Homology, Homotopy and Applications, vol.1, No.7, 1999, pp.163-168 ISSN 1512-0139

COMPUTING SECOND COHOMOLOGY OF FINITE GROUPS WITH
TRIVIAL COEFFICIENTS

GRAHAM ELLIS anp IRINA KHOLODNA
(communicated by Ronald Brown)

Abstract
The paper describes a simple procedure for computing the second
cohomology H?(G, A) of a finitely presented finite group G with coeffi-
cients in a finitely presented finite abelian group A. An accompanying
text-file contains a MAGMA implementation of the procedure.

1. Introduction

This paper describes the mathematics behind a simple procedure for computing the second
cohomology H?(G, A) of a group G with coefficients in an abelian group A, where G acts
trivially on A. An accompanying text-file contains computer code for adding the function

S, Cocycles, Extensions, InducedPhi := SecondCohomology(G,A,Phi,q,t)

to the computer-algebra language MAGMA V2.4 [1]. The input variables for this function are: a
finitely presented finite group G; a finitely presented finite abelian group A; any homomorphism
Phi:G — G or homomorphism Phi: A — A; natural numbers q and t. In general one sets q := 1,
but when both G and A are p-groups the assignment q := p leads to better performance.
The parameter t is a boolean toggle. One sets t := 1 if information on cocycles is required,
and t := 0 in order to omit the computation of cocycles. The first output variable S is a
sequence {m, 4, -, m, A, Ag,, -, A, } of abelian groups whose direct product H is isomorphic
to H?(G, A) via isomorphism (7) below.

The second output variable is a sequence Cocycles. If t = 1, the ith term of the sequence
is a mapping «;:G X G — A, namely a cocycle representing the ith element in H. If t = 0
the sequence is empty. The third output variable is a sequence Extension whose i¢th term is a
homomorphism of finitely presented groups 7;: E;—G, namely a central extension representing
the ith element in H. The fourth output variable is a mapping InducedPhi on the set of
integers {1,---,n} where n denotes the order of H; the homomorphism H — H induced by
Phi maps the ith element of H to the i¢'th element where i’ = InducedPhi(i). Note that if
Phi happens to be an isomorphism then the extension group Ej; is isomorphic to the extension
group E;. The output variable InducedPhi is the only output variable to depend on Phi.

The function also returns two further output variables. The first of these is the sequence of
invariants for the abelian group H?(G, A). The second is a sequence V. The elements of V are tu-
ples (i1, ---,ir+q) of integers, and the (bijective) correspondence H — V, (;,,, Ai1], - - -, Ak, [6t+4])
— (i1, -, %t+q) indicates the ordering on H; here we have written BJ[i] to denote the ith ele-
ment of a structure B (and this makes sense since each member B in the sequence S is a group
whose elements are ordered.)

A GAP [4] implementation of the procedure is available on request from the second author.
Although originally implemented as a first step towards calculations of higher-dimensional

Received 18 March 1999, revised 17 June 1999; published on 30 June 1999.

1991 Mathematics Subject Classification: 20J06

Key words and phrases: second cohomology, group extensions, Magma software

© 1999, Graham Ellis and Irina Kholodna. Permission to copy for private use granted.

Homology, Homotopy and Applications, vol. 1, No. 7, 1999 164

cohomology with non-trivial coefficients [2], we feel that the procedure is likely to be of interest
in its own right (¢f. [3]). It makes implicit use of the Universal Coefficient Theorem (see (3)
below) to reduce the computation of second cohomology to that of second integral homology.
Both MAGMA and GAP contain the darstellungsgruppe function for constructing covering
groups from which second integral homology can be extracted. However, our implementation
takes a slightly different approach to the construction of covering groups which involves the
LLL algorithm [8] for finding bases in integer lattices. This approach ‘minimizes the number
of generators’ and ‘maximizes the functoriality’ of the relevant covering group.

2. The method

Let G be a group which is freely presented as a quotient G = F/R of a free group F by
a normal subgroup R. Let A be an abelian group. The five-term exact sequence in group
cohomology [5] yields an isomorphism

A) — Hom(i A)} (1)

2 ~
H*(G, A) = cokernel {Hom(Nk

F
(R, F]’
where Hom(—, A) denotes the group of group homomorphisms. Since R/(R N [F, F]) is free
abelian (it is a subgroup of the free abelian group F/[F, F]), the canonical quotient homomor-
phism R/[R,F|—-R/(RN|[F,F]) has a non-canonical splitting o: R/(RN [F, F]) = R/[R, F].
We thus have an isomorphism

R RNI[F, F] R
= . 2
mE - mE CCRAER)

We set M (G) = RN [F, F]/[R,F] and note that M (G) is isomorphic to the second integral
homology of G. Isomorphisms (1) and (2) combine to give

F
H2 (G, A) = HOm(M(G), A) D COker {Hom(m, A) — HOm(m, A)} . (3)
Furthermore, letting e = exp(A) denote the exponent of A, we have
Hom (M (G), A) & Hom(M (G)/M(G)", A) (4)

where M (G)/M(G)¢ = M(G) ®z C.. (Here C, denotes the cyclic group of order e. If A has
infinite exponent then we take e = 0 and interpret Cp as the infinite cyclic group.) If G is
finitely generated, then G2 and M (G)/M (G)¢ are both direct products of finitely many cyclic
groups, say

G”bECklx---xC’kd, (5)
M(G)/M(G) = Cpy X -+ % C, - (6)

For each natural number n and abelian group A we define the quotient group A,, = A/ <
a” : a € A> and subgroup ,A = {a € A : a" = 1}. One readily checks that (3), (4), (5) and
(6) combine to give an isomorphism

H*(G,A) =2 L AX- XA X Ap X---x Ay, . (7)
Isomorphism (7) is the basis of our computer procedure.

The procedure reads in presentations for G = F/R and A, and also the action of an en-
domorphism ¢ on the generators of either G or A. It uses the LLL algorithm to find a basis
for R/R N [F, F] expressed in terms of the generators of F. This basis and the presentation
for G could be used to construct a presentation for a covering group D whose centre contains
the Schur multiplier M (G) and whose quotient D/M (G) is isomorphic to G. However, instead
of constructing D the procedure assumes that A is finite, uses the presentation of A to de-
termine e = exp(A), and constructs a presentation for D, = D/M(G)°. The abelian group

Homology, Homotopy and Applications, vol. 1, No. 7, 1999 165

M(G)/M(G)¢ is determined by applying to D, one of MAGMA’s procedures for solving the
word problem in a finitely presented group. The basis for R/R N [F, F] and the structure of
M(G)/M(G)¢ are then used to calculate the required properties of H?(G, A) via isomorphism
(7). In order to solve the word problem in D, the procedure assumes that the group G is
finite. This assumption ensures that M (G) is finite, and hence that D, is finite. If no infor-
mation is known about G, other than its finiteness, then the word problem is solved using the
Todd-Coxeter procedure; this option is specified by setting the parameter q := 1. If G is a
finite p-group, then so too are M(G) and D.. The p-quotient algorithm (which converts an
arbitrary finite presentation of a finite p-group into a power-commutator presentation) is then
used to solve the word problem in D.; this option is specified by setting the parameter q := p.
More generally, if G is a finite soluble group then so too is D., and one could in principle use
the soluble quotient algorithm to solve the word problem in D,. This option is not included
in the accompanying implementation of the procedure. The help files in the current version
of Magma mention that a future release of the package will contain a function for convert-
ing an arbitrary finite presentation of a soluble group into a power-commutator presentation.
When this release is available the ‘soluble quotient option’ can be included, under the setting
q := 4 say, by adding three lines of code to the subsidiary function EnumeratedGroup which
is described below.

If an isomorphism G 2 P is known between the finite group GG and a permutation group P,
then the extremely efficient methods of D.F. Holt [6][7] could be used to determine the Schur
multiplier M (G) and cohomology group H2(G, A). These methods are included as part of
the standard MAGMA package (for A an elementary abelian p-group with possibly non-trivial
G-action) and so are not included as an option in our procedure. (It should be noted that
MAGMA’s function for obtaining a faithful permutation representation of a finitely presented
group is based on the Todd-Coxeter procedure.)

The procedure can be adapted to handle certain infinite groups G with finite coefficients A.
The point here is that the right-hand side of isomorphism (7) is a finite abelian group if A is
finite and G is finitely presented. The above method for determining the groups Ay, is based
on the LLL algorithm and does not require finiteness of G. However, the above method for
determining the ,,; A involves calculating the finite group M (G)/M (G)¢ by solving the word
problem in D.. If G is infinite then soo too is D.. However, suppose that for some integer k
depending on e the group G has the following property.

PROPERTY: The quotient G/Gelc is a finite group, and for all g € G the identity gei =1
holds for some integer i only if the identity ¢g¢° ' = 1 holds.

(Here G™ denotes the normal subgroup of G' generated by all elements g" with g € G.) This
property implies that M (G)/M (G)® maps injectively into the quotient group De/(De)ek, and
that this quotient group is finite. We could thus apply the Todd-Coxeter procedure (or possibly

the p-quotient algorithm or soluble quotient algorithm) to a presentation of D,/ (De)ek in order
to determine M (G)/M (G)¢, and hence determine H?(G, A).

3. The implementation

The computer algebra language MAGMA is extremely readable. The code listed in the
accompanying text-file can thus be viewed as a type of “pseudo code” giving fine details of our
procedure. (It can, of course, also be loaded into MAGMA V2.4 and used!) The code consists of
one main function and several subsidiary functions. The main function
SecondCohomology (G,A,Phi,q,t) has inputs and outputs as described above. Suppose that
<z|r>=<ux, - ,xq | r1, -+, rm > is the presentation of the finite group G, so that z is a
generating set for F' and r is a set of elements in F' that normally generate R. The function
RelatorMatrix (F,rels), with rels :=r, uses the LLL algorithm to return integer matrices

Homology, Homotopy and Applications, vol. 1, No. 7, 1999 166

B,T. The ith row of B, and the free group element

51 1= p VIO, TE2] T

)

both represent the ith element in a basis for R/ RN[F, F]. This function is used to construct the
set s := {s1,---, 8q}- The function EnumeratedGroup (4,q) is applied to the finitely presented
group A and returns an enumerated group A together with isomorphisms v: A — A, v/: A — A.
If ¢ = 1 the Todd-Coxeter procedure is used in the enumeration. If ¢ = p then the p-quotient
algorithm is used. The function does not assume that A is abelian and can thus be applied to
an arbitrary finite presentation. (The reader may wish to improve this function. As explained
above, the soluble quotient algorithm could be included under the setting ¢ = 4. MAGMA’s
implementations of the Todd-Coxeter procedure and p-quotient algorithm allow the user to set
various parameters. The function uses the default settings, but for certain groups it may be
useful to modify the function to allow other settings.) The main function computes e := exp(A)
and constructs the presentations

P = <gz|sU{lxz,r] : z€z,rerU{r® : rer}>,

P = <zl|sU{fz,y] : 2,y €z} >

where [z, y] denotes a commutator. It is readily checked that P presents the group D, described
in the preceding section, and that P’ presents G°. The function EnumeratedGroup(D,,q) is
used to construct an enumerated group D,. The subgroup of D, generated by the images of
the relators r is calculated; this subgroup is readily seen to be isomorphic to M (G)/M(G)®.
Working in D, the main function determines the orders m; of the generators of M (G)/M (G)®.

. . —ab
It also uses the presentation P’ to produce an enumerated version G of Ge. The order k;

of the image in @ab of each s; € s is computed. The groups Ag,, m;A in the right-hand
side of isomorphism (7) are constructed as subgroups of the enumerated group A using the
functions NQuotient (Z,k), NCoQuotient (A,m). In order to construct a group extension 7,
corresponding to a cohomology class v € H?(G, A) one can use isomorphism (1) to represent
v by a homomorphism v: R/[R, F] — A. One can then form the group

_ (F/[R, F] x A)
~ < (r,v(r)=1) : for each generator r of R/[R,F] >

It is routine to check that v is represented by a central extension of the form A — E—»G.
The function Extension returns the homomorphism E—G of finitely presented groups. The
function Cocycle uses EnumeratedGroup(E,q) to produce a surjection E—G where E is an
enumerated version of E. It then computes a corresponding cocycle a,: G X G — A by choosing
a set-theoretic section o,: G — E and using the standard formula,

oy(gh) = ou(g)os(h)aw (g, h) .

The section o, is constructed as a composite map G — G — E where G is an enumerated
version of G obtained from the function EnumeratedGroup (G,q). The point of passing through
G is to ensure that each element in the finitely presented group G first gets reduced to a
canonical form. The endomorphism ¢ : H?(G, A) — H?(G, A) induced by phi is constructed
in the function InducedPhi. The construction is based on a routine analysis of (7) and is
divided into two cases. The case where Phi is an endomorphism on A is handled by the
function InducedPhiOnA. The case where Phi is an endomorphism on G is handled by the
function InducedPhiOnG. The second case involves finding integer solutions X to an equation
Y = X B where B is an integer matix and Y an integer vector. The function SolveYeqXB(Y,B)
uses the LLL algorithm to produce the solution vector X.

4. An example
Having loaded our implementation into MAGMA V2.4, the commands

Homology, Homotopy and Applications, vol. 1, No. 7, 1999 167

F:=FreeGroup(2); x:=F.1; y:=F.2; q:=2; t:=0;
G:=quo<F | x72, y~256, (x*y)~2 >; A:=quo<F | x°2, y~4, (x,y) >;
,,Extensions,_,Invariants:=

SecondCohomology (G,A,IdentityHomomorphism(4),q,t);
Invariants; [Domain(Extensions[i]) : i in [1..#S11;

first list the abelian group invariants for H?(Dasg, Za X Z4) where Dosg is the dihedral group of
order 512, and then list presentations for the 64 Yoneda inequivalent extensions representing
the cohomology classes of this cohomology group. A Sun Microsystems Ultra 10 workstation
took about 0.5 seconds of CPU time to perform these commands. (The same commands, but
with q := 1, took about 2.0 seconds of CPU time.) Further commands, such as

Phi:=hom<A->A | [A.1,A.1%A.2]>;

Psi:=hom<G->G | [G.1%*G.2,G.2"-1]1>;
—s—»s_,InducedPhi:=SecondCohomology (G,A,Phi,q,t); InducedPhi(7);
—s—»s_,InducedPhi:=SecondCohomology(G,A,Psi,q,t); InducedPsi(7);

can help in the task of determining the distinct isomorphism classes represented by the groups
in the sequence E. These particular Phi and Psi represent non-trivial automorphisms. The
values of InducedPhi(7) and InducedPsi(7) are computed to be 15 and 8. Therefore E[7],
E[8] and E[15] are isomorphic groups.

If the Todd-Coxeter process is to be used (q=1) then the group G must be of a fairly modest
order. For instance, with A as before, the command

,,Extensions:=SecondCohomology(G,A,IdentityHomomorphism(A),1,0);

took 15 secs of CPU time on the dihedral group

1000

G :=<uz,y |2y, (zy)* >

of order 2000, and took 8 mins 14 secs of CPU time on the group

1 1 2

G:=<uz,9,z| w_1y3w_1y,y_ z3y_ Z,T 2P >

of order 61 440. Most of the time is taken in the application of the Todd-Coxeter process to the
group D, = D/M(G)°. Experimentation suggests the the presentation of D, constructed in
the procedure is often not the most ‘efficient’, and that Tietze transformations can be applied
to obtain a ‘more efficient’ presentation. In order to include such transformations into the
procedure one would need a MAGMA function

SD, alpha, beta := Simplify(D)

that called a finitely presented group D, applied Tietze transformations, and returned an
isomorphic finitely presented group SD together with isomorphisms a: D — SD, 3:SD — D.

Acknowledgements.

The first author was based at the Max-Planck-Institute fiir Mathematik, Bonn during part of this
work and would like to thank the institute for its generous hospitality. The second author is grateful
to Forbairt for financial support.

References

1. W.Bosma, J. Cannon and C. Playoust, ‘The MAGMA algebra system I: the user language’,
J. Symbolic Comput. 24 (1997), 235-265.

Homology, Homotopy and Applications, vol. 1, No. 7, 1999 168

2.

G.Ellis and I.Kholodna, ‘Three-dimensional presentations for the groups of order at
most 30’, LMS J. Comp. Math., to appear.

D.L. Flannery and E. O’Brien, ‘Computing 2-cocycles for central extensions and relative
difference sets’, Communications in Algebra, to appear.

The GAP Group, ‘GAP - Groups, Algorithms and Programming, Version 4.1°, School of
Mathematical and Computational Sciences, University of St. Andrews, Scotland (1998).
P.J. Hilton and U.Stammbach, A course in homological algebra, Graduate Texts in Math.
4, Springer-Verlag (1970).

D.F. Holt, ‘The calculation of the Schur multiplier of a permutation group’, Computa-
tional Group Theory, (Durham, 1982), Academic Press (1984), 307-318.

D.F. Holt, ‘The mechanical computation of first and second cohomology groups’, J. of
Symbolic Computation 1 (1985), 351-361.

A.K.Lenstra, H.W. Lenstra and L. Lovasz, ‘Factoring polynomials with rational coeffi-
cients’, Math. Annalen 261 (1982), 515-534.

This article may be accessed via WWW at http://www.rmi.acnet.ge/hha/ or by anonymous
ftp at ftp://ftp.rmi.acnet.ge/pub/hha/volumes/1999/n7/n7.(dvi,ps,dvi.gz,ps.gz)

Graham Ellis Graham.Ellis@nuigalway.ie

Max-Planck-Institut fiir Mathematik

Bonn

Irina

Kholodna

Department of Mathematics
National University of Ireland
Galway

