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TOWARD EQUIVARIANT IWASAWA THEORY, IV

JÜRGEN RITTER and ALFRED WEISS

(communicated by J.F. Jardine)

Abstract
Let l be an odd prime number and K∞/k a Galois exten-

sion of totally real number fields, with k/Q and K∞/k∞ finite,
where k∞ is the cyclotomic Zl-extension of k. In [RW2] a “main
conjecture” of equivariant Iwasawa theory is formulated which
for pro-l groups G∞ is reduced in [RW3] to a property of the
Iwasawa L-function of K∞/k. In this paper we extend this re-
duction for arbitrary G∞ to l-elementary groups G∞ = 〈s〉×U ,
with 〈s〉 a finite cyclic group of order prime to l and U a pro-l
group. We also give first nonabelian examples of groups G∞
for which the conjecture holds.

Dedicated to Victor Snaith on the occasion of his 60-th birthday.

Let l be a fixed odd prime number and K∞/k a Galois extension of totally real
number fields with [k : Q] finite and k∞, the cyclotomic l-extension of k, con-
tained in K∞ with [K∞ : k∞] also finite. The respective Galois groups are G∞ =
GK∞/k , H = GK∞/k∞ , Γk = Gk∞/k . We also fix a finite set S of primes of k
containing l,∞ and all primes which ramify in K∞ 1.
In [RW2,§4] we formulated an equivariant refinement of the Main Conjecture of
(classical) Iwasawa theory [Wi]. The main point of this paper is to reduce this
“main conjecture” to a conjectural property of the Iwasawa L-function LK∞/k,S of
K∞/k.

Theorem (A). The “main conjecture” of equivariant Iwasawa theory for K∞/k is,
up to its uniqueness assertion, equivalent to LK∞/k,S belonging to DetK1(Λ(G∞)

ˆ
).

The Iwasawa L-function LK∞/k (= LK∞/k,S) incorporates all the l-adic (S-
truncated) Artin L - functions of K∞/k by assigning to each l-adic character χ
of G∞ the Iwasawa power series of the corresponding L-function. This LK∞/k is a
homomorphism from the character ring Rl(G∞) to the units of the “Iwasawa al-
gebra” Λc

ˆ
(Γk) of k, which is Galois equivariant, compatible with W-twisting, and
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1The reference to S is normally suppressed.



Homology, Homotopy and Applications, vol. 7(3), 2005 156

which satisfies the congruences LK∞/k(χ)l ≡ Ψ(LK∞/k(ψlχ)) mod lΛc

ˆ
(Γk) . These

properties of LK∞/k are the foundation of the proof of Theorem A. For the notation
we refer to the introductory §1 which also contains the map Det : K1(Λ(G∞)

ˆ
) →

HOM∗(Rl(G∞),Λc

ˆ
(Γk)×) .

The technical core of the proof of Theorem A is

Theorem (B). DetK1(Λ(G∞)
ˆ
)∩HOM∗(Rl(G∞),Λc(Γk)×) ⊂ DetK1(Λ(G∞))

When G∞ is an l-group, equivalent theorems are stated in [RW3] with • in place
of

ˆ
; for the proofs in [RW3] the

ˆ
-form of Theorem B is however essential (see

[RW3,§6]). We have emphasized here the
ˆ
-form because this technical advantage

persists (e.g. in Proposition 2).
The proof in [RW3,§1] that Theorem B implies Theorem A works not only for
general groups G∞ but also with • replaced by

ˆ
: In its fourth paragraph every

• needs to become
ˆ
. Therefore it remains to use induction techniques to reduce

Theorem B to the l-group case. These techniques are generalizations of those in
[Ty, Fr] for finite groups to the setting of Iwasawa theory.

In the same way we obtain

Theorem (C). LK∞/k ∈ DetK1(Λ(G∞)
ˆ
) if, and only if, LK′/k′ ∈

DetK1(Λ(GK′/k′)ˆ
) whenever GK′/k′ is an l-elementary section of G∞.

Here GK′/k′ is a section of G∞, if k ⊂ k′ ⊂ K ′ ⊂ K∞ is such that k′/k is finite
and K∞/K ′ finite Galois; a section GK′/k′ is l-elementary, if GK′/k′ = 〈s〉 × U for
some finite cyclic subgroup 〈s〉 of order prime to l and some open l-subgroup U .
If G∞ is abelian, then the “main conjecture” holds by the Corollary to Theorem 9
in [RW3]. Theorem C provides first nonabelian examples of the “main conjecture”.
We expect more such examples to follow from the logarithmic methods of [RW3] for
l-elementary groups. In more generality we know only that some l-power of LK∞/k

is in DetK1(Λ(G∞)
ˆ
).

The paper is organized as follows. Its first section has some background material. In
§2 we discuss K1(Λ(G∞)) for Ql - l - elementary groups G∞ and deduce Theorems B
and C for them. Then §3 is preliminary material on Ql - q - elementary groups G∞,
with q a prime number different from l, which is used for the proof, in §4, of the
full Theorems B and C. In §5 the examples appear.
We remark that because Theorems A and C are based on [RW3] they depend on
the vanishing of Iwasawa’s µ-invariant for k′∞/k′, for which we refer to [Ba].

1. Background

The Iwasawa L-function LK∞/k,S ofK∞/k is defined as follows (compare [RW2,§4]).
Let χ be a Ql

c-character of G∞ with open kernel and write the l-adic S-truncated
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Artin L-function Ll,S(1−s, χ), for s ∈ Zl, as the fraction Ll,S(1−s, χ) = Gχ,S(us−1)
Hχ(us−1)

of the Deligne-Ribet power series Gχ,S(T ) , Hχ(T ) ∈ Ql
c ⊗Zl

Zl[[T ]] associated to
a generator γk of Γk [DR]. Above, u ∈ 1 + lZl describes the action of γk on the
l-power roots of unity. Now set

LK∞/k,S(χ) =
Gχ,S(γk − 1)
Hχ(γk − 1)

(which is independent of the choice of γk).

Recall that Q(G∞) is the total ring of fractions of the completed group ring

Λ(G∞) = Zl[[G∞]]

of G∞ over Zl (it is enough to invert the nonzero elements of Λ(Γ) for a central open
subgroup Γ ' Zl). The algebra Q(G∞) is a finite dimensional semisimple algebra
over Q(Γ) with Γ, as before, central open in G∞.
The map

Det : K1(Q(G∞)) → Hom∗(Rl(G∞),Qc(Γk)×)

is now defined as follows (compare [RW2,§3]).
If [P, α] represents an element in K1(Q(G∞)), with P a finitely generated projective
Q(G∞)-module and α an Q(G∞)-automorphism of P , then

Det [P, α] is the function in Hom∗ which takes the irreducible χ to

detQc(Γk)(α | HomQl
c[H](Vχ,Ql

c ⊗Ql
P )) .

Here, Qc(Γk) = Ql
c ⊗Ql

Q(Γk), and Vχ is a Ql
c-representation of G∞ with char-

acter χ (always with open kernel). The ∗ on Hom requires GQl
c/Ql

-invariance and
compatibility with W-twists; these properties are inherited from the representation
theory of Q(G∞).
Restricting Det to K1(Λ(G∞)), it takes values in Hom∗(Rl(G∞),Λc(Γk)×), with
Λc(Γk) = Zl

c⊗Zl
Λ(Γk), and indeed Detx = f has values satisfying the congruences

f(χ)l ≡ Ψ(f(ψlχ)) mod lΛc(Γk) ,

which define the subgroup HOM∗(Rl(G∞),Λc(Γk)×) of Hom∗ (see [RW3,§2]).
Above, Ψ is the Zl

c-algebra endomorphism of Λc(Γk) induced by γ 7→ γl on Γk, and
ψl is the l-th Adams operation on Rl(G∞).
However, the values LK∞/k(χ) are not in Λc(Γk)× but in Λc

•(Γk)×, where Λc
•(Γk) =

Zl
c ⊗Zl

Λ(Γk)• with Λ(Γk)• the localization of Λ(Γk) at l. We work with the com-
pletion Λ(Γk)

ˆ
of Λ(Γk)• at l because logarithmic methods apply to K1(Λ(G∞)

ˆ
)

(see [RW3, beginning of §5]). We arrive at

Det : K1(Λ(G∞)
ˆ
) → HOM∗(Rl(G∞),Λc

ˆ
(Γk)×) ,

with Λc

ˆ
(Γk) = Zl

c ⊗Zl
Λ(Γk)

ˆ
, and now LK∞/k ∈ HOM∗(Rl(G∞),Λc

ˆ
(Γk)×) .

The induction techniques that we are going to apply will also involve ΛO(G) =
O ⊗Zl

Λ(G) and ΛO(G)
ˆ
, where O is the ring of integers of a finite unramified
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extension N/Ql. All that has been said so far remains true except that the GQl
c/Ql

-
invariance on Hom∗ gets replaced by GQl

c/N -invariance to define HomN and that
the Frobenius automorphism Fr of N/Ql appears (see [RW3, Proposition 4]).

2. Ql - l - elementary groups G∞
In this section the Galois group G∞ = GK∞/k is assumed to be Ql - l - elementary,

i.e., a semidirect product G∞ = 〈s〉 o U of a finite cyclic group 〈s〉 of order prime
to l and an open l-subgroup U whose action on 〈s〉 induces a homomorphism U →
GQl(ζ)/Ql

, where ζ is a root of unity of order |〈s〉|.
We fix a set {βi} of representatives ofGQl

c/Ql
-orbits of theQl

c-irreducible characters
of 〈s〉 and denote the stabilizer group of βi by Ui = {u ∈ U : βu

i = βi}. Note that
Ui ¢ U and set Ai = U/Ui 6 GNi/Ql

, with Ni the field of character values of βi

Theorem 1. 1. There are natural maps r, r′ so that

K1(Λ(G∞)) r→ ∏
iK1(ΛOi(Ui))

Det ↓ Det ↓
Hom∗(Rl(G∞),Λc(Γk)×)

r′½
∏

i HomNi(Rl(Ui),Λc(Γki)
×)

commutes and r′ is injective. Here ki = K∞Ui and Oi is the ring of integers
of Ni. Moreover, r induces an isomorphism

DetK1(Λ(G∞)) →
∏

i

(DetK1(ΛOi(Ui)))Ai .

2. The same holds in the completed situation, i.e., with Λ replaced by Λ
ˆ
.

Proof. (Compare [Ty, p.67-71] or [Fr, p.89-96].) In order to use subscripts we
abbreviate G∞ by G.
Set Gi = 〈s〉 o Ui , ei = 1

|〈s〉|
∑

j mod |〈s〉| trNi/Ql
(βi(s−j))sj ∈ Zl〈s〉 and let

R
(ei)
l (G) ⊂ Rl(G) be the span of the irreducible χ ∈ Rl(G) with χ(ei) 6= 0. Observe

that ei is a central idempotent of Λ(G∞).
We first glue the following squares together

K1(Λ(G))
res

Gi
G−→ K1(Λ(Gi))

Det ↓ Det ↓
Hom∗(Rl(G),Λc(Γk)×)

res
Gi
G−→ Hom∗(Rl(Gi),Λc(Γki)

×)

K1(Λ(Gi)) → K1(eiΛ(Gi))
Det ↓ Det ↓

Hom∗(Rl(Gi),Λc(Γki)
×) → Hom∗(R(ei)

l (Gi),Λc(Γki)
×) .

Actually, both diagrams should have the field k′i = K∞Gi in place of ki; however,
Γk′i and Γki get identified as subgroups of Γk since [ki : k′i] = |〈s〉| is not divisible
by l.
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The upper diagram commutes by [RW2, Lemma 9], and Λ(Gi) = eiΛ(Gi) × (1 −
ei)Λ(Gi) implies the commutativity of the bottom one. Note that there is no ambi-
guity in writing Hom∗(R(ei)

l (Gi),Λc(Γki
)×) because χ(ei) = (χρ)(ei) for characters

ρ of Gi of type W.
There are natural actions of Ai = G/Gi on K1(Λ(Gi)) and on

Hom∗(Rl(Gi),Λc(Γki
)×);

moreover,

res Gi

G (K1(Λ(G))) ⊂ K1(Λ(Gi))Ai ,

res Gi

G (Hom∗(Rl(G),Λc(Γk)×)) ⊂ (Hom∗(Rl(Gi),Λc(Γki
)×))Ai .

The maps in the bottom diagram are all Ai-equivariant. For this we only need to
check the Ai-equivariance of Det : K1(Q(Gi)) → Hom∗(Rl(Gi),Qc(Γki

)×) :
Set Hi = ker(Gi → Γki

). Further, let [P, α] represent an element of K1(Q(Gi)),
with α an automorphism of the projective module P . If a ∈ Ai has preimage g ∈ G,
then [P, α]a = [P [g], α[g]] where P [g] = {[p] : p ∈ P} with y[p] = [yg−1

p] for y ∈ Gi

and α[g]([p]) = [α(p)]. Taking V = Vχg−1 , so V [g] = Vχ, it suffices to show that

HomQl
c[Hi](V,Ql

c ⊗Ql
P ) → HomQl

c[Hi](V
[g],Ql

c ⊗Ql
P [g]),

ϕ 7→ [ϕ] with [ϕ]([v]) = [ϕ(v)]

is a Qc(Γki)-vector space isomorphism which is natural for the respective actions of
α. Now,

(y[ϕ])([v]) = y([ϕ](y−1[v])) = y([ϕ]([y−g−1
v]))

= y[ϕ(y−g−1
v)] = [yg−1

(ϕ(y−g−1
v))] = [(yg−1

ϕ)(v)] ,

and taking y ∈ Hi implies that [ϕ] ∈ HomQl
c[Hi](V

[g],Ql
c ⊗Ql

P [g]). Reading the
above for y ∈ Γki we see the map is Qc(Γki)-linear.

By composing the above two squares we arrive at

(D1)
K1(Λ(G)) → ∏

iK1(eiΛ(Gi))Ai

Det ↓ Det ↓
Hom∗(Rl(G),Λc(Γk)×) → ∏

i Hom∗(R(ei)
l (Gi),Λc(Γki)

×)Ai .

We claim that the lower horizontal map in (D1) is injective. To see this we first
observe that it is also the composite

Hom∗(Rl(G),Λc(Γk)×) →
∏

i

Hom∗(R(ei)
l (G),Λc(Γk)×)

→
∏

i

Hom∗(R(ei)
l (Gi),Λc(Γki)

×)

and that Rl(G) =
⊕

iR
(ei)
l (G) . Hence, as induction on characters is restriction on

Hom∗, we are done once we know ind G∞
Gi

(R(ei)
l (Gi)) = R

(ei)
l (G). However, if χ ∈

Rl(G) is irreducible, then Clifford theory [CR I, 11.8, p.265] implies χ = ind G
Gi

(β̃σ
i ξ)
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for some irreducible ξ ∈ Rl(Ui) and the i and σ ∈ GNi/Ql
so that βσ

i appears in
res 〈s〉G (χ); here β̃i ∈ Rl(Gi) is defined by β̃i(sju) = βi(sj).

Note that eiΛ(Gi) = eiZl〈s〉 ⊗Zl
Λ(Ui) is, via βi, isomorphic to Oi ⊗Zl

Λ(Ui) =
ΛOi(Ui) . We next show that the square

(D2)
K1(eiΛ(Gi))

βi−→ K1(ΛOi(Ui))
Det ↓ Det ↓

Hom∗(R(ei)
l (Gi),Λc(Γki

)×)
β∗i½ HomNi(Rl(Ui),Λc(Γki

)×)

commutes, with the top horizontal map induced by βi and β∗i defined by f 7→
f ′ , f ′(ξ) = f(β̃iξ) . The map β∗i is injective because R(ei)

l (Gi) is spanned by the
β̃σ

i ξ.

Turning to the commutativity of (D2), it suffices to show that (Det (α))′ =
Det (βi(α)) for units α ∈ eiΛ(Gi), by [CR II, p.76]. Now, with Vξ denoting a Ql

c-
realization of ξ ∈ Rl(Gi),

Det (βi(α))(ξ) = detQc(Γki
)(βi(α) | HomQl

c[H′i](Vξ,Ql
c ⊗Ni QNi(Ui))) and

Det (α)(β̃iξ) = detQc(Γki
)(α | HomQl

c[Hi](Vβ̃iξ
,Ql

c ⊗Ql
(eiQl〈s〉 ⊗Ql

Q(Gi))))

where Hi, as before, equals ker(Gi → Γki) and H ′
i = Hi/〈s〉; see [RW2, §3]. Hence

it suffices to exhibit a Qc(Γki)-isomorphism

HomQl
c[H′i](Vξ,Qc(Ui)) −→ HomQl

c[Hi](Vβ̃iξ
, (Ql

c ⊗Ql
eiQl〈s〉)⊗Ql

c Qc(Ui))

which is natural for the respective actions of α. Such a map is given by multiplying
ϕ′ ∈ HomQl

c[H′i] by the idempotent εi = 1
|〈s〉|

∑
j mod |〈s〉| βi(s−j)⊗ eis

j of Ql
c⊗Ql

eiQl〈s〉. This map is surjective since εi acts as the identity on Vβ̃iξ
, hence every

ϕ ∈ HomQl
c[Hi] has image in εi(Ql

c ⊗Ql
eiQl〈s〉)⊗Ql

c Qc(Ui) = εi ⊗Ql
c Qc(Ui) .

Combining (D1) and (D2) gives the commutative square in 1. of the theorem. To
complete the proof we are left with showing

DetK1(Λ(G)) '
∏

i

(DetK1(ΛOi(Ui)))Ai .

We first check that the maps in (D2) are all Ai-equivariant. The left Det has already
been dealt with. The right Det will follow since βi is an isomorphism.

1. The natural embedding a 7→ σa : Ai → GNi/Ql
is determined by βi(sa) =

βi(s)σa and we transport the conjugation action of G on eiZl〈s〉 ⊗Zl
Λ(Ui)

to ΛOi(Ui) by βi, hence βi : K1(eiZl〈s〉 ⊗Zl
Λ(Ui)) → K1(ΛOi(Ui)) is Ai-

equivariant.
2. We show that β∗i is Ai-equivariant, with the action of Ai on ϕ∈HomNi(Rl(Ui),

Λc(Γki)
×) defined by ϕa(ξ) = ϕ(ξa−1

)σa , where σa ∈ GNi/Ql
is extended to

Ql
c so that it is the identity on l-power roots of unity; this is possible since

Ni/Ql is unramified. Note that ϕa is well-defined since changing σa to σσa,
with σ ∈ GQl

c/Ql
the identity on Ni(ζl∞), gives ϕ(ξa−1

)σσa = ϕ(ξa−1σ)σa =
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ϕ(ξa−1
)σa as ξa−1

is a character of the l-group Ui. Moreover, ϕa ∈ HomNi :
If σ ∈ GQl

c/Ni
, then ϕa(ξσ) = ϕ(ξσa−1

)σa = ϕ(ξa−1σ)σa = ϕ(ξa−1
)σσa =

(ϕ(ξa−1
)σσaσ−1

)σ = ϕa(ξ)σ , because σσaσ
−1 is also an admissible extension

of σa.
The Ai-equivariance of the map β∗i now follows from βa

i = β
σ−1

a
i (which is a

reformulation of βi(sa−1
) = βi(s)σ−1

a ). Namely, let f ′ ∈ HomNi be the image
of f ∈ Hom∗ and let f ′′ ∈ HomNi be that of fa. Then f ′′(ξ) = fa(β̃iξ) =
f(β̃a−1

i ξa−1
) = f((β̃iξ

a−1
)σa) = f(β̃iξ

a−1
)σa = f ′(ξa−1

)σa = (f ′)a(ξ) .

For 1. of Theorem 1 it now remains to show that r′ induces an epimorphism
DetK1(Λ(G)) ³

∏
i(DetK1(ΛOi(Ui)))Ai . From

K1(Λ(G))
res

Gi
G−→ K1(Λ(Gi))

↓̌ ↓̌
K1(eiΛ(G))

res
Gi
G−→ K1(eiΛ(Gi))

βi,'−→ K1(ΛOi(Ui))

and the surjectivity of the left vertical arrow we deduce

im (r) ⊃
∏

i

βires Gi

G (K1(eiΛ(G))) ⊃
∏

i

βires Gi

G ind G
Gi

(K1(eiΛ(Gi))) .

Hence, by [RW2, Lemma 9] and [RW3, Lemma 1],

r′(DetK1(Λ(G))) ⊃ ∏
i β
∗
i res Gi

G ind G
Gi

(DetK1(eiΛ(Gi)))
$

∏
i β
∗
i NAi(DetK1(eiΛ(Gi))) =

∏
i NAi(DetK1(ΛOi(Ui)))

where $ is due to Mackey’s subgroup theorem and G/Gi = Ai :

res Gi

G ind G
Gi

(fi)(β̃σ
i ξ) = fi(res Gi

G ind G
Gi

(β̃σ
i ξ)) = (

∏

a∈Ai

fa
i )(β̃σ

i ξ) = (NAif)(β̃σ
i ξ) .

All arguments above apply to 2. of Theorem 1 without changes.

The proposition below now finishes the proof of Theorem 1.

Proposition 2. NAi(DetK1(ΛOi(Ui))) = (DetK1(ΛOi(Ui)))Ai and the same with
Λ replaced by Λ

ˆ
.

Since the U inG∞ = 〈s〉oU will not occur in the proof of the proposition, we drop
the index i throughout, so U (= Ui) is now a pro-l group and we need to consider
the A-module DetK1(ΛO(U)). Recall that A acts on U by group automorphisms
and on O by A ½ GN/Ql

.
Let a denote the kernel of Λ(U) → Λ(Uab) and set A = O⊗Zl

a.
By surjectivity of (ΛO(U))× → K1(ΛO(U)) (see [CR II, p.76]) we have
Det (ΛO(U)×) = DetK1(ΛO(U)).

We start out the proof of the proposition from the diagram

1 + A ½ ΛO(U)× ³ ΛO(Uab)×

Det ↓̌ Det ↓̌ Det ↓̌
Det (1 + A) ½ Det (ΛO(U)×) ³ Det (ΛO(Uab))×)
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with the top row exact because a is contained in the radical of Λ(U). The right square
of the diagram commutes [RW2, Lemma 9] and the right Det is an isomorphism
(see [CR II, 45.12, p.142]). Therefore the whole diagram commutes and its bottom
sequence is exact.

We claim that Det (1 + A) ' τ(A) with τ(A) the image of A ⊂ ΛO(G∞) in
T (ΛO(G∞)) = ΛO(G∞)/[ΛO(G∞),ΛO(G∞)] (see [RW3,§3]) . Since L : Det (1 +
A) → Tr(τ(A)) is an isomorphism by the Corollary to Theorem B

ˆ
in [RW3], it

remains to see that L and Tr are A-equivariant. For L this follows as Ψ is induced
by γ 7→ γl for γ ∈ Γk. For Tr it follows from Lemma 6 and Proposition 3 of [RW3] :
Let a ∈ A , ω ∈ O , and u ∈ U . Then

Tr(ωu)a(χ) = Tr(ωu)(χa−1
)σa = trace(ωu | Vχa−1 )σa = (ωχa−1

(u)u)σa

= ωσaχ(ua)u = trace(ωσaua | Vχ) = Tr(ωσaua)(χ).

Collecting everything so far, the starting diagram gives the exact A-module sequence

τ(A) ½ Det (ΛO(U)
×

) ³ ΛO(Uab)
×
.

So the proof of the proposition will be finished once we have shown that

τ(A) and ΛO(Uab)× are A-cohomologically trivial .

For τ(A) this holds because τ(A) = O ⊗Zl
τ(a) has diagonal A-action and O is

Zl[A]-cohomologically trivial, as O/Zl is unramified. By [Se1, Theorem 9, p.152]
then the tensor product is cohomologically trivial as well.

The proof of the cohomological triviality of ΛO(Uab)× uses the following fact:
If (Xn, fn : Xn → Xn−1) is a projective system of A-modules with surjective maps
fn, then X = lim

← Xn is cohomologically trivial if all the Xn are. This holds be-

cause of the exact sequence X ½
∏

nXn ³
∏
Xn in which (· · · , xn, · · · ) 7→

(· · · , fn+1(xn+1)−xn, · · · ) is the second map. Note that the Xn are cohomologically
trivial, if X1 and all ker(Xn+1 → Xn) are so.
Set g = ker(Λ(Uab) → Λ(Γk)) and G = O⊗Zl

g. Since some power of g is contained
in lΛ(Uab) (compare the beginning of the proof of [RW3, Theorem 8]), Λ(Uab) is
complete with respect to its g-adic topology. Also, 1 + g ⊂ Λ(Uab)×, and thus the
short exact sequence 1 + G ½ ΛO(Uab)× ³ ΛO(Γk)× implies the cohomological
triviality of ΛO(Uab)×, if 1 + G and ΛO(Γk)× are A-cohomologically trivial.

Setting Xn = 1+G
1+Gn , ker(Xn+1 → Xn) ' O ⊗Zl

gn

gn+1 , which is cohomologically
trivial by [Se1, loc.cit.].
For the right term of the above short exact sequence we identify ΛO(Γk) and O[[T ]],
as usual, and set Xn = O[[T ]]×

1+T nO[[T ]] ; so X1 = O× and ker(Xn+1 → Xn) = O, which
both are cohomologically trivial.

Adding Λ
ˆ

at the appropriate places, Proposition 2 is established.

Corollary (to Theorem 1) . Let G∞ be Ql - l - elementary. Then

DetK1(Λ(G∞)
ˆ
) ∩Hom∗(Rl(G∞),Λc(Γk)×) ⊂ DetK1(Λ(G∞)) .
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Namely, by Theorem 1,

DetK1(Λ(G∞)
ˆ
) ∩Hom∗(Rl(G∞),Λc(Γk)×)

⊂ ∏
i(DetK1(ΛOi(Ui)ˆ

)Ai ∩∏
i HomNi(Rl(Ui),Λc(Γki

)×)Ai

⊂ ∏
i

(
DetK1(ΛOi(Ui)ˆ

) ∩HomNi(Rl(Ui),Λc(Γki
)×)

)Ai

⊂̇∏
i(DetK1(ΛOi(Ui)))Ai ⊂ DetK1(Λ(G∞))

with ⊂̇ by [RW3, Theorem B
ˆ
].

Proposition 3. Let G∞ be Ql - l - elementary. Then LK∞/k ∈ DetK1(Λ(G∞)
ˆ
)

if, and only if, LK′/k′ ∈ DetK1(Λ(GK′/k′)ˆ
) whenever GK′/k′ is an l-elementary

section of G∞.

If LK∞/k ∈ DetK1(Λ(G∞)
ˆ
) and if GK′/k′ = GK∞/k′

/
GK∞/K′ is an l-elemen-

tary section of G∞ with k ⊂ k′ ⊂ K ′ ⊂ K∞, then defl
GK′/k′
GK∞/k′

res
GK∞/k′
G∞ LK∞/k =

LK′/k′ (see [RW2,§4]). And by [RW2, Lemma 9], LK′/k′ ∈ DetK1(Λ(GK′/k′)ˆ
).

For the converse it may help to review the notation of that part of the proof of
Theorem 1 where (D2) appears. The point is that Gi

def= Gi/ kerβi = 〈si〉×Ui, with
〈si〉 = 〈s〉/ kerβi, is an l-elementary section. And as Gi = 〈s〉o Ui,

Hom∗(Rl(G∞),Λc

ˆ
(Γk)×) res−→

∏

i

Hom∗(Rl(Gi),Λc

ˆ
(Γki)

×)Ai
defl−→

∏

i

Hom∗(Rl(Gi),Λc

ˆ
(Γki)

×)Ai

takes LK∞/k to
∏

i LK′i/k′i where k′i = K∞Gi and K ′
i = K∞ker βi . Note here that

the i th deflation map is Ai-equivariant since 〈s〉 → 〈si〉 is so.

By assumption, LK′i/k′i = Det yi where yi ∈ K1(Λ(Gi)ˆ
) and so Det yi ∈

(DetK1(Λ(Gi)ˆ
))Ai . Projecting to ei(Λ(Gi))ˆ

, LK′i/k′i induces a function in

Hom∗(R(ei)
l (Gi),Λc

ˆ
(Γki)

×)Ai . But ei(Λ(Gi))ˆ
= ei(Λ(Gi))ˆ

= eiZl〈s〉 ⊗Zl
Λ(Ui)ˆ

,

so eiyi ∈ K1(eiZl〈s〉 ⊗Zl
Λ(Ui)ˆ

) and Det (eiyi) ∈ (DetK1(eiZl〈s〉 ⊗Zl
Λ(Ui)ˆ

))Ai .

Now
∏

i(DetK1(eiZl〈s〉 ⊗Zl
Λ(Ui)ˆ

))Ai = DetK1(Λ(G∞)
ˆ
), by Theorem 1, and the

proof is finished.

Remark. In Proposition 3, the Iwasawa L-function LK∞/k may be replaced by any

function f ∈ Hom∗(Rl(G∞),Λc

ˆ
(Γk)×) on setting fK′/k′ = defl

GK′/k′
GK∞/k′

res
GK∞/k′
G∞ f

for all l-elementary sections GK′/k′ of G∞.
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3. Ql - q - elementary groups G∞
In this section q is a prime number 6= l.

We say that the Galois group G∞ = GK∞/k is a Ql - q - elementary group, if G∞ =
H×Γ for some central open Γ 6 G∞ and a finite Ql - q - elementary group H. Recall
that a finite group H is called Ql - q - elementary if it is a semidirect product 〈s〉oHq

of a cyclic normal subgroup 〈s〉 of order prime to q and a q-group Hq whose action
on 〈s〉 induces a homomorphism Hq → GQl(ζ)/Ql

, where ζ is a root of unity of order
|〈s〉|.
Lemma 4.

1. If Γ is a central open subgroup of G∞ so that (the finite group) G∞/Γ is a
Ql - q - elementary group, then G∞ is Ql - q - elementary.

2. Let G∞ be Ql - q - elementary, G∞ = H × Γ , H = 〈s〉 o Hq. Then each ir-
reducible character χ ∈ Rl(G∞) can be written as χ = ρ · ind G∞

G′ (ξ) with an
abelian character ρ of G∞ of type W and an abelian character ξ of a subgroup
G′ ⊃ 〈s〉 × Γ of G∞ so that ξ = 1 on Γ.

In order to see 1. we pick a Sylow-l subgroup U of G∞ containing the central open
Γ. Then U/Γ is an l-subgroup of the finite Ql - q - elementary group G∞/Γ, hence
cyclic and normal in G∞/Γ. We conclude that U is an abelian normal subgroup of
G∞, and, moreover, that G∞ = U oH ′ with a finite Ql - q - elementary group H ′ of
order prime to l. Writing the abelian U as U = Hl × Γ1 with Hl finite (cyclic) and
Γ1 ' Zl, so Hl ¢G∞, the usual Maschke argument provides a Zl[H ′]-decomposition
U = Hl × Γ2 with Γ2 ' Zl, by |H ′| ∈ Zl

×. We infer from Γln ⊂ Γ2 for some
n that H ′ acts trivially on Γ2. Thus G∞ = H × Γ2 with H = Hl o H ′ a finite
Ql - q - elementary group and Γ2 central open in G∞.

For 2. we first restrict χ to Γ and obtain res Γ
G∞χ = χ(1) · ρ1 for some abelian

character ρ1 of Γ. Via G∞/H = Γk, ρ1 is the restriction of a type W character ρ
of G∞. Since χρ−1 is trivial on Γ, we may henceforth assume that χ is trivial on
Γ, whence is inflated from an irreducible Ql

c-character of H. By Clifford theory
[CR I, p.265] the Ql

c-irreducible characters of H are of the form ind H
H̃

(ξ̃ · ω) with
an abelian character ξ̃ of some subgroup H̃ > 〈s〉 and an irreducible character ω
of H̃/〈s〉 (inflated to H̃). The group H̃/〈s〉 is a q-group, so monomial, from which
we deduce an equality ind H

H̃
(ξ̃ · ω) = ind H

H′(ξ) with 〈s〉 6 H ′ 6 H̃ and an abelian
character ξ of H ′. Setting G′ = H ′ × Γ finishes the proof of 2. and of the lemma.

Lemma 5. Assume that G∞ = H ×Γ with H of order prime to l. Then Q(G∞) is
the group algebra of the finite group H over the field Q(Γ) and each f ∈
Hom∗(Rl(G∞),Λc(Γk)×) is a Det z for some z ∈ Λ(G∞)×.

This is straightforward : Q(G∞) = Q(Γ)[H] = Q(Γ)⊗Ql
Ql[H] is isomorphic to a

product of matrix rings over the character fields Q(Γ)(χ) (see [CR II, 74.11, p.740]),
where χ runs through the Ql

c-irreducible characters ofH modulo GQl
c/Ql

-action. By
l - |H|, Λ(Γ)[H] = Λ(Γ)⊗Zl

Zl[H] is a maximal order in Q(Γ)[H], hence a product
of matrix rings over the integral closures of Λ(Γ) in the centre fields Q(Γ)(χ).
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Proposition 6. Assume that G∞ is Ql - q - elementary. Let f ∈ Hom∗(Rl(G∞),
Λc(Γk)×) satisfy (res G′

G∞f)(χ′)l ≡ Ψ((res G′
G∞f)(ψlχ

′)) mod lΛc(Γk′) for all open
subgroups G′ of G∞ (with k′ = K∞G′) and all χ′ ∈ Rl(G′). Then there exists a
z ∈ DetK1(Λ(G∞)) such that ((Det z)−1f)lm ∈ Hom∗(Rl(G∞), 1 + lΛc(Γk)) for
some power lm. The same holds with Λ replaced by Λ

ˆ
.

For the proof (compare also [Ty, p.94/95]) we set G = G∞/Hl = H × Γ with
H finite of order prime to l. In particular, Λ(G) = Λ(Γ)[H]. We proceed from the
commutative square (see [RW2, Lemma 9])

K1(Λ(G∞)) defl−→ K1(Λ(G))
Det ↓ Det ↓

HOM∗(Rl(G∞),Λc(Γk)×) defl−→ HOM∗(Rl(G),Λc(Γk)×)

and consider deflf . By Lemma 5, deflf = Det z is solvable for some z ∈ Λ(G)×. Lift
z to a unit z ∈ Λ(G∞)×, which is possible as Hl = ker(G∞ → G) is an l-group, and
read this z in K1(Λ(G∞)) (via Λ(G∞)× ³ K1(Λ(G∞))). Then f ′ def= (Det z)−1f ∈
Hom∗(Rl(G∞),Λc(Γk)×) and defl(f ′) = 1.
Next, pick an irreducible χ ∈ Rl(G∞) which is trivial on Γ. So χ = ind G∞

G′ (ξ), with
a Ql

c-irreducible character ξ of G′ which is trivial on Γ, by 2. of Lemma 4. We
define χ = ind G∞

G′ (ξ) where ξ = ξl · ξ has been decomposed into its l-singular and
l-regular components ξl, ξ, respectively. As ξ is trivial on Hl, χ is inflated from G.
Now, f ′(χ− χ) = f ′(ind G∞

G′ (ξ − ξ)) = (res G′
G∞f

′)(ξ − ξ) .
The assumption on f and the above Remark imply that

f ′(χ− χ)lm ≡ 1 mod lΛc(Γk′)

if m is big enough so that ψm
l (ξ) = ψm

l (ξ) :

f ′(χ− χ)lm = (res G′
G∞f

′)(ξ − ξ)lm ≡ Ψm((res G′
G∞f

′)(ψm
l ξ − ψm

l ξ)) mod lΛc(Γk′) .

And since defl(f ′) = 1 and χ is inflated fromG, f ′(χ) = 1, we arrive at (f ′)lm(χ) ≡ 1
mod lΛc(Γk′).
By 2. of Lemma 4 every irreducible character of G∞ is of the form χρ with a χ as
above (i.e., χ is trivial on Γ) and ρ of type W. Hence (f ′)lm(χρ) = ρ]((f ′)lm(χ)) ≡ 1
mod lΛc(Γk′) (see [RW2, Definition in §2]).

Remark. Observe that the above hypothesis is satisfied by f = LK∞/k (see
[RW3, 2. of Corollary to Theorem 9; RW2, 2. of Proposition 12]) and by every
f ∈ DetK1(Λ(G∞)) (see [RW2, Lemma 9; RW3, Proposition 4, 1. of Proposition
11]).

4. Proofs of Theorem B and C

In this section we prove Theorems B and C in full generality. This is done by
using character actions on K1 and Hom∗ (as well as the Corollary to Theorem 1
and Proposition 3).
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For an open subgroup U of G∞, we denote by RQl
(U) the ring of all characters

of finite dimensional Ql-representations of U with open kernel. We view RQl
as a

Frobenius functor of the open subgroups of G∞ in the sense of [CR II, 38.1].
We make Hom∗(Rl(U),Λc(ΓkU

)×), with kU = K∞U , into an RQl
(U)-module by

(κf)(χ) = f(κ̌χ) for f ∈ Hom∗ , κ ∈ RQl
(U) , χ ∈ Rl(U) ,

with κ̌ the contragredient of κ.
We make K1(Λ(U)) into an RQl

(U)-module as follows. If κ is a character in RQl
(U),

and if [P, α] represents an element in K1(Λ(U)), then choosing U ′ ⊂ kerκ, an open
subgroup of U , and a Zl[U/U ′]-lattice with character κ, we define

(∗) κ · [P, α] = [M ⊗Zl
P, idM ⊗Zl

α]

(compare [CR II, p.175]).

Lemma 7. Det : K1(Λ(−)) → Hom∗(Rl(−),Λc(Γk−)×) is a morphism of Frobenius
modules over the Frobenius functor U 7→ RQl

(U).

The lemma is shown in the same way as its analogue in the case of group rings of
finite groups. We only need to observe that the Λ(U)-module structure of M ⊗Zl

P
is derived from the diagonal action of U on M ⊗Zl

P :
First, the Λ(U ′)-module structure on P gives M ⊗Zl

P a
Λ(U ′)-structure. The pushout diagram then determines a
unique Λ(U)-module structure.

Zl[U ′] ½ Zl[U ]
↓̌ ↓̌

Λ(U ′) ½ Λ(U)

In order to check Λ(U)-projectivity of M ⊗Zl
P , it suffices to take P = Λ(U) and

then Frobenius reciprocity M⊗Zl
ind U

U ′(Λ(U ′)) = ind U
U ′(res

U ′
U (M)⊗Zl

Λ(U ′)) takes
care of this, since M is Zl-free.
We next recall Swan’s theorem (see [CR II, 39.10, p.47]) which implies the indepen-
dence of (∗) from the choice of the lattice M . Indeed, given κ and U ′ ⊂ kerκ as
above, then two Zl[U/U ′]-lattices M1,M2 with character κ induce the same element
in the Grothendieck group GZl

0 (Zl[U/U ′]) of finitely generated Zl[U/U ′]-lattices (see
[CR I,§16B]). Moreover, it is readily checked from [CR II, 38.20, 38.24, p.14,16] that
[M1 ⊗Zl

P, idM1 ⊗Zl
α] = [M2 ⊗Zl

P, idM2 ⊗Zl
α] in K1(Λ(U)).

It remains to show that Det is a Frobenius module homomorphism. Let χ ∈ Rl(G∞)
and let [P, α] ∈ K1(Λ(G∞)) , [M ] ∈ GZl

0 (Zl[U/U ′]) as in (∗); set Ql
c ⊗Zl

M = Vκ.
Then

(Det [M ⊗Zl
P, 1⊗Zl

α])(χ)
= detQc(Γk)(1⊗Zl

α | HomQl
c[H](Vχ,Ql

c ⊗Zl
(M ⊗Zl

P )))
= detQc(Γk)(1⊗Zl

α | HomQl
c[H](Vχ, (Vκ ⊗Ql

c (Ql
c ⊗Zl

P ))))
1=detQc(Γk)(α | HomQl

c[H](Vχ,HomQl
c(Vκ̌,Ql

c ⊗Zl
P )))

2=detQc(Γk)(α | HomQl
c[H](Vκ̌ ⊗Ql

c Vχ,Ql
c ⊗Zl

P ))
= (Det [P, α])(κ̌χ) = (κDet [P, α])(χ) ,

with 1= and 2= due to the naturality on H-fixed points of the isomorphisms [CR I,
10.30, 2.19], respectively.



Homology, Homotopy and Applications, vol. 7(3), 2005 167

Corollary. SK1(Q(G∞)) = 0 if SK1(Q(G′) = 0 for all open Ql-elementary sub-
groups G′ of G∞.

This follows because SK1(Q(−)) is a Frobenius module over RQl
(−), by Lemma

7 with Λ replaced by Q. Now apply the Witt-Berman induction theorem (see [CR I,
21.6, p.459]) to the finite group G∞/Γ where Γ is a central open subgroup : There
exist Ql-elementary subgroups Gi 6 G∞/Γ and (virtual) Ql

c-characters ξi of Gi

such that 1G∞ =
∑

i ind G∞
Gi

(ξi) , with Gi the full preimage of Gi in G∞ and
ξi = infl Gi

Gi
(ξi). By Lemma 4 the groups Gi are Ql-elementary (this is trivial for the

prime number l). Now let z ∈ SK1(Q(G∞)) and apply the above character relation
to get from res Gi

G∞z = 0

z = 1G∞ · z =
∑

i

ind G∞
Gi

(ξi) · z =
∑

i

ind G∞
Gi

(ξi · res Gi

G∞z) = 0 .

Lemma 8. DetK1(Λ(G∞)) ∩Hom∗(Rl(G∞), 1 + lΛc(Γk)) is a Zl-module, and the
same with Λ replaced by Λ

ˆ
.

It suffices to show (Hom∗(Rl(G∞), 1 + lΛc(Γk)))m ⊂ DetK1(Λ(G∞)) for some non-
zero integer m, as this implies that DetK1(Λ(G∞)) ∩Hom∗(Rl(G∞), 1 + lΛc(Γk))
is a Zl-submodule of the Zl-module Hom∗(Rl(G∞), 1 + lΛc(Γk)) :
For if f ∈ DetK1(Λ(G∞)) ∩Hom∗(Rl(G∞), 1 + lΛc(Γk)) and c ∈ Zl, then, writ-
ing c = a + mb with a ∈ Z, b ∈ Zl, f c = fa(f b)m, and fa ∈ DetK1(Λ(G∞))∩
Hom∗(Rl(G∞), 1 + lΛc(Γk)), f b ∈ Hom∗(Rl(G∞), 1 + lΛc(Γk)), so (f b)m ∈
DetK1(Λ(G∞)) ∩Hom∗(Rl(G∞), 1 + lΛc(Γk)).

We next prove the containment claimed above when G∞ = H × Γ is abelian. Let
f ∈ Hom∗(Rl(G∞), 1 + lΛc(Γk)), whence f |H| ∈ Hom∗(Rl(G∞), 1 + |H|Λc(Γk)).
Moreover, by (∗) in the proof of [RW2, Theorem 8] and [CR II, 45.12, p.142],

f |H| = Det q with q =
∑

h∈H

qhh in Q(G∞) = Q(Γ)[H] .

Hence, by [RW3, Proposition 3], f |H|(χ) =
∑

h∈H qhχ(h) for every irreducible char-
acter χ ∈ Rl(G∞) which is trivial on Γ, where is the isomorphism Γ → Γk. It
follows that

|H|qh =
∑

χ

f |H|(χ)χ(h−1) ≡
∑

χ

χ(h−1) ≡ 0 mod |H|Λc(Γk) ,

i.e., qh ∈ Λc(Γ) ∩Q(Γ) = Λ(Γ). By [RW3, Lemma 10], q ∈ Λ(G∞)×.

For the general case we apply Artin induction : If Γ is central open of index n in
G∞, then there exist subgroups Γ ⊂ Ai ⊂ G∞ with Ai/Γ cyclic so that n · 1G∞ =∑

i ind G∞
Ai

(1Ai) . It follows that the Ai are abelian, and whence, with ki = K∞Ai ,
Hom∗(Rl(Ai), 1 + lΛ(Γki))

mi ⊂ DetK1(Λ(Ai)) for suitable integers mi. Setting
m =

∏
imi, we get Hom∗(Rl(Ai), 1 + lΛc(Γk))m ⊂ DetK1(Λ(Ai)). Thus, if fm ∈

Hom∗(Rl(G∞), 1 + lΛc(Γk))m, then the above character relation yields
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fmn =
∏

i

ind G∞
Ai

(1Ai
)fm =

∏

i

ind G∞
Ai

((res Ai

G∞f)m) ⊂ DetK1(Λ(G∞)) ,

by Lemma 7 and [RW3, Lemma 1].
This proves the lemma.

Proof of Theorem B.
Choose a central open subgroup Γ and apply the Witt-Berman induction theorem
to G∞/Γ. By [Se2, Theorem 28, p.98] there are Ql - l - elementary open subgroups
Ui 6 G∞ containing Γ together with characters ξi ∈ RQl

(Ui) so that we have

(1) n · 1G∞ =
∑

i ind G∞
Ui

(ξi)

for an integer n | [G∞ : Γ] prime to l. Now, let d ∈ DetK1(Λ(G∞)
ˆ
)∩

Hom∗(Rl(G∞),Λ(Γk)×) and apply this character relation to it :

dn =
∏

i

ind G∞
Ui

(ξi)d =
∏

i

ind G∞
Ui

(ξires Ui

G∞d) .
2

But res Ui

G∞d ∈ DetK1(Λ(Ui)ˆ
) ∩ Hom∗(Rl(Ui),Λc(Γki)

×), with ki = K∞Ui , and

so, by the Corollary to Theorem 1, res Ui

G∞d ∈ DetK1(Λ(Ui)). It follows first that
ξires Ui

G∞d ∈ DetK1(Λ(Ui)) and then, from [RW3, Lemma 1], that

(2) dn ∈ DetK1(Λ(G∞)) .

On the other hand, by 1. of Lemma 4 we find, for each prime number q dividing
n, Ql - q - elementary subgroups U ′j of G∞ containing Γ, characters ξ′j ∈ RQl

(U ′j)
and an integer n′ | [G∞ : Γ] prime to q such that

(3) n′ · 1G∞ =
∑

j ind G∞
U ′j

(ξ′j) .

And, setting fj = res
U ′j
G∞d ∈ DetK1(Λ(U ′j)ˆ

) ∩ Hom∗(Rl(U ′j),Λ
c(Γk′j )

×), with

k′j = K∞U ′j , then fj is a function f as in Proposition 6 (compare the Remark
following the proposition) and so there exist zj ∈ K1(Λ(U ′j)) such that

((Det zj)−1fj)l
m′j ∈ Hom∗(Rl(U ′j), 1 + lΛc(Γk′j )) ,

for some power lm
′
j . Combining this with (2), and setting m′ = maxj{m′

j}, we
obtain

((Det zj)−1fj)nlm
′
∈ DetK1(Λ(U ′j)) ∩Hom∗(Rl(U ′j), 1 + lΛc(Γk′j )) .

By Lemma 8 the group on the right is a Zl-module, hence, as l - n,

((Det zj)−1fj)lm
′
∈ DetK1(Λ(U ′j))

2The notation is an additive-multiplicative compromise.
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and consequently f lm
′

j = (res
U ′j
G∞d)

lm
′
∈ DetK1(Λ(U ′j)). Now (3) yields dn′lm

′
∈

DetK1(Λ(G∞)) and then, by (2), dn′ ∈ DetK1(Λ(G∞)). Letting q vary we obtain
Theorem B.

Proof of Theorem C.
We only check the nontrivial implication and proceed as above. We start with
LK∞/k ∈ HOM∗(Rl(G∞),Λc

ˆ
(Γk)×) and first use (1). Because res Ui

G∞LK∞/k =

LK∞/ki
, it follows from the hypothesis and Proposition 3 that Ln

K∞/k ∈
DetK1(Λ(G∞)

ˆ
). For each q|n we next turn to (3) and use that LK∞/k′j ∈

Hom∗(Rl(U ′j),Λ
c

ˆ
(Γk′j )

×) is a function f as in Proposition 6. Thus there is a zj ∈
K1(Λ(U ′j)ˆ

) with ((Det zj)−1LK∞/k′j )
l
m′j ∈ Hom∗(Rl(U ′j), 1 + lΛc

ˆ
(Γk′j )) . Combin-

ing as before, we see that ((Det zj)−1LK∞/k′j )
nlm

′
∈ DetK1(Λ(U ′j)ˆ

), whence al-

ready Llm
′

K∞/k′j
∈ DetK1(Λ(U ′j)ˆ

), by l - n. Now apply (3) and get first Ln′lm
′

K∞/k ∈
DetK1(Λ(G∞)

ˆ
) and then, from (2), Ln′

K∞/k ∈ DetK1(Λ(G∞)
ˆ
) . Varying q, this

finishes the proof of Theorem C.

Remark 1. The proof shows that the definition of a section of G∞ could be
strengthened to require K∞/K ′ to be finite cyclic of order prime to l.

Remark 2. As before we may generalize Theorem C by replacing the Iwasawa
L-functions LK′/k′ by the functions fK′/k′ of the Remark after Proposition 3.

5. Complements

We begin this section by presenting some examples :

Example 1. If the Sylow-l subgroups of G∞ are abelian, then LK∞/k ∈
DetK1(Λ(G∞)

ˆ
) .

Indeed, Theorem C requires us to check whether LK∞C/K∞U ∈ DetK1(Λ(E)
ˆ
)

whenever E = GK∞C/K∞U is an l-elementary section of G∞. But the assumption
on the Sylow-l subgroups of G∞ implies that the Sylow-l subgroup of E is abelian,
whence E itself. Now apply 1. of the Corollary to Theorem 9 in [RW3].

Concerning the full “main conjecture” we have

Example 2. If G∞ = HoΓ satisfies l - |H|, then SK1(Q(G∞)) = 1. In particular,
the “main conjecture” is true for these groups.

The second assertion holds as the Sylow-l subgroup Γ of G∞ is abelian; moreover,
the first assertion now guaranties uniqueness of Θ̃S (see [RW2,§3, especially Remark
E]).
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For the proof of this first assertion, SK1(Q(G∞)) = 1, we may assume that G∞ is
Ql-elementary, by the Corollary to Lemma 7.

If G∞ is Ql - q - elementary with q 6= l, then G∞ = H × Γ with H a finite Ql - q -
elementary group. Since l - |H|, Lemma 5 implies that Q(G∞) is totally split.

Next, let G∞ be Ql - l - elementary, so G∞ = 〈s〉 o Γ by l - |H|, whence U = Γ
in the notation of Theorem 1 which we continue to use (in particular, βi is a Ql

c-
irreducible character of 〈s〉 with stabilizer subgroup Γi = Ui 6 Γ, Gi = 〈s〉 o Γi,
and ei is the idempotent associated to the GQl

c/Ql
-orbit of βi).

Because SK1(Q(G∞)) =
∏

i SK1(eiQ(G∞)), it suffices to show that each eiQ(G∞)
is a (full) ring of matrices over a (commutative) field. Recall first that eiΛ(Gi) =
ΛOi(Γi). Therefore

eiΛ(G∞) = ΛOi(Γi) ◦ [Γ/Γi]

is the crossed product order of the cyclic group Γ/Γi over the ring ΛOi(Γi), with
the Galois action on Oi resulting from Γ/Γi

'→GNi/N ′i 6 GNi/Ql
. If γi is a generator

of Γi, then by [Re, p.259/260] the algebra QNi(Γi) ◦ [Γ/Γi] splits if, and only if, γi

is a norm in QNi(Γi)/QN ′i (Γi). But γi is already a norm in ΛOi(Γi)/ΛO′i(Γi) by
Proposition 2.
Finally we give a bound on the order of LK∞/k mod DetK1(Λ(G∞)

ˆ
) .

Proposition 9. Set la = [G′ : Z(G′)], where G′ is a Sylow-l subgroup of G∞ and
Z(G′) is its centre. Then Lla

K∞/k ∈ DetK1(Λ(G∞)
ˆ
) .

We first note that obviously a = a(G∞) is an invariant of G∞ and that a(G∞) >
a(GK′/k′) for all sections K ′/k′ of K∞/k. Hence, if we can show that Lla

′

K′/k′ ∈
DetK1(Λ(GK′/k′)ˆ

) for all l-elementary sections K ′/k′ of K∞/k, with a′ =

a(GK′/k′), then, by Remark 2 following the proof of Theorem C, we have also
verified Proposition 9. Hence, from now on, G∞ is l-elementary.

In this case la = [G∞ : Z(G∞)] and we proceed by induction on a. If a = 0,
then G∞ is abelian and 1. of Corollary to Theorem 9 in [RW3] gives what we
want. If a > 0, then G∞ is nonabelian and consequently G∞/Z(G∞) noncyclic.
We infer the existence of a normal subgroup G′ of G∞ containing Z(G∞) so that
G

def= G∞/G′ is noncyclic of order l2. From it we obtain the character relation
l·1G =

∑
M ind G

M
(1M )−ind G

1 (11) with M running through the maximal subgroups
of G. Inflation yields l · 1G∞ =

∑
j nj ind G∞

Mj
(1Mj ) with proper open subgroups

Mj 6 G∞ containing Z(G∞) and with integers nj . Because a(Mj) < a, induction
implies that Lla−1

K∞/kj
∈ DetK1(Λ(GK∞/kj

)
ˆ
) for all j (with kj = K∞Mj ), and then

the last character relation gives Lla

K∞/k ∈ DetK1(Λ(G∞)
ˆ
).

Proposition 9 is established.
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