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ON DIMENSIONS IN BREDON HOMOLOGY
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Abstract
We define a homological and cohomological dimension of

groups in the context of Bredon homology and compare the two
quantities. We apply this to describe the Bredon-homological
dimension of nilpotent groups in terms of the Hirsch-rank. In
particular this implies that for virtually torsion-free nilpotent
groups the Bredon cohomological dimension is equal to the
virtual cohomological dimension.

1. Introduction

The definition of Bredon cohomology groups for G-CW -complexes for finite
groups G goes back to Bredon [3] and was further investigated by Slominska, see e.g.
[22]. The definitions can easily be extended to infinite groups G and have recently
regained attention through their use in equivariant obstruction theory [17] and
through their connection to group actions on proper G-spaces [13, 18, 2, 12, 19].
Bredon homology also features in the Baum-Connes conjecture; a nice exposition
of how the two relate can be found in [18].

We say a G-CW -complex X is an EG, or universal proper G-space, if XH is
contractible when H 6 G is finite and XH is empty otherwise. The minimal di-
mension of such an EG is denoted by gdG. By analogy with ordinary cohomology
one defines the Bredon-cohomological dimension cdG and the Bredon-homological
dimension hdG of a group. The augmented cellular chain complex of an EG gives a
Bredon projective resolution for the group and hence cdG 6 gdG. A detailed intro-
duction to Bredon homology follows in Section 2. As for the torsion-free case [8] it
was shown by Lück [13, Theorem 13.19] that, provided cdG > 3, the two quantities
are equal. If either dimension is one, it follows from a result of Dunwoody [7] that
they are equal. In fact, it turns out [2] that there are examples of groups where
cdG = 2 yet gdG = 3.

A question which has received some attention is how cdG and gdG behave under
group-extensions. Originally these questions arose for virtually torsion-free groups
without mentioning the spaces EG or the dimensions cdG and gdG by the names
used here. Let H 6 G be a torsion-free subgroup of finite index k. Then by Serre’s
theorem, see [5, Theorems VIII.3.1, VIII.11.1], gdG 6 k(gdH). It was Brown who
first asked whether it can be shown that gdG = gdH [5, 4], a question which has
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become known as the Brown conjecture. In [12] Ian Leary and the author gave
examples where there is a strict inequality gdG > gdH. Lück [14] extended Serre’s
result to arbitrary group extensions H ↪→ G ³ Q, where the group Q has a bound d
on the orders of its finite subgroups: gdG 6 gdH+d(gdQ). Martinez [16] developed
spectral sequences in Bredon homology and cohomology for various families F of
subgroups. Applying these to some special families of finite subgroups she obtained
similar bounds for cdG in terms of cdH and cdQ.

The motivation for this work was to find classes of groups for which the Brown
conjecture holds. It is known to hold for polycyclic groups, see [15, Example 5.25].
Here we show it for nilpotent groups using a purely algebraic approach following
ideas of Stammbach [23] and Bieri [1], who related the (co)homological dimension
of soluble groups to the Hirsch length hG. For torsion-free soluble groups a result
of Stammbach [23] implies that hdG = hG, and, if in addition G is countable, then
hG 6 cdG 6 hG + 1. For a detailed account of these facts see [1]. After proving
some preliminary results in Section 3, including an analogue of Lazard’s result [11]
for arbitrary rings, that flat modules are direct colimits of finitely generated free
modules, we shall look at cohomological and homological dimensions of groups in
the Bredon setting. The main result of Section 4 is that for arbitrary countable
groups G,

hdG 6 cdG 6 hdG+ 1.

Furthermore, for soluble groups, hG 6 hdG. In Section 5 we consider group ex-
tensions and give a short account of some of Martinez’ results applied to families
of finite subgroups. In Section 6 we apply these results to nilpotent groups. In
particular, we show that for nilpotent groups G (Theorem 6.1),

hdG = hG.

and that for virtually torsion-free nilpotent groups (Theorem 6.3)

cdG = vcdG,

which also implies that the Brown conjecture holds for this class of groups.

2. Preliminaries on Bredon modules

We begin with a few basic definitions concerning Bredon-modules, most of which
can be found in Lück’s [13] or tom Dieck’s [6] books. Another good reference for
background material is Mislin’s survey article [18].

Let G be an arbitrary group and F a family of subgroups closed under subgroups
and conjugation. Even though our main applications will be for families F of finite
subgroups of G, the results of the next two sections hold in greater generality. We
shall consider the orbit category OFG, which is a category with objects the cosets
G/H, where H ∈ F and the morphisms are G-maps G/H → G/K, where G/H and
G/K are objects in OFG. We now consider functor categories from OFG to Ab, the
category of abelian groups. We denote by ModF-G, the category of contravariant
functors M(−) : OFG → Ab and by G-ModF the category of covariant functors
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N(−) : OFG→ Ab. Since for F = {e}, the category ModF-G is just the category of
right G-modules and G-ModF is the category of left G-modules we shall usually call
the objects of these categories right OFG-modules or left OFG-modules respectively.
In case we are just mentioning OFG-modules we imply that the statement holds for
both categories.

Many of the properties of G-modules can be more or less directly taken over to
OFG-modules. For example, by taking things object-wise we have kernels and cok-
ernels as well as arbitrary coproducts. A sequence M ′ →M →M ′′ of OFG-modules
is exact if and only if M ′(G/H) → M(G/H) → M ′′(G/H) is exact for all H ∈ F.
Also submodules, intersections and sums of modules are defined objectwise. We can
also define chain complexes, exact sequences, resolutions and chain homotopies in
the usual manner.

We shall now describe how to construct projectives in ModF-G . A nice thorough
account can be found in [18]. We say a module P in ModF-G is projective if the
functor:

mor(P,−) : ModFG→ Ab

is exact. Let K ∈ F and consider the right OFG-module PK , which is defined as
follows:

PK(G/H) = Zmor(G/H,G/K).

Zmor(G/H,G/K) denotes the free abelian group on the set
mor(G/H,G/K). An application of a Yoneda-type argument, see [18], yields

mor(PK ,M) ∼= M(G/K),

which in turn gives the desired exactness of mor(PK ,−). Obviously, a coproduct of
projectives is again projective and therefore we have, for an arbitray M ∈ ModF-G
the following epimorphism of a projective onto M :

∐

H∈F

(
∐

M(G/H)

PH) ³ M.

In particular every right OFG-module M admits a projective resolution, denoted
P∗ ³ M which is used to define the derived functors Ext∗F(M,N), which are con-
travariant in the first and covariant in the second variable:

Ext∗F(M,N) = H∗(mor(P∗, N))

There is also the obvious definition of the projective dimension, denoted pdFM ,
of a right OFG-module M . It is the minimal length of a projective resolution of M .

We also use projective resolutions to define a TorF
∗ (M,N). To do this we intro-

duce tensor products in our category. There are two such products which are of
interest to us: the tensor product over Z and the tensor product over the Orbit-
category OFG. Let M(−) ∈ ModF-G and N(−) ∈ G-ModF. We define the tensor
product over Z as the composite of the following two functors:

M(−)⊗N(−) : OFG×OFG→ Ab× Ab
⊗Z−→Ab.
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The definition of a tensor product over OFG needs a bit more work. One can define
it explicitly or use a universal property as done by Yoneda. For a nice account
concerning the universal property as well as other results on tensor products of
functors see [9]. For definitions in our sense and some of the facts now to follow
see [13] and [18]. Let ϕ : G/K → G/L be a G-map. We now define the categorical
tensor product to be the abelian group

M(−)⊗F N(−) =
⊕

K∈F

M(G/K)⊗N(G/K)/ ∼,

where ∼ is the equivalence relation generated by ϕ∗(m) ⊗ n = m ⊗ ϕ∗(n) with
m ∈M(G/L) and n ∈ N(G/K).

Let TorF
n(−, N) denote the n-th left derived functor of the tensor product −⊗FN .

We say a right OFG-module M is flat if the functor M ⊗F− is exact. Since, by the
Yoneda isomorphism,

PK(−)⊗F N(−) ∼= N(G/K)

for all N ∈ G − ModF and the tensor product commutes with coproducts, one
can conclude that projective right OFG-modules are flat. Define the flat dimension
(fldF) of a right OFG-module as the minimal length of a flat resolution. Hence, for
all M ∈ ModF-G:

fldFM 6 pdFM.

To define free right OFG-modules we follow [13, 9.16, 9.17]. Firstly we have to
say what we mean by an Obj{OFG}-set ∆, or F-set ∆ for short. This is a family
{∆K |K ∈ F} of sets ∆K . An F-map between two F-sets ∆ and Ω is a family of maps
{∆K → ΩK |K ∈ F}. There is an alternative way of thinking of F-sets, namely as
pairs (∆, ϕ) with ϕ : ∆ → Obj(OFG), where ∆K = ϕ−1(G/K). By forgetting the
structure we obtain an F-set from any OFG-module. We can now define the free
OFG-module on an F-set as the left adjoint to the just mentioned forgetful functor
ModF-G → F-set and we have the usual universal property: A right OFG-module
F is called free over the F-set ∆ if ∆ is a F-subset of F , i.e. ∆K ⊂ F (G/K) for each
K ∈ F and if each F-map f : ∆ → N with N an arbitrary right OFG-module has a
unique extension by an OFG-module map f̃ : F → N .

As an example, the right modules PK defined above are free on the F-set ∆ with
∆K = {G/K}, the set with one element G/K, and ∆H = ∅ for H 6= K. Also, the
module

∐
K∈F PK is free on the F-set ∆ with ∆K = {G/K} as above for all K ∈ F.

In general, given an F-set (∆, ϕ), we can construct the free module F∆ as

F∆ =
∐

δ∈∆

Pϕ(δ). (1)

A free right OFG-module is finitely generated if it is free on a finite F-set ∆ or,
equivalently, if it is a finite coproduct of free modules of the form PK for K ∈ F. Let
M be a right OFG-module and S ⊂M an F-subset. Then the submodule generated
by S is the smallest OFG-submodule containing S. Hence, a right OFG-module is
finitely generated if and only if it is a quotient of a finitely generated free module.



Homology, Homotopy and Applications, vol. 6(1), 2004 37

A right OFG-module M is said to be finitely presented if there is a short exact
sequence N ↪→ F ³ M of OFG-modules with F finitely generated free and N
finitely generated.

Later on we shall require OFG-modules which have similar properties to duals of
finitely generated projective ZG-modules. It turns out that in the Bredon setting
we can’t make as general a definition as for ordinary G-modules.

Let PK be the free right OFG-module of rank 1 as explained above. We define
its dual

PK = Zmor(G/K,−),

which is now a left OFG-module. For arbitrary finitely generated free right OFG-
modules F =

∐
K∈F′ PK (F′ a finite subfamily of F) we set

F ∗ =
∐

K∈F′
PK .

Analogous to the contravariant case ([18]) one can prove that

mor(PK , N) = N(G/K)

for every N ∈ G-ModF and every K ∈ F. Hence, the PK and also F ∗ are projective
left OFG-modules and one can also show that every left OFG-module has a free
mapping onto it.
An application of the above yields a one-to-one correspondence betweenmor(PK , PL)
and mor(PL, PK), since

mor(PK , PL) = PL(G/K) = Zmor(G/K,G/L)
= PK(G/L) = mor(PL, PK)

by the above. Hence, for abitrary finitely generated free OFG-modules P and Q we
have a one-to-one correspondence

mor(P,Q) = mor(Q∗, P ∗). (2)

It is worth mentioning that the whole construction works the other way round,
too. For arbitrary finitely generated free left OFG- modules P we have a dual P ∗,
which is a finitely generated free right OFG-module and

P ∗∗ = P.

in either setting.
Now let M ∈ ModF-G and PK = Zmor(G/K,−) ∈ G-ModF. We define a map

Ψ : M(G/K) →M(−)⊗F P
K(−)

by m 7→ m⊗ id ∈M(G/K)⊗ PK(G/K). This map is obviously injective. Take an
arbitrary basis-element m ⊗ ϕ ∈ M(G/H) ⊗ PK(G/H), where ϕ : G/K → G/H.
This ϕ can be viewed as the composite ϕ ◦ id, hence m ⊗ ϕ(id) = ϕ∗(m) ⊗ id ∈
M(G/K)⊗ PK(G/K) and hence Ψ is onto.

Applying this and the fact that the tensor-product and mor commute with finite
coproducts, we obtain the following isomorphism

M ⊗F P
∗ ∼= mor(P,M) (3)
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for finitely generated free P ∈ ModF-G and arbitrary M ∈ ModF-G.

3. Flat Bredon modules

To begin this section we collect a few facts about colimits in general and also in the
category ModF-G. A general definition of a colimit can be found in Weibel’s book
[24, pp. 54–56]. Let I be an indexing category and (Mi)i∈I a family of objects in
ModF-G. The colimit colimMi is a functor from ModF-GI to ModF-G, which is left
adjoint to the diagonal functor ∆ : ModF-G → ModF-GI . Hence colimits are right
exact in ModF-G if they exist. Recall that the coproduct for a family (Mi)i∈I , of
objects in ModF-G is defined objectwise by (

∐
Mi)(G/H) =

⊕
(Mi(G/H)). By a

standard result, see e.g. [24], Proposition 2.6.8, it follows that the colimit colimMi

can be viewed as the cokernel of the map:
∐

ϕ:i→j

Mi →
∐

i∈I

Mi (4)

and therefore exists and is defined objectwise. Let I be a filtered category. We denote
the filtered colimit of a family Mi by colim−−−→Mi. Since filtered colimits are exact for
modules over arbitrary rings, we have shown the following:

Lemma 3.1. Filtered colimits are exact in ModF-G.

The main result of this section is the following Bredon analogue to Lazard’s [11]
theorem.

Theorem 3.2. The following conditions on a right OFG-module M are equivalent.
(i) M is flat.
(ii) For every finitely presented OFG-module P and OFG-module homomorphisms

ϕ : P → M there exists a finitely generated free OFG-module F such that ϕ
factors through F .

(iii) M is the filtered colimit of finitely generated free OFG-modules.

Proof. (i) ⇒ (ii): Since P is finitely presented there exists an exact sequence

F1
f−→F0

g−→P → 0

with F1 and F0 both finitely generated free right OFG-modules. Taking duals we
obtain an exact sequence of left OFG-modules

F ′ h−→F ∗0
f̂−→F ∗1 (5)

where F ′ ∈ G-ModF is free. Since M is flat this yields an exact sequence

M ⊗F F
′id⊗h−→M ⊗F F

∗
0

id⊗f̂−→M ⊗F F
∗
1 . (6)

By (3) we have the following commutative diagram:

mor(F0,M) ∼= M ⊗F F
∗
0

f∗
y

yid⊗f̂

mor(F1,M) ∼= M ⊗F F
∗
1
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Since ϕ◦g◦f = f∗(ϕ◦g) = 0 and (6) is exact, there exists an element x ∈M⊗FF
′

such that (id ⊗ h)(x) = ϕ ◦ g. Now there exists a finitely generated free left OFG-
submodule F ∗ of F ′ such that

x ∈M ⊗F F
∗ ↪→M ⊗F F

′

Denote by k̂ the composite F ∗ ↪→ F ′ h−→F ∗0 and by k its transpose F0 → F , where
F = F ∗∗.

Since (5) is exact it follows from (2) that 0 = k ◦ f ∈ mor(F1, F ). Passing onto
quotients we obtain a well defined map α ∈ mor(P, F ) such that α ◦ g = k. Since
F ∗ is a finitely generated free left OFG-module the isomorphism (3) yields that
x ∈M ⊗F F

∗ defines a map β ∈ mor(F,M). Another look at a diagram, similar to
the one above yields

ϕ ◦ g = (id⊗ k̂)(x) = k∗(β) = β ◦ k.
Passing onto quotients we obtain the desired equality βα = ϕ.

(ii) ⇒ (iii): Let FX denote the free right OFG-module on the F-set X. We can view
the right OFG-module M as an F-set (M,ϕ) by forgetting the structure (ϕ : M →
Obj(OFG) and ϕ−1(G/K) = M(G/K) with the module structure forgotten).

Take an arbitrary infinite countable F-set (N,ψ) and form the direct product
(M,ϕ)× (N,ψ) = M×N . Let FM×N denote the free right OFG-module on M×N ,
π : FM×N →M the canonical projection and K = ker(π).

Now define E to be the category which has as objects pairs (I, S), where I is
a finite F-subset of M × N and S is a finitely generated OFG-submodule of K.
There is a unique arrow (I, S) → (I ′, S′) in E if and only if I is an F-subset of I ′

and S is an OFG-submodule of S′. E is a filtered category as (I, S) ∈ Obj(E) and
(I ′, S′) ∈ Obj(E) both have an arrow to (I ∪ I ′, S + S′) ∈ Obj(E).

Consider e = (I, S) ∈ E and the right OFG-module Me = FI/S. Since S ⊂ K,
the canonical injection FI ↪→ F induces a morphism Θe : Me → M. Similarly one
sees that there are induced morphisms ϕe

e′ : Me → Me′ for each arrow e → e′.
Hence this construction gives us a functor Λ : E → ModF-G, which sends e 7→Me.
By the universal property for filtered colimits we obtain a unique morphism

Θ : colim−−−→Me →M.

Θ is obviously surjective: for each m ∈ M there is the element e = ({m}, 0),
where {m} is viewed as an F-set.

To show that Θ is injective we use the explicit description of colimits (4). Every
element y in colim−−−→Me is the image of some ye ∈Me (e = (I, S)). In case y ∈ ker(Θ),
it follows that Θe(ye) = 0. We show that there is an e′ ∈ E such that ϕe

e′(ye) = 0.
Let πe : FI → Me and hence yeπ(f) for some f ∈ F . But Θe(ye) = 0 and hence
f ∈ K. The desired e′ = (I, S+K ′), whereK ′ is theOFG-submodule ofK generated
by the F-set {f}.

So far we have shown, that every right OFG-module is the directed colimit of
finitely presented ones.

To complete the proof we need only show that there is a cofinal subset Ẽ of E such
that FJ/L is a (finitely generated) free right OFG-module for all (J, L) ∈ Ẽ. Let
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(I, S) ∈ E be arbitrarily chosen. By (ii) there exists a finitely generated free right
OFG-module F such that the canonical map FI/S → M factors through F. We
shall show that F = FJ/L for some (J, L) ∈ Ẽ.

Let B be a finite F-set, which is a basis for F . We can find an F-set B′ ⊂M ×N
such that B′ ∩ I = ∅, B′ and B′ have the same order as F-sets and π(B) = π(B′).
We put J = B′ ∪ I and there is a natural surjection σ : FJ ³ K where L = ker(σ)
is a finitely generated OFG-submodule of K. Thus, for each e ∈ E there exists an
e′ ∈ Ẽ and an arrow e→ e′, which proves our claim.

(iii) ⇒ (i): Direct colimits commute with tensor-products over OFG, which follows
from (4) and the fact that coproducts commute with ⊗F. Also, projectives are flat.

It follows from the proof that every OFG-module is the filtered colimit of finitely
presented modules. We thus obtain the following:

Corollary 3.3. Every finitely presented flat right OFG-module is projective.

Lemma 3.4. Let {Pi}i∈I be a countable direct system of projectives in ModF-G.
Then colim−−−→Pi = P has projective dimension 6 1.

Proof. Since I is countable, we can pick a cofinal System C ⊂ I, so that Pc1 →
Pc2 → .... with colim−−−→Pcj = P . Hence, the map in the explicit description of the
colimit above is injective and we have a projective resolution

∐

ϕ:i→j

Pi ↪→
∐

i∈C

Pi ³ P

of P of length 1.

Analogous to the finitely presented case we say a right OFG-module M is count-
ably presented if there is a short exact sequence N ↪→ F ³ M with F countably
generated free and N countably generated, i.e. there is a countably generated free
mapping onto N .

Proposition 3.5. Every countably presented flat module M ∈ ModF-G has pdFM 6
1.

Proof. There exists an exact sequence of right OFG-modules

F1
d−→F0

π−→M → 0,

where F0 and F1 are countably generated free, i.e. there exist countable subfamilies
F0 = {K1,K2, ...} and F1 = {L1, L2, ...} of F such that

F1 =
∐

L∈F1

PL and F0 =
∐

K∈F0

PK .

By Theorem 3.2, M is the directed colimit colim−−−→Fλ (λ ∈ Λ) of finitely generated
free modules Fλ. Let µλ : Fλ → M denote the canonical maps. Hence there exist
maps fλ : Fλ → F0 such that πfλ = µλ for all λ ∈ Λ.
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For arbitrary j > 1 we denote by

mj = max{i |PKi
⊆ d(PL′j ) for some j′ 6 j}.

Furthermore, for each j > 0 there exists a λ(j) ∈ Λ such that for each i 6 mj there
is a PK̄i

, a direct summand of Fλ(j), with fλ(j)(PK̄i
) = PKi . Therefore, for each

coproduct we have π(
∐
PK̄i

) = 0, i.e. PK̄i
⊆ d(F1).

Thus M is a direct summand of colim−−−→Fλ(j), a countable colimit of free modules
and has projective dimension 1 by Lemma 3.4.

4. Homological and cohomological dimensions

From now on let F denote the family of all finite subgroups of a group G. Analogous
to ordinary homology and cohomology we define (co)homo-
logical dimensions via resolutions of the trivial module Z, which denotes the constant
functor Z(G/K) = Z for all K ∈ F, where all maps
Z(G/K) → Z(G/L) are the identity transformation. The obvious definitions are
now cdG = pdFZ and hdG = fldFZ. We shall compare the two quantities and also
make some remarks about their properties.

Similiarly to ordinary group-homology, a standard resolution plays an important
rôle in Bredon-Homology. We begin this section with a description of this resolution.

Let ∆ denote the F-set with ∆K = {G/K} for all K ∈ F. As noted in (1) the free
module on ∆ is of the form F∆ =

∐
K∈F PK(−). Simultaneoulsy we shall further

consider the G-set ∆̃ =
∐

K∈FG/K. This set has the following property:

∆̃H 6= ∅ ⇐⇒ H ∈ F. (7)

When evaluating F∆ at G/H ∈ OFG, we obtain the following module for the
Weyl-group WH = NG(H)/H:

F∆(G/H) =
∐

K∈F

PK(G/H) =
⊕

K∈F

Z[G/K]H = Z∆̃H . (8)

Consider free OFG-modules on cartesian products of F-sets:

F∆×∆ =
∐

(δ,δ′)∈∆×∆ Zmor(−, ϕ(δ, δ′))
=

∐
K,L∈F Z[mor(−, G/K)×mor(−, G/L)],

by (1) and hence, after evaluating at G/H ∈ OFG:

F∆×∆(G/H) =
⊕

K,L∈F

Z[(G/K)H × (G/L)H ] = Z(∆̃H × ∆̃H). (9)

We now define a map of F-sets

dn : ∆(n+1) = ∆× ...×∆︸ ︷︷ ︸
n times

→ ∆× ...×∆︸ ︷︷ ︸
n−1 times

= ∆(n),

as follows: for each K ∈ F put
dn(g0K, ..., giK, ..., gnK) =

∑n
i=0(−1)i(g0K, ..., ĝiK, ..., gnK) for each 0 6 i 6 n,
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where ĝiK means leaving this term out. This now gives us a complex of free OFG-
modules

...→ F∆(n+1) → F∆(n) → ...→ F∆
ε−→Z→ 0. (10)

The map ε : F∆ → Z is defined by ε(gK) = 1.
When evaluating (10) at G/H ∈ OFG, we obtain a sequence of WH-modules

→ Z(∆̃H)(n+1) → Z(∆̃H)(n) → ...→ Z∆̃H → Z→ 0, (11)

where the induced connecting maps are as follows: d̃n(δ0, ..., δi, ..., δn) =∑n
i=0(−1)i(δ0, ..., δ̂i, ..., δn), where the δi ∈ ∆̃H for all 0 6 i 6 n. It was shown

in [19, Lemma 3.1], that the G sets ∆̃H satisfy condition (7) and furthermore that
the sequence (11) is an exact sequence of WH-modules and hence the standard
resolution (10) is indeed an exact sequence of right OFG-modules.

Theorem 4.1. Let G be an arbitrary group. Then

(i) hdG 6 cdG

(ii) When G is countable then cdG 6 hdG+ 1

Proof. (i) follows directly from the fact that projectives are flat. Being countable,
G has only countably many finite subgroups. Hence the standard resolution (10) is
a countable free resolution and (ii) follows from Proposition 3.5.

Following [16] we say a family F is bounded if each K ∈ F is contained in a maximal
M ∈ F.

Theorem 4.2. Let {Gλ}λ∈Λ be a direct system of groups. Then, for the direct limit
G = lim

→
Gλ and F a bounded family of finite subgroups of G,

(i) hdG = max{hdGλ}
(ii) If Λ is countable then cdG 6 max{cdGλ}+ 1

Proof. Let ιλ : Gλ → G and ϕλ
µ : Gλ → Gµ be the canonical maps for all λ, µ ∈ Λ.

Let ∆λ denote the Obj{OFGλ}-set with ∆λ,Kλ
= {Gλ/Kλ} for all Kλ ∈ Fλ, the

family of all finite subgroups of Gλ. This is in a one-to-one correspondence with
the Obj{OFG}-set (or F-set) for short) ∆′

λ, which is defined as ∆λ,K = {G/K} for
all K ∈ F with K = ιλ(Kλ) and empty otherwise. By some abuse of notation we
denote both with ∆λ.

We have a directed system of F-sets given through:

∆λ → ∆µ

Gλ/Kλ 7→ Gµ/Kµ

for all ϕλ
µ : Gλ → Gµ. Since F is bounded, colim−−−→∆λ = ∆,which is the F-set defined

by ∆K = {G/K} for all K ∈ F.
It now follows that

F∆(n) ∼= F
colim−−−→∆

(n)
λ

∼= colim−−−→F
∆

(n)
λ
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for all n > 0. Since colimits are exact (3.1) we have that ker(F∆(n) → F∆(n−1)) =
Kn

∼= colim−−−→Kn,λ, the n-th kernel in the respective standard resolutions for OFGλ.
(i) now follows directly and (ii) from Lemma 3.4.

Proposition 4.3. For every group G, hdG > hdQG.

Proof. Let hdG = n. Take an arbitrary free resolution of Z. Hence the n-th kernel is
flat and by 3.2 a direct limit of free modules. Evaluating at G/1 and tensoring the
result with Q gives us a QG-flat resolution of Q, where the n-th kernel is a direct
limit of free modules, hence flat.

5. Extensions

In this section we discuss the Bredon homological and cohomological dimensions
for extensions N ↪→ G ³ Q of groups. Our results are applications of Martinez’
spectral sequences [16]. We begin by recalling her results and adapting them to our
setting.
Let us denote by F(G), F(N) and F(Q) the families of finite subgroups of G,H and
Q respectively.
Let H = {S 6 G : N 6 S and S/N ∈ F(Q)}. We also have a map

π : F(G) → H
L 7→ LN

and there is an obvious equivalence of categories between ModF(Q)-Q and ModH-G
and between Q-ModF(Q) and G-ModH. This implies in particular that

cdHG = cdQ and hdHG = hdQ.

An application of Martinez’ spectral sequence [16, 5.1] now yields the following
result:

Theorem 5.1. [16, 5.2] Let N ↪→ G ³ Q be an extension of groups. Assume that
there are integers m and n such that for every S ∈ H, cdS 6 n and hdS 6 m. Then

cdG 6 m+ cdQ

and
hdG 6 m+ hdQ.

Example 5.2. The conditions of theorem 5.1 are obviously satisfied when Q is
torsion-free. Here the theorem says that cdG 6 cdN +cdQ and hdG 6 hdN +hdQ.

Example 5.3. Theorem 5.1 can also be applied when N is polycyclic. See for
example [15, Example 5.25], where it is shown that for a polycyclic-by-finite group
there is always a model for an EG of dimension equal to the Hirsch-rank if its
polycyclic subgroups of finite index. Hence, for all S ∈ H, cdS = hdS = hN .

Example 5.4. We cannot hope to get a result like 5.1 for arbitrary group-extensions.
Ian Leary and the author give examples of virtually torsion-free groups G, where
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cdG is strictly greater than cdH for H a torsion-free subgroup of finite index, see
[12, Example 12]. Since H is of type FP∞, the homological and cohomological di-
mensions are equal [1, Theorem 4.6]. Analogous to the proof of [12, Theorem 6] we
can use the homology of EG relative to its singular set to provide a lower bound
for hdG. Let N be a ZG-module and let I1N be the covariant OFG-module defined
as I1N(G/K) = 0 for all K 6= {1} and I1N(G/1) = N . It can be checked that
HG
∗ (EG,EGsing;N) ∼= TorF

∗ (Z, I1N). For the above examples there is a model X
for EG such that the relative cellular chain complex C∗(X,Xsing) contains as a di-
rect summand a chain complex consisting of only one copy of ZG in the top degree
n = gdG. Hence for our examples HG

n (EG,EGsing;ZG) 6= 0 and therefore

hdG = cdG > cdH = hdH.

In the next section we take a closer look at nilpotent groups where we can prove
some more detailed results. Note that Theorem 5.1 can be applied to the case when
N is finite. But an application of Martinez’ spectral sequence [16, 4.3] yields the
follwong stronger result.

Theorem 5.5. Let F ↪→ G ³ Q be an extension of groups where F is finite. Then

cdG = cdQ and hdG = hdQ.

Proof. Since F is finite, H ⊆ F(G) and also, for each L ∈ F(G), there is S = LF ∈ H
such that L 6 S. Hence the conditions of [16, 4.5] apply and Hn

H(G,C) ∼= Hn
F (G,C)

and HH
n (G,D) ∼= HF

n (G,D) for all C ∈ ModF-G and all D ∈ G-ModF.

6. Nilpotent groups

In this section we consider nilpotent groups G. The elements of finite order in
G form a charcteristic locally finite subgroup, denoted τ(G). We write hG for the
Hirsch length of G.

Theorem 6.1. Let G be a nilpotent group and F be the family of finite subgroups
of G. Then

hdG = hG.

Proof. Obviously, from 4.3 and Stammbach’s result [23] it follows that hdG > hG.
We need to show the other inequality.

Let G be of finite Hirsch length n. We have a group extension

τ(G) ↪→ G ³ H

with H torsion-free, see e.g. [20], page 132. Since H is torsion-free, Stammbach’s
result [23] implies that hH = hdH = hdH.

We now use a similar argument as in Theorem 5.5, but this time we apply it
to F̂, the completion of F. Now H = {τ(G)}, and the families H and F̂ satisfy the
conditions of [16, 4.5] and hence hdHG = hdF̂G. Also, Theorem 4.8 of [16] implies
that hdF̂G > hdG. As the Hirsch length is additive for group-extensions we obtain
the following chain of inequalities:

hG = hH = hdH = hdHG = hdF̂G > hdG > hG,
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which proves the theorem.

Remark 6.2. Theorem 4.1 gives us bounds for the Bredon cohomological dimension
of nilpotent groups. For virtually torsion-free
nilpotent groups the next result is of interest, linking cdG to the virtual coho-
mological dimension (vcdG) of G.

Theorem 6.3. Let G be a virtually torsion-free nilpotent group. Then cdG = vcdG.

Proof. Let N ↪→ G ³ Q be an extension with N torsion-free and Q finite. As N
is torsion-free, the intersection τ(G) ∩ N is trivial. Therefore τ(G) is isomorphic
to a subgroup of Q and hence finite. Now apply Theorem 5.5 to the extension
τ(G) ↪→ G ³ H and use the fact that N is isomorphic to a subgroup of finite index
in H.

Remark 6.4. This theorem can be used to verify that the Brown conjecture holds
for arbitrary virtually torsion-free nilpotent groups. It follows directly for groups of
cdG 6= 2 from the results of Dunwoody [7] and Lück [13], as here we can always
find a model for EG of dimension equal to cdG. We only have to make sure that an
Eilenberg-Ganea type phenomenon cannot happen for virtually torsion-free nilpo-
tent groups of cdG = 2. Let N be a torsion-free subgroup of finite index in G. Then
cdN = 2. Applying [1, Theorem 8.8] to N and using that the centre Z(N) 6= {1}
yields cdZ(N) = 1. Hence Z(N) is infinite cyclic. The extension Z(N) ↪→ N ³ Q
now satisfies the assumptions of Fel’dman’s theorem, see Theorem 5.5 and Remark
of [1]. Hence 2 = cdN = cdZ(N)+cdQ and cdQ = 1 implying that Q is free abelian
of rank 1. Hence N is polycyclic and therefore admits a 2-dimensional model for an
Eilenberg-Mac Lane space EG. Applying this to τ(G) ↪→ G ³ H implies that G is
an extension of finitely generated groups, hence finitely generated and in particular
polycylic. And for a polycyclic group of cdG = 2 we can always find a 2-dimensional
model for EG, see [15, Example 5.25].
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