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THE SET OF RATIONAL HOMOTOPY TYPES
WITH GIVEN COHOMOLOGY ALGEBRA

HIROO SHIGA axp TOSHIHIRO YAMAGUCHI
(communicated by James Stasheff)

Abstract
For a given commutative graded algebra A*, we study the
set M 4~ = {rational homotopy type of X | H*(X;Q) = A*}.
For example, we see that if A* is isomorphic to H*(S3 Vv S° Vv
S16:Q), then M4« corresponds bijectively to the orbit space
P3(Q)/Q* T1{*}, where P3(Q) is the rational projective space
of dimension 3 and the point {*} indicates the formal space.

1. Introduction

For a given graded algebra over the rationals (abbreviated to G.A.) A*, there
exists at least one rational homotopy type having A* as a cohomology algebra,
namely the formal space. In general there are many rational homotopy types having
isomorphic cohomology algebras. In [5] it was shown that there are two rational
homotopy types with isomorphic cohomology algebras and isomorphic homotopy
Lie algebras, and in [6] it was shown that there are infinitely many rationally elliptic
homotopy types having isomorphic cohomology algebras. Set

M4+ = {rational homotopy type of X | H*(X;Q) = A*}.

The set M 4+« was studied by several authors([1],]2],[3],[7],[10]). For example, Lup-
ton ([3]) showed that for any positive integer n there is a G.A. A* such that the
cardinality of M 4« is n. Halperin and Stasheff studied M 4« by the set of pertur-
bations of the differential of the formal differential graded algebra (abbreviated to
D.G.A.). In particular they showed for A* = H*((S? Vv S?) x S%;Q), the set M4~
consists of two points. This example is also caluculated from our view point (see
Section 3(4)). Schlessinger and Stasheff ([7]) extended the arguments in [2].

We study M4+ from a different point of view. Our strategy to study M4« is
as follows. We construct inductively 1-connected minimal algebras m,,_1 such that
there is a G.A.map

on: (H*(mp—1)(n))* — A*

so that o’ is isomorphic for i < n — 1 and monomorphic for i = n, where
(H*(mp—1)(n))* is the sub G.A. of H*(m,_1) generated by elements of degree
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< n. Suppose we have constructed the pair (m,_1,0,—1). Then there is a unique
minimal algebras mp containing m,_; and a G.A.map

op : (B (mp)(n))* — A"

such that op? is isomorphic for ¢ < n — 1, monomorphic for 4 = n and moreover
a%‘“ induces an isomorphism on the decomposable part

op™tt: (H*(mD)(n))n+1 - (A(n))n+17

where (A(n))"*! is the degree n + 1 part of the subalgebra A(n) of A* generated
by elements of degree < n. To construct m,, we choose a subspace W of H ”*1(m D)
satisfying certain conditions (see (2.3) and (2.4) in Section 2) so that H"*!(m,,) ®
W = H""‘l(mp).

Such a space W may be regarded as a rational point of a Grassmann manifold.
The set of isomorphism classes of m,, containing m,,_; corresponds to the disjoint
union of subsets of rational points of Grassmann manifolds modulo the action of
D.G.A.automorphisms of mp (see Theorem 2.1). We can show that any minimal
algebra m with H*(m) 22 A* is obtained in this way. For example if A* = H*(S3 Vv
S5 v S16:Q), then M 4+ corresponds bijectively to P3(Q)/Q* [[{x}, where P3(Q)
is the rational projective space of dimension 3 and the point {*} corresponds to the
formal space (see Section 3 (2)).

Throughout this paper we assume that G.A. A* satisfies that A% = Q, A!
and dimg A® < oo for any positive integer i.

2. Inductive construction of minimal models

In this section we construct inductively minimal algebras m,, and G.A. maps
on : H*(my,)(n + 1) — A* such that o, is isomorphic for i < n and monomorphic
fori =n+ 1.

Suppose that we constructed a minimal algebra m,,_1 satisfying the following
conditions.

(1)n—1 my—1 is generated by elements of degree < n — 1.
(2)n—1 There is a G.A.-map

On-1: (H*(mp-1)(n))" — A"

where 0,,_1% is isomorphic for 4 < n — 1 and monomorphic for i = n.

Let mp be the minimal algebra obtained by adding generators to m,,_; whose
differentials form a basis for the kernel of o, _1""|(H(m,_1)(n))"*! and op :
(H(mp)(n))* — A* be the induced map. We set

dimg A" =u, dimg A" /(A(n))"! =5
dimg H™ ' (mp) = v

and
HnJrl (mD)

H (mp) ()1 "

dimQ
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Then we have
u—s=v—t (2.1)
Let [ be an integer satisfying
maz(0,t —s) <1<t (2.2)
and W be a [-dimensional subspace of H"*!(mp) such that
W (H*(mp)(n))" = {0}. (2.3)
Let m" be the minimal algebra obtained by adding I generators whose differentials
span W. Note that H(m")(n) = H(mp)(n), hence we have a G.A.map op :
(H(m")(n))* — A* and
H™ Y ™)y oW = H " (mp)
so that
Hn+1 (mW) An+1
(H(m™)(n)" T Am)
Let m",, be a minimal algebra obtained by adding to m" the cokernel of op™ :
(H(m")(n))® — A™. Then we have a G.A. map

on s (HmW,)(n))* — A*

dimQ

such that ¢,,* is isomorphic for ¢ < n. For a linear monomorphism
b H (™) (H ") (n)™ — A (A(n)™,
if the map o,, @ ? can be extend to a G.A. map
oW (HmW ) (n+ 1)) — A%, (2.4)

then the pair (m",,,o",,) satisfies the condition (1),, and (2),. Remark that if we
take W so that dimg W =t we can always construct a G.A. map (2.4).

Let m,, be a minimal algebra containg m,,_; (hence mp) satisfying (1),, and (2),.
Then m,, is constructed from mp by taking W as the kernel of i* : H*(mp) —
H*(m,,), where 4 is the inclusion.

By Pliicker embedding Grassmann manifold is a projective variety defined over
Q. Then the @Q-subspace W corresponds to a rational point of the variety. Let
Gr(v,1)(Q) be the set of rational points of the Grassmann manifold of [-dimensional
Q-subspaces in a v-dimensional space H"*!(mp). Set

M, ={W € Gr(v,1)(Q)| W satisfies (2.3)}

satisfying  (2.3). We take bases for H"TY(m")/(H*(m")(n))"*! and
H*(m")(n)"*1. If we write a basis for W as a linear combinations of those
bases, we see that M is a Zariski open set of Gr(v,1)(Q) (Compare with Example
(3) in Section 3). Set

O, = {W € M| there is a G.A.map o', satisfying (2.4) for some linear map }.

Let G be the group of D.G.A.automorphisms of mp. Then G acts on H" ™ (mp)
and hence on Gr(v,1)(Q). Let W be an element of O; and ® be an element of G.
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Then it is easy to see that ® can be extended to a D.G.A.isomorphism

C o W (W
d:m ,L—>m( ),L.

Hence G also acts on O;.
Conversely let Wy, W5 be [-dimensional subspaces of H ”*1(m p) such that there
is a D.G.A.isomorphism

fom", - mW2,.
Then flmp = ® is an element of G and
(I)(Wl) = WQ.

Hence we have

Theorem 2.1. The set of isomorphism classes of minimal algebras m,, contain-
ing a minimal algebra my,_1 and satisfying (1), (2), corresponds bijectively to the
disjoint union of orbit spaces

t

X,.= [ ove.

l=maz(t—s,0)
Note that X, is not empty since O; is not empty.

Definition 2.2. A G.A. A* is called k-intrinsically formal (abbreviated to k-1.F.)
if for any minimal algebras m with H*(m) = A*, the sub D.G.A. m(k) is unique
up to isomorphism.

Note that any G.A. A* is at least 2-1.F..

Let A* be (n—1)-L.F. and m be arbitrary minimal algebra with H*(m) = A*. Set
Mp—1 =m(n —1) and i,,—1 : mp_1 — m be the inclusion. Then we can construct
minimal algebras mp and m"o, as previous way where Wy is the kernel of the
induced map

Z'D* : H”'H(mD) — H”'H(m).
The inclusion ¢p can be extended to

in:mWOn—>m

so that m"°,, and i,,* satisfy (1), (2),. Hence m can be constructed inductively as
this way. Especially we have

Corollary 2.3. If A* is (n—1)-L.F. and A’ =0 for j > n+1. Then O; = M; and
My = Xn = Hmaw(t—s,O)glgt MZ/G

Suppose A® = 0 for 4 < n. Then X}, is one point for k& < 3n + 1. Therefore ms,
is uniquely determined, i.e., A* is 3n-1.F.. This implies

Corollary 2.4. Any n-connected k-dimensional finite CW complez is formal if
k<3n+1.
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This result was noticed by Stasheff [8]. We see that Corollary 2.4 is best possible
by the example A* = H*(S3 Vv S3V S8, Q).
The following examples are studied in the next section, where degree is denoted
by suffix.
(1) A* = H*(S3vS"VvS?%;Q),which is 20-LF. andu = s = 1, v =t = 3at n = 21.
(2) A* = H*(S?VS°VS16;Q),whichis 14-L.F.andu =s =1,v =t =4 at n = 15.

(3) A* = A(z3,y5) @ Qlzs]/(zy, 222, y22, 23), which is 14-LF. and u = 1, s = 0,
v=>5,t=4atn=15.

(4) A* = H*((S%? v S?) x 83;Q), which is 3-LF. and u =2, s =0, v = 4, t = 2
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(7) A* = H*(S° v (53 x S19);Q), which is 8- LF. andu=s=v=t=1latn=09.

(8) A* = H*((S? x S®)#(93 x S$8);Q), which is 6-LF. andu=s=v=¢=2 at
= 7. Here { is connected sum.

3. Some examples

(1) A* = H*(S3 Vv 8"V S?%,Q) = N(w3,y7) ® Q[222]/(wy, 22, Y2, 2°)
Then A* is 20-1.F. and by straightfoward calculation

Mmoo = (/\(mayv 097811a91379%57 0%57 9%77 0%73 0%9) 0%9)7d)

with the differential is as follows :
d($) = d(y) = 07 deg = 2y, deu = .1399, d913 = 1‘011, d9%5 = yﬁg, de%{) = $913,
d9%7 = x0%5 + yb11, d9f7 = x9%5, d9%9 = x0%7 + yb13, d@fg = x@%.

Then at n =21, u = s =1 and v = t = 3. In fact mp = may and H??(mp) =
Q{e1,e2,e3}, where e; = [20%], ea = [201 + yb%:] and e3 = [yfi;]. Let W be a 2
dimensional subspace of H??(mp) spanned by

ajer + aziep +azzes (i =1,2),
with

a1 az1 Gz
rank ’ ’ S —)
ai2 Qa2 az?2
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Let f € Aut mp = G be an element such that
f(z) =Xz, f(y)=py, ApeQ’.
Then we have
fler) = Nper, flea) = NpiPes, fles) = Apes.

The set of W forms Gr(3,2)(Q), the rational points of Grassmann manifold of
2-dimensional spaces in the 3-dimensional space H??(m(20)). By the Pliicker em-
bedding i : Gr(3,2)(Q) — P?*(Q),

aiil a1
ai2 Q2

ail as;
ai2 asz2

az;1 as;
azz2 as2

(W) = ],

G acts on P%(Q) by flz1, 79,23 = [Mpdzy, Nutae, NopPas] = [pzy, 20, p~las]
with p = A3, Hence by Corollary 2.3, we have

M- = My /G [ Ms = P*(Q)/Q" TT{+}-

(2) A* = H*(S3 Vv S5V S16; Q) = A(w3,y5) ® Q[z16)/ (7Y, 22, Y2, 2°)
Then A* is 14-1.F. and by straightfoward calculation

mp =mi4 = (/\(1’7y,97,99,0%1,9%1,9%3,0%3)7d) (*)

) )

with the differential is as follows:
d(l’) = d(y) = Oa d97 = 2y, d09 = 1977 da%l = y97’ da%l = $99, de%S = xe%la
do3, = 0}, + yb.

Then at n = 15, u = s = 1 and H'®(mp) = Q{e1, €2, €3, €4}, where e; = [2615],
ea = [y0}], e3 = [2035 + 0700] and e4 = [y07, + 0705]. Hence at n = 15, v =t = 4.
Let W be a 3-dimensional subspace of H'(mp) spanned by

a1e1 +az €2 +asies +asen  (1=1,2,3),

where I‘ank(ajvi)lgjg&lgigg =3.
Let f € Aut mp = G be an element such that

f(@) =2z, fly)=ny, ApeQ"
Then we have
fler) = Noper, flea) = AuPea, f(es) = NP pes, fles) = NpPey.

The set of W forms Gr(4,3)(Q), which is isomorphic to P3(Q) by the Pliicker
embedding i : Gr(4,3)(Q) — P3(Q),

Then G acts on P?(Q) by fla1,wo, 23, 24] = NSz, N uSwo, N1 pPas, N 24] =
[pz1, pro, p*x3, x4] by putting p = A2u~1. Hence by Corollary 2.3, we have

Ma- = M3 /G ] Ma =~ P2(Q)/Q" [TH#)-

(3) A* = A(z3,y5) ® Qlzs]/(xy, w2?,yz?, %)

ai1 a1 as;
ai2 Q22 Aas;2
a3 a2,3 as;s

ai,lr a2 Q4,1
ai2 Q22 Q4,2
ai,3  a2,3 Q44,3

ai1 a3l a4,
ai2 Qas2 Q4,2
a1,3 as3,3 Qa4,3

a21 as1 Q41
a22 Q32 @42
a23 Q33 @43

) ) )

o) = [
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Then A* is 14-1.F. and at n = 15, u = 1,5 = 0, and
mp =miy =m'14 ® Q[z],

where m’14 is isomorphic to my4 in the example (2) and d(z) = 0. Then H'(mp) =
Q{e1,e2,e3, €4, f1}, where e1 = [2013], ea = [yb14], e3 = [1675 + 0700], eq = [y07, +
0709] and f; = [2?]. Hence at n = 15, v = 5, t = 4. By Corollary 2.3,

My = X15 = My/G.
Let W be an element of M, spanned by
aier + azie2 +ages +asieqa +as;fi (i =1,2,3,4),
with
rank (aji)ij<ancica =4 (%)

By Pliicker embedding, we see that the set of W satisfying (*) corresponds bi-
jectively to AY(Q) = {[x1, x2, 23, T4, x5] € PY(Q)]x1 # 0}
Let f € Aut mp = G be an element such that

f(@) =2z, fly)=ny, f(z)=rz, N\preQ"
Then we have
fHler) = Nper, f*(e2) = Mlea, [*(e3) = NP pPes,
[ (eq) = )\3#264, [ (f1) = 52f1-
Hence G acts on P4(Q) by
f- [13173327373,334,%5] = [)\12/18%17>\11,U5H2$2,)\9M6f€2$37)\gﬂ6f€2$47>\7ﬂ7f€2$5]~
Hence G acts on A*(Q) by
f : (yh Y2,Y3, 94) = ()‘_1:[1’_3"{/2y17 )\_SM_Q’{QyQa )\_3M_2"<32Z/3, )‘_5:u_ 52?J4)7

where y; = x;41 /21 for i = 1,..,4. Then setting @ = A\""x2 and 8 = A\2u~!, G acts
on A*(Q) by

1

f (W1, y2,y3,94) = (aBPy1, af?ys, aBys, afBys).
Since a and ( take any non-zero rational numbers independently, we have
Ma- = ANQ)/(Q" x Q") = P*(Q)/Q" [T{+}.
where Q* acts on P3(Q) by
B [21, 22, 23, 24] = [B°21, B2, B2s, 24]
and the point {*} corresponds (0,0,0,0) in A*(Q), which corresponds a formal
model. Thus M4~ is the same set as that of Example (2).

(4) A* = H*((5? v 8?) x §%;Q) = Qlx2,y2] @ A(23)/ (2y).
This example was studied by Halperin and Stasheff, see example 6.5 in [2]. It is
3-LF. and at n =4, s =0 and ¢t = 2. In fact

mp =mg3= (/\(xay,eéaagaogaz:i)ad)
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with d(z) = d(y) = d(z) = 0, d = 22, d3 = xy, dO3 = y* and H?(m3) =
Q{er, ez, f1, f2}, where e = [yf3 — 23], ez = [y03 — 203], f1 = [vz] and f2 = [yz].
Then by Collorary 2.3,

My =Xy = My/G.
Let W in M, be spanned by
aier +azier +agifi +asifo  (1=1,2),
where
rank (aj;)1<j<e1<i<e =2 -
By Pliicker embedding, the set of W forms
{[z1, 22, 23, 24, 5, T6) € P°(Q)|7126 — T225 + 324 = 0,21 # 0}
~ {(X1, Xa, X3, X4, X5) € A°(Q)|X5 — X2 X5 + X3 X, = 0}
=~ {(X15X27X37X4) € A4<Q)}’

where X; = x;41 /21 (1 =1,..,5).
Let f € Aut mp = G be an element such that

fl@)=z, fly)=y, f(z)=pz peqQ”
FO0) =05+ XNz, N €Q, i=1,2,3.
Then we have

[ (e1) =e1 = Xafi + Aifo, fH(e2) = ex — Asfi + Aafo,

[ (f) =wh, [7(f2) = pf,
and f* induces a map Ay defined by

1T =X3 A2 Ay =M1 Az — M\
0 pu 0 0 0 —Ap
_ 0 0 uwo 0 0 — Aot
Af([xla“vxﬁ]) - [Z‘l,-.7x6] 0 0 0 L 0 _)\Q,U 5
0 0 0 O I — A3l
0O 0 0 0 0 12
hence f* induces a map A  from A*(Q) to itself defined by
X1 H X1 —A3
= Xy 1% Xs A2
A =
ape H X3 + A2
X4 M X4 -1
From this we see by varing A; € Q (1 =1,2,3) and p € Q*,
0 0
~ |0 ~ |1
g || uds || = 2@
0 0
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Hence M 4+ is at most two points.
Conversely, any element g € Aut mp has the following form: g(z) = a1z + agy,
9(y) = bix + bey and g(z) = pz with

aj

a‘17a27b1,b2 € Qa D= b
1

#0,pe€Q”

az
ba
and then

9(91) = a%@l + 2a1a202 + a%93 + A1z,

g(92) =a1b107 + (a1b2 + a2b1)92 + ashobls + Aoz,
g(03) = b%@l + 2b1b20s + b%93 + A3z

for some \; € Q. By straightfoward calculations we see that W; = {ey, ea}, which
corresponds to (0,0,0,0) in A*(Q), can not be mapped to Wy = {ej,es + f2}
corresponding to (0, 1,0,0) in A*(Q) by Aut mp. In fact,

0 —b%)q + 20,1b1)\2 - G%Ag * 0

i 0 _ i ) —bibo A + (albg + a2b1)>\2 — a1as)A3 _ |@ ?é 1
910 D2 | =bibo A1 + (a1ba + agbi) Ao — ar1azAs ! 0
0 —b%)q + 2a9bo g — G;%/\g * 0

Thus we see that M 4+ is just two points.

(5) A* = H*((S% Vv 8%) x 8% Q) = A(x3,y3,25)/ ().
This example was considered by Schlessinger and Stasheff, see section 8 in [7]. It
is 6-L.F. and

mp = me = (/\(353,?/3795;25)705)
with d(z) = d(y) = d(z) = 0 and df5 = xy. Then H®(mp) = Qfe1, e, f1, f2},
where e; = [205], e2 = [y05], f1 = [xz] and fo = [yz]. Hence at n = 7, s = 0 and
t = 2. By Corollary 2.3,
My = X7 = My/G.

Let W in M> be spanned by
ai el +azier +agifi +asifo  (1=1,2),

where I‘ank(ajvi)lgjgg’lgigg = 2.
Let f € Aut mp = G be an element such that f(z) = a1z+a2y, f(y) = bix+bay,
f(05) = D05 + Az and f(z) = pz, where

a1

D:b #0,A€Q,ne Q.
1

a2
ba

Then
f*(e1) = aiDe1 + agDes + a1 A f1 + az A fa,

f*(e2) = biDey + baDeg + biAfi + bafo,

[5(f1) = apfi + aspfa, f7(f2) = bipfi + bapufo.
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By Pliicker embedding the set of W forms
{[1, 22, 23, 34, 5, w6) € P*(Q)|w126 — T2w5 + w324 = 0,21 # 0}

=~ {(X17X27X37X4) € A4(Q)}7
where X; = z;41/71 (i = 1,..,4). Then G acts on A*(Q) as follows:

X1 a% a1b1 a1b1 b% X1 0
A X2 7& a1as a1b2 a2b1 ble X2 +i 1
TX3| ~ D2 |aras ashy aiby bibo| | X3 D |-1
X4 a% a2b2 a2b2 b% X4 0

First we show that any point (z1, 2,73, 74) of A*(Q) lies in the union of the
orbit of (1,0,0,7) for some » € Q and that of (0,0,0,0) by decomposing A*(Q)
into the following pieces (a)~(f).

(a) If 4I1I4 }é (IQ + £L‘3)2 and X 7£ O, set a1 = 0,(12 = —17b1 = 17b2 = —m,

2:81
W= (“*:‘”35:41”4, r= (m2+m34)w2§_411z4 and A = % (x5 — x3). Then we have
1 X
bt 0 X2
Ay ol = |a| (3.1)
T X4

(b) If vy # (w2 + 23)? and x4 # 0, set a; = 1, az =0, by = —%, by =1,

= (@atwe) Aoz 4z} and A = L (25 — z3). Th have (3.1)
"= 474 ) = (@2tz3)2—dz1a4 = 522 xr3). en we nave A1),
(c) If dzyay # (z2 +x3)? and @1 =24 = 0,set a1 = by =1, ag = —3, bo = 3
p=—2E2 = —2 and A = 3(zz — x3). Then we have (3.1).
(d) If doy24 = (22 +23)% and 21 # 0, set a; = 71, ag = —%7 b1 =0, by = i
= —i, r=0and A = L(zy — x3). Then we have (3.1).
2

2
(e) If dxyxy = (x2+x3)° and 24 # 0, set a; = —%, a1 = T4, by = —L, by =

x1’

0, u= —;14, r=0and A = J(zz — x3). Then we have (3.1).
)y =24=0, zo+23=0,8¢t a3 =1, as =0, by =0, bo =1, u =1 and
A = 9. Then we have
0 0
~ 0 | X2
Af 0 o X3
0 0

Thus we have a surjection
p: Q[[{+} - Ma- = 4*(Q)/G
defined by p(x) = the class of (0,0,0,0) and p(r) = the class of (1,0,0,r).
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If p(r1) = p(re) then there is an element f € G such that

1 1
- 1o 0
Aol = o

T1 T2

By straightfoward calculations we have riry € Q*2 if 7179 # 0. Thus we have

Ma- = Q*/Q** TTHo} [ [{+}

where {0} corresponds to (1,0,0,0) and {*} corresponds to the formal model.
After tensoring with ) the set of isomorphism classes consists of three points.

6) A* = H*S* v §° v S0 v §6.0) = Arzys) ®
Q[vlov 216]/(xy7 TV, T2, Yv, Yz, U27 vz, 22)'

Then mp = mg = (A(z,vy,07),d) with d(67) = zy. Since H'%(mg) = Q{x07},
s=1t=1at n=9. Then since the condition (2)g is satisfied

Xo =00 [[O1 = Mo [] My~ {po,p1},
where the corresponding model for pg is
m©g = (A(z,y,67),d)

with d(67) = 2y and the corresponding model for p; is

mWMy = (A(z,y,07,00),d)
with d(0y) = x67.

Next consider Xi5 over each point. The model containing m©y is
mp =mis = (A(z,y,07,011),d)

with d(611) = yb7. Since H6(mp) = Q{yb11}, s =t = 1 at n = 15. Hence X5
consists of two points.
The model containing m("g is

mp = MmMig = (A(may,97799,u1070%1?0%130%3’0%3)7(1) = (Q[u] ®m7d)

where d(u10) = 0 for a basis u1g of Coker(oi™*"1)10 and m is the model (x) in Ex-
ample (2). Then H'%(mp) = Q{ey, es,e3,e4} is same as that of the above Example

(2). Hence we have in this case
X15 = My« (s3vs5vs16).

Since A>16 = 0, M4 is the disjoint union of two points and P3(Q)/Q* [[{x}
See Fig 1.

(7) AT = H*(S5 \ (S3 X Slo)?Q) - A($3,y5) ® Q[ZlO}/(xyaxzaZQ)'
Then mp = mg = (A(z,y,07),d) with d(07) = zy. Since H'%(mg) = Q{x0;},
W=0o0r W=Q{z0;} at n =9.If W = {0}, (¢"Wg)2: H3(mWy) - H(mW,y) =
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0 — A3 . A +£ 0 can not be a G.A.map. Hence the condition (2)g is not satisfied.
Hence W must be Q{z6-}.
Next consider Xi5. Then

mp =mji2 = (A(337y7977997U107011179211),d)

with d((97) = Ty, d(eg) = 1‘97, d(@lll) = y97, d(9211) = .1399. Since
HYB(mp) = (H"(mp)(12))!3 and A>3 =0, M- is an one point.

(8) Ar = H*((Sg X Sg)ﬁ(sg X 58),Q) = A($37y3) ® Q[Ug,wg]/(xy,xu,xw +
yu, yw, u?, uw, w?).

It is 6-intrinsically formal Poincaré algebra of formal dimension 11 such that
me = (A(x,y,05),d) with d(z) = d(y) = 0 and d(f;5) = xy. There is a map
o6 : (H*(meg)(7))* — A* given by og(x) = z, 06(y) = y and sending other elements
to zero. Since u =s=v =t =2 at n =7, we have 0 < [ < 2. Consider the each
cases of [ =0,1,2 at n = 7 in the followings.

Case of | = 0.

Since W = 0, H8(m") = H8(mg) = Q{[x05], [y05]}. Put oW (z) = 2, W (y) =
y, 0V ([205]) = u and " ([yfs]) = w. Then the condition (1); and (2); are
satisfied. Since o' : H*(m") — A* is isomorphic, this one point set My = O,
corresponding the elliptic model (A(z,y,05),d), is a component of M 4.

Case of l = 1.

For H8(mg) = Q{e1r = [z05],e2 = [yf5]}, W is spanned by ae; + bey for
[a,b] € PL(Q) = My. Then mWg = (A(x,y, 05,07, us),d) where d(67) = aey + bey
and d(ug) = 0. But (cWg)!! : H3(mWg) - H¥(m"Ws) — A3 . A% can not be a
G.A.map since z - (bxfs + aybs) = d(ybr) and y - (bxbs + aybs) = d(x6). Hence the
condition (2)7 is not satisfied.

Case of | = 2.
Since W = Q{z05, y0s},
m" = (A(z,y,05,0"7,0%7),d)
where d(0'7) = 205 and d(6%;) = yf5 and
m"s = (A(z,y,05,0'7,0%7,u's, u’s), d)

where du’s = 0 (i = 1,2). Since t =0 at 8 < n < 11 and A>!! = 0, it is one point
corresponding to the formal model.
Thus M 4« is two points. See Fig 2.
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In the following figures, numbers mean degrees.

Fig 1

(6)

The set P3(Q)/Q* [[{*} is indicated by one circle.

Fig 2

(8)

Here (©) implies that there exists an elliptic minimal model generated by elements
of degree < 5 satisfying H*(m) = A*.
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