8. A biquandle relation is short if it is of the form a = b¢, a = b°,
a = b, or a = bz. In each of these, a is the input, b is the operator and c is the output.
A biquandle presentation is knotlike if

(i) Every explicit relation is short,
(ii) Every generator appears exactly once each as input, operator and output,

(iii) The explicit relations come in pairs of the form (a® = ¢, b, = d) or (a® =
¢,bg = d). That is, if a operates on input b in one relation, then b operates
on input a in another relation where one is an upper and the other a lower
operation, and both are right- or both are left- operations.

A biquandle is knotlike if it has a knotlike presentation.

Remark 2.9. Condition (iii) says that the relations are switch relations S(a,b) =
(2,9).

In particular, if we number the semiarcs in a knot biquandle sequentially following
the orientation of the knot, then every relation is of the form

iy=i+1, iz=i+1, ¥=i+1, or ¥=i+1

and we can unambiguously specify a knot biquandle as a vector whose ith entry is
the operation in the explicit relation with input ¢. This vector notation can easily
be translated into a Gauss code ([11]) or an SOKQ presentation ([15]).

Every virtual knot or link biquandle is knotlike. Unlike the knot quandle, given a
knotlike biquandle presentation, we can reconstruct the virtual knot or link it comes
from up to strictly virtual moves. This is consistent with the following conjecture
(see [4]):

Conjecture 2.10. The knot biquandle is a complete invariant of virtual link type.
That is, if two knotlike biquandle presentations are related by Tietze moves, then
the resulting virtual link diagrams are related by virtual isotopy moves.

As with other algebraic invariants of knots and links, direct comparison of iso-
morphism types of biquandles given by presentations is generally difficult. Thus, we
seek invariants of biquandle isomorphism type, which are naturally also knot invari-
ants. One such invariant is the counting invariant associated to a finite biquandle,
described in the following section.
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3. Finite biquandles and the counting invariant

Let T be a finite biquandle and K a finitely presented biquandle, e.g. a knot
biquandle. As with groups and quandles, we have the following theorem (see also [4]):

Theorem 3.1. The cardinality |Hom(K,T)| of the set of homomorphisms from K
to T is an invariant of biquandle isomorphism type and hence an invariant of virtual
1s0topy.

Proof. If ¢: K — K’ is an isomorphism, then for every f € Hom(K,T), we have
fo~! € Hom(K',T) and for every g € Hom(K’, T), we have g¢ € Hom(K,T). Thus,
we have both |Hom(K,T)| < [Hom(K’,T)| and |Hom(K’,T)| < |[Hom(K,T)|, so
|Hom (K, T)| = |[Hom(K',T)|. O

Thus, for every finite biquandle T', the number of homomorphisms into 7" is an
invariant of virtual (and hence classical) knot type. In order to find and evaluate
such invariants, then, we need a way of representing finite biquandles. In [8], finite
quandles @ = {z1,...,x,} of order n are represented as n x n matrices with M,; =
k where z = scf] To represent finite biquandles as matrices, we use the following
block matrix notation.

Definition 3.2. Let B = {z1,...,x,} be a finite biquandle. Then the matriz of B
is the block matrix

7 =1
where Ml-lj =k, xi = i l=2,

! (x7)ﬁa l= 37
(wi)m_p l = 4

)

M| M2
o= [ ]

The matrices M* will be called the block submatrices or just the submatrices of B.

Remark 3.3. In the light of Remark 2.2, we can without loss of information drop
the two left matrices to obtain a switch matriz

Mg = [M?M*].
In particular, from a switch matrix, we can recover the biquandle matrix.

Ezxample 3.4. For any positive integer n, let T,, be the matrix such that the ith
row of T, has every entry equal to ¢. Then the matrix

T, | Ty
BT, = {JﬁT L }
is a finite biquandle, called the trivial biquandle of order n. For instance,

111

W N =W
W N W -

W N =W N
LN =W N
W N W N
W N =W N
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Even though the biquandle axioms, unlike the quandle axioms, do not require
uniqueness of right inverses under the four biquandle operations, we have

Proposition 3.5. If B is a finite biquandle, then the right inverses under each of
the four actions are unique.

Proof. Axiom (2) part (v) says that for every a,b € B there is a ¢ such that a = c”.

That is, for a given element b € B, every element of B must appear at least once in
the column of b in the M? block of the matrix of B. Since there are only n available
positions and n elements which must appear, every element appears exactly once.
Similarly for M*.

To see uniqueness for M*, note that Axiom 2 part (iii) is equivalent to “for
all a,b € B, there exist ¢,z € B such that b = ¢, and ¢ = bz.” In particular, every
element b must appear in some row ¢ in column a, and as before, we have uniqueness.
Similarly for M 3, O

Thus, we have one easily checked condition for a block matrix to be the matrix of a
finite biquandle, namely that each block must have columns which are permutations.
The condition arising from the type I move is also easy to check visually:

Proposition 3.6. If M is one of the four submatrices of a finite biquandle, then
every row of M has exactly one entry equal to its column number in M.

Proof. Axiom (4) implies that every row contains at least one entry which equals its
column number. Now, suppose row ¢ has M;; = j and M;;, = k. Then since every col-
umn is a permutation, no entry appears more than once in a column, so no other row
has a j in column j or a k in column k. Then of the remaining n — 1 rows, at most n — 2
have an entry equal to its column number, and M is not a biquandle submatrix. [

Proposition 3.7. Let B be a finite biquandle. If the lower submatrices of B are
both trivial matrices T, i.e. if xy =« and x5y = = for all x,y € B, then the upper
submatrices of B form a quandle matriz and its dual.

Proof. If the lower operations are trivial, then the biquandle axioms reduce to
1. For every a,b € B, we have a = a and a = a®.

2. For all a,b € B, there is an x such that a = 2 and a y such that a = y°.

c = ¢
3. For every triple a, b, c € B, we have a*® = a°®" and a®® = a° .

4. For every a in B, we have a = a® and a = a°.
But these are just the quandle Axioms; (1) and (2) together give us quandle Axiom
(ii), while (3) is quandle Axiom (iii) for a quandle and its dual, and (4) is quandle
Axiom (i) for a quandle and its dual. O
Corollary 3.8. Let QQ be a finite quandle. Then there is a corresponding finite
biquandle with matriz
B { Mg | Mg }

T, | T,

where Mg is the matriz of ), and Mg is the matriz of the dual of Q, and T, is
the matriz of the trivial quandle of order n. Such a biquandle is self-obverse iff @
is self-dual, and self-flip iff Q is trivial.
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A biquandle with both lower (or both upper) operations trivial is really a quandle
in disguise, which we call a quandle biquandle or a gbig. Thus, to find new knot
invariants using finite biquandles, we seek biquandles in which the lower (or upper)
operations are non-trivial; we call such biquandles non-quandle biquandles or non
qbigs.

In the next section, we give a few examples to illustrate the usefulness of biquan-
dle counting invariants.

4. Counting invariant examples

To compute the counting invariant, we first obtain a presentation of the knot
biquandle for the virtual knot or link in question. We represent such a presentation
with a biquandle presentation matriz in which each short-form relation fills in an
entry in one of the biquandle submatrices, and the remaining entries are zero. Thus,
an n-crossing knot or link has a 4n x 4n biquandle presentation matrix with exactly
2n non-zero entries.

Ezxample 4.1. The biquandle of the unknot is the free biquandle on one generator.
The zero-crossing diagram of the unknot determines a biquandle presentation with
a single generator and an empty list of explicit relations, which does not yield a
useful presentation matrix. The below one-crossing unknot diagram has biquandle
presentation (1,2 | 12 = 1,21 = 1), presentation vector [?, 7] and presentation matrix

Ezample 4.2. The virtual trefoil from [11] has biquandle presentation (1,2,3,4 |
13 =2,25 = 3,3! =4,4% = 1), which has presentation vector [z, 7, *, %] and pre-
sentation matrix

4

SO O OO OO
O OO NO O OO
OO Woloo oo
(el en e Jen] Heo e e N o)
OO O oo oo
O O O oo oo
(el e M e M en) Hen li e e i an)

SO oo, O OO

The counting invariant for a non-quandle biquandle can give us information not
present in the knot quandle. For instance, the virtual trefoil in Example 4.2 has
trivial knot quandle (though it has non-trivial Jones polynomial); however, the
biquandle counting invariant with target biquandle
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21 3|3 21
1 3 212 1 3
3 2 1|1 3 2
= 2 2 2|3 3 3
33 3|1 11
1 1 112 2 2

distinguishes the virtual trefoil from the unknot, as we have |[Hom(U,T)| =3 #0 =
|[Hom(VT,T)| where U and VT are the biquandles of the unknot and the virtual
trefoil as described above.

Ezample 4.3. The pictured Kishino knot has trivial (upper) quandle ([14]). Its
biquandle has presentation

(1,2,3,4,5,6,7,8 | 1; = 2,25 =3,3° = 4,45 = 5,55 = 6,6 = 7,7' = 8,8; = 1)

with presentation vector [7,%,% 5,3,%,1,5] and presentation matrix

|

000O0OO0OOOO0OOO0OOO0OO0OOGOO
0000O0OOOI300O0O0O0OO0CDO0O
000O0O0OOOOOOOO0O4000
000O0OO0OOOOOOOOO0OOGO0OO
000O0OO0OOOOOO0OOO0OO0OOGOO
2 7 4 0007O0O0O0OO00O0O0OO0OO0OO0OGO0O
& 00000O0OOO0O80D00O0OO0OO0O
000O0OO0OOOOOOOOOO0OGO0OO
1 5 K= 000O0OO0OOO0OO0OO0OO0O0OO0OO0O002O0
8 \§/7 6 000000O0O0/00O0O0DO0O0GO0DO
000O0O0OOOOOOOOOOO0OO
000O0O0OS50O000O00O0O0OO0O0
000O0OO0OOOOO0O0G6GOOOOO
000O0OO0OOOOOO0OOOOOGOO
000O0OO0OOOOOO0OOOOOGOO

|10 1.0000O0O0O/00O0O0O0O0O0 O]

This virtual knot is distinguished from the unknot by the biquandle counting invari-

ant with target biquandle

31 2 414 1 3 2
24 3 112 3 1 4
1 3 4 2|3 2 41
T, = 4 2 1 3|1 4 2 3
4 1 3 2|3 1 2 4|’
231 412 4 3 1
32 4 1|1 3 4 2
|1 4 2 314 2 1 3|

as [Hom(K, T2)| = 16 # [Hom(U, T»)| = 4.

Ezxample 4.4. The Kishino knots below both have a biquandle counting invariant
value of 16 with the finite biquandle T, below, while [Hom(U, Ty)| = 4:
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(1 4 2 3|1 3 4 27
2 3 1 413 1 2 4
4 1 3 2|2 4 3 1
T4:32414213
1 3 4 2|1 4 2 3
31 2 412 3 1 4
2 4 3 1/4 1 3 2
|4 2 1 3|3 2 4 1|

Ezxample 4.5. This Kishino knot has previously been shown to be non-trivial using
quaternionic biquandles [1]; however, our method detects its non-triviality with the
four-element biquandle Ty from the previous example, again with |Hom(K,Ty)| =
16. For completeness, we provide a list of the homomorphisms from the knot biquan-
dle to T4 as computed by our program. We would like to thank the referee for
suggesting this example.

abcdefgh abocdefgh
1 1111111| (33333333
b 11111232 (33333414
12321111 (34143333
12321232 (34143414
21344321 (43122134
d 21344431/ (43122213
22134312 (44312134
22134431 (44312213

Note that, unlike quandles and groups, for a given pair of biquandles, there
may or may not be a homomorphism between the pair; thus a biquandle counting
invariant can take any non-negative integer value, including zero. Indeed, we have



Homology, Homotopy and Applications, vol. 8(2), 2006 61

Proposition 4.6. Let T be a finite biquandle and let N(T) be the number of ele-
ments of T which are idempotent in all four operations. Then for any finitely pre-
sented biquandle B, the counting invariant with target T satisfies

[Hom(B,T)| = N(T).

Proof. If a € B is idempotent in all four operations, that is, if

a® =a,a® = a,ag = a and a, = a,
then for any biquandle B with n generators, the constant map sending all gener-
ators to a satisfies any possible list of relations and hence is always a biquandle
homomorphism. O

Attempting to compute a complete list of finite biquandles even for small order
quickly becomes computationally very resource-hungry. To find suitable finite target
biquandles for use in counting invariants, then, it can be helpful to look for biquandle
completions.

Definition 4.7. Let Mp be a biquandle presentation matrix. A biquandle comple-
tion of Mp is a finite biquandle whose matrix is obtained by filling in the zeroes of
Mp.

Since filling in a zero amounts to adding a new explicit short relation, a comple-
tion is actually a finite quotient of the original biquandle. In particular, a completion
of the presentation matrix of a knotlike biquandle K B is a finite quotient biquandle
T onto which there is a surjective homomorphism. More generally, for any labelling
of the semi-arcs in a knot diagram with numbers {1,2, ..., n} such that no two cross-
ings have the same input labels, we can form the resulting biquandle presentation
matrix and look for completions.

Definition 4.8. Let B be a biquandle. If there is an element a € B such that every
element of B is equivalent to a word starting with a (that is, a word with leftmost
generator a), we say B is connected.

As with quandles, knot biquandles are connected, though link biquandles in gen-
eral are not. Hence, for finding new knot invariants, we are primarily concerned
with finding finite connected non-quandle biquandles. Of particular interest are
finite non-quandle biquandles which are not self-flip and not self-obverse. As with
quandles and groups, two isomorphic biquandles define the same knot invariant;
however, the flip or the obverse of a non self-flip or non self-obverse biquandle
generally defines a different invariant from that defined by the original.

Our results in Section 5 indicate that all biquandles with order < 4 are self-
obverse. Non self-obverse biquandles can be used to distinguish some virtual knots
from their obverses — if

|[Hom(K,T)| # [Hom(Obu(K),T)|

or equivalently if [Hom(K,T)| # |Hom(K,Obv(T))|, then K is not isotopic to its
obverse.
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Ezxample 4.9. The biquandle T below is not self-obverse. Its counting invariant
distinguishes the virtual knot below from its obverse, with [Hom(K>3,T5)| =5 # 1=
|[Hom(Obv(K>),Ts)|. This virtual knot is similar to the virtual knots in Figure 3
of [16]. Indeed, this same biquandle distinguishes K from its inverse, that is, the
virtual knot obtained from K5 by reversing its orientation.

[5 3 1 4 2|4 3 2 1 57
4 2 5 3 13 2 1 5 4
314 2 52 15 4 3
2 5 3 1 4|1 5 4 3 2
1 42 5 3|5 4 3 21
Ky = L=|\57%5 55514411
2 2 2 2 2|2 2 2 2 2
4 4 4 4 4|5 5 5 5 5
111113 3 3 3 3
13333 3|1 111 1|

In the last section, we describe an algorithm for finding finite biquandles, includ-
ing completions, and give a classification of all finite biquandles with up to 4 ele-
ments.

5. Computational results

A file called biquandles-maple.txt containing Maple code implementing the
following algorithm is available for download at www.esotericka.org/quandles;
we have chosen not to include it here as it is rather lengthy.

Our code represents a finite biquandle internally as a vector of four matrices
rather than one large block matrix. Our first program, biqtest, checks a list of
four n x n matrices for the biquandle axioms, returning “true” if the list represents
a finite biquandle and “false” if any axiom is not satisfied.

Much of the work in finding finite biquandles is done by biqfill, which takes
as input a biquandle pattern consisting of four n X n matrices with entries in
{0,1,...,n}. An entry of zero counts as a blank; our matrix notation lets the entries
act both as biquandle elements and as submatrix row and column numbers. Overall,
biqfill is a loop controlled by two variables, a “changed” counter and a “contra-
diction” counter. The program systematically checks a working biquandle pattern
for each of the axioms. When the contradiction marker is set, the program skips
the remaining checks, exits the loop and reports “false”. Setting the “changed”
counter to “true” tells the program to repeat the loop, propagating the changed
value through the matrix. Biquandle axioms (1) and (3) each assert that various
biquandle words corresponding to entries in the matrices should be equal; if enough
entries are non-zero to determine the positions of the two entries in question, the
entries are compared. If the two entries are equal, the algorithm moves on; if one is
zero and the other non-zero, the zero entry is changed to match the non-zero entry
and the “changed” counter is set to true; if both entries are non-zero and not equal,
then the “contradiction” counter is set to true. Axiom (2) makes assertions about
the right inverses of the various biquandle operations; biqfill tests for these, again
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setting the contradiction counter if the pattern violates one of the axioms and filling
in zeroes when possible. For axiom (4), the contradiction counter is set to “true”
if any row has no zeroes and no entry equal to its column number or if any row
has more than one entry equal to its column number. When a row has one entry
equal to its column number, the corresponding entry in the upper or lower matrix
is checked and filled in or the contradiction counter is set as appropriate.

The equations in axiom (3) come from the oriented versions of the third Rei-
demeister move with all three crossings of the same sign. To speed up the search
algorithm, we include the equations arising from the other oriented Reidemeister
IIT moves, which are consequences of axioms (1)—(3). Finally, biqfill checks each
column, looking for any which have only one zero; such zeroes are filled in or contra-
dictions detected with the program avail, which finds the smallest available entry
for the specified positions which does not contradict Propositions 3.5 and 3.6 or
returns “false” if no such entry exists. If the “contradiction” counter evaluates to
“true” at any point, the loop is exited and biqfill returns “false.” At the end of
the loop, if the “changed” counter evaluates to “true”, then the loop is repeated; if
not, the program reports the new pattern and exits.

The program biqlist takes a starting biquandle pattern and starts a working
list. The program removes the first biquandle pattern from the working list, then
uses bfindzero and ratezero to find the zero entry most likely to complete a
row, column, or Reidemeister III word, then systematically fills in the zero with
each possible entry returned by avail. For each such value, the pattern is run
through bigfill and any patterns returned are added to the end of the working
list. When a pattern has no remaining zeroes, it is transferred to the output list;
when the working list is empty, the program reports the output list. biqlist is
useful for finding biquandle completions for knot biquandles, and we used it to find
all biquandles of order 2, 3 and 4 as well as several biquandles of orders 5 and 6.

To compute the biquandle counting invariant, we use bhomlist which repre-
sents amap ¢: {1,2,...,n} — {1,2,...,m} as a vector [¢(1), ¢(2),...,p(n)] where
¢(i) € {1,2,...,m}. This program starts with a vector of all zeroes and keeps a
working list of vectors, systematically filling in zeroes with each possible entry and
using bhomfill to propagate the values through the vector as required by the homo-
morphism conditions, removing any maps which violate the homomorphism condi-
tions. Once all zeroes have been filled in, each completed homomorphism is moved
to the output list, and once the working list is empty, the output list is reported.
The program bhomcount reports the cardinality of the list output by bhomlist,
that is, the value of the counting invariant for the input presentation and target
biquandles.

bhomlist can compute the set of homomorphisms from any biquandle presen-
tation matrix to any finite biquandle. Since a finite biquandle matrix is itself a
presentation matrix, we can use bhomlist to determine whether any pair of finite
biquandles are isomorphic and to compute the automorphism group of any finite
biquandle. bisolist lists the isomorphisms from one finite biquandle to another,
giving an empty list if the two are non-isomorphic. baut computes the automor-
phism group of a finite biquandle.
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Obv gives the obverse of a biquandle matrix, Flip gives the flip. The program
breducelist takes a list of biquandles and removes any which are isomorphic to
previous biquandles on the list, their flips, their obverses, or their obverse flips. For
long lists of biquandles, it may be necessary to split the list into smaller lists first.

We used biqlist and breducelist to classify finite biquandles of order 2, 3
and 4; the results are lists in tables 1 through 8. There are 36 biquandles of order
3, which comprise 15 isomorphism classes. Five of these are isomorphic to the flip,
obverse, or obverse flip of one of the ten listed biquandles of order 3. There are 744
biquandles of order 4, which reduce to 64 when isomorphic copies, flips and obverses
are removed. In the interest of space, we have listed only the non-quandle biquandles
of order 4. In the tables, we have listed the automorphism groups computed with
baut and indicated when a biquandle is self-flip with the notation SF.

Table 1: Biquandles of order 2.

Biquandle Aut(B) Biquandle Aut(B)
Matrix Matrix

Z2 ZQ

SF SF
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Table 2: Biquandles of order 3.
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Table 3: Non-quandle Biquandles of order 4 part 1.
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Table 4: Non-quandle Biquandles of order 4 part 2.
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Table 5: Non-quandle Biquandles of order 4 part 3.
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Table 6: Non-quandle Biquandles of order 4 part 4.
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Table 7: Non-quandle Biquandles of order 4 part 5.
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Table 8: Non-quandle Biquandles of order 4 part 6.
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