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NOTE ON THE RATIONAL COHOMOLOGY
OF THE FUNCTION SPACE OF BASED MAPS

YASUSUKE KOTANI

(communicated by Hvedri Inassaridze)

Abstract
In this paper, for a formal, path connected, finite-dimen-

sional CW-complex X of finite type and a q-connected space
Y of finite type with q > dim X, we determine the necessary
and sufficient condition for the rational cohomology algebra
H∗(F∗(X, Y );Q) of the function space F∗(X, Y ) of based maps
to be free.

1. Introduction

Let F(X,Y ) and F∗(X,Y ) be function spaces of free maps and based maps
from a space X to a space Y respectively. Then F(X,Y ) and F∗(X, Y ) are path
connected if X is a path connected, finite-dimensional CW-complex of finite type
and Y is a q-connected space with q > dimX.

A commutative graded algebra A = {Ap}p>0 satisfying A0 = Q is said to be
free if A is isomorphic to a free commutative graded algebra ∧V on a graded vector
space V .

A commutative cochain algebra (A, d) satisfying H0(A) = Q is said to be formal
if (A, d) and (H(A), 0) are connected by a chain of quasi-isomorphisms. A path
connected space X is said to be formal if the commutative cochain algebra APL(X)
of rational polynomial differential forms on X is formal.

It is known that, for an arbitrary n-connected space Y with n > 1, the rational
cohomology algebra

H∗(ΩnY ;Q) = H∗(F∗(Sn, Y );Q)

of the n-fold loop space ΩnY of Y is free, and that spheres Sn are formal.
In this paper, for a formal, path connected, finite-dimensional CW-complex X

of finite type and a q-connected space Y of finite type with q > dim X, we consider
the condition for the rational cohomology algebra H∗(F∗(X,Y );Q) of the function
space F∗(X, Y ) of based maps to be free.

Let H∗(X;Q) = {Hp(X;Q)}p>0 be the rational cohomology algebra for a path
connected space X with the cup product

∪ : H∗(X;Q)⊗H∗(X;Q) → H∗(X;Q).

Received October 23, 2003, revised July 12, 2004; published on August 6, 2004.
2000 Mathematics Subject Classification: Primary 55P62; Secondary 54C40.
Key words and phrases: rational cohomology, function spaces, free commutative graded algebras,
formal spaces.
c© 2004, Yasusuke KOTANI. Permission to copy for private use granted.



Homology, Homotopy and Applications, vol. 6(1), 2004 342

Recall that the rational cup length cup(X;Q) of X is defined by

sup{n ∈ Z | f1 ∪ · · · ∪ fn 6= 0 for f1, . . . , fn ∈ H+(X;Q)},
where H+(X;Q) = {Hp(X;Q)}p>0.

Let (∧V, d) be a Sullivan algebra. Elements in ∧V of the form v1 ∧ · · · ∧ vk for
v1, . . . , vk ∈ V are said to have word length k. Then the differential d decomposes
uniquely as the sum

d = d0 + d1 + d2 + · · ·
of derivations di raising the word length by i. (cf. [3, Section 12(a)]). Now, we
define the differential length dl(∧V, d) of (∧V, d) by the least integer m such that
dm−1 6= 0. If di = 0 for all i > 0, that is, d = 0, we define dl(∧V, 0) = ∞. We also
define the differential length dl(Y ) of a simply connected space Y of finite type by
that of a minimal Sullivan model for Y . Then we can establish

Theorem 1.1. The differential length of a simply connected space of finite type is
independent of a choice of minimal Sullivan models. Thus it is a rational homotopy
invariant.

Our main theorem is as follows.

Theorem 1.2. Let X be a formal, path connected, finite-dimensional CW-complex
of finite type and Y a q-connected space of finite type with q > dim X. Then
H∗(F∗(X,Y );Q) is free if and only if cup(X;Q) < dl(Y ).

This paper is organized as follows. In Section 2, we recall the construction of a
minimal Sullivan model for F(X, Y ) due to E. H. Brown, Jr. and R. H. Szczarba [2,
Thoerem 1.9]. Moreover, we describe a minimal Sullivan model for F∗(X,Y ) is
obtained by that for F(X, Y ) using the evaluation fibration, which is established
by K. Kuribayashi [4, Theorem 3.6]. The proofs of Theorems are given in Section 3
and 4 respectively. In Section 5, we give some examples.

The author would like to express his deepest gratitude to Professor K. Kurib-
ayashi for permitting to use some results in [4, Section 3], and also to Professor
T. Yamaguchi for helpful suggestions.

2. Minimal Sullivan models for F(X,Y ) and F∗(X, Y )

Let X and Y be as in Theorem 1.2. Then the construction of a minimal Sullivan
model for F(X, Y ) due to E. H. Brown, Jr. and R. H. Szczarba [2, Theorem 1.9] is
described as follows.

Let mY : (∧V, d) '−→ APL(Y ) be a minimal Sullivan model for Y . Let H∗(X;Q) =
{Hp(X;Q)}p>0 be the rational homology coalgebra for X with the coproduct

∆: H∗(X;Q) → H∗(X;Q)⊗H∗(X;Q).

Let ∧V ⊗ H∗(X;Q) be a graded vector space with grading |v ⊗ c| = |v| − |c| for
v ∈ ∧V and c ∈ H∗(X;Q). Let ∧(∧V ⊗H∗(X;Q)) be the free commutative graded
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algebra on ∧V ⊗ H∗(X;Q) with the differential d ⊗ id, and let I be the ideal in
∧(∧V ⊗H∗(X;Q)) generated by 1⊗ 1− 1 and all elements of the form

v′ ∧ v′′ ⊗ c−
∑

(−1)|v
′′||c′j |(v′ ⊗ c′j) ∧ (v′′ ⊗ c′′j ) (2.1)

for v′, v′′ ∈ ∧V and c ∈ H∗(X;Q) with ∆c =
∑

c′j ⊗ c′′j . Then (d ⊗ id)(I) ∈ I ([2,
Theorem 3.3]) and the composition map

ρ : ∧ (V ⊗H∗(X;Q)) ↪→ ∧(∧V ⊗H∗(X;Q)) → ∧(∧V ⊗H∗(X;Q))/I

is an isomorphism of graded algebras ([2, Theorem 3.3]). Let δ be the differential
on ∧(V ⊗H∗(X;Q)) given by δ = ρ−1(d⊗ id)ρ. Then, by [2, Theorem 1.9], F(X, Y )
has a minimal Sullivan model of the form

(∧(V ⊗H∗(X;Q)), δ).

Next, let us consider the evaluation fibration

F∗(X, Y ) → F(X, Y ) ev∗−−→ Y,

where ev∗ is the evaluation map at the basepoint of X. Let i : (∧V, d) ↪→ (∧(V ⊗
H∗(X;Q)), δ) be the inclusion map defined by i(v) = v ⊗ 1 for v ∈ V . From the
consideration in [4, Section 3], we have a commutative diagram

APL(Y )
APL(ev∗) // APL(F(X, Y ))

(∧V, d) Â Ä i //

mY '
OO

(∧(V ⊗H∗(X;Q)), δ),

m '
OO

where m : (∧(V ⊗H∗(X;Q)), δ) '−→ APL(F(X, Y )) is a minimal Sullivan model for
F(X,Y ) described above. Thus the inclusion map i is viewed as a model for the
evaluation map ev∗.

Let J be an ideal of ∧(V ⊗ H∗(X;Q)) generated by v ⊗ 1 for v ∈ V . Let δ be
the differential on ∧(V ⊗H∗(X;Q))/J induced from δ on ∧(V ⊗H∗(X;Q)). Then,
by [3, Proposition 15.5] and [4, Theorem 3.6], F∗(X, Y ) has a minimal Sullivan
model of the form

(∧(V ⊗H∗(X;Q))/J, δ) = (∧(V ⊗H+(X;Q)), δ),

where H+(X;Q) = {Hp(X;Q)}p>0.

3. Proof of Theorem 1.1

It is known that minimal Sullivan models for a simply connected space of finite
type are all isomorphic, and that the isomorphism class of a minimal Sullivan model
for a simply connected space of finite type is a rational homotopy invariant. Hence,
for the proof of Theorem 1.1, it is sufficient to prove the following.

Proposition 3.1. Let (∧V, d) and (∧V ′, d′) be isomorphic Sullivan algebras. Then
dl(∧V, d) = dl(∧V ′, d′).
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Proof. Let f : (∧V, d)
∼=−→ (∧V ′, d′) be an isomorphism of differential graded alge-

bras.
First, suppose that dl(∧V ′, d′) = ∞, that is, d′ = 0. Then, since fd = d′f = 0

and f is an isomorphism, we have d = 0. Thus dl(∧V, d) = ∞.
Next, suppose that dl(∧V ′, d′) = m < ∞, that is, d′i = 0 for 0 6 i < m − 1 and

d′m−1 6= 0. Then, since f is an isomorphism, for an arbitrary element v ∈ V , there
exists an element v′ ∈ V ′ such that

f(v) = v′ + (higher terms).

Now, assume that dv has terms of the form v1 ∧ · · · ∧ vk for v1, . . . , vk ∈ V and
k 6 m− 1. Then f(dv) has terms of the form

f(v1 ∧ · · · ∧ vk) = f(v1) ∧ · · · ∧ f(vk) = v′1 ∧ · · · ∧ v′k + (higher terms)

for v′1, . . . , v
′
k ∈ V ′ and k 6 m − 1. However, d′f(v) = f(dv) has no such terms

because d′i = 0 for 0 6 i < m − 1. It is a contradiction. Hence we have di = 0
for 0 6 i < m − 1 since d is a derivation. So we get the inequality dl(∧V, d) >
dl(∧V ′, d′). Since f−1 is also an isomorphism, we get the inverse inequality. Thus
dl(∧V, d) = dl(∧V ′, d′) = m.

4. Proof of Theorem 1.2

Let X and Y be as in Theorem 1.2. Let (∧V, d) be a minimal Sullivan model
for Y and H∗(X;Q) the rational homology coalgebra for X. Then, as described in
Section 2, F∗(X, Y ) has a minimal Sullivan model of the form

(∧(V ⊗H+(X;Q)), δ),

where δ is induced from δ = ρ−1(d⊗ id)ρ on ∧(V ⊗H∗(X;Q)) by reducing elements
contained in the ideal J generated by v ⊗ 1 for v ∈ V .

It is easy to see that H∗(F∗(X, Y );Q) ∼= H(∧(V ⊗H+(X;Q)), δ) is free if and
only if δ = 0, and that δ = 0 if and only if δ(∧(V ⊗H+(X;Q))) ∈ J . Hence, for the
proof of Theorem 1.2, it is sufficient to prove the following.

Proposition 4.1. (1). If cup(X;Q) < dl(Y ), then δ(∧(V ⊗ H+(X;Q))) ∈ J or
equivalently δ = 0.

(2). If cup(X;Q) > dl(Y ), then δ(∧(V ⊗H+(X;Q))) 6∈ J .

Thus we need to explain the differential δ in detail. Let ∆ be the coproduct on
H∗(X;Q). Then the reduced coproduct

∆: H+(X;Q) → H+(X;Q)⊗H+(X;Q)

is defined by ∆c = ∆c−c⊗ 1−1⊗ c for c ∈ H+(X;Q). Moreover, the k-th coproduct
∆(k) and the k-th reduced coproduct ∆

(k)
are defined inductively by ∆(0) = ∆

(0)
=

id, ∆(1) = ∆, ∆
(1)

= ∆ and

∆(k) = (∆⊗ id⊗ · · · ⊗ id) ◦∆(k−1) : H∗(X;Q) → H∗(X;Q)⊗k+1,

∆
(k)

= (∆⊗ id⊗ · · · ⊗ id) ◦∆
(k−1)

: H+(X;Q) → H+(X;Q)⊗k+1,
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where H⊗k+1 denotes the (k + 1)-times tensor product of H.
Let H∗(X;Q) be the rational cohomology algebra for X with the cup product

∪. Since X is of finite type, H∗(X;Q) with ∪ and H∗(X;Q) with ∆ are dual each
other. Hence we have immediately

Lemma 4.2. If cup(X;Q) = n, then ∆
(k−1) 6= 0 for 0 < k 6 n and ∆

(k−1)
= 0

for all k > n.

Let BH∗ = {c0 = 1, c1, c2, . . . } be a basis for H∗(X;Q) with 0 < |c1| 6 |c2| 6 · · · .
Then, for an arbitrary element cj ∈ BH∗ and k > 2, we may denote

∆(k−1)cj =
∑

µj1,...,jk
cj1 ⊗ · · · ⊗ cjk

,

where 0 6= µj1,...,jk
∈ Q and cj1 , . . . , cjk

∈ BH∗ . By the definition of the reduced
coproduct, we have immediately

Lemma 4.3. ∆
(k−1)

cj = 0 if and only if there exists an integer s such that cjs
= 1

in each term of ∆(k−1)cj.

Moreover, since the cup product ∪ is associative and commutative, so is the
coproduct ∆, that is, (∆ ⊗ id)∆ = (id⊗∆)∆ and τ∆ = ∆, where τ is defined by
τ(c⊗ c′) = (−1)|c||c

′|c′ ⊗ c. Hence we have immediately

Lemma 4.4. µj1,...,js,js+1,...,jk
= (−1)|cjs ||cjs+1 |µj1,...,js+1,js,...,jk

.

Let BV = {v1, v2, . . . } be a basis for V with 0 < |v1| 6 |v2| 6 · · · . Then, if
dvi = vi1 ∧ · · · ∧ vik

for vi ∈ BV and ∆(k−1)cj =
∑

µj1,...,jk
cj1 ⊗ · · · ⊗ cjk

for
cj ∈ BH∗ , we have

δ(vi ⊗ cj) =
∑

(−1)ε(i1,j1;...;ik,jk)µj1,...,jk
(vi1 ⊗ cj1) ∧ · · · ∧ (vik

⊗ cjk
), (4.1)

where the sign (−1)ε(i1,j1;...;ik,jk) is determined by (2.1), that is,

vi1 ∧ · · · ∧ vik
⊗ cj =

∑
(−1)ε(i1,j1;...;ik,jk)µj1,...,jk

(vi1 ⊗ cj1) ∧ · · · ∧ (vik
⊗ cjk

)

in the graded algebra ∧(∧V ⊗ H∗(X;Q))/I. More precisely, ε(i1, j1; . . . ; ik, jk) is
given by

Lemma 4.5. ε(i1, j1; . . . ; ik, jk) =
k−1∑

l=1

(|vil+1 |+ · · ·+ |vik
|)|cjl

|

Proof. We prove by induction on k. Let k = 2. Then, if ∆cj =
∑

µj1,j2cj1 ⊗ cj2 for
cj ∈ BH∗ , we have

vi1 ∧ vi2 ⊗ cj =
∑

(−1)|vi2 ||cj1 |µj1,j2(vi1 ⊗ cj1) ∧ (vi2 ⊗ cj2),

and so ε(i1, j1; i2, j2) = |vi2 ||cj1 |.
Let k > 3 and assume that the formula is true until k − 1. Since ∆(k−1) =

(∆⊗ id⊗ · · · ⊗ id) ◦∆(k−2), if ∆(k−1)cj =
∑

µj1,...,jk
cj1 ⊗ · · · ⊗ cjk

for cj ∈ BH∗ , we
can denote

∆(k−2)cj =
∑

µj′1,j3,...,jk
cj′1 ⊗ cj3 ⊗ · · · ⊗ cjk
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with ∆cj′1 =
∑

µ′j1,j2
cj1 ⊗ cj2 and µj1,...,jk

= µ′j1,j2
µj′1,j3,...,jk

. Then, by putting
vi′1 = vi1 ∧ vi2 , we have

vi1 ∧ · · · ∧ vik
⊗ cj

= vi′1 ∧ vi3 ∧ · · · ∧ vik
⊗ cj

=
∑

(−1)ε(i′1,j′1;i3,j3;...;ik,jk)µj′1,j3,...,jk
(vi′1 ⊗ cj′1) ∧ (vi3 ⊗ cj3) ∧ · · · ∧ (vik

⊗ cjk
).

Furthermore, since

vi′1 ⊗ cj′1 = vi1 ∧ vi2 ⊗ cj′1 =
∑

(−1)|vi2 ||cj1 |µ′j1,j2(vi1 ⊗ cj1) ∧ (vi2 ⊗ cj2),

we have

vi1 ∧ · · · ∧ vik
⊗ cj

=
∑

(−1)ε(i′1,j′1;i3,j3;...;ik,jk)+|vi2 ||cj1 |µj1,...,jk
(vi1 ⊗ cj1) ∧ · · · ∧ (vik

⊗ cjk
),

and so

ε(i1, j1; . . . ; ik, jk)
= ε(i′1, j

′
1; i3, j3; . . . ; ik, jk) + |vi2 ||cj1 |

= (|vi3 |+ · · ·+ |vik
|)|cj′1 |+

k−1∑

l=3

(|vil+1 |+ · · ·+ |vik
|)|cjl

|+ |vi2 ||cj1 |

=
k−1∑

l=1

(|vil+1 |+ · · ·+ |vik
|)|cjl

|

because |cj′1 | = |cj1 |+ |cj2 |.

Now we can prove Proposition 4.1.

Proof of Proposition 4.1. Notice that cup(X;Q) < ∞ since X is finite-dimensional.
First, suppose that dl(Y ) = ∞. Then, since d = 0, we have δ = ρ−1(d⊗ id)ρ = 0,

and so δ = 0.
Next, suppose that dl(Y ) = m < ∞. Fix a basis BH∗ = {c0 = 1, c1, c2, . . . } for

H∗(X;Q) with 0 < |c1| 6 |c2| 6 · · · and a basis BV = {v1, v2, . . . } for V with
0 < |v1| 6 |v2| 6 · · · . Then, for an arbitrary element vi ∈ BV , we may denote

dvi =
∑

k>m

λi1,...,ik
vi1 ∧ · · · ∧ vik

,

where 0 6= λi1,...,ik
∈ Q and vi1 , . . . , vik

∈ BV with i1 6 · · · 6 ik.
(1). For an arbitrary element cj ∈ BH∗ with cj 6= 1 and k > m, we may denote

∆(k−1)cj =
∑

µj1,...,jk
cj1 ⊗ · · · ⊗ cjk

,

where 0 6= µj1,...,jk
∈ Q and cj1 , . . . , cjk

∈ BH∗ . Since cup(X;Q) < dl(Y ) = m, by

Lemma 4.2, ∆
(k−1)

cj = 0 for k > m, and so, by Lemma 4.3, there exists an integer
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s such that cjs
= 1 in each term of ∆(k−1)cj for k > m. Hence we have

δ(vi ⊗ cj)

=
∑

k>m

(−1)ε(i1,j1;...;ik,jk)λi1,...,ik
µj1,...,jk

(vi1 ⊗ cj1) ∧ · · · ∧ (vik
⊗ cjk

) ∈ J

for an arbitrary element vi ∈ BV . Thus δ(∧(V ⊗ H+(X;Q)) ∈ J since δ is a
derivation.

(2). Since cup(X;Q) > dl(Y ) = m, by Lemma 4.2, there exists an element
cj ∈ BH∗ such that cj 6= 1 and

∆
(m−1)

cj =
∑

µj1,...,jm
cj1 ⊗ · · · ⊗ cjm

6= 0.

Since dl(Y ) = m, there exists an element vi ∈ BV such that dvi has a term of the
form λi1,...,imvi1 ∧ · · · ∧ vim with λi1,...,im 6= 0 and i1 6 · · · 6 im. Then δ(vi ⊗ cj)
has terms of the form∑

(−1)ε(i1,j1;...;im,jm)λi1,...,im
µj1,...,jm

(vi1 ⊗ cj1) ∧ · · · ∧ (vim
⊗ cjm

)

with cjs 6= 1 for 1 6 s 6 m.
If i1 < · · · < im, we see that each term (vi1 ⊗ cj1) ∧ · · · ∧ (vim ⊗ cjm) cannot be

canceled by other terms.
If is = is+1 for some s, |vis | must be even. Then we have

(vis ⊗ cjs) ∧ (vis ⊗ cjs+1)

= (−1)(|vis |−|cjs |)(|vis |−|cjs+1 |)(vis ⊗ cjs+1) ∧ (vis ⊗ cjs)

= (−1)|cjs ||cjs+1 |(vis ⊗ cjs+1) ∧ (vis ⊗ cjs)

and, by Lemma 4.5,

ε(i1, j1; . . . ; is, js; is, js+1; . . . ; im, jm)
− ε(i1, j1; . . . ; is, js+1; is, js; . . . ; im, jm)

= (|vis |+ |vis+2 |+ · · ·+ |vik
|)|cjs |+ (|vis+2 |+ · · ·+ |vik

|)|cjs+1 |
− (|vis |+ |vis+2 |+ · · ·+ |vik

|)|cjs+1 | − (|vis+2 |+ · · ·+ |vik
|)|cjs |

= |vis |(|cjs | − |cjs+1 |) ≡ 0 mod 2.

Hence, by considering the coefficients with Lemma 4.4, we see that each term (vi1⊗
cj1)∧· · ·∧(vim⊗cjm) cannot be canceled by other terms. (For example, see Example 3
in Section 5).

Thus there exists an element vi ⊗ cj ∈ ∧(V ⊗H+(X;Q)) such that δ(vi ⊗ cj) 6∈
J .

5. Some examples

Since cup(X;Q) < ∞ if X is finite-dimensional and dl(Y ) > 1 for any simply
connected space Y of finite type, we have

Proposition 5.1. Let X be a formal, path connected, finite-dimensional CW-
complex of finite type and Y a q-connected space of finite type with q > dim X.
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Then, if Y has a minimal Sullivan model of the form (∧V, 0) or all cup products on
H+(X;Q) are trivial, H∗(F∗(X, Y );Q) is always free.

Example 1. The following spaces have a minimal Sullivan model with a trivial
differential:

• odd dimensional spheres,

• path connected H-spaces of finite type (cf. [3, Section 12(a), Example 3]),

• classifying spaces of path connected topological groups of finite type (cf. [3,
Proposition 15.15]),

• Eilenberg-MacLane spaces of type (π, n) with n > 1, π is Abelian and π⊗ZQ
is finite dimensional (cf. [3, Section 15(b), Example 2]),

• a product of above spaces.

Example 2. The following spaces are formal and all cup products on the positive
dimensional rational cohomology algebra are trivial:

• spheres,

• suspensions of spaces (cf. [3, Proposition 13.9]),

• co-H-spaces,

• a wedge of above spaces.

Note that a co-H-space is rationally homotopy equivalent to a wedge of spheres (cf.
[1, Section 7]), and a wedge of formal spaces is also formal.

A product of spheres Si1×· · ·×Sin is an (i1 + · · ·+ in)-dimensional CW-complex
and a formal space with cup(Si1 × · · · × Sin ;Q) = n.

It is known that the n-th James reduced product space Jn(S2i) of a 2i-dimen-
sional sphere S2i is a 2ni-dimensional CW-complex which has the rational coho-
mology

H∗(Jn(S2i);Q) = Q[c]/(cn+1)

with |c| = 2i, and has a minimal Sullivan model of the form

(∧(v, θ), dθ = vn+1)

with |v| = 2i. Hence we have

Proposition 5.2. (1). Let Y be a q-connected space of finite type with q > i1 +
· · ·+ in. Then

H∗(F∗(Si1 × · · · × Sin , Y );Q)

is free if and only if dl(Y ) > n.

(2). Let Y be a 2ni-connected space of finite type. Then

H∗(F∗(Jn(S2i), Y );Q)

is free if and only if dl(Y ) > n.
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(3). Let X be a formal, path connected, p-dimensional CW-complex of finite type
with p < 2i. Then

H∗(F∗(X, Jn(S2i));Q)

is free if and only if cup(X;Q) < n + 1.

Example 3. H∗(F∗(S1 × S3, S6);Q) is not free.

Notice that dl(S6) = 2 = cup(S1 × S3;Q). A basis for H∗(X;Q) is given by
{1, c1, c3, c4} with |cj | = j, ∆c1 = ∆c3 = 0 and

∆c4 = µ1,3c1 ⊗ c3 + µ3,1c3 ⊗ c1,

where µ1,3 = (−1)1·3µ3,1 = −µ3,1. A minimal Sullivan model for S6 is given by
(∧(v6, v11), d) with |vi| = i, dv6 = 0 and dv11 = v6

2. By applying the construction
described in Section 2, F∗(S1 × S3, S6) has a minimal Sullivan model of the form

(∧({v6, v11} ⊗ {c1, c3, c4}), δ).
Then, by the formula (4.1) and Lemmas 4.4 and 4.5, we have

δ(v11 ⊗ c4)

= (−1)6·4(v6 ⊗ c4) ∧ (v6 ⊗ 1) + (−1)6·0(v6 ⊗ 1) ∧ (v6 ⊗ c4)

+ (−1)6·1µ1,3(v6 ⊗ c1) ∧ (v6 ⊗ c3) + (−1)6·3µ3,1(v6 ⊗ c3) ∧ (v6 ⊗ c1)

= (v6 ⊗ c4) ∧ (v6 ⊗ 1) + (−1)(6−0)(6−4)(v6 ⊗ c4) ∧ (v6 ⊗ 1)

+ µ1,3(v6 ⊗ c1) ∧ (v6 ⊗ c3) + (−1)(6−3)(6−1)+1µ1,3(v6 ⊗ c1) ∧ (v6 ⊗ c3)
= 2(v6 ⊗ c4) ∧ (v6 ⊗ 1) + 2µ1,3(v6 ⊗ c1) ∧ (v6 ⊗ c3),

and so δ(v11 ⊗ c4) = 2µ1,3(v6 ⊗ c1) ∧ (v6 ⊗ c3) 6= 0.
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