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UNSTABLE SPLITTING OF V (1) ∧ V (1) AND ITS
APPLICATIONS

TAKAHISA SHIINA

(communicated by Donald M. Davis)

Abstract
Let Pn(p) be an n-dimensional mod p Moore space and

V n be the mapping cone of an Adams map A : Pn−1(p) →
Pn−2p+1(p). This paper gives an unstable splitting of V m ∧ V n
for a prime p > 5. The proof is based on explicit calculations of
[V n+2p−1, V n]. As an application, we define a Samelson prod-
uct on [V ∗,ΩX] and prove that it satisfies anticommutativity
and the Jacobi identity.

1. Introduction

1.1. Motivation
Cohen, Moore, and Neisendorfer proved some properties of mod p Moore spaces

in [2]. For example, they proved the mod p Hurewicz theorem and the product
decomposition of the loop space of Moore space. This product decomposition yields
a map πn : Ω2S2n+3 → S2n+1 and this map plays a major role in [5].

Gray introduced the concept of EHP spectrum in [5]. An EHP spectrum of period
2d is a spectrum X = {Xn}, where each Xn is localized at an odd prime p, together
with fiber sequences

· · · P−−−−→ X2n−1
E−−−−→ ΩX2n

H′−−−−→ ΩX2kn−1,

· · · P−−−−→ X2n
E−−−−→ ΩX2n+1

H−−−−→ ΩX2kn+2d+1.

Gray also defined that an EHP spectrum has property CMN if there is a map

πn : Ω2X2n+2d+1 −→ X2n−1,

making the diagram

Ω4X2n+2d+3
Ω2πn+1−−−−−→ Ω2X2n+1

Ω2E2

x E2

x
Ω2X2n+2d+1

πn−−−−→ X2n−1

commutative and

Ωπnk ' H ′ ◦ ΩP : Ω3X2kn+2d+1 −→ ΩX2kn−1.
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The Smith-Toda spectra satisfy that if there exists an EHP spectrum representing
V (m), then V (m+ 1) exists. Moreover, if an EHP spectrum representing V (m) has
property CMN, then we can construct a derived EHP spectrum and it represents
V (m+ 1).

The sphere spectrum Ŝ,

Ŝn =

{
Sn, n = 2m+ 1,
Jp−1S

2n, n = 2m,

is an EHP spectrum of period 0 and k = p. It represents V (−1) and has prop-
erty CMN by a map πn : Ω2S2n+3 → S2n+1 constructed by Cohen, Moore, and
Neisendorfer in [2]. Gray states in [5, Section 6] that the CMN map on V (0) might
be constructed in the same way as the CMN map πn on V (−1).

In [2], the mod p Hurewicz theorem and the Samelson product on [P ∗(p),ΩX]
are the most important tools used to construct the product decomposition of the
loop space of a Moore space. So, such tools might be needed to construct the CMN
map on V (0), and preparing such tools is a main object of this paper.

1.2. Main theorems
Let p be a prime greater than or equal to 5, Pn(p) = Sn−1 ∪p en, i.e. the mapping

cone of a degree p map, A : Pn+2p−2(p) → Pn(p) be an Adams map, and V n =
Pn−2p+1(p) ∪A CPn−1(p), i.e. the mapping cone of an Adams map. In this paper,
we assume that all spaces are localized at p and all (co)homologies are mod p
(co)homology.

In Section 3, we prove the following theorem, which refers to the Hurewicz map
[V n, X] → Hn(X).

Theorem 1.1. Assume that X is an r-connected space. If x ∈ Hn(X), n 6 min{2r,
r + 2p2 − 2p− 3} and P1

∗ (x) = 0, then there exists f ∈ [V n, X] such that ϕ(f) = x.
Moreover, if P1

∗ : Hn+1(X) → Hn−2p+3(X) is surjective, then f is unique.

In Section 4, we calculate the homotopy set [V 6p+2, V 4p+3].

Lemma 1.2. [V 6p+2, V 4p+3] = 0.

We remark that it fails in the case of p = 3. This homotopy set is calculated in
order to show the unstable splitting of V (1) ∧ V (1).

Theorem 1.3. Assume that m,n > 2p+ 3 and m+ n > 6p+ 3. Then there is a
space M and a homotopy equivalence

V m ∧ V n −→ V m+n ∨ V m+n−2p ∨M.

This theorem is proved in Section 5. This splitting defines the Samelson product
on [V ∗,ΩX]. The next problem is whether the Samelson product defined by using
this splitting provides a Lie algebra structure on [V ∗,ΩX] or not. The answer is the
following theorem which is proved in Section 6.
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Theorem 1.4. For f : V m → ΩX and g : V n → ΩX, the Samelson product

[f, g] : V m+n −→ V m ∧ V n f∧g−−→ ΩX ∧ ΩX
〈,〉−→ ΩX

satisfies the following properties:
1. [f + f ′, g] = [f, g] + [f ′, g], [f, g + g′] = [f, g] + [f, g′] (bilinear),
2. [f, g] = −(−1)mn[g, f ] (anticommutative) if m+ n > 8p+ 2,
3. (−1)mk[f, [g, h]] + (−1)mn[g, [h, f ]] + (−1)nk[h, [f, g]] (Jacobi identity) if m+

n+ k > 12p+ 2, where h : V k → ΩX,
4. h∗[f, g] = [h∗f, h∗g] for an H-map h : ΩX → ΩY ,
5. ϕ([f, g]) = [ϕ(f), ϕ(g)] where ϕ : [V i,ΩX] → Hi(ΩX) is the Hurewicz map.

2. Properties

In this section, we recall some results about homotopy sets of Moore spaces
proved in [2], and the relative James construction introduced in [4].

For mod p Moore space Pn(p), let vn and un−1 be generators of H∗(Pn(p))
in degree n and n− 1, respectively, with β(vn) = un−1 where β is the Bockstein
homomorphism. The inclusion of the bottom cell is denoted by i : Sn−1 → Pn(p).
We have a cofibration Sn−1 i−→ Pn(p)

q−→ Sn. Denote the identity map by ι : Pn(p) →
Pn(p) and the composition iq by δ : Pn(p) → Pn+1(p). According to [3], the Adams
map A : Pn+2p−2(p) → Pn(p) exists for n > 3.

2.1. Some homotopy sets
The stable homotopy set colimk[Pn+k(p), Pn(p)] is known for small values of k.

Proposition 2.1 (Toda [9]).

lim
n→∞

[Pn+k(p), Pn(p)] ∼=





Z/pZ{δ}, k = −1,
Z/pZ{ι}, k = 0,
Z/pZ{δArδ}, k = rq − 2,
Z/pZ{δAr, Arδ}, k = rq − 1,
Z/pZ{Ar}, k = rq,

0, otherwise,

where q = 2p− 2 and r < p.

The mod p homotopy groups of spheres are known as follows.

Proposition 2.2 (Toda [8]).

[P 2n+1+i(p), S2n+1] ∼=





Z/pZ{q}, i = 0,
Z/pZ{qAδ}, i = 2p− 3,
Z/pZ{qA}, i = 2p− 2,
Z/pZ{qA2δ}, i = 4p− 5,
Z/pZ{qA2}, i = 4p− 4,
0, otherwise for i < 6p− 8.
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Let Sn{p} be the homotopy fiber of Sn
p−→ Sn. The mod p homotopy groups of

S2n+1{p} are known by considering the fiber sequence

ΩS2n+1 k−→ S2n+1{p} j−→ S2n+1 p−→ S2n+1.

Corollary 2.3.

[P 2n+1+i(p), S2n+1{p}] ∼=





Z/pZ{jEq}, i = −1,
Z/pZ{q′}, i = 0,
Z/pZ{jEqAδ}, i = 2p− 4,
Z/pZ{jEqA, (qAδ)′}, i = 2p− 3,
Z/pZ{(qA)′}, i = 2p− 2,
Z/pZ{jEqA2δ}, i = 4p− 6,
Z/pZ{jEqA2, (qA2δ)′}, i = 4p− 5,
Z/pZ{(qA2δ)′}, i = 4p− 4,
0, otherwise for i < 6p− 9,

where (−)′ is a lift

P 2n+1+i(p)

S2n+1{p} S2n+1 S2n+1

?
(−)

´
´

´́+

(−)′

-j -p

2.2. Properties of Moore space
The following theorem is frequently used in this paper.

Theorem 2.4 (mod p Hurewicz theorem [7]). Assume that [P i(p), X] = 0 for all
2 6 i 6 n. Then the Hurewicz map

φ : [P i(p), X] −→ Hi(X)

defined by φ(f) = f∗(vi) is an isomorphism for i 6 min{2n, n+ 2p− 3} and surjec-
tive for i = min{2n, n+ 2p− 3}+ 1.

From this theorem, we have the splitting of the smash product of Moore spaces.

Theorem 2.5 (Cohen, Moore, and Neisendorfer [2]). Assume that m+ n > 6. Then
there is a homotopy equivalence

Pm+n(p) ∨ Pm+n−1(p) −→ Pm(p) ∧ Pn(p).
For f : Pm(p) → ΩX and g : Pn(p) → ΩX, the Samelson product of f and g,

[f, g], is the composition

[f, g] :Pm+n(p) −→ Pm+n(p) ∨ Pm+n−1(p) '−→ Pm(p) ∧ Pn(p)
f∧g−−→ ΩX ∧ ΩX

〈,〉−→ ΩX

where 〈, 〉 is the commutator map. This Samelson product gives a Lie algebra struc-
ture on [P ∗(p),ΩX]. The algebraH∗(ΩX) is an associative, and it can be regarded as
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a Lie algebra, i.e. [x, y] = xy − (−1)|x||y|yx for x, y ∈ H∗(ΩX). Then the Hurewicz
map is a Lie algebra homomorphism, i.e.

φ([f, g]) = [φ(f), φ(g)].

The Freudenthal suspension E ∈ [Pn(p),ΩPn+1(p)] and the composition Eδ cor-
respond to νn ∈ Hn(ΩPn+1(p)) and µn−1 ∈ Hn−1(ΩPn+1(P )) under the Hurewicz
map, respectively.

Theorem 2.6 ([2]). There exist homotopy equivalences

S2n+1{p} × ΩΣ

( ∞∨

k=0

P 4n+2kn+2(p)

)
'−→ ΩP 2n+2(p)

and

S2n−1 ×
∞∏

k=1

S2pkn−1{p2} × ΩΣ

(∨
nα

Pnα(p)

)
'−→ ΩF 2n+1{p}

for all n > 1. Where F 2n+1{p} is the fiber of the pinch map P 2n+1(p)
q−→ S2n+1 and

nα > 4n+ 1.

Denote gk =

k︷ ︸︸ ︷
[Eδ, [. . . , [Eδ, [E,E]]]]. Then the next diagram

ΩΣP 4n+2nk+2(p) ΩΣ
(∨P 4n+2nk+2(p)

)

P 4n+2kn+2(p) ΩP 2n+2(p)

-

HHHHHHHHj

fgk

?

6
E

-gk

is commutative. Similarly, there is a map gnα : Pnα(p) → ΩP 2n+1(p) such that the
diagram

ΩΣPnα(p) ΩΣ (∨Pnα(p))

Pnα(p) ΩP 2n+1(p)

-
HHHHHHj

ggnα

?

6
E

-gnα

is commutative. This gnα is a Samelson product consisting of some E and Eδ. For
example, in low dimensions,

gα = [E,Eδ], [E, [E,Eδ]], . . . , [

p−2︷ ︸︸ ︷
E, . . . , [E, [E,Eδ]]], . . . ,

na = 4n− 1, 6n− 1, . . . , 2np− 1, . . . , and so on.

2.3. Relative James construction
Let B be a subspace of a space X. The relative James construction (X,B)∞ is

the set of words in the James construction X∞ whose letters, except the first letter,
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are in B. If (X,B) is an NDR then there is a weak homotopy equivalence

f : (X,B)∞ −→ G,

where G is the fiber of the pinch map q : X ∪ CB → ΣB. In addition, the diagram

ΩΣB −−−−→ G −−−−→ X ∪ CB q−−−−→ ΣB

'
x

xf
y'

B∞ −−−−→ (X,B)∞ −−−−→ X/B

is commutative, where the left homotopy equivalence is James’ and the right homo-
topy equivalence is given by the NDR structure of (X,B).

For each n, we have a map called the Hopf invariant Hn : (X,B)∞ →(
X ∧B∧(n−1)

)
∞. Let

N =
∏

n>1

(X ∧B∧n)∞ = hocolim
k

k∏
n=1

(X ∧B∧n),

H(X,B) =
∏

Hn : (X,B)∞ → N,

and F(X,B) be the homotopy fiber of H(X,B). By combining the following two exact
sequences

· · · −−−−→ [Y, (X,B)∞] −−−−→ [Y,X ∪ CB]
q∗−−−−→ [Y,ΣB],

· · · −−−−→ [Y, F(X,B)] −−−−→ [Y, (X,B)∞]
H(X,B)∗−−−−−→ [Y,N ],

we obtain the following diagram:

[Y,X ∪ CB] −−−→ [Y,ΣB] −−−→x
−−−→ [ΣY,X ∪ CB] −−−→ [ΣY,ΣB] −−−→ [Y, (X,B)∞] −−−→ [Y,N ] −−−→x

x
−−−→ [ΣY, (X,B)∞] −−−→ [ΣY,N ] −−−→ [Y, F(X,B)]x
−−−→ [ΣY, F(X,B)]

Since the composite of inclusionX i−→ (X,B)∞ andH(X,B) : (X,B)∞ → N is null
homotopic, there is a lift ψ : X → F(X,B) of i. Gray said in [4] that the diagram

[ΣY,ΣB] −−−−→ [Y, (X,B)∞]

Σ

x
xi∗

[Y,B] −−−−→ [Y,X]

(1)

is commutative.
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We now consider the case of Y = Pn(p). Referring to [4, Theorem 8.1], we obtain
the following lemma.

Lemma 2.7. If

[P i(p), X] = 0 for i < m,

[P i(p), B] = 0 for i < n,

then ψ∗ : [P i(p), X] → [P i(p), F(X,B)] is an isomorphism for i 6 2m+ 2n− 3.

Proof. From [4], we know

H̃∗((X,B)∞) ∼= H̃∗(X)⊗H∗(B∞)
∼= H̃∗(X)⊕ (H̃∗(X)⊗ H̃∗(B))⊕ (H̃∗(X)⊗ H̃∗(B)⊗2)⊕ · · · .

By the definition of N ,

H∗(N) ∼=
⊗

n>1

T (H̃∗(X ∧ (B)∧n))

∼= {Z/pZ⊕ (H̃∗(X)⊗ H̃∗(B))⊕ (H̃∗(X)⊗ H̃∗(B))⊗2 ⊕ · · · }
⊗ {Z/pZ⊕ (H̃∗(X)⊗ H̃∗(B)⊗2)⊕ (H̃∗(X)⊗ H̃∗(B)⊗2)⊗2 ⊕ · · · }
⊗ · · · ,

where T (−) means the tensor algebra. For x ∈ H̃m(X) and a ∈ H̃n(B), (x⊗ a)2 ∈
H̃2m+2n(N) is the lowest degree element which is not included in the image of
H(X,B)∗. The Serre spectral sequence of the fibration

F(X,B) −→ (X,B)∞
H(X,B)−−−−→ N

implies that ψ∗ : Hi(X) → Hi(F(X,B)) is an isomorphism for i 6 2m+ 2n− 2.
Hence, ψ∗ : [P i(p), X] → [P i(p), F(X,B)] is an isomorphism for i 6 2m+ 2n− 3.

We close this section after stating the following two classical theorems.

Theorem 2.8 (Freudenthal suspension theorem). Let X be a CW complex and Y
be a r-connected space. Then the suspension map

Σ : [X,Y ] −→ [ΣX,ΣY ]

is bijective if dimX 6 2r.

Theorem 2.9 (Hilton-Milnor theorem).

ΩΣ(X ∨ Y ) ' ΩΣX × ΩΣ
∨

k>0

(Y ∧X∧k).
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3. The Hurewicz map

Let an, bn−1, cn−2p+1 and dn−2p be the basis of H∗(V n) in degree n, n− 1,
n− 2p+ 1 and n− 2p respectively. The Hurewicz map

ϕ : [V n, X] −→ Hn(X)

is defined by ϕ(f) = f∗(an). Theorem 1.1 is used to prove the unstable splitting
of V m ∧ V n and the Samelson product, and Theorem 1.1 follows from the next
proposition.

Proposition 3.1. Let E be a spectrum of the fiber of P1 : HZ/pZ→ Σ2p−2HZ/pZ
where HZ/pZ is the Eilenberg-MacLane spectrum of Z/pZ. Assume that X is a p-
local and r-connected space. Then the Hurewicz map ϕ′ : [V i, X] → Ei(X) is bijec-
tive for i 6 min{2r, r + 2p2 − 2p− 3} and surjective for i = min{2r, r + 2p2 − 2p−
3}+ 1.

Proof of Theorem 1.1. It is proved by considering the diagram

Hn+1(X) Hn−2p+3(X) En(X) Hn(X) Hn−2p+2(X)

[V n, X]

-P
1
∗ -j∗ -i∗ -P

1
∗

HHHHY
ϕ′

6ϕ

where the upper sequence is exact.

We prove Proposition 3.1 in the rest of this section.
We first recall the Steenrod algebra A∗ and its dual A∗. We know that

A∗ ∼= H∗(HZ/pZ),
A∗ ∼= H∗(HZ/pZ).

By Milnor [6], the algebra A∗ is the tensor product of the exterior algebra generated
by τ0, τ1, τ2, . . . , and the polynomial algebra generated by ξ1, ξ2, . . . , i.e.

A∗ ∼= E(τ0, τ1, τ2, . . . )⊗ Z/pZ[ξ1, ξ2, . . . ],

where deg τk = 2pk − 1 and deg ξk = 2pk − 2. The element τk is the dual of
PpkPpk−1 · · · PpP1β and ξk is the dual of PpkPpk−1 · · · PpP1. The algebra A∗ is
also a Hopf algebra by the coproduct

ψ(ξk) =
k∑

i=0

ξp
i

k−i ⊗ ξi,

ψ(τk) = τk ⊗ 1 +
k∑

i=0

ξp
i

k−i ⊗ τi.

Since E is the spectrum of the fiber of P1, we obtain the fiber sequence

Σ−1HZ/pZ P1

−−→ Σ2p−3HZ/pZ j−→ E
i−→ HZ/pZ P1

−−→ Σ2p−2HZ/pZ.
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Then the sequence

Hi+1(HZ/pZ)
(P1)∗−−−−→ Hi−2p+3(HZ/pZ)
j∗−→ Hi(E) i∗−→ Hi(HZ/pZ)

(P1)∗−−−−→ Hi−2p+2(HZ/pZ)

is exact. We calculate Hi(E) for small i from this exact sequence.
By reason of dimension, (P1)∗(1) = 0 and (P1)∗(τ0) = 0. From the definition of

τ0, τ1 and ξ1, we obtain that

(P1)∗(τ1) = 0,

(P1)∗(ξk1 ) = kξk−1
1 ,

(P1)∗(τ i0τ
j
1 ξ
k
1 ) = kτ i0τ

j
1 ξ
k−1
1 ,

where i, j = 0 or 1. The kernel of (P1)∗ is generated by 1, τ0, τ1, τ0τ1 and ξp1 in low
dimensions. Since (P1)∗(ξ

p
1) = pξp−1

1 = 0, ξp−1
1 is not included in image of (P1)∗.

Therefore,

H∗(E) 3 1, τ0, τ1, τ0τ1, ξ̃
p−1
1 , ξp1 , . . . ,

where deg ξ̃p−1
1 = 2p2 − 2p− 1. The homology operations β and P1

∗ on τ0, τ1 and
τ0τ1 are as follows:

β(τ0) = 1,

P1
∗ (τ1) = τ0,

β(τ0τ1) = τ1,

Hence, for low dimensions, H∗(E) is as follows:

1 τ0 τ1 τ0τ1 ξ̃p−1
1

ξp1
β P1

∗ β

with operations 0 on the latter classes.

Proof of Proposition 3.1. The Hurewicz map ϕ′ : [V i, X] −→ Ei(X) is obtained by
the following sequence:

[V i, X] Σ∞−−→[Σ∞V i,Σ∞X] ∼= [Σ∞Si ∧ Σ∞V 0,Σ∞X]

∼= [Σ∞Si,Σ∞V 2p ∧ Σ∞X]
(α∧1)∗−−−−→ [Σ∞Si, E ∧ Σ∞X] = Ei(X),

where α is a generator of

E0(Σ∞) = [Σ∞V 2p, E] ∼= Z/pZ.
This isomorphism is computed from the exact sequence

Hj−1(Σ∞V 2p) P1

−−→ Hj+2p−3(Σ∞V 2p)

−→ Ej(Σ∞V 2p) −→ Hj(Σ∞V 2p) P1

−−→ Hj+2p−2(Σ∞V 2p),
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and

0 1 2p− 1 2p

H∗(Σ∞V 2p) = ◦ ◦ ◦ ◦β P1 β

where the integers above a node indicate the grading. So, α induces an isomorphism
from Hi(Σ∞V 2p) to Hi(E) for i 6 2p2 − 2p− 2. Hence,

(α ∧ 1)∗ : [Σ∞Si,Σ∞V 2p ∧ Σ∞X] −→ [Σ∞Si, E ∧ Σ∞X]

is an isomorphism for i 6 r + 2p2 − 2p− 3 for r-connected space X. And since X
is r-connected,

Σ∞ : [V i, X] −→ [Σ∞V i,Σ∞X]

is an isomorphism for i 6 2r. This completes the proof of the proposition.

4. Calculation of [V 6p+2, V 4p+3]

In this section, we prove [V 6p+2, V 4p+3] = 0. From the cofiber sequence

P 6p+1(p) A−→ P 4p+3(p) i1−→ V 6p+2 q1−→ P 6p+2(p) A−→ P 4p+4(p),

we obtain an exact sequence of homotopy sets

[P 6p+2(p), V 4p+3]
q∗1−→ [V 6p+2, V 4p+3]

i∗1−→ [P 4p+3(p), V 4p+3].

It is enough to show that

[P 6p+2(p), V 4p+3] = 0 and [P 4p+3(p), V 4p+3] = 0.

They can be calculated by applying the relative James construction introduced in
Section 2.3.

Let X = P 2p+4(p) ∪A P 4p+2(p)× I, the mapping cylinder of the Adams map
A : P 4p+2(p) → P 2p+4(p), and B = P 4p+2(p)× {1}. Then, X ' P 2p+4(p),
B = P 4p+2(p) and X/B = V 4p+3.

By the definition,

N =
∏

k>1

(X ∧B∧k)∞,

H(X,B) =
∏

Hk : (X,B)∞ → N,

and F(X,B) is the homotopy fiber of H(X,B).
There is a map ψ : X = P 2p+4(p) → F(X,B). Since [P i(p), X] = 0 for i < 2p+ 3

and [P i(p), B] = 0 for i < 4p+ 1, from Lemma 2.7, the induced map

ψ∗ : [P i(p), P 2p+4(p)] −→ [P i(p), F(X,B)]

is bijective for i 6 2(2p+ 3) + 2(4p+ 1)− 3 = 12p+ 5. In particular,

[P 6p+2(p), P 2p+4(p)] −→ [P 6p+2(p), F(X,B)],

[P 4p+3(p), P 2p+4(p)] −→ [P 4p+3(p), F(X,B)]

are bijective.
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Now, in order to calculate [P 6p+2(p), V 4p+3] and [P 4p+3(p), V 4p+3], we apply the
above data to relative James construction, and obtain the following diagram:

[P i(p), V 4p+3] −−−−→ [P i(p), P 4p+3]x
[P i+1(p), P 4p+3(p)] −−−−→ [P i(p), (X,B)∞] −−−−→ [P i(p), N ]x

[P i+1(p), N ] −−−−→ [P i(p), F(X,B)]

ψ∗

x∼=
[P i(p), P 2p+4(p)]

(i) i = 4p+ 3. By the definition of N ,

[P i(p), N ] ∼=
∏

k>1

[P i(p),ΩΣ(P 2p+4(p) ∧ (P 4p+2(p))∧k)].

That is, N is (6p+ 3)-connected, and so we obtain

[P 4p+4(p), N ] = 0 and [P 4p+3(p), N ] = 0.

From Proposition 2.1,

[P 4p+3(p), P 4p+3(p)] = Z/pZ{ι} and [P 4p+4(p), P 4p+3(p)] = 0.

There is a commutative diagram, obtained from Diagram (1),

[P 4p+3(p), V 4p+3] −−−−→ [P 4p+3(p), P 4p+3] −−−−→ [P 4p+2(p), (X,B)∞]

Σ

x ∼=
xincl.

[P 4p+2(p), P 4p+2(p)] A∗−−−−→ [P 4p+2(p), P 2p+4(p)]

So the map [P 4p+3, V 4p+3] → [P 4p+3(p), P 4p+3(p)] is zero map. Therefore, the
map induced by inclusion

[P 4p+3(p), P 2p+4(p)] −→ [P 4p+3(p), V 4p+3]

is bijective. From Proposition 2.1, [P 4p+3(p), P 2p+4(p)] = 0 since it is stable.
Hence [P 4p+3(p), V 4p+3] = 0.

(ii) i = 6p+ 2. From Proposition 2.1,

[P 6p+2(p), P 4p+3(p)] = 0 and [P 6p+3(p), P 4p+3(p)] = 0.

Since N is (6p+ 3)-connected, we obtain that

[P 6p+2(p), N ] = 0 and [P 6p+3(p), N ] = 0.

Thus, [P 6p+2(p), F(X,B)] → [P 6p+2(p), V 4p+3] is bijective. Therefore, the map
induced by inclusion

[P 6p+2(p), P 2p+4(p)] −→ [P 6p+2(p), V 4p+3]
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is bijective. Now we will show [P 6p+2(p), P 2p+4(p)] = 0.
From Proposition 2.6,

[P 6p+2(p), P 2p+4(p)] ∼= [P 6p+1(p),ΩP 2p+4(p)]
∼= [P 6p+1(p), S2p+3{p}]
× [P 6p+1(p),ΩΣ

∨

k>0

P (4+2k)(p+1)+2(p)].

By Corollary 2.3,

[P 6p+1(p), S2p+3{p}] = 0.

By the Hilton-Milnor theorem,

ΩΣ
∨

k>0

P (4+2k)(p+1)+2(p) ' ΩΣ(P 4(p+1)+2(p))× Y,

where [P 6p+1(p), Y ] = 0. The map

E∗ : [P 6p+1(p), P 4p+6(p)] −→ [P 6p+1(p),ΩΣP 4p+6(p)]

induced by Freudenthal suspension is bijective from the Freudenthal suspen-
sion theorem. And by Proposition 2.1, [P 6p+1(p), P 4p+6(p)] = 0 since it is
stable. Hence [P 6p+2(p), P 2p+4(p)] = 0.

5. The unstable splitting of V (1) ∧ V (1)

The purpose of this section is to prove Theorem 1.3. In order to prove this
theorem, we use the following theorem of Cohen.

Theorem 5.1 (Cohen [1]). Assume that X = ΣA. If X is a p-local space, then
there exists a homotopy equivalence

X ∧X −→
(

hocolim
1−T

X ∧X
)
∨

(
hocolim

1+T
X ∧X

)
,

where T : X ∧X −→ X ∧X is the transposition.

Denote L2(X) = hocolim
1−T

X ∧X and M2(X) = hocolim
1+T

X ∧X. Since V 2p+3 =

ΣV 2p+2, Theorem 5.1 says that

V 2p+3 ∧ V 2p+3 ' L2(V 2p+3) ∨M2(V 2p+3).

Now we will compute the homology of L2(V 2p+3) and M2(V 2p+3).
Let T− = 1 − T and T+ = 1 + T . Since T−∗ T

−
∗ = 2T−∗ and T+

∗ T
+
∗ = 2T+

∗ , p is
an odd prime ( 1

2 exists), and homotopy colimit commutes with homology,

H∗(L2(V 2p+3)) ∼= colim
T−∗

H∗(V 2p+3 ∧ V 2p+3)

∼= ImT−∗ ,
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and

H∗(M2(V 2p+2)) ∼= colim
T+
∗

H∗(V 2p+3 ∧ V 2p+3)

∼= ImT+
∗ .

The reduced mod p homology of V n, H̃∗(V n), is generated by a, b, c and d
of degree n, n− 1, n− 2p+ 1 and n− 2p, respectively, such that the homology
Bockstein β and P1

∗ on them is

β(a) = b, P1
∗ (b) = c, β(c) = d.

We denote these relations by the following diagram:

a b c d
β P1

∗ β

Then, H̃∗(V 2p+3) is

2p+ 3
a

2p+ 2
b

4
c

3
d .

Let us denote the generators of H̃∗(Σ(V 2p+2 ∧ V 2p+2)) as follows:

aa ab ac ad bb bc bd cc cd dd
ba ca da cb db dc

where ab means a⊗ b. ImT−∗ and ImT+
∗ are generated by the images of these

generators under T−∗ and T+
∗ , respectively. The following is immediate.

T−∗ (aa) = 2aa, T−∗ (bb) = 0, T−∗ (cc) = 0, T−∗ (dd) = 2dd,

T−∗ (ab) = ab− ba = −T−∗ (ba),

T−∗ (ac) = ac− ca = −T−∗ (ca),

T−∗ (ad) = ad− da = −T−∗ (da),

T−∗ (bc) = bc+ cb = T−∗ (cb),

T−∗ (bd) = bd− db = −T−∗ (db),

T−∗ (cd) = cd− dc = −T−∗ (dc),

T+
∗ (aa) = 0, T+

∗ (bb) = 2bb, T+
∗ (cc) = 2cc, T+

∗ (dd) = 0,

T+
∗ (ab) = ab+ ba = T+

∗ (ba),

T+
∗ (ac) = ac+ ca = T+

∗ (ca),

T+
∗ (ad) = ad+ da = T+

∗ (da),

T+
∗ (bc) = bc− cb = −T+

∗ (cb),

T+
∗ (bd) = bd+ db = T+

∗ (db),

T+
∗ (cd) = cd+ dc = T+

∗ (dc).
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Their relations with β and P1
∗ are as follows:

βT−∗ (aa) = 2(ba− ab) = −2T−∗ (ab),

P1
∗T

−
∗ (ab) = ac− ca = T−∗ (ac),

βT−∗ (ac) = bc− ad− da+ cb = T−∗ (bc− ad),

βT−∗ (bc) = −bd+ db = −T−∗ (bd),

P1
∗T

−
∗ (bd) = cd− dc = T−∗ (cd),

βT−∗ (cd) = −2dd = −T−∗ (dd),

βT+
∗ (ab) = 2(bb) = T+

∗ (bb),

P1
∗T

+
∗ (bb) = 2(cb+ bc) = 2T+

∗ (bc),

βT+
∗ (bc) = −bd− db = −T+

∗ (bd),

P1
∗T

+
∗ (ab) = ac+ ca = T+

∗ (ac),

βT+
∗ (ac) = bc− ad+ da+ cb = T+

∗ (bc− ad),

P1
∗T

+
∗ (bc− ad) = 2(cc) = T+

∗ (cc),

βT+
∗ (cc) = 2(dc+ cd) = 2T+

∗ (cd),

P1
∗T

+
∗ (bc) = 2(cc) = T+

∗ (cc),

P1
∗T

+
∗ (bd) = cd+ dc = T ∗∗ (cd).

That is, if we replace generators of H̃∗(M2(V 2p+2)) and H̃∗(L2(V 2p+2)), they are
represented as follows:

4p+ 6 a

4p+ 5 b 4p+ 5 e

4p+ 4 f

2p+ 7 c 2p+ 7 e′

2p+ 6 d a′ 2p+ 6 g f ′

2p+ 5 b′ 2p+ 5 h

8 g′

7 c′ 7 h′

6 d′

A
A
A
AA

A
A
A
AA

A
A
A

where the left-hand side diagram is for H̃∗(L2(V 2p+3)) and the right one is for
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H̃∗(M2(V 2p+3)).

Lemma 5.2. Σ2p−3L2(V 2p+3) ' V 6p+3 ∨ V 4p+3.

Proof. The elements of H̃∗(Σ2p−4L2(V 2p+3)) are connected by homology operations
as follows:

6p+ 2 6p+ 1 4p+ 3 4p+ 2 4p+ 1 2p+ 3 2p+ 2
a b c d

a′ b′ c′ d′

There is a map f : V 4p+2 → Σ2p−4L2(V 2p+3) such that

f∗(a4p+2) = a′,

f∗(b4p+1) = b′,

f∗(c2p+3) = c′,

f∗(d2p+2) = d′

for f∗ : H∗(V 4p+2) → H∗(Σ2p−4L2(V 2p−3)) because of deg a′ = 4p+ 2, 4p+ 2 6
min{2(2p+ 1), (2p+ 1) + 2p2 − 2p− 3}, P1

∗ (a
′) = 0, and applying Theorem 1.1.

Consider the cofiber sequence:

V 4p+2 f−→ Σ2p−4L2(V 2p+3) −→ Cf −→ V 4p+3 −→ Σ2p−3L2(V 2p+3)

Since the mod p homology of Cf is isomorphic to that of V 6p+2, Theorem 1.1
implies that there is a map from V 6p+2 to Cf which induces an isomorphism of
mod p homology. That is , Cf is homotopy equivalent to V 6p+2. Since, by Lemma
1.2, [V 6p+2, V 4p+3] = 0, we conclude Σ2p−3L2(V 2p+3) = V 6p+3 ∨ V 4p+3.

Proof of Theorem 1.3. Since V m ∧ V n = Σ(m−2p−3)+(n−2p−3) V 2p−3 ∧ V 2p−3 and
m+ n− 4p− 6 > 2p− 3,

V m ∧ V n ' Σm+n−4p−6(L2(V 2p+3) ∨M2(V 2p+3))

' (V m+n ∨ V m+n−2p) ∨ Σm+n−4p−6M2(V 2p+3).

The proof is complete by putting M = Σm+n−4p−6M2(V 2p+3).

6. Samelson product

In the previous section, we found a homotopy equivalence

V m ∧ V n −→ V m+n ∨ V m+n−2p ∨M
for m,n > 2p+ 3 and m+ n > 6p+ 3. Let ∆m,n : V m+n → V m ∧ V n be the com-
position of the inclusion and the homotopy inverse map. Let us define the Samelson
product for f : V m → ΩX and g : V n → ΩX by

[f, g] : V m+n ∆m,n−−−→ V m ∧ V n f∧g−−→ ΩX ∧ ΩX
〈,〉−→ ΩX.

In the remainder of this section, we establish the properties claimed in Theorem
1.4.
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Property (4) of Theorem 1.4: It is clear that

h∗[f, g] = [h∗f, h∗g]

for the H-map h : ΩX → ΩY by the definition of [f, g].
Property (5) of Theorem 1.4: According to Neisendorfer [7, Lemma 10.5],

we obtain the following.

Lemma 6.1. If x, y ∈ H∗(ΩX) are primitive, then [, ]∗(x× y) = [x, y], where [, ] :
ΩX × ΩX → ΩX is commutator and [x, y] = xy − (−1)|x||y|yx.

For all f ∈ [V n, X], ϕ(f) = f∗(an) is primitive because an ∈ Hn(V n) is primitive.
If am, an and am+n denote the top cell of V m, V n and V m+n respectively, then
ϕ(∆m,n) = (∆m,n)∗(am+n) = am ⊗ an. Hence, considering the following homotopy
commutative diagram

V m × V n ΩX × ΩX

V m ∧ V n ΩX

V m+n

-f×g

? ?

[,]

-〈f,g〉

6
∆m,n

´
´

´
´

´́3

[f,g]

we obtain that

ϕ([f, g]) = [f, g]∗(am+n) = 〈f, g〉∗(am ⊗ an)
= [, ]∗(f × g)∗(am × an) = [, ]∗(ϕ(f)× ϕ(g))
= [ϕ(f), ϕ(g)],

establishing Property (5).
Properties (1)-(3) of Theorem 1.4: To establish them, we recall the following

proposition of Neisendorfer.

Proposition 6.2 ([7, Proposition 9.10]). Suppose C1, C2 and C3 are coabelian
(e.g. suspension), and suppose G is a group-like space. Let a, a′ ∈ [C1, G], let b, b′ ∈
[C2, G], and let c ∈ [C3, G]. If we denote the 〈a, b〉 as the composition C1 ∧ C2

a∧b−−→
G ∧G 〈,〉−→ G, then the following formulas hold:

(i) 〈a+ a′, b〉 = 〈a, b〉+ 〈a′, b〉 and 〈a, b+ b′〉 = 〈a, b〉+ 〈a, b′〉,
(ii) 〈a, b〉 = −T̄ ∗(1,2)〈b, a〉,
(iii) 〈a, 〈b, c〉〉+ T̄ ∗(1,2,3)〈b, 〈c, a〉〉+ T̄ ∗(1,3,2)〈c, 〈a, b〉〉 = 0,

where T̄(1,2,3) denotes a transposition from C1 ∧ C2 ∧ C3 to C3 ∧ C1 ∧ C2.
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For f : V m → ΩX and g : V n → ΩX, the Samelson product [f, g] is a composi-
tion 〈f, g〉∆m,n. Hence from the formula (i), we have the bilinearity

[f + f ′, g] = [f, g] + [f ′, g] and [f, g + g′] = [f, g] + [f, g′]

for f, f ′ : V m → ΩX and g, g′ : V n → ΩX, i.e. property (1) of Theorem 1.4 holds.
Suppose that the diagram

V m+n ∆m,n−−−−→ V m ∧ V nyImn

yT

V m+n ∆n,m−−−−→ V n ∧ V m
(2)

is commutative up to homotopy, where I : V k → V k is the map such that I∗(ak) =
−ak in homology. Then formula (ii) of Proposition 6.2 implies anticommutativity
(property (2) of Theorem 1.4).

Suppose that the diagram

V k+m+n ∆k+m,n−−−−−→ V k+m ∧ V n
y∆k,m+n

y∆k,m∧1

V k ∧ V m+n 1∧∆m,n−−−−−→ V k ∧ V m ∧ V n
(3)

is commutative up to homotopy. Then formula (iii) of Proposition 6.2 implies the
Jacobi identity (Property (3) of Theorem 1.4).

Proposition 6.3. Diagram (2) is commutative up to homotopy if m+ n > 8p+ 2.
Moreover, property (2) of Theorem 1.4 holds.

Diagram (3) is commutative up to homotopy if m+ n > 12p+ 2. Moreover, prop-
erty (3) of Theorem 1.4 holds.

Proof. Consider the element an ⊗ am ∈ Hm+n(V n ∧ V m). Since m+ n > 8p+ 2,
P1
∗ (an ⊗ am) = 0 and Hm+n−2p+3(V n ∧ V m) = 0, there is a map f : V m+n → V n ∧

V m with f∗(am+n) = (−1)mnan ⊗ am from Theorem 1.1. Moreover, such a map is
unique up to homotopy because Hm+n−2p+3(V n∧ V m) = 0. Since (∆m,n)∗(am+n) =
am ⊗ an, the top-right arrow and the left-bottom arrow in Diagram (2) satisfy this
condition. The uniqueness implies that Diagram (2) is commutative up to homotopy.

Diagram (3) is also commutative because of the uniqueness of Theorem 1.1.

References

[1] F.R. Cohen, Fibration and product decompositions in nonstable homotopy
theory. In Handbook of Algebraic Topology. North-Holland, Amsterdam, 1995,
pp. 1175–1208.

[2] F.R. Cohen, J.C. Moore, J.A. Neisendorfer, Torsion in homotopy groups.
Ann. Math. 2 109(1) (1979), 121–168.

[3] F.R. Cohen and J.A. Neisendorfer, Note on desuspending the Adams map,
Math. Proc. Cambridge Philos. Soc. 99(1) (1986), 59–64.



Homology, Homotopy and Applications, vol. 8(1), 2006 186

[4] B. Gray, On the homotopy groups of mapping cones. Proc. London Math.
Soc. 3 26 (1973), 497–520.

[5] B. Gray, EHP spectra and periodicity. I. Geometric constructions. Trans. Am.
Math. Soc. 340(2) (1993), 595–616.

[6] J. Milnor, The Steenrod algebra and its dual, Ann. Math. 2 67 (1958), 150–
171.

[7] J. Neisendorfer, Primary homotopy theory, Mem. Am. Math. Soc. 25(232)
(1980), iv+67.

[8] H. Toda, Composition methods in homotopy groups of spheres. Annals of
Mathematics Studies, 49. Princeton University Press, Princeton, NJ, 1962.

[9] H. Toda, Algebra of stable homotopy of Zp-spaces and applications, J. Math.
Kyoto Univ. 11 (1971), 197–251.

Takahisa Shiina shiina@math.shinshu-u.ac.jp

Department of Mathematical Sciences
Shinshu University
Matsumoto 390-8621
Japan

This article is available at http://intlpress.com/HHA/v8/n1/a5/


