TOWARD EQUIVARIANT IWASAWA THEORY, IV

(communicated by J.F. Jardine)

Abstract

Let l be an odd prime number and K_{∞} / k a Galois extension of totally real number fields, with k / \mathbb{Q} and K_{∞} / k_{∞} finite, where k_{∞} is the cyclotomic \mathbb{Z}_{l}-extension of k. In [RW2] a "main conjecture" of equivariant Iwasawa theory is formulated which for pro-l groups G_{∞} is reduced in [RW3] to a property of the Iwasawa L-function of K_{∞} / k. In this paper we extend this reduction for arbitrary G_{∞} to l-elementary groups $G_{\infty}=\langle s\rangle \times U$, with $\langle s\rangle$ a finite cyclic group of order prime to l and U a pro- l group. We also give first nonabelian examples of groups G_{∞} for which the conjecture holds.

Dedicated to Victor Snaith on the occasion of his 60-th birthday.

Let l be a fixed odd prime number and K_{∞} / k a Galois extension of totally real number fields with $[k: \mathbb{Q}]$ finite and k_{∞}, the cyclotomic l-extension of k, contained in K_{∞} with $\left[K_{\infty}: k_{\infty}\right.$] also finite. The respective Galois groups are $G_{\infty}=$ $G_{K_{\infty} / k}, H=G_{K_{\infty} / k_{\infty}}, \Gamma_{k}=G_{k_{\infty} / k}$. We also fix a finite set S of primes of k containing l, ∞ and all primes which ramify in $K_{\infty}{ }^{1}$.
In [RW2, $\S 4]$ we formulated an equivariant refinement of the Main Conjecture of (classical) Iwasawa theory [Wi]. The main point of this paper is to reduce this "main conjecture" to a conjectural property of the Iwasawa L-function $L_{K_{\infty} / k, S}$ of K_{∞} / k.

Theorem (A). The "main conjecture" of equivariant Iwasawa theory for K_{∞} / k is, up to its uniqueness assertion, equivalent to $L_{K_{\infty} / k, S}$ belonging to $\operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)_{\wedge}\right)$.

The Iwasawa L-function $L_{K_{\infty} / k}\left(=L_{K_{\infty} / k, S}\right.$) incorporates all the l-adic (S truncated) Artin L-functions of K_{∞} / k by assigning to each l-adic character χ of G_{∞} the Iwasawa power series of the corresponding L-function. This $L_{K_{\infty} / k}$ is a homomorphism from the character ring $R_{l}\left(G_{\infty}\right)$ to the units of the "Iwasawa algebra" $\Lambda_{\wedge}^{\mathrm{c}}\left(\Gamma_{k}\right)$ of k, which is Galois equivariant, compatible with W-twisting, and

[^0]which satisfies the congruences $L_{K_{\infty} / k}(\chi)^{l} \equiv \Psi\left(L_{K_{\infty} / k}\left(\psi_{l} \chi\right)\right) \bmod l \Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)$. These properties of $L_{K_{\infty} / k}$ are the foundation of the proof of Theorem A. For the notation we refer to the introductory $\S 1$ which also contains the map Det : $K_{1}\left(\Lambda\left(G_{\infty}\right)_{\wedge}\right) \rightarrow$ $\operatorname{HOM}^{*}\left(R_{l}\left(G_{\infty}\right), \Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)^{\times}\right)$.

The technical core of the proof of Theorem A is
Theorem (B). $\quad \operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)_{\wedge}\right) \cap \operatorname{HOM}^{*}\left(R_{l}\left(G_{\infty}\right), \Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)^{\times}\right) \subset \operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)\right)$
When G_{∞} is an l-group, equivalent theorems are stated in [RW3] with • in place of ${ }_{\wedge}$; for the proofs in [RW3] the ${ }_{\wedge}$-form of Theorem B is however essential (see [RW3, $\S 6]$). We have emphasized here the _-form because this technical advantage persists (e.g. in Proposition 2).
The proof in $[\mathrm{RW} 3, \S 1]$ that Theorem B implies Theorem A works not only for general groups G_{∞} but also with • replaced by \wedge_{\wedge} In its fourth paragraph every - needs to become ${ }_{\wedge}$. Therefore it remains to use induction techniques to reduce Theorem B to the l-group case. These techniques are generalizations of those in [$\mathrm{Ty}, \mathrm{Fr}]$ for finite groups to the setting of Iwasawa theory.
In the same way we obtain
Theorem (C). $L_{K_{\infty} / k} \in \operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)_{\wedge}\right) \quad i f, \quad$ and only if, $L_{K^{\prime} / k^{\prime}} \in$ Det $K_{1}\left(\Lambda\left(G_{K^{\prime} / k^{\prime}}\right)_{\wedge}\right)$ whenever $G_{K^{\prime} / k^{\prime}}$ is an l-elementary section of G_{∞}.

Here $G_{K^{\prime} / k^{\prime}}$ is a section of G_{∞}, if $k \subset k^{\prime} \subset K^{\prime} \subset K_{\infty}$ is such that k^{\prime} / k is finite and K_{∞} / K^{\prime} finite Galois; a section $G_{K^{\prime} / k^{\prime}}$ is l-elementary, if $G_{K^{\prime} / k^{\prime}}=\langle s\rangle \times U$ for some finite cyclic subgroup $\langle s\rangle$ of order prime to l and some open l-subgroup U.
If G_{∞} is abelian, then the "main conjecture" holds by the Corollary to Theorem 9 in [RW3]. Theorem C provides first nonabelian examples of the "main conjecture". We expect more such examples to follow from the logarithmic methods of [RW3] for l-elementary groups. In more generality we know only that some l-power of $L_{K_{\infty} / k}$ is in $\operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)_{\wedge}\right)$.

The paper is organized as follows. Its first section has some background material. In $\S 2$ we discuss $K_{1}\left(\Lambda\left(G_{\infty}\right)\right)$ for $\mathbb{Q}_{l}-l$-elementary groups G_{∞} and deduce Theorems B and C for them. Then $\S 3$ is preliminary material on $\mathbb{Q}_{l}-q$-elementary groups G_{∞}, with q a prime number different from l, which is used for the proof, in $\S 4$, of the full Theorems B and C. In $\S 5$ the examples appear.
We remark that because Theorems A and C are based on [RW3] they depend on the vanishing of Iwasawa's μ-invariant for $k_{\infty}^{\prime} / k^{\prime}$, for which we refer to [Ba].

1. Background

The Iwasawa L-function $L_{K_{\infty} / k, S}$ of K_{∞} / k is defined as follows (compare [RW2,§4]). Let χ be a $\mathbb{Q}_{l}{ }^{\mathrm{c}}$-character of G_{∞} with open kernel and write the l-adic S-truncated

Artin L-function $L_{l, S}(1-s, \chi)$, for $s \in \mathbb{Z}_{l}$, as the fraction $L_{l, S}(1-s, \chi)=\frac{G_{\chi, S}\left(u^{s}-1\right)}{H_{\chi}\left(u^{s}-1\right)}$ of the Deligne-Ribet power series $G_{\chi, S}(T), H_{\chi}(T) \in \mathbb{Q}_{l}{ }^{c} \otimes_{\mathbb{Z}_{l}} \mathbb{Z}_{l}[[T]]$ associated to a generator γ_{k} of $\Gamma_{k}[\mathrm{DR}]$. Above, $u \in 1+l \mathbb{Z}_{l}$ describes the action of γ_{k} on the l-power roots of unity. Now set

$$
L_{K_{\infty} / k, S}(\chi)=\frac{G_{\chi, S}\left(\gamma_{k}-1\right)}{H_{\chi}\left(\gamma_{k}-1\right)}
$$

(which is independent of the choice of γ_{k}).
Recall that $\mathcal{Q}\left(G_{\infty}\right)$ is the total ring of fractions of the completed group ring

$$
\Lambda\left(G_{\infty}\right)=\mathbb{Z}_{l}\left[\left[G_{\infty}\right]\right]
$$

of G_{∞} over \mathbb{Z}_{l} (it is enough to invert the nonzero elements of $\Lambda(\Gamma)$ for a central open subgroup $\left.\Gamma \simeq \mathbb{Z}_{l}\right)$. The algebra $\mathcal{Q}\left(G_{\infty}\right)$ is a finite dimensional semisimple algebra over $\mathcal{Q}(\Gamma)$ with Γ, as before, central open in G_{∞}.
The map

$$
\text { Det }: K_{1}\left(\mathcal{Q}\left(G_{\infty}\right)\right) \rightarrow \operatorname{Hom}^{*}\left(R_{l}\left(G_{\infty}\right), \mathcal{Q}^{\mathrm{c}}\left(\Gamma_{k}\right)^{\times}\right)
$$

is now defined as follows (compare [RW2, $\S 3]$).
If $[P, \alpha]$ represents an element in $K_{1}\left(\mathcal{Q}\left(G_{\infty}\right)\right)$, with P a finitely generated projective $\mathcal{Q}\left(G_{\infty}\right)$-module and α an $\mathcal{Q}\left(G_{\infty}\right)$-automorphism of P, then
$\operatorname{Det}[P, \alpha]$ is the function in Hom* which takes the irreducible χ to

$$
\operatorname{det}_{\mathcal{Q}^{\mathrm{c}}\left(\Gamma_{k}\right)}\left(\alpha \mid \operatorname{Hom}_{\mathbb{Q}_{l}^{c}[H]}\left(V_{\chi}, \mathbb{Q}_{l}^{\mathrm{c}} \otimes_{\mathbb{Q}_{l}} P\right)\right)
$$

Here, $\mathcal{Q}^{\mathrm{c}}\left(\Gamma_{k}\right)=\mathbb{Q}_{l}{ }^{\mathrm{c}} \otimes_{\mathbb{Q}_{l}} \mathcal{Q}\left(\Gamma_{k}\right)$, and V_{χ} is a $\mathbb{Q}_{l}{ }^{\mathrm{c}}$-representation of G_{∞} with character χ (always with open kernel). The $*$ on Hom requires $G_{\mathbb{Q}_{l}}{ }^{c} / \mathbb{Q}_{l}$-invariance and compatibility with W-twists; these properties are inherited from the representation theory of $\mathcal{Q}\left(G_{\infty}\right)$.
Restricting Det to $K_{1}\left(\Lambda\left(G_{\infty}\right)\right)$, it takes values in $\operatorname{Hom}^{*}\left(R_{l}\left(G_{\infty}\right), \Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)^{\times}\right)$, with $\Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)=\mathbb{Z}_{l}{ }^{\mathrm{c}} \otimes_{\mathbb{Z}_{l}} \Lambda\left(\Gamma_{k}\right)$, and indeed Det $x=f$ has values satisfying the congruences

$$
f(\chi)^{l} \equiv \Psi\left(f\left(\psi_{l} \chi\right)\right) \quad \bmod l \Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)
$$

which define the subgroup $\operatorname{HOM}^{*}\left(R_{l}\left(G_{\infty}\right), \Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)^{\times}\right)$of Hom* (see [RW3,§2]).
Above, Ψ is the $\mathbb{Z}_{l}{ }^{\mathrm{c}}$-algebra endomorphism of $\Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)$ induced by $\gamma \mapsto \gamma^{l}$ on Γ_{k}, and ψ_{l} is the l-th Adams operation on $R_{l}\left(G_{\infty}\right)$.
However, the values $L_{K_{\infty} / k}(\chi)$ are not in $\Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)^{\times}$but in $\Lambda_{\bullet}^{\mathrm{c}}\left(\Gamma_{k}\right)^{\times}$, where $\Lambda_{\bullet}^{\mathrm{c}}\left(\Gamma_{k}\right)=$ $\mathbb{Z}_{l}^{\mathrm{c}} \otimes_{\mathbb{Z}_{l}} \Lambda\left(\Gamma_{k}\right)_{\bullet}$ with $\Lambda\left(\Gamma_{k}\right)$. the localization of $\Lambda\left(\Gamma_{k}\right)$ at l. We work with the completion $\Lambda\left(\Gamma_{k}\right)_{\wedge}$ of $\Lambda\left(\Gamma_{k}\right)_{\text {- }}$ at l because logarithmic methods apply to $K_{1}\left(\Lambda\left(G_{\infty}\right)_{\wedge}\right)$ (see [RW3, beginning of $\S 5]$). We arrive at

$$
\text { Det : } K_{1}\left(\Lambda\left(G_{\infty}\right)_{\wedge}\right) \rightarrow \operatorname{HOM}^{*}\left(R_{l}\left(G_{\infty}\right), \Lambda_{\wedge}^{\mathrm{c}}\left(\Gamma_{k}\right)^{\times}\right),
$$

with $\Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)=\mathbb{Z}_{l}^{\mathrm{c}} \otimes_{\mathbb{Z}_{l}} \Lambda\left(\Gamma_{k}\right)_{\wedge}$, and now $L_{K_{\infty} / k} \in \operatorname{HOM}^{*}\left(R_{l}\left(G_{\infty}\right), \Lambda_{\wedge}^{\mathrm{c}}\left(\Gamma_{k}\right)^{\times}\right)$.
The induction techniques that we are going to apply will also involve $\Lambda^{\mathfrak{O}}(G)=$ $\mathfrak{O} \otimes_{\mathbb{Z}_{l}} \Lambda(G)$ and $\Lambda^{\mathfrak{O}}(G)_{\wedge}$, where \mathfrak{O} is the ring of integers of a finite unramified
extension N / \mathbb{Q}_{l}. All that has been said so far remains true except that the $G_{\mathbb{Q}_{l}{ }^{c} / \mathbb{Q}_{l}}{ }^{-}$
 the Frobenius automorphism Fr of N / \mathbb{Q}_{l} appears (see [RW3, Proposition 4]).

2. \mathbb{Q}_{l}-l-elementary groups G_{∞}

In this section the Galois group $G_{\infty}=G_{K_{\infty} / k}$ is assumed to be \mathbb{Q}_{l}-l-elementary, i.e., a semidirect product $G_{\infty}=\langle s\rangle \rtimes U$ of a finite cyclic group $\langle s\rangle$ of order prime to l and an open l-subgroup U whose action on $\langle s\rangle$ induces a homomorphism $U \rightarrow$ $G_{\mathbb{Q}_{l}(\zeta) / \mathbb{Q}_{l}}$, where ζ is a root of unity of order $|\langle s\rangle|$.
We fix a set $\left\{\beta_{i}\right\}$ of representatives of $G_{\mathbb{Q}_{l}{ }^{c} / \mathbb{Q}_{l}}$-orbits of the $\mathbb{Q}_{l}{ }^{\mathrm{c}}$-irreducible characters of $\langle s\rangle$ and denote the stabilizer group of β_{i} by $U_{i}=\left\{u \in U: \beta_{i}^{u}=\beta_{i}\right\}$. Note that $U_{i} \triangleleft U$ and set $A_{i}=U / U_{i} \leqslant G_{N_{i} / \mathbb{Q}_{i}}$, with N_{i} the field of character values of β_{i}
Theorem 1. 1. There are natural maps r, r^{\prime} so that

$$
\begin{array}{ccc}
K_{1}\left(\Lambda\left(G_{\infty}\right)\right) & \xrightarrow{r} & \prod_{i} K_{1}\left(\Lambda^{\mathfrak{D}_{i}}\left(U_{i}\right)\right) \\
\text { Det } \downarrow & \operatorname{Det} \downarrow \\
\operatorname{Hom}^{*}\left(R_{l}\left(G_{\infty}\right), \Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)^{\times}\right) & \stackrel{r^{\prime}}{\rightarrow} & \prod_{i} \operatorname{Hom}^{N_{i}}\left(R_{l}\left(U_{i}\right), \Lambda^{\mathrm{c}}\left(\Gamma_{k_{i}}\right)^{\times}\right)
\end{array}
$$

commutes and r^{\prime} is injective. Here $k_{i}=K_{\infty}{ }^{U_{i}}$ and \mathfrak{O}_{i} is the ring of integers of N_{i}. Moreover, r induces an isomorphism

$$
\operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)\right) \rightarrow \prod_{i}\left(\operatorname{Det} K_{1}\left(\Lambda^{\mathfrak{D}_{i}}\left(U_{i}\right)\right)\right)^{A_{i}}
$$

2. The same holds in the completed situation, i.e., with Λ replaced by Λ_{\wedge}.

Proof. (Compare [Ty, p.67-71] or [Fr, p.89-96].) In order to use subscripts we abbreviate G_{∞} by G.
Set $G_{i}=\langle s\rangle \rtimes U_{i}, e_{i}=\frac{1}{|\langle s\rangle|} \sum_{j \bmod |\langle s\rangle|} \operatorname{tr}_{N_{i} / \mathbb{Q}_{l}}\left(\beta_{i}\left(s^{-j}\right)\right) s^{j} \in \mathbb{Z}_{l}\langle s\rangle$ and let $R_{l}^{\left(e_{i}\right)}(G) \subset R_{l}(G)$ be the span of the irreducible $\chi \in R_{l}(G)$ with $\chi\left(e_{i}\right) \neq 0$. Observe that e_{i} is a central idempotent of $\Lambda\left(G_{\infty}\right)$.
We first glue the following squares together

$$
\begin{array}{ccc}
K_{1}(\Lambda(G)) & \stackrel{\operatorname{res}_{G}^{G_{i}}}{\longrightarrow} & K_{1}\left(\Lambda\left(G_{i}\right)\right) \\
\operatorname{Det} \downarrow & & \operatorname{Det} \downarrow \\
\operatorname{Hom}^{*}\left(R_{l}(G), \Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)^{\times}\right) & \stackrel{\operatorname{res}_{G}^{G_{i}}}{\longrightarrow} & \operatorname{Hom}^{*}\left(R_{l}\left(G_{i}\right), \Lambda^{\mathrm{c}}\left(\Gamma_{k_{i}}\right)^{\times}\right) \\
K_{1}\left(\Lambda\left(G_{i}\right)\right) & \rightarrow & K_{1}\left(e_{i} \Lambda\left(G_{i}\right)\right) \\
\operatorname{Det} \downarrow & & \operatorname{Det} \downarrow \\
\operatorname{Hom}^{*}\left(R_{l}\left(G_{i}\right), \Lambda^{\mathrm{c}}\left(\Gamma_{k_{i}}\right)^{\times}\right) & \rightarrow & \operatorname{Hom}^{*}\left(R_{l}^{\left(e e_{i}\right)}\left(G_{i}\right), \Lambda^{\mathrm{c}}\left(\Gamma_{k_{i}}\right)^{\times}\right)
\end{array}
$$

Actually, both diagrams should have the field $k_{i}^{\prime}=K_{\infty}{ }^{G_{i}}$ in place of k_{i}; however, $\Gamma_{k_{i}^{\prime}}$ and $\Gamma_{k_{i}}$ get identified as subgroups of Γ_{k} since $\left[k_{i}: k_{i}^{\prime}\right]=|\langle s\rangle|$ is not divisible by l.

The upper diagram commutes by [RW2, Lemma 9], and $\Lambda\left(G_{i}\right)=e_{i} \Lambda\left(G_{i}\right) \times(1-$ $\left.e_{i}\right) \Lambda\left(G_{i}\right)$ implies the commutativity of the bottom one. Note that there is no ambiguity in writing $\operatorname{Hom}^{*}\left(R_{l}^{\left(e_{i}\right)}\left(G_{i}\right), \Lambda^{\mathrm{c}}\left(\Gamma_{k_{i}}\right)^{\times}\right)$because $\chi\left(e_{i}\right)=(\chi \rho)\left(e_{i}\right)$ for characters ρ of G_{i} of type W.

There are natural actions of $A_{i}=G / G_{i}$ on $K_{1}\left(\Lambda\left(G_{i}\right)\right)$ and on

$$
\operatorname{Hom}^{*}\left(R_{l}\left(G_{i}\right), \Lambda^{\mathrm{c}}\left(\Gamma_{k_{i}}\right)^{\times}\right) ;
$$

moreover,

$$
\begin{gathered}
\operatorname{res}_{G}^{G_{i}}\left(K_{1}(\Lambda(G))\right) \subset K_{1}\left(\Lambda\left(G_{i}\right)\right)^{A_{i}} \\
\operatorname{res}_{G}^{G_{i}}\left(\operatorname{Hom}^{*}\left(R_{l}(G), \Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)^{\times}\right)\right) \subset\left(\operatorname{Hom}^{*}\left(R_{l}\left(G_{i}\right), \Lambda^{\mathrm{c}}\left(\Gamma_{k_{i}}\right)^{\times}\right)\right)^{A_{i}}
\end{gathered}
$$

The maps in the bottom diagram are all A_{i}-equivariant. For this we only need to check the A_{i}-equivariance of Det : $K_{1}\left(\mathcal{Q}\left(G_{i}\right)\right) \rightarrow \operatorname{Hom}^{*}\left(R_{l}\left(G_{i}\right), \mathcal{Q}^{\mathrm{c}}\left(\Gamma_{k_{i}}\right)^{\times}\right)$:
Set $H_{i}=\operatorname{ker}\left(G_{i} \rightarrow \Gamma_{k_{i}}\right)$. Further, let $[P, \alpha]$ represent an element of $K_{1}\left(\mathcal{Q}\left(G_{i}\right)\right)$, with α an automorphism of the projective module P. If $a \in A_{i}$ has preimage $g \in G$, then $[P, \alpha]^{a}=\left[P^{[g]}, \alpha^{[g]}\right]$ where $P^{[g]}=\{[p]: p \in P\}$ with $y[p]=\left[y^{g^{-1}} p\right]$ for $y \in G_{i}$ and $\alpha^{[g]}([p])=[\alpha(p)]$. Taking $V=V_{\chi^{g-1}}$, so $V^{[g]}=V_{\chi}$, it suffices to show that

$$
\begin{gathered}
\operatorname{Hom}_{\mathbb{Q}_{l}{ }^{c}\left[H_{i}\right]}\left(V, \mathbb{Q}_{l}^{\mathrm{c}} \otimes_{\mathbb{Q}_{l}} P\right) \rightarrow \operatorname{Hom}_{\mathbb{Q}_{l}{ }^{c}\left[H_{i}\right]}\left(V^{[g]}, \mathbb{Q}_{l}^{\mathrm{c}} \otimes_{\mathbb{Q}_{l}} P^{[g]}\right), \\
\varphi \mapsto[\varphi] \text { with }[\varphi]([v])=[\varphi(v)]
\end{gathered}
$$

is a $\mathcal{Q}^{\mathrm{c}}\left(\Gamma_{k_{i}}\right)$-vector space isomorphism which is natural for the respective actions of α. Now,

$$
\begin{aligned}
& (y[\varphi])([v])=y\left([\varphi]\left(y^{-1}[v]\right)\right)=y\left([\varphi]\left(\left[y^{-g^{-1}} v\right]\right)\right) \\
& =y\left[\varphi\left(y^{-g^{-1}} v\right)\right]=\left[y^{g^{-1}}\left(\varphi\left(y^{-g^{-1}} v\right)\right)\right]=\left[\left(y^{g^{-1}} \varphi\right)(v)\right]
\end{aligned}
$$

and taking $y \in H_{i}$ implies that $[\varphi] \in \operatorname{Hom}_{\mathbb{Q}_{l}{ }^{\mathrm{c}}\left[H_{i}\right]}\left(V^{[g]}, \mathbb{Q}_{l}^{\mathrm{c}} \otimes_{\mathbb{Q}_{l}} P^{[g]}\right)$. Reading the above for $y \in \Gamma_{k_{i}}$ we see the map is $\mathcal{Q}^{\mathrm{c}}\left(\Gamma_{k_{i}}\right)$-linear.

By composing the above two squares we arrive at

$$
\begin{array}{ccc}
K_{1}(\Lambda(G)) & \rightarrow & \prod_{i} K_{1}\left(e_{i} \Lambda\left(G_{i}\right)\right)^{A_{i}} \tag{D1}\\
\text { Det } \downarrow & & \text { Det } \downarrow \\
\operatorname{Hom}^{*}\left(R_{l}(G), \Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)^{\times}\right) & & \rightarrow
\end{array}
$$

We claim that the lower horizontal map in (D1) is injective. To see this we first observe that it is also the composite

$$
\begin{gathered}
\operatorname{Hom}^{*}\left(R_{l}(G), \Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)^{\times}\right) \rightarrow \prod_{i} \operatorname{Hom}^{*}\left(R_{l}^{\left(e_{i}\right)}(G), \Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)^{\times}\right) \\
\rightarrow \prod_{i} \operatorname{Hom}^{*}\left(R_{l}^{\left(e_{i}\right)}\left(G_{i}\right), \Lambda^{\mathrm{c}}\left(\Gamma_{k_{i}}\right)^{\times}\right)
\end{gathered}
$$

and that $R_{l}(G)=\bigoplus_{i} R_{l}^{\left(e_{i}\right)}(G)$. Hence, as induction on characters is restriction on Hom^{*}, we are done once we know $\operatorname{ind}_{G_{i}}^{G_{\infty}}\left(R_{l}^{\left(e_{i}\right)}\left(G_{i}\right)\right)=R_{l}^{\left(e_{i}\right)}(G)$. However, if $\chi \in$ $R_{l}(G)$ is irreducible, then Clifford theory [CR I, 11.8, p.265] implies $\chi=\operatorname{ind}_{G_{i}}^{G}\left(\tilde{\beta}_{i}^{\sigma} \xi\right)$
for some irreducible $\xi \in R_{l}\left(U_{i}\right)$ and the i and $\sigma \in G_{N_{i} / \mathbb{Q}_{l}}$ so that β_{i}^{σ} appears in res ${ }_{G}^{\langle s\rangle}(\chi)$; here $\tilde{\beta}_{i} \in R_{l}\left(G_{i}\right)$ is defined by $\tilde{\beta}_{i}\left(s^{j} u\right)=\beta_{i}\left(s^{j}\right)$.

Note that $e_{i} \Lambda\left(G_{i}\right)=e_{i} \mathbb{Z}_{l}\langle s\rangle \otimes_{\mathbb{Z}_{l}} \Lambda\left(U_{i}\right)$ is, via β_{i}, isomorphic to $\mathfrak{O}_{i} \otimes_{\mathbb{Z}_{l}} \Lambda\left(U_{i}\right)=$ $\Lambda^{\mathfrak{O}_{i}}\left(U_{i}\right)$. We next show that the square
$K_{1}\left(e_{i} \Lambda\left(G_{i}\right)\right) \quad \xrightarrow{\beta_{i}} \quad K_{1}\left(\Lambda^{\mathfrak{O}_{i}}\left(U_{i}\right)\right)$

Det \downarrow Det \downarrow

$$
\begin{equation*}
\operatorname{Hom}^{*}\left(R_{l}^{\left(e_{i}\right)}\left(G_{i}\right), \Lambda^{\mathrm{c}}\left(\Gamma_{k_{i}}\right)^{\times}\right) \quad{ }^{\beta_{i}^{*}} \underset{ }{\operatorname{Hom}^{N_{i}}}\left(R_{l}\left(U_{i}\right), \Lambda^{\mathrm{c}}\left(\Gamma_{k_{i}}\right)^{\times}\right) \tag{D2}
\end{equation*}
$$

commutes, with the top horizontal map induced by β_{i} and β_{i}^{*} defined by $f \mapsto$ $f^{\prime}, f^{\prime}(\xi)=f\left(\tilde{\beta}_{i} \xi\right)$. The map β_{i}^{*} is injective because $R_{l}^{\left(e_{i}\right)}\left(G_{i}\right)$ is spanned by the $\tilde{\beta}_{i}^{\sigma} \xi$.

Turning to the commutativity of (D2), it suffices to show that $(\operatorname{Det}(\alpha))^{\prime}=$ $\operatorname{Det}\left(\beta_{i}(\alpha)\right)$ for units $\alpha \in e_{i} \Lambda\left(G_{i}\right)$, by [CR II, p.76]. Now, with V_{ξ} denoting a $\mathbb{Q}_{l}{ }^{\text {c }}$ realization of $\xi \in R_{l}\left(G_{i}\right)$,

$$
\begin{aligned}
& \operatorname{Det}\left(\beta_{i}(\alpha)\right)(\xi)=\operatorname{det}_{\mathcal{Q}^{\mathrm{c}}\left(\Gamma_{k_{i}}\right)}\left(\beta_{i}(\alpha) \mid \operatorname{Hom}_{\mathbb{Q}_{l} \mathrm{c}\left[H_{i}^{\prime}\right]}\left(V_{\xi}, \mathbb{Q}_{l}^{\mathrm{c}} \otimes_{N_{i}} \mathcal{Q}^{N_{i}}\left(U_{i}\right)\right)\right) \quad \text { and } \\
& \operatorname{Det}(\alpha)\left(\tilde{\beta}_{i} \xi\right)=\operatorname{det}_{\mathcal{Q}^{\mathrm{c}}\left(\Gamma_{k_{i}}\right)}\left(\alpha \mid \operatorname{Hom}_{\mathbb{Q}_{l}{ }^{c}\left[H_{i}\right]}\left(V_{\tilde{\beta}_{i} \xi}, \mathbb{Q}_{l}^{\mathrm{c}} \otimes_{\mathbb{Q}_{l}}\left(e_{i} \mathbb{Q}_{l}\langle s\rangle \otimes_{\mathbb{Q}_{l}} \mathcal{Q}\left(G_{i}\right)\right)\right)\right)
\end{aligned}
$$

where H_{i}, as before, equals $\operatorname{ker}\left(G_{i} \rightarrow \Gamma_{k_{i}}\right)$ and $H_{i}^{\prime}=H_{i} /\langle s\rangle$; see [RW2, §3]. Hence it suffices to exhibit a $\mathcal{Q}^{\mathrm{c}}\left(\Gamma_{k_{i}}\right)$-isomorphism

$$
\operatorname{Hom}_{\mathbb{Q}_{l}^{c}\left[H_{i}^{\prime}\right]}\left(V_{\xi}, \mathcal{Q}^{\mathrm{c}}\left(U_{i}\right)\right) \longrightarrow \operatorname{Hom}_{\mathbb{Q}_{l}}\left[H_{i}\right]\left(V_{\tilde{\beta}_{i} \xi},\left(\mathbb{Q}_{l}^{\mathrm{c}} \otimes_{\mathbb{Q}_{l}} e_{i} \mathbb{Q}_{l}\langle s\rangle\right) \otimes_{\mathbb{Q}_{l}^{c}} \mathcal{Q}^{\mathrm{c}}\left(U_{i}\right)\right)
$$

which is natural for the respective actions of α. Such a map is given by multiplying $\varphi^{\prime} \in \operatorname{Hom}_{\mathbb{Q}_{l}{ }^{\mathrm{c}}\left[H_{i}^{\prime}\right]}$ by the idempotent $\varepsilon_{i}=\frac{1}{|\langle s\rangle|} \sum_{j \bmod |\langle s\rangle|} \beta_{i}\left(s^{-j}\right) \otimes e_{i} s^{j}$ of $\mathbb{Q}_{l}{ }^{\mathrm{c}} \otimes_{\mathbb{Q}_{l}}$ $e_{i} \mathbb{Q}_{l}\langle s\rangle$. This map is surjective since ε_{i} acts as the identity on $V_{\tilde{\beta}_{i} \xi}$, hence every $\varphi \in \operatorname{Hom}_{\mathbb{Q}_{l}{ }^{c}\left[H_{i}\right]}$ has image in $\varepsilon_{i}\left(\mathbb{Q}_{l}{ }^{\mathrm{c}} \otimes_{\mathbb{Q}_{l}} e_{i} \mathbb{Q}_{l}\langle s\rangle\right) \otimes_{\mathbb{Q}_{l}{ }^{c}} \mathcal{Q}^{\mathrm{c}}\left(U_{i}\right)=\varepsilon_{i} \otimes_{\mathbb{Q}_{l}}{ }^{c} \mathcal{Q}^{\mathrm{c}}\left(U_{i}\right)$.
Combining (D1) and (D2) gives the commutative square in 1. of the theorem. To complete the proof we are left with showing

$$
\operatorname{Det} K_{1}(\Lambda(G)) \simeq \prod_{i}\left(\operatorname{Det} K_{1}\left(\Lambda^{\mathfrak{D}_{i}}\left(U_{i}\right)\right)\right)^{A_{i}}
$$

We first check that the maps in (D2) are all A_{i}-equivariant. The left Det has already been dealt with. The right Det will follow since β_{i} is an isomorphism.

1. The natural embedding $a \mapsto \sigma_{a}: A_{i} \rightarrow G_{N_{i} / \mathbb{Q}_{l}}$ is determined by $\beta_{i}\left(s^{a}\right)=$ $\beta_{i}(s)^{\sigma_{a}}$ and we transport the conjugation action of G on $e_{i} \mathbb{Z}_{l}\langle s\rangle \otimes_{\mathbb{Z}_{l}} \Lambda\left(U_{i}\right)$ to $\Lambda^{\mathfrak{D}_{i}}\left(U_{i}\right)$ by β_{i}, hence $\beta_{i}: K_{1}\left(e_{i} \mathbb{Z}_{l}\langle s\rangle \otimes_{\mathbb{Z}_{l}} \Lambda\left(U_{i}\right)\right) \rightarrow K_{1}\left(\Lambda^{\mathfrak{D}_{i}}\left(U_{i}\right)\right)$ is $A_{i^{-}}$ equivariant.
2. We show that β_{i}^{*} is A_{i}-equivariant, with the action of A_{i} on $\varphi \in \operatorname{Hom}^{N_{i}}\left(R_{l}\left(U_{i}\right)\right.$, $\left.\Lambda^{\mathrm{c}}\left(\Gamma_{k_{i}}\right)^{\times}\right)$defined by $\varphi^{a}(\xi)=\varphi\left(\xi^{a^{-1}}\right)^{\sigma_{a}}$, where $\sigma_{a} \in G_{N_{i} / \mathbb{Q}_{l}}$ is extended to $\mathbb{Q}_{l}{ }^{\mathrm{C}}$ so that it is the identity on l-power roots of unity; this is possible since N_{i} / \mathbb{Q}_{l} is unramified. Note that φ^{a} is well-defined since changing σ_{a} to $\sigma \sigma_{a}$, with $\sigma \in G_{\mathbb{Q}_{l}} / \mathbb{Q}_{l}$ the identity on $N_{i}\left(\zeta_{l \infty}\right)$, gives $\varphi\left(\xi^{a^{-1}}\right)^{\sigma \sigma_{a}}=\varphi\left(\xi^{a^{-1} \sigma}\right)^{\sigma_{a}}=$
$\varphi\left(\xi^{a^{-1}}\right)^{\sigma_{a}}$ as $\xi^{a^{-1}}$ is a character of the l-group U_{i}. Moreover, $\varphi^{a} \in \operatorname{Hom}^{N_{i}}:$ If $\sigma \in G_{\mathbb{Q}_{l}{ }^{c} / N_{i}}$, then $\varphi^{a}\left(\xi^{\sigma}\right)=\varphi\left(\xi^{\sigma a^{-1}}\right)^{\sigma_{a}}=\varphi\left(\xi^{a^{-1} \sigma}\right)^{\sigma_{a}}=\varphi\left(\xi^{a^{-1}}\right)^{\sigma \sigma_{a}}=$ $\left(\varphi\left(\xi^{a^{-1}}\right)^{\sigma \sigma_{a} \sigma^{-1}}\right)^{\sigma}=\varphi^{a}(\xi)^{\sigma}$, because $\sigma \sigma_{a} \sigma^{-1}$ is also an admissible extension of σ_{a}.
The A_{i}-equivariance of the map β_{i}^{*} now follows from $\beta_{i}^{a}=\beta_{i}^{\sigma_{a}^{-1}}$ (which is a reformulation of $\left.\beta_{i}\left(s^{a^{-1}}\right)=\beta_{i}(s)^{\sigma_{a}^{-1}}\right)$. Namely, let $f^{\prime} \in \operatorname{Hom}^{N_{i}}$ be the image of $f \in \mathrm{Hom}^{*}$ and let $f^{\prime \prime} \in \operatorname{Hom}^{N_{i}}$ be that of f^{a}. Then $f^{\prime \prime}(\xi)=f^{a}\left(\tilde{\beta}_{i} \xi\right)=$ $f\left(\tilde{\tilde{\beta}}_{i}^{a^{-1}} \xi^{a^{-1}}\right)=f\left(\left(\tilde{\beta}_{i} \xi^{a^{-1}}\right)^{\sigma_{a}}\right)=f\left(\tilde{\beta}_{i} \xi^{a^{-1}}\right)^{\sigma_{a}}=f^{\prime}\left(\xi^{a^{-1}}\right)^{\sigma_{a}}=\left(f^{\prime}\right)^{a}(\xi)$.
For 1. of Theorem 1 it now remains to show that r^{\prime} induces an epimorphism $\operatorname{Det} K_{1}(\Lambda(G)) \rightarrow \prod_{i}\left(\operatorname{Det} K_{1}\left(\Lambda^{\mathfrak{D}_{i}}\left(U_{i}\right)\right)\right)^{A_{i}}$. From

and the surjectivity of the left vertical arrow we deduce

$$
\operatorname{im}(r) \supset \prod_{i} \beta_{i} \operatorname{res}{ }_{G}^{G_{i}}\left(K_{1}\left(e_{i} \Lambda(G)\right)\right) \supset \prod_{i} \beta_{i} \operatorname{res}{ }_{G}^{G_{i}} \operatorname{ind}{ }_{G_{i}}^{G}\left(K_{1}\left(e_{i} \Lambda\left(G_{i}\right)\right)\right) .
$$

Hence, by [RW2, Lemma 9] and [RW3, Lemma 1],

$$
\begin{aligned}
& r^{\prime}\left(\operatorname{Det} K_{1}(\Lambda(G))\right) \supset \prod_{i} \beta_{i}^{*} \operatorname{res}{ }_{G}^{G_{i}} \text { ind }{ }_{G}^{G}\left(\operatorname{Det} K_{1}\left(e_{i} \Lambda\left(G_{i}\right)\right)\right) \\
& \stackrel{\circ}{=} \prod_{i} \beta_{i}^{*} \mathrm{~N}_{A_{i}}\left(\operatorname{Det} K_{1}\left(e_{i} \Lambda\left(G_{i}\right)\right)\right)=\prod_{i} \mathrm{~N}_{A_{i}}\left(\operatorname{Det} K_{1}\left(\Lambda^{\mathfrak{D}_{i}}\left(U_{i}\right)\right)\right)
\end{aligned}
$$

where $\xlongequal{\circ}$ is due to Mackey's subgroup theorem and $G / G_{i}=A_{i}$:

$$
\operatorname{res}{ }_{G}^{G_{i}} \text { ind }{ }_{G_{i}}^{G}\left(f_{i}\right)\left(\tilde{\beta}_{i}^{\sigma} \xi\right)=f_{i}\left(\operatorname{res}{ }_{G}^{G_{i}} \operatorname{ind}{ }_{G_{i}}^{G}\left(\tilde{\beta}_{i}^{\sigma} \xi\right)\right)=\left(\prod_{a \in A_{i}} f_{i}^{a}\right)\left(\tilde{\beta}_{i}^{\sigma} \xi\right)=\left(\mathrm{N}_{A_{i}} f\right)\left(\tilde{\beta}_{i}^{\sigma} \xi\right) .
$$

All arguments above apply to 2 . of Theorem 1 without changes.
The proposition below now finishes the proof of Theorem 1.
Proposition 2. $\mathrm{N}_{A_{i}}\left(\operatorname{Det} K_{1}\left(\Lambda^{\mathfrak{D}_{i}}\left(U_{i}\right)\right)\right)=\left(\operatorname{Det} K_{1}\left(\Lambda^{\mathfrak{D}_{i}}\left(U_{i}\right)\right)\right)^{A_{i}}$ and the same with Λ replaced by Λ_{\wedge}.

Since the U in $G_{\infty}=\langle s\rangle \rtimes U$ will not occur in the proof of the proposition, we drop the index i throughout, so $U\left(=U_{i}\right)$ is now a pro-l group and we need to consider the A-module Det $K_{1}\left(\Lambda^{\mathfrak{O}}(U)\right)$. Recall that A acts on U by group automorphisms and on \mathfrak{O} by $A \hookrightarrow G_{N / \mathbb{Q}_{l}}$.
Let \mathfrak{a} denote the kernel of $\Lambda(U) \rightarrow \Lambda\left(U^{\mathrm{ab}}\right)$ and set $\mathfrak{A}=\mathfrak{D} \otimes_{\mathbb{Z}_{\mathfrak{l}}} \mathfrak{a}$.
By surjectivity of $\left(\Lambda^{\mathfrak{D}}(U)\right)^{\times} \rightarrow K_{1}\left(\Lambda^{\mathfrak{D}}(U)\right)$ (see [CRII, p.76]) we have $\operatorname{Det}\left(\Lambda^{\mathfrak{D}}(U)^{\times}\right)=\operatorname{Det} K_{1}\left(\Lambda^{\mathfrak{D}}(U)\right)$.
We start out the proof of the proposition from the diagram

$$
\begin{array}{clclll}
1+\mathfrak{A} & \longrightarrow & \Lambda^{\mathfrak{D}}(U)^{\times} & \rightarrow & \Lambda^{\mathfrak{D}}\left(U^{\mathrm{ab}}\right)^{\times} \\
\operatorname{Det} \downarrow & & \operatorname{Det} \downarrow & & \operatorname{Det} \downarrow \\
\operatorname{Det}(1+\mathfrak{A}) & & \ddots & \operatorname{Det}\left(\Lambda^{\mathfrak{O}}(U)^{\times}\right) & & \rightarrow \\
\hline & \left.\operatorname{Det}\left(\Lambda^{\mathfrak{O}}\left(U^{\mathrm{ab}}\right)\right)^{\times}\right)
\end{array}
$$

with the top row exact because \mathfrak{a} is contained in the radical of $\Lambda(U)$. The right square of the diagram commutes [RW2, Lemma 9] and the right Det is an isomorphism (see [CR II, 45.12, p.142]). Therefore the whole diagram commutes and its bottom sequence is exact.

We claim that $\operatorname{Det}(1+\mathfrak{A}) \simeq \tau(\mathfrak{A})$ with $\tau(\mathfrak{A})$ the image of $\mathfrak{A} \subset \Lambda^{\mathfrak{O}}\left(G_{\infty}\right)$ in $T\left(\Lambda^{\mathfrak{O}}\left(G_{\infty}\right)\right)=\Lambda^{\mathfrak{O}}\left(G_{\infty}\right) /\left[\Lambda^{\mathfrak{O}}\left(G_{\infty}\right), \Lambda^{\mathfrak{O}}\left(G_{\infty}\right)\right]$ (see $\left.[R W 3, \S 3]\right)$. Since L$: \operatorname{Det}(1+$ $\mathfrak{A}) \rightarrow \operatorname{Tr}(\tau(\mathfrak{A}))$ is an isomorphism by the Corollary to Theorem B_{\wedge} in [RW3], it remains to see that \mathbf{L} and Tr are A-equivariant. For \mathbf{L} this follows as Ψ is induced by $\gamma \mapsto \gamma^{l}$ for $\gamma \in \Gamma_{k}$. For Tr it follows from Lemma 6 and Proposition 3 of [RW3]: Let $a \in A, \omega \in \mathfrak{O}$, and $u \in U$. Then

$$
\begin{aligned}
& \operatorname{Tr}(\omega u)^{a}(\chi)=\operatorname{Tr}(\omega u)\left(\chi^{a^{-1}}\right)^{\sigma_{a}}=\operatorname{trace}\left(\omega u \mid \mathfrak{V}_{\chi^{a}-1}\right)^{\sigma_{a}}=\left(\omega \chi^{a^{-1}}(u) \bar{u}\right)^{\sigma_{a}} \\
& =\omega^{\sigma_{a}} \chi\left(u^{a}\right) \bar{u}=\operatorname{trace}\left(\omega^{\sigma_{a}} u^{a} \mid \mathfrak{V}_{\chi}\right)=\operatorname{Tr}\left(\omega^{\sigma_{a}} u^{a}\right)(\chi)
\end{aligned}
$$

Collecting everything so far, the starting diagram gives the exact A-module sequence

$$
\tau(\mathfrak{A}) \mapsto \operatorname{Det}\left(\Lambda^{\mathfrak{O}}(U)^{\times}\right) \rightarrow \Lambda^{\mathfrak{O}}\left(U^{\mathrm{ab}}\right)^{\times}
$$

So the proof of the proposition will be finished once we have shown that

$$
\tau(\mathfrak{A}) \text { and } \Lambda^{\mathfrak{O}}\left(U^{\mathrm{ab}}\right)^{\times} \text {are } A \text {-cohomologically trivial }
$$

For $\tau(\mathfrak{A})$ this holds because $\tau(\mathfrak{A})=\mathfrak{O} \otimes_{\mathbb{Z}_{l}} \tau(\mathfrak{a})$ has diagonal A-action and \mathfrak{O} is $\mathbb{Z}_{l}[A]$-cohomologically trivial, as $\mathfrak{O} / \mathbb{Z}_{l}$ is unramified. By [Se1, Theorem 9, p.152] then the tensor product is cohomologically trivial as well.
The proof of the cohomological triviality of $\Lambda^{\mathfrak{V}}\left(U^{\mathrm{ab}}\right)^{\times}$uses the following fact: If ($X_{n}, f_{n}: X_{n} \rightarrow X_{n-1}$) is a projective system of A-modules with surjective maps f_{n}, then $X=\underset{\leftarrow}{\lim } X_{n}$ is cohomologically trivial if all the X_{n} are. This holds be-
cause of the exact sequence $X \rightarrow \prod_{n} X_{n} \rightarrow \prod X_{n}$ in which $\left(\cdots, x_{n}, \cdots\right) \mapsto$ $\left(\cdots, f_{n+1}\left(x_{n+1}\right)-x_{n}, \cdots\right)$ is the second map. Note that the X_{n} are cohomologically trivial, if X_{1} and all $\operatorname{ker}\left(X_{n+1} \rightarrow X_{n}\right)$ are so.
Set $\mathfrak{g}=\operatorname{ker}\left(\Lambda\left(U^{\mathrm{ab}}\right) \rightarrow \Lambda\left(\Gamma_{k}\right)\right)$ and $\mathfrak{G}=\mathfrak{O} \otimes_{\mathbb{Z}_{l}} \mathfrak{g}$. Since some power of \mathfrak{g} is contained in $l \Lambda\left(U^{\mathrm{ab}}\right)$ (compare the beginning of the proof of [RW3, Theorem 8]), $\Lambda\left(U^{\mathrm{ab}}\right)$ is complete with respect to its \mathfrak{g}-adic topology. Also, $1+\mathfrak{g} \subset \Lambda\left(U^{\text {ab }}\right)^{\times}$, and thus the short exact sequence $1+\mathfrak{G} \mapsto \Lambda^{\mathfrak{V}}\left(U^{\mathrm{ab}}\right)^{\times} \rightarrow \Lambda^{\mathfrak{V}}\left(\Gamma_{k}\right)^{\times}$implies the cohomological triviality of $\Lambda^{\mathfrak{O}}\left(U^{\mathrm{ab}}\right)^{\times}$, if $1+\mathfrak{G}$ and $\Lambda^{\mathfrak{O}}\left(\Gamma_{k}\right)^{\times}$are A-cohomologically trivial.
Setting $X_{n}=\frac{1+\mathfrak{G}}{1+\mathfrak{G}^{n}}, \operatorname{ker}\left(X_{n+1} \rightarrow X_{n}\right) \simeq \mathfrak{O} \otimes_{\mathbb{Z}_{l}} \frac{\mathfrak{g}^{n}}{\mathfrak{g}^{n+1}}$, which is cohomologically trivial by [Se1, loc.cit.].
For the right term of the above short exact sequence we identify $\Lambda^{\mathfrak{V}}\left(\Gamma_{k}\right)$ and $\mathfrak{O}[[T]]$, as usual, and set $X_{n}=\frac{\mathfrak{O}[[T]]^{\times}}{1+T^{n} \mathfrak{D}[[T]]}$; so $X_{1}=\mathfrak{O}^{\times}$and $\operatorname{ker}\left(X_{n+1} \rightarrow X_{n}\right)=\mathfrak{O}$, which both are cohomologically trivial.
Adding Λ_{\wedge} at the appropriate places, Proposition 2 is established.
Corollary (to Theorem 1). Let G_{∞} be $\mathbb{Q}_{l}-l$-elementary. Then

$$
\operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)_{\wedge}\right) \cap \operatorname{Hom}^{*}\left(R_{l}\left(G_{\infty}\right), \Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)^{\times}\right) \subset \operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)\right)
$$

Namely, by Theorem 1,
$\operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)_{\wedge}\right) \cap \operatorname{Hom}^{*}\left(R_{l}\left(G_{\infty}\right), \Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)^{\times}\right)$
$\subset \prod_{i}\left(\operatorname{Det} K_{1}\left(\Lambda^{\mathfrak{D}_{i}}\left(U_{i}\right)_{\wedge}\right)^{A_{i}} \cap \prod_{i} \operatorname{Hom}^{N_{i}}\left(R_{l}\left(U_{i}\right), \Lambda^{\mathrm{c}}\left(\Gamma_{k_{i}}\right)^{\times}\right)^{A_{i}}\right.$
$\subset \prod_{i}\left(\operatorname{Det} K_{1}\left(\Lambda^{\mathfrak{D}_{i}}\left(U_{i}\right)_{\Lambda}\right) \cap \operatorname{Hom}^{N_{i}}\left(R_{l}\left(U_{i}\right), \Lambda^{\mathrm{c}}\left(\Gamma_{k_{i}}\right)^{\times}\right)\right)^{A_{i}}$
$\dot{\subset} \prod_{i}\left(\operatorname{Det} K_{1}\left(\Lambda^{\mathfrak{V}_{i}}\left(U_{i}\right)\right)\right)^{A_{i}} \subset \operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)\right)$
with $\dot{\subset}$ by $\left[\mathrm{RW} 3\right.$, Theorem $\left.\mathrm{B}_{\star}\right]$.

Proposition 3. Let G_{∞} be $\mathbb{Q}_{l}-l$-elementary. Then $L_{K_{\infty} / k} \in \operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)_{\wedge}\right)$ if, and only if, $L_{K^{\prime} / k^{\prime}} \in \operatorname{Det} K_{1}\left(\Lambda\left(G_{K^{\prime} / k^{\prime}}\right)_{\wedge}\right)$ whenever $G_{K^{\prime} / k^{\prime}}$ is an l-elementary section of G_{∞}.

If $L_{K_{\infty} / k} \in \operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)_{\wedge}\right)$ and if $G_{K^{\prime} / k^{\prime}}=G_{K_{\infty} / k^{\prime}} / G_{K_{\infty} / K^{\prime}}$ is an l-elementary section of G_{∞} with $k \subset k^{\prime} \subset K^{\prime} \subset K_{\infty}$, then $\operatorname{deff}_{G_{K_{\infty} / k^{\prime}}}^{G_{K^{\prime} / k^{\prime}}} \operatorname{res}_{G_{\infty}}^{G_{K_{\infty} / k^{\prime}}} L_{K_{\infty} / k}=$ $L_{K^{\prime} / k^{\prime}}($ see $[\mathrm{RW} 2, \S 4])$. And by [RW2, Lemma 9], $L_{K^{\prime} / k^{\prime}} \in \operatorname{Det} K_{1}\left(\Lambda\left(G_{K^{\prime} / k^{\prime}}\right)_{\wedge}\right)$.

For the converse it may help to review the notation of that part of the proof of Theorem 1 where (D2) appears. The point is that $\bar{G}_{i} \stackrel{\text { def }}{=} G_{i} / \operatorname{ker} \beta_{i}=\left\langle\bar{s}_{i}\right\rangle \times U_{i}$, with $\left\langle\bar{s}_{i}\right\rangle=\langle s\rangle / \operatorname{ker} \beta_{i}$, is an l-elementary section. And as $G_{i}=\langle s\rangle \rtimes U_{i}$,

$$
\begin{aligned}
& \operatorname{Hom}^{*}\left(R_{l}\left(G_{\infty}\right), \Lambda_{\wedge}^{\mathrm{c}}\left(\Gamma_{k}\right)^{\times}\right) \xrightarrow{\text { res }} \prod_{i} \operatorname{Hom}^{*}\left(R_{l}\left(G_{i}\right), \Lambda_{\wedge}^{\mathrm{c}}\left(\Gamma_{k_{i}}\right)^{\times}\right)^{A_{i}} \xrightarrow{\text { def }} \\
& \prod_{i} \operatorname{Hom}^{*}\left(R_{l}\left(\bar{G}_{i}\right), \Lambda_{\wedge}^{\mathrm{c}}\left(\Gamma_{k_{i}}\right)^{\times}\right)^{A_{i}}
\end{aligned}
$$

takes $L_{K_{\infty} / k}$ to $\prod_{i} L_{K_{i}^{\prime} / k_{i}^{\prime}}$ where $k_{i}^{\prime}=K_{\infty}{ }^{G_{i}}$ and $K_{i}^{\prime}=K_{\infty}{ }^{\operatorname{ker} \beta_{i}}$. Note here that the i th deflation map is A_{i}-equivariant since $\langle s\rangle \rightarrow\left\langle\bar{s}_{i}\right\rangle$ is so.

By assumption, $L_{K_{i}^{\prime} / k_{i}^{\prime}}=\operatorname{Det} y_{i}$ where $y_{i} \in K_{1}\left(\Lambda\left(\bar{G}_{i}\right)_{\wedge}\right)$ and so Det $y_{i} \in$ $\left(\text { Det } K_{1}\left(\Lambda\left(\bar{G}_{i}\right)_{\wedge}\right)\right)^{A_{i}}$. Projecting to $e_{i}\left(\Lambda\left(\bar{G}_{i}\right)\right)_{\Lambda}, L_{K_{i}^{\prime} / k_{i}^{\prime}}$ induces a function in $\operatorname{Hom}^{*}\left(R_{l}^{\left(e_{i}\right)}\left(\bar{G}_{i}\right), \Lambda_{\wedge}^{\mathrm{c}}\left(\Gamma_{k_{i}}\right)^{\times}\right)^{A_{i}}$. But $e_{i}\left(\Lambda\left(\bar{G}_{i}\right)\right)_{\wedge}=\bar{e}_{i}\left(\Lambda\left(\bar{G}_{i}\right)\right)_{\wedge}=e_{i} \mathbb{Z}_{l}\langle s\rangle \otimes_{\mathbb{Z}_{l}} \Lambda\left(U_{i}\right)_{\wedge}$, so $\bar{e}_{i} y_{i} \in K_{1}\left(e_{i} \mathbb{Z}_{l}\langle s\rangle \otimes_{\mathbb{Z}_{l}} \Lambda\left(U_{i}\right)_{\wedge}\right)$ and $\operatorname{Det}\left(\bar{e}_{i} y_{i}\right) \in\left(\operatorname{Det} K_{1}\left(e_{i} \mathbb{Z}_{l}\langle s\rangle \otimes_{\mathbb{Z}_{l}} \Lambda\left(U_{i}\right)_{\wedge}\right)\right)^{A_{i}}$. Now $\prod_{i}\left(\operatorname{Det} K_{1}\left(e_{i} \mathbb{Z}_{l}\langle s\rangle \otimes_{\mathbb{Z}_{l}} \Lambda\left(U_{i}\right)_{\wedge}\right)\right)^{A_{i}}=\operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)_{\wedge}\right)$, by Theorem 1, and the proof is finished.

Remark. In Proposition 3, the Iwasawa L-function $L_{K_{\infty} / k}$ may be replaced by any function $f \in \operatorname{Hom}^{*}\left(R_{l}\left(G_{\infty}\right), \Lambda_{\wedge}^{\mathrm{c}}\left(\Gamma_{k}\right)^{\times}\right)$on setting $f_{K^{\prime} / k^{\prime}}=\operatorname{defl}_{G_{K_{\infty} / k^{\prime}}}^{G_{K^{\prime} / k^{\prime}}} \operatorname{res}_{G_{\infty}}^{G_{K \infty / k^{\prime}}} f$ for all l-elementary sections $G_{K^{\prime} / k^{\prime}}$ of G_{∞}.

3. $\mathbb{Q}_{l}-q$-elementary groups G_{∞}

In this section q is a prime number $\neq l$.
We say that the Galois group $G_{\infty}=G_{K_{\infty} / k}$ is a $\mathbb{Q}_{l}-q$-elementary group, if $G_{\infty}=$ $H \times \Gamma$ for some central open $\Gamma \leqslant G_{\infty}$ and a finite $\mathbb{Q}_{l}-q$ - elementary group H. Recall that a finite group H is called $\mathbb{Q}_{l}-q$-elementary if it is a semidirect product $\langle s\rangle \rtimes H_{q}$ of a cyclic normal subgroup $\langle s\rangle$ of order prime to q and a q-group H_{q} whose action on $\langle s\rangle$ induces a homomorphism $H_{q} \rightarrow G_{\mathbb{Q}_{l}(\zeta) / \mathbb{Q}_{l}}$, where ζ is a root of unity of order $|\langle s\rangle|$.

Lemma 4.

1. If Γ is a central open subgroup of G_{∞} so that (the finite group) G_{∞} / Γ is a $\mathbb{Q}_{l}-q$ - elementary group, then G_{∞} is $\mathbb{Q}_{l}-q$-elementary.
2. Let G_{∞} be \mathbb{Q}_{l}-q-elementary, $G_{\infty}=H \times \Gamma, H=\langle s\rangle \rtimes H_{q}$. Then each irreducible character $\chi \in R_{l}\left(G_{\infty}\right)$ can be written as $\chi=\rho \cdot \operatorname{ind}_{G^{\prime}}^{G_{\infty}}(\xi)$ with an abelian character ρ of G_{∞} of type W and an abelian character ξ of a subgroup $G^{\prime} \supset\langle s\rangle \times \Gamma$ of G_{∞} so that $\xi=1$ on Γ.
In order to see 1 . we pick a Sylow- l subgroup U of G_{∞} containing the central open Γ. Then U / Γ is an l-subgroup of the finite $\mathbb{Q}_{l}-q$-elementary group G_{∞} / Γ, hence cyclic and normal in G_{∞} / Γ. We conclude that U is an abelian normal subgroup of G_{∞}, and, moreover, that $G_{\infty}=U \rtimes H^{\prime}$ with a finite $\mathbb{Q}_{l}-q$-elementary group H^{\prime} of order prime to l. Writing the abelian U as $U=H_{l} \times \Gamma_{1}$ with H_{l} finite (cyclic) and $\Gamma_{1} \simeq \mathbb{Z}_{l}$, so $H_{l} \triangleleft G_{\infty}$, the usual Maschke argument provides a $\mathbb{Z}_{l}\left[H^{\prime}\right]$-decomposition $U=H_{l} \times \Gamma_{2}$ with $\Gamma_{2} \simeq \mathbb{Z}_{l}$, by $\left|H^{\prime}\right| \in \mathbb{Z}_{l}{ }^{\times}$. We infer from $\Gamma^{l^{n}} \subset \Gamma_{2}$ for some n that H^{\prime} acts trivially on Γ_{2}. Thus $G_{\infty}=H \times \Gamma_{2}$ with $H=H_{l} \rtimes H^{\prime}$ a finite $\mathbb{Q}_{l}-q$-elementary group and Γ_{2} central open in G_{∞}.
For 2. we first restrict χ to Γ and obtain $\operatorname{res}_{G_{\infty}}^{\Gamma} \chi=\chi(1) \cdot \rho_{1}$ for some abelian character ρ_{1} of Γ. Via $G_{\infty} / H=\Gamma_{k}, \rho_{1}$ is the restriction of a type W character ρ of G_{∞}. Since $\chi \rho^{-1}$ is trivial on Γ, we may henceforth assume that χ is trivial on Γ, whence is inflated from an irreducible $\mathbb{Q}_{l}{ }^{\mathrm{c}}$-character of H. By Clifford theory [CR I, p.265] the $\mathbb{Q}_{l}{ }^{\text {c }}$-irreducible characters of H are of the form ind ${ }_{\tilde{H}}^{H}(\tilde{\xi} \cdot \omega)$ with an abelian character $\tilde{\xi}$ of some subgroup $\tilde{H} \geqslant\langle s\rangle$ and an irreducible character ω of $\tilde{H} /\langle s\rangle$ (inflated to $\tilde{H})$. The group $\tilde{H} /\langle s\rangle$ is a q-group, so monomial, from which we deduce an equality ind ${ }_{\tilde{H}}^{H}(\tilde{\xi} \cdot \omega)=\operatorname{ind}{ }_{H^{\prime}}^{H}(\xi)$ with $\langle s\rangle \leqslant H^{\prime} \leqslant \tilde{H}$ and an abelian character ξ of H^{\prime}. Setting $G^{\prime}=H^{\prime} \times \Gamma$ finishes the proof of 2 . and of the lemma.

Lemma 5. Assume that $G_{\infty}=H \times \Gamma$ with H of order prime to l. Then $\mathcal{Q}\left(G_{\infty}\right)$ is the group algebra of the finite group H over the field $\mathcal{Q}(\Gamma)$ and each $f \in$ $\operatorname{Hom}^{*}\left(R_{l}\left(G_{\infty}\right), \Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)^{\times}\right)$is a $\operatorname{Det} z$ for some $z \in \Lambda\left(G_{\infty}\right)^{\times}$.

This is straightforward : $\mathcal{Q}\left(G_{\infty}\right)=\mathcal{Q}(\Gamma)[H]=\mathcal{Q}(\Gamma) \otimes_{\mathbb{Q}_{l}} \mathbb{Q}_{l}[H]$ is isomorphic to a product of matrix rings over the character fields $\mathcal{Q}(\Gamma)(\chi)$ (see [CR II, 74.11, p.740]), where χ runs through the $\mathbb{Q}_{l}{ }^{\text {c }}$-irreducible characters of H modulo $G_{\mathbb{Q}_{l}}{ }^{c} / \mathbb{Q}_{l}$-action. By $l \nmid|H|, \Lambda(\Gamma)[H]=\Lambda(\Gamma) \otimes_{\mathbb{Z}_{l}} \mathbb{Z}_{l}[H]$ is a maximal order in $\mathcal{Q}(\Gamma)[H]$, hence a product of matrix rings over the integral closures of $\Lambda(\Gamma)$ in the centre fields $\mathcal{Q}(\Gamma)(\chi)$.

Proposition 6. Assume that G_{∞} is $\mathbb{Q}_{l}-q$-elementary. Let $f \in \operatorname{Hom}^{*}\left(R_{l}\left(G_{\infty}\right)\right.$, $\left.\Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)^{\times}\right)$satisfy $\left(\operatorname{res}_{G_{\infty}}^{G^{\prime}} f\right)\left(\chi^{\prime}\right)^{l} \equiv \Psi\left(\left(\operatorname{res}_{G_{\infty}}^{G^{\prime}} f\right)\left(\psi_{l} \chi^{\prime}\right)\right) \bmod l \Lambda^{\mathrm{c}}\left(\Gamma_{k^{\prime}}\right)$ for all open subgroups G^{\prime} of G_{∞} (with $k^{\prime}=K_{\infty}{ }^{G^{\prime}}$) and all $\chi^{\prime} \in R_{l}\left(G^{\prime}\right)$. Then there exists a $z \in \operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)\right)$ such that $\left((\operatorname{Det} z)^{-1} f\right)^{l^{m}} \in \operatorname{Hom}^{*}\left(R_{l}\left(G_{\infty}\right), 1+l \Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)\right)$ for some power l^{m}. The same holds with Λ replaced by Λ_{\wedge}.

For the proof (compare also [Ty, p.94/95]) we set $\bar{G}=G_{\infty} / H_{l}=\bar{H} \times \Gamma$ with \bar{H} finite of order prime to l. In particular, $\Lambda(\bar{G})=\Lambda(\Gamma)[\bar{H}]$. We proceed from the commutative square (see [RW2, Lemma 9])

$$
\begin{array}{ccc}
K_{1}\left(\Lambda\left(G_{\infty}\right)\right) & \xrightarrow{\text { defl }} & K_{1}(\Lambda(\bar{G})) \\
\text { Det } \downarrow & & \text { Det } \downarrow \\
\operatorname{HOM}^{*}\left(R_{l}\left(G_{\infty}\right), \Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)^{\times}\right) & \xrightarrow{\text { defl }} & \operatorname{HOM}^{*}\left(R_{l}(\bar{G}), \Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)^{\times}\right)
\end{array}
$$

and consider defl f. By Lemma 5 , $\operatorname{defl} f=\operatorname{Det} \bar{z}$ is solvable for some $\bar{z} \in \Lambda(\bar{G})^{\times}$. Lift \bar{z} to a unit $z \in \Lambda\left(G_{\infty}\right)^{\times}$, which is possible as $H_{l}=\operatorname{ker}\left(G_{\infty} \rightarrow \bar{G}\right)$ is an l-group, and read this z in $K_{1}\left(\Lambda\left(G_{\infty}\right)\right)\left(\operatorname{via} \Lambda\left(G_{\infty}\right)^{\times} \rightarrow K_{1}\left(\Lambda\left(G_{\infty}\right)\right)\right)$. Then $f^{\prime} \stackrel{\text { def }}{=}(\operatorname{Det} z)^{-1} f \in$ $\operatorname{Hom}^{*}\left(R_{l}\left(G_{\infty}\right), \Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)^{\times}\right)$and $\operatorname{defl}\left(f^{\prime}\right)=1$.
Next, pick an irreducible $\chi \in R_{l}\left(G_{\infty}\right)$ which is trivial on Γ. So $\chi=\operatorname{ind}_{G^{\prime}}^{G_{\infty}}(\xi)$, with a $\mathbb{Q}_{l}{ }^{\text {c }}$-irreducible character ξ of G^{\prime} which is trivial on Γ, by 2. of Lemma 4. We define $\bar{\chi}=\operatorname{ind}_{G^{\prime}}^{G \infty}(\bar{\xi})$ where $\xi=\xi_{l} \cdot \bar{\xi}$ has been decomposed into its l-singular and l-regular components $\xi_{l}, \bar{\xi}$, respectively. As $\bar{\xi}$ is trivial on $H_{l}, \bar{\chi}$ is inflated from \bar{G}. Now, $f^{\prime}(\chi-\bar{\chi})=f^{\prime}\left(\operatorname{ind}_{G^{\prime}}^{G_{\infty}}(\xi-\bar{\xi})\right)=\left(\operatorname{res}_{G_{\infty}}^{G^{\prime}} f^{\prime}\right)(\xi-\bar{\xi})$.
The assumption on f and the above Remark imply that

$$
f^{\prime}(\chi-\bar{\chi})^{l^{m}} \equiv 1 \quad \bmod l \Lambda^{\mathrm{c}}\left(\Gamma_{k^{\prime}}\right)
$$

if m is big enough so that $\psi_{l}^{m}(\xi)=\psi_{l}^{m}(\bar{\xi})$:
$f^{\prime}(\chi-\bar{\chi})^{l^{m}}=\left(\operatorname{res}_{G_{\infty}}^{G^{\prime}} f^{\prime}\right)(\xi-\bar{\xi})^{l^{m}} \equiv \Psi^{m}\left(\left(\operatorname{res}_{G_{\infty}}^{G^{\prime}} f^{\prime}\right)\left(\psi_{l}^{m} \xi-\psi_{l}^{m} \bar{\xi}\right)\right) \quad \bmod l \Lambda^{\mathrm{c}}\left(\Gamma_{k^{\prime}}\right)$. And since $\operatorname{defl}\left(f^{\prime}\right)=1$ and $\bar{\chi}$ is inflated from $\bar{G}, f^{\prime}(\bar{\chi})=1$, we arrive at $\left(f^{\prime}\right)^{l^{m}}(\chi) \equiv 1$ $\bmod l \Lambda^{\mathrm{c}}\left(\Gamma_{k^{\prime}}\right)$.
By 2. of Lemma 4 every irreducible character of G_{∞} is of the form $\chi \rho$ with a χ as above (i.e., χ is trivial on Γ) and ρ of type W. Hence $\left(f^{\prime}\right)^{l^{m}}(\chi \rho)=\rho^{\sharp}\left(\left(f^{\prime}\right)^{l^{m}}(\chi)\right) \equiv 1$ $\bmod l \Lambda^{\mathrm{c}}\left(\Gamma_{k^{\prime}}\right)($ see $[R W 2$, Definition in $\S 2])$.

Remark. Observe that the above hypothesis is satisfied by $f=L_{K_{\infty} / k}$ (see [RW3, 2. of Corollary to Theorem 9; RW2, 2. of Proposition 12]) and by every $f \in \operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)\right)$ (see [RW2, Lemma 9; RW3, Proposition 4, 1. of Proposition 11]).

4. Proofs of Theorem B and C

In this section we prove Theorems B and C in full generality. This is done by using character actions on K_{1} and Hom* (as well as the Corollary to Theorem 1 and Proposition 3).

For an open subgroup U of G_{∞}, we denote by $R_{\mathbb{Q}_{l}}(U)$ the ring of all characters of finite dimensional \mathbb{Q}_{l}-representations of U with open kernel. We view $R_{\mathbb{Q}_{l}}$ as a Frobenius functor of the open subgroups of G_{∞} in the sense of [CR II, 38.1].
We make $\operatorname{Hom}^{*}\left(R_{l}(U), \Lambda^{\mathrm{c}}\left(\Gamma_{k_{U}}\right)^{\times}\right)$, with $k_{U}=K_{\infty}{ }^{U}$, into an $R_{\mathbb{Q}_{l}}(U)$-module by

$$
(\kappa f)(\chi)=f(\check{\kappa} \chi) \quad \text { for } \quad f \in \operatorname{Hom}^{*}, \kappa \in R_{\mathbb{Q}_{l}}(U), \chi \in R_{l}(U),
$$

with $\check{\kappa}$ the contragredient of κ.
We make $K_{1}(\Lambda(U))$ into an $R_{\mathbb{Q}_{l}}(U)$-module as follows. If κ is a character in $R_{\mathbb{Q}_{l}}(U)$, and if $[P, \alpha]$ represents an element in $K_{1}(\Lambda(U))$, then choosing $U^{\prime} \subset \operatorname{ker} \kappa$, an open subgroup of U, and a $\mathbb{Z}_{l}\left[U / U^{\prime}\right]$-lattice with character κ, we define

$$
\begin{equation*}
\kappa \cdot[P, \alpha]=\left[M \otimes_{\mathbb{Z}_{l}} P, \operatorname{id}_{M} \otimes_{\mathbb{Z}_{l}} \alpha\right] \tag{*}
\end{equation*}
$$

(compare [CR II, p.175]).
Lemma 7. Det : $K_{1}(\Lambda(-)) \rightarrow \operatorname{Hom}^{*}\left(R_{l}(-), \Lambda^{\mathrm{c}}\left(\Gamma_{k_{-}}\right)^{\times}\right)$is a morphism of Frobenius modules over the Frobenius functor $U \mapsto R_{\mathbb{Q}_{l}}(U)$.

The lemma is shown in the same way as its analogue in the case of group rings of finite groups. We only need to observe that the $\Lambda(U)$-module structure of $M \otimes_{\mathbb{Z}_{l}} P$ is derived from the diagonal action of U on $M \otimes_{\mathbb{Z}_{l}} P$:
First, the $\Lambda\left(U^{\prime}\right)$-module structure on P gives $M \otimes_{\mathbb{Z}_{l}} P$ a $\Lambda\left(U^{\prime}\right)$-structure. The pushout diagram then determines a unique $\Lambda(U)$-module structure.

In order to check $\Lambda(U)$-projectivity of $M \otimes_{\mathbb{Z}_{l}} P$, it suffices to take $P=\Lambda(U)$ and then Frobenius reciprocity $M \otimes_{\mathbb{Z}_{l}}$ ind $_{U^{\prime}}^{U}\left(\Lambda\left(U^{\prime}\right)\right)=\operatorname{ind}_{U^{\prime}}^{U}\left(\operatorname{res}_{U}^{U^{\prime}}(M) \otimes_{\mathbb{Z}_{l}} \Lambda\left(U^{\prime}\right)\right)$ takes care of this, since M is \mathbb{Z}_{l}-free.
We next recall Swan's theorem (see [CR II, 39.10, p.47]) which implies the independence of $(*)$ from the choice of the lattice M. Indeed, given κ and $U^{\prime} \subset$ ker κ as above, then two $\mathbb{Z}_{l}\left[U / U^{\prime}\right]$-lattices M_{1}, M_{2} with character κ induce the same element in the Grothendieck group $G_{0}^{\mathbb{Z}_{l}}\left(\mathbb{Z}_{l}\left[U / U^{\prime}\right]\right)$ of finitely generated $\mathbb{Z}_{l}\left[U / U^{\prime}\right]$-lattices (see [CR I, $\S 16 \mathrm{~B}]$). Moreover, it is readily checked from [CR II, 38.20, 38.24, p.14,16] that $\left[M_{1} \otimes_{\mathbb{Z}_{l}} P, \operatorname{id}_{M_{1}} \otimes_{\mathbb{Z}_{l}} \alpha\right]=\left[M_{2} \otimes_{\mathbb{Z}_{l}} P, \operatorname{id}_{M_{2}} \otimes_{\mathbb{Z}_{l}} \alpha\right]$ in $K_{1}(\Lambda(U))$.

It remains to show that Det is a Frobenius module homomorphism. Let $\chi \in R_{l}\left(G_{\infty}\right)$ and let $[P, \alpha] \in K_{1}\left(\Lambda\left(G_{\infty}\right)\right),[M] \in G_{0}^{\mathbb{Z}_{l}}\left(\mathbb{Z}_{l}\left[U / U^{\prime}\right]\right)$ as in $(*)$; set $\mathbb{Q}_{l}{ }^{\mathrm{c}} \otimes_{\mathbb{Z}_{l}} M=V_{\kappa}$. Then

$$
\begin{aligned}
& \left(\operatorname{Det}\left[M \otimes_{\mathbb{Z}_{l}} P, 1 \otimes_{\mathbb{Z}_{l}} \alpha\right]\right)(\chi) \\
& =\operatorname{det}_{\mathcal{Q}^{c}\left(\Gamma_{k}\right)}\left(1 \otimes_{\mathbb{Z}_{l}} \alpha \mid \operatorname{Hom}_{\mathbb{Q}_{l}}{ }^{c}[H]\left(V_{\chi}, \mathbb{Q}_{l}^{\mathrm{c}} \otimes_{\mathbb{Z}_{l}}\left(M \otimes_{\mathbb{Z}_{l}} P\right)\right)\right) \\
& =\operatorname{det}_{\mathcal{Q}^{c}\left(\Gamma_{k}\right)}\left(1 \otimes_{\mathbb{Z}_{l}} \alpha \mid \operatorname{Hom}_{\mathbb{Q}_{l}[H]}\left(V_{\chi},\left(V_{\kappa} \otimes_{\mathbb{Q}_{l}{ }^{c}}\left(\mathbb{Q}_{l}^{c} \otimes_{\mathbb{Z}_{l}} P\right)\right)\right)\right) \\
& \stackrel{1}{=} \operatorname{det}_{\mathcal{Q}^{c}\left(\Gamma_{k}\right)}\left(\alpha \mid \operatorname{Hom}_{\mathbb{Q}_{l}{ }^{c}[H]}\left(V_{\chi}, \operatorname{Hom}_{\mathbb{Q}_{l} \mathrm{c}}\left(V_{\breve{\kappa}}, \mathbb{Q}_{l}^{\mathrm{c}} \otimes_{\mathbb{Z}_{l}} P\right)\right)\right) \\
& \stackrel{2}{=} \operatorname{det}_{\mathcal{Q}^{c}\left(\Gamma_{k}\right)}\left(\alpha \mid \operatorname{Hom}_{\mathbb{Q}_{l}{ }^{\mathrm{c}}[H]}\left(V_{\check{\kappa}} \otimes_{\mathbb{Q}_{l}{ }^{c}} V_{\chi}, \mathbb{Q}_{l}{ }^{\mathrm{c}} \otimes_{\mathbb{Z}_{l}} P\right)\right) \\
& =(\operatorname{Det}[P, \alpha])(\check{\kappa} \chi)=(\kappa \operatorname{Det}[P, \alpha])(\chi) \text {, }
\end{aligned}
$$

with $\stackrel{1}{=}$ and $\stackrel{2}{=}$ due to the naturality on H-fixed points of the isomorphisms [CR I, 10.30, 2.19], respectively.

Corollary. $S K_{1}\left(\mathcal{Q}\left(G_{\infty}\right)\right)=0$ if $S K_{1}\left(\mathcal{Q}\left(G^{\prime}\right)=0\right.$ for all open \mathbb{Q}_{l}-elementary subgroups G^{\prime} of G_{∞}.

This follows because $S K_{1}(\mathcal{Q}(-))$ is a Frobenius module over $R_{\mathbb{Q}_{l}}(-)$, by Lemma 7 with Λ replaced by \mathcal{Q}. Now apply the Witt-Berman induction theorem (see [CR I, 21.6, p.459]) to the finite group G_{∞} / Γ where Γ is a central open subgroup: There exist \mathbb{Q}_{l}-elementary subgroups $\bar{G}_{i} \leqslant G_{\infty} / \Gamma$ and (virtual) $\mathbb{Q}_{l}{ }^{c}$-characters $\bar{\xi}_{i}$ of \bar{G}_{i} such that $1_{G_{\infty}}=\sum_{i} \operatorname{ind}_{G_{i}}^{G_{\infty}}\left(\xi_{i}\right)$, with G_{i} the full preimage of \bar{G}_{i} in G_{∞} and $\xi_{i}=\inf \frac{G i}{G_{i}} \bar{\xi}_{i}$). By Lemma 4 the groups G_{i} are \mathbb{Q}_{l}-elementary (this is trivial for the prime number l). Now let $z \in S K_{1}\left(\mathcal{Q}\left(G_{\infty}\right)\right)$ and apply the above character relation to get from $\operatorname{res}{ }_{G_{\infty}}^{G_{i}} z=0$

$$
z=1_{G_{\infty}} \cdot z=\sum_{i} \operatorname{ind}_{G_{i}}^{G_{\infty}}\left(\xi_{i}\right) \cdot z=\sum_{i} \operatorname{ind}_{G_{i}}^{G_{\infty}}\left(\xi_{i} \cdot \operatorname{res}_{G_{\infty}}^{G_{i}} z\right)=0 .
$$

Lemma 8. Det $K_{1}\left(\Lambda\left(G_{\infty}\right)\right) \cap \operatorname{Hom}^{*}\left(R_{l}\left(G_{\infty}\right), 1+l \Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)\right)$ is a \mathbb{Z}_{l}-module, and the same with Λ replaced by $\Lambda_{\text {. }}$.

It suffices to show $\left(\operatorname{Hom}^{*}\left(R_{l}\left(G_{\infty}\right), 1+l \Lambda^{c}\left(\Gamma_{k}\right)\right)\right)^{m} \subset \operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)\right)$ for some nonzero integer m, as this implies that $\operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)\right) \cap \operatorname{Hom}^{*}\left(R_{l}\left(G_{\infty}\right), 1+l \Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)\right)$ is a \mathbb{Z}_{l}-submodule of the \mathbb{Z}_{l}-module $\operatorname{Hom}^{*}\left(R_{l}\left(G_{\infty}\right), 1+l \Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)\right)$:
For if $f \in \operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)\right) \cap \operatorname{Hom}^{*}\left(R_{l}\left(G_{\infty}\right), 1+l \Lambda^{c}\left(\Gamma_{k}\right)\right)$ and $c \in \mathbb{Z}_{l}$, then, writing $c=a+m b$ with $a \in \mathbb{Z}, b \in \mathbb{Z}_{l}, f^{c}=f^{a}\left(f^{b}\right)^{m}$, and $f^{a} \in \operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)\right) \cap$ $\operatorname{Hom}^{*}\left(R_{l}\left(G_{\infty}\right), 1+l \Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)\right), f^{b} \in \operatorname{Hom}^{*}\left(R_{l}\left(G_{\infty}\right), 1+l \Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)\right)$, so $\left(f^{b}\right)^{m} \in$ Det $K_{1}\left(\Lambda\left(G_{\infty}\right)\right) \cap \operatorname{Hom}^{*}\left(R_{l}\left(G_{\infty}\right), 1+l \Lambda^{c}\left(\Gamma_{k}\right)\right)$.
We next prove the containment claimed above when $G_{\infty}=H \times \Gamma$ is abelian. Let $f \in \operatorname{Hom}^{*}\left(R_{l}\left(G_{\infty}\right), 1+l \Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)\right)$, whence $f^{|H|} \in \operatorname{Hom}^{*}\left(R_{l}\left(G_{\infty}\right), 1+|H| \Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)\right)$. Moreover, by (*) in the proof of [RW2, Theorem 8] and [CR II, 45.12, p.142],

$$
f^{|H|}=\operatorname{Det} q \quad \text { with } \quad q=\sum_{h \in H} q_{h} h \quad \text { in } \quad \mathcal{Q}\left(G_{\infty}\right)=\mathcal{Q}(\Gamma)[H] .
$$

Hence, by [RW3, Proposition 3], $f^{|H|}(\chi)=\sum_{h \in H} \bar{q}_{h} \chi(h)$ for every irreducible character $\chi \in R_{l}\left(G_{\infty}\right)$ which is trivial on Γ, where ${ }^{-}$is the isomorphism $\Gamma \rightarrow \Gamma_{k}$. It follows that

$$
|H| \bar{q}_{h}=\sum_{\chi} f^{|H|}(\chi) \chi\left(h^{-1}\right) \equiv \sum_{\chi} \chi\left(h^{-1}\right) \equiv 0 \quad \bmod |H| \Lambda^{c}\left(\Gamma_{k}\right),
$$

i.e., $q_{h} \in \Lambda^{\mathrm{c}}(\Gamma) \cap \mathcal{Q}(\Gamma)=\Lambda(\Gamma)$. By [RW3, Lemma 10], $q \in \Lambda\left(G_{\infty}\right)^{\times}$.

For the general case we apply Artin induction: If Γ is central open of index n in G_{∞}, then there exist subgroups $\Gamma \subset A_{i} \subset G_{\infty}$ with A_{i} / Γ cyclic so that $n \cdot 1_{G_{\infty}}=$ $\sum_{i} \operatorname{ind}{ }_{A_{i}}^{G_{\infty}}\left(1_{A_{i}}\right)$. It follows that the A_{i} are abelian, and whence, with $k_{i}=K_{\infty}{ }^{A_{i}}$, $\operatorname{Hom}^{*}\left(R_{l}\left(A_{i}\right), 1+l \Lambda\left(\Gamma_{k_{i}}\right)\right)^{m_{i}} \subset \operatorname{Det} K_{1}\left(\Lambda\left(A_{i}\right)\right)$ for suitable integers m_{i}. Setting $m=\prod_{i} m_{i}$, we get $\operatorname{Hom}^{*}\left(R_{l}\left(A_{i}\right), 1+l \Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)\right)^{m} \subset \operatorname{Det} K_{1}\left(\Lambda\left(A_{i}\right)\right)$. Thus, if $f^{m} \in$ $\operatorname{Hom}^{*}\left(R_{l}\left(G_{\infty}\right), 1+l \Lambda^{\mathrm{c}}\left(\Gamma_{k}\right)\right)^{m}$, then the above character relation yields

$$
f^{m n}=\prod_{i} \operatorname{ind}_{A_{i}}^{G_{\infty}}\left(1_{A_{i}}\right) f^{m}=\prod_{i} \operatorname{ind}_{A_{i}}^{G_{\infty}}\left(\left(\operatorname{res}_{G_{\infty}}^{A_{i}} f\right)^{m}\right) \subset \operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)\right)
$$

by Lemma 7 and [RW3, Lemma 1].
This proves the lemma.

Proof of Theorem B.

Choose a central open subgroup Γ and apply the Witt-Berman induction theorem to G_{∞} / Γ. By [Se2, Theorem 28, p.98] there are $\mathbb{Q}_{l}-l$-elementary open subgroups $U_{i} \leqslant G_{\infty}$ containing Γ together with characters $\xi_{i} \in R_{\mathbb{Q}_{l}}\left(U_{i}\right)$ so that we have

$$
\begin{equation*}
n \cdot 1_{G_{\infty}}=\sum_{i} \operatorname{ind}_{U_{i}}^{G_{\infty}}\left(\xi_{i}\right) \tag{1}
\end{equation*}
$$

for an integer $n \mid\left[G_{\infty}: \Gamma\right]$ prime to l. Now, let $d \in \operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)_{\wedge}\right) \cap$ $\operatorname{Hom}^{*}\left(R_{l}\left(G_{\infty}\right), \Lambda\left(\Gamma_{k}\right)^{\times}\right)$and apply this character relation to it:

$$
d^{n}=\prod_{i} \operatorname{ind}_{U_{i}}^{G_{\infty}}\left(\xi_{i}\right) d=\prod_{i} \operatorname{ind}_{U_{i}}^{G_{\infty}}\left(\xi_{i} \operatorname{res}_{G_{\infty}}^{U_{i}} d\right) .^{2}
$$

But res ${ }_{G_{\infty}}^{U_{i}} d \in \operatorname{Det} K_{1}\left(\Lambda\left(U_{i}\right)_{\wedge}\right) \cap \operatorname{Hom}^{*}\left(R_{l}\left(U_{i}\right), \Lambda^{\mathrm{c}}\left(\Gamma_{k_{i}}\right)^{\times}\right)$, with $k_{i}=K_{\infty} U_{i}$, and so, by the Corollary to Theorem 1 , $\operatorname{res}{ }_{G_{\infty}}^{U_{i}} d \in \operatorname{Det} K_{1}\left(\Lambda\left(U_{i}\right)\right)$. It follows first that $\xi_{i} \operatorname{res}{ }_{G_{\infty}}^{U_{i}} d \in \operatorname{Det} K_{1}\left(\Lambda\left(U_{i}\right)\right)$ and then, from [RW3, Lemma 1], that

$$
\begin{equation*}
d^{n} \in \operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)\right) \tag{2}
\end{equation*}
$$

On the other hand, by 1 . of Lemma 4 we find, for each prime number q dividing $n, \mathbb{Q}_{l}-q$ - elementary subgroups U_{j}^{\prime} of G_{∞} containing Γ, characters $\xi_{j}^{\prime} \in R_{\mathbb{Q}_{l}}\left(U_{j}^{\prime}\right)$ and an integer $n^{\prime} \mid\left[G_{\infty}: \Gamma\right]$ prime to q such that

$$
\begin{equation*}
n^{\prime} \cdot 1_{G_{\infty}}=\sum_{j} \operatorname{ind}_{U_{j}^{\prime}}^{G_{\infty}}\left(\xi_{j}^{\prime}\right) \tag{3}
\end{equation*}
$$

And, setting $f_{j}=\operatorname{res}{ }_{G_{\infty}}^{U_{j}^{\prime}} d \in \operatorname{Det} K_{1}\left(\Lambda\left(U_{j}^{\prime}\right)_{\wedge}\right) \cap \operatorname{Hom}^{*}\left(R_{l}\left(U_{j}^{\prime}\right), \Lambda^{\mathrm{c}}\left(\Gamma_{k_{j}^{\prime}}\right)^{\times}\right)$, with $k_{j}^{\prime}=K_{\infty}{ }^{U_{j}^{\prime}}$, then f_{j} is a function f as in Proposition 6 (compare the Remark following the proposition) and so there exist $z_{j} \in K_{1}\left(\Lambda\left(U_{j}^{\prime}\right)\right)$ such that

$$
\left(\left(\operatorname{Det} z_{j}\right)^{-1} f_{j}\right)^{l^{m_{j}^{\prime}}} \in \operatorname{Hom}^{*}\left(R_{l}\left(U_{j}^{\prime}\right), 1+l \Lambda^{\mathrm{c}}\left(\Gamma_{k_{j}^{\prime}}\right)\right)
$$

for some power $l^{m_{j}^{\prime}}$. Combining this with (2), and setting $m^{\prime}=\max _{j}\left\{m_{j}^{\prime}\right\}$, we obtain

$$
\left(\left(\operatorname{Det} z_{j}\right)^{-1} f_{j}\right)^{n l^{m^{\prime}}} \in \operatorname{Det} K_{1}\left(\Lambda\left(U_{j}^{\prime}\right)\right) \cap \operatorname{Hom}^{*}\left(R_{l}\left(U_{j}^{\prime}\right), 1+l \Lambda^{\mathrm{c}}\left(\Gamma_{k_{j}^{\prime}}\right)\right)
$$

By Lemma 8 the group on the right is a \mathbb{Z}_{l}-module, hence, as $l \nmid n$,

$$
\left(\left(\operatorname{Det} z_{j}\right)^{-1} f_{j}\right)^{l^{m^{\prime}}} \in \operatorname{Det} K_{1}\left(\Lambda\left(U_{j}^{\prime}\right)\right)
$$

[^1]and consequently $f_{j}^{l^{m^{\prime}}}=\left(\operatorname{res} \frac{U_{j}^{\prime}}{G_{\infty}} d\right)^{l^{m^{\prime}}} \in \operatorname{Det} K_{1}\left(\Lambda\left(U_{j}^{\prime}\right)\right)$. Now (3) yields $d^{n^{\prime} l^{m^{\prime}}} \in$ $\operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)\right)$ and then, by $(2), d^{n^{\prime}} \in \operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)\right)$. Letting q vary we obtain Theorem B.

Proof of Theorem C.

We only check the nontrivial implication and proceed as above. We start with $L_{K_{\infty} / k} \in \operatorname{HOM}^{*}\left(R_{l}\left(G_{\infty}\right), \Lambda_{\wedge}^{\mathrm{c}}\left(\Gamma_{k}\right)^{\times}\right)$and first use (1). Because $\operatorname{res}_{G_{\infty}}^{U_{i}} L_{K_{\infty} / k}=$ $L_{K_{\infty} / k_{i}}$, it follows from the hypothesis and Proposition 3 that $L_{K_{\infty} / k}^{n} \in$ Det $K_{1}\left(\Lambda\left(G_{\infty}\right)_{\wedge}\right)$. For each $q \mid n$ we next turn to (3) and use that $L_{K_{\infty} / k_{j}^{\prime}} \in$ $\operatorname{Hom}^{*}\left(R_{l}\left(U_{j}^{\prime}\right), \Lambda_{\wedge}^{\mathrm{c}}\left(\Gamma_{k_{j}^{\prime}}\right)^{\times}\right)$is a function f as in Proposition 6. Thus there is a $z_{j} \in$ $K_{1}\left(\Lambda\left(U_{j}^{\prime}\right)_{\wedge}\right)$ with $\left(\left(\operatorname{Det} z_{j}\right)^{-1} L_{K_{\infty} / k_{j}^{\prime}}\right)^{l^{m_{j}^{\prime}}} \in \operatorname{Hom}^{*}\left(R_{l}\left(U_{j}^{\prime}\right), 1+l \Lambda_{\wedge}^{\mathrm{c}}\left(\Gamma_{k_{j}^{\prime}}\right)\right)$. Combining as before, we see that $\left(\left(\operatorname{Det} z_{j}\right)^{-1} L_{K_{\infty} / k_{j}^{\prime}}\right)^{n l^{m^{\prime}}} \in \operatorname{Det} K_{1}\left(\Lambda\left(U_{j}^{\prime}\right)_{\wedge}\right)$, whence already $L_{K_{\infty} / k_{j}^{\prime}}^{l^{m^{\prime}}} \in \operatorname{Det} K_{1}\left(\Lambda\left(U_{j}^{\prime}\right)_{\wedge}\right)$, by $l \nmid n$. Now apply (3) and get first $L_{K_{\infty} / k}^{n^{\prime} l^{m^{\prime}}} \in$ Det $K_{1}\left(\Lambda\left(G_{\infty}\right)_{\wedge}\right)$ and then, from (2), $L_{K_{\infty} / k}^{n^{\prime}} \in \operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)_{\wedge}\right)$. Varying q, this finishes the proof of Theorem C.

Remark 1. The proof shows that the definition of a section of G_{∞} could be strengthened to require K_{∞} / K^{\prime} to be finite cyclic of order prime to l.

Remark 2. As before we may generalize Theorem C by replacing the Iwasawa L-functions $L_{K^{\prime} / k^{\prime}}$ by the functions $f_{K^{\prime} / k^{\prime}}$ of the Remark after Proposition 3.

5. Complements

We begin this section by presenting some examples:
Example 1. If the Sylow-l subgroups of G_{∞} are abelian, then $L_{K_{\infty} / k} \in$ $\operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)_{\wedge}\right)$.

Indeed, Theorem C requires us to check whether $L_{K_{\infty}{ }^{C} / K_{\infty}{ }^{U}} \in \operatorname{Det} K_{1}\left(\Lambda(E)_{\wedge}\right)$ whenever $E=G_{K_{\infty} C / K_{\infty} U}$ is an l-elementary section of G_{∞}. But the assumption on the Sylow- l subgroups of G_{∞} implies that the Sylow- l subgroup of E is abelian, whence E itself. Now apply 1. of the Corollary to Theorem 9 in [RW3].

Concerning the full "main conjecture" we have
Example 2. If $G_{\infty}=H \rtimes \Gamma$ satisfies $l \nmid|H|$, then $S K_{1}\left(\mathcal{Q}\left(G_{\infty}\right)\right)=1$. In particular, the "main conjecture" is true for these groups.

The second assertion holds as the Sylow- l subgroup Γ of G_{∞} is abelian; moreover, the first assertion now guaranties uniqueness of $\tilde{\Theta}_{S}$ (see [RW2,§3, especially Remark E]).

For the proof of this first assertion, $S K_{1}\left(\mathcal{Q}\left(G_{\infty}\right)\right)=1$, we may assume that G_{∞} is \mathbb{Q}_{l}-elementary, by the Corollary to Lemma 7.

If G_{∞} is $\mathbb{Q}_{l}-q$-elementary with $q \neq l$, then $G_{\infty}=H \times \Gamma$ with H a finite $\mathbb{Q}_{l}-q-$ elementary group. Since $l \nmid|H|$, Lemma 5 implies that $\mathcal{Q}\left(G_{\infty}\right)$ is totally split.

Next, let G_{∞} be $\mathbb{Q}_{l}-l$-elementary, so $G_{\infty}=\langle s\rangle \rtimes \Gamma$ by $l \nmid|H|$, whence $U=\Gamma$ in the notation of Theorem 1 which we continue to use (in particular, β_{i} is a $\mathbb{Q}_{l}{ }^{\text {c }}$ irreducible character of $\langle s\rangle$ with stabilizer subgroup $\Gamma_{i}=U_{i} \leqslant \Gamma, G_{i}=\langle s\rangle \rtimes \Gamma_{i}$, and e_{i} is the idempotent associated to the $G_{\mathbb{Q}_{l}} / \mathbb{Q}_{l}$-orbit of β_{i}).
Because $S K_{1}\left(\mathcal{Q}\left(G_{\infty}\right)\right)=\prod_{i} S K_{1}\left(e_{i} \mathcal{Q}\left(G_{\infty}\right)\right)$, it suffices to show that each $e_{i} \mathcal{Q}\left(G_{\infty}\right)$ is a (full) ring of matrices over a (commutative) field. Recall first that $e_{i} \Lambda\left(G_{i}\right)=$ $\Lambda^{\mathfrak{D}_{i}}\left(\Gamma_{i}\right)$. Therefore

$$
e_{i} \Lambda\left(G_{\infty}\right)=\Lambda^{\mathfrak{O}_{i}}\left(\Gamma_{i}\right) \circ\left[\Gamma / \Gamma_{i}\right]
$$

is the crossed product order of the cyclic group Γ / Γ_{i} over the ring $\Lambda^{\mathfrak{V}_{i}}\left(\Gamma_{i}\right)$, with the Galois action on \mathfrak{O}_{i} resulting from $\Gamma / \Gamma_{i} \stackrel{\simeq}{\rightarrow} G_{N_{i} / N_{i}^{\prime}} \leqslant G_{N_{i} / \mathbb{Q}_{l}}$. If γ_{i} is a generator of Γ_{i}, then by $[\operatorname{Re}, \mathrm{p} .259 / 260]$ the algebra $\mathcal{Q}^{N_{i}}\left(\Gamma_{i}\right) \circ\left[\Gamma / \Gamma_{i}\right]$ splits if, and only if, γ_{i} is a norm in $\mathcal{Q}^{N_{i}}\left(\Gamma_{i}\right) / \mathcal{Q}^{N_{i}^{\prime}}\left(\Gamma_{i}\right)$. But γ_{i} is already a norm in $\Lambda^{\mathfrak{O}_{i}}\left(\Gamma_{i}\right) / \Lambda^{\mathfrak{V}_{i}^{\prime}}\left(\Gamma_{i}\right)$ by Proposition 2.
Finally we give a bound on the order of $L_{K_{\infty} / k} \bmod \operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)_{\wedge}\right)$.

Proposition 9. Set $l^{a}=\left[G^{\prime}: Z\left(G^{\prime}\right)\right]$, where G^{\prime} is a Sylow-l subgroup of G_{∞} and $Z\left(G^{\prime}\right)$ is its centre. Then $L_{K_{\infty} / k}^{l^{a}} \in \operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)_{\wedge}\right)$.

We first note that obviously $a=a\left(G_{\infty}\right)$ is an invariant of G_{∞} and that $a\left(G_{\infty}\right) \geqslant$ $a\left(G_{K^{\prime} / k^{\prime}}\right)$ for all sections K^{\prime} / k^{\prime} of K_{∞} / k. Hence, if we can show that $L_{K^{\prime} / k^{\prime}}^{a^{\prime}} \in$ Det $K_{1}\left(\Lambda\left(G_{K^{\prime} / k^{\prime}}\right)_{\wedge}\right)$ for all l-elementary sections K^{\prime} / k^{\prime} of K_{∞} / k, with $a^{\prime}=$ $a\left(G_{K^{\prime} / k^{\prime}}\right)$, then, by Remark 2 following the proof of Theorem C, we have also verified Proposition 9. Hence, from now on, G_{∞} is l-elementary.

In this case $l^{a}=\left[G_{\infty}: Z\left(G_{\infty}\right)\right]$ and we proceed by induction on a. If $a=0$, then G_{∞} is abelian and 1. of Corollary to Theorem 9 in [RW3] gives what we want. If $a>0$, then G_{∞} is nonabelian and consequently $G_{\infty} / Z\left(G_{\infty}\right)$ noncyclic. We infer the existence of a normal subgroup G^{\prime} of G_{∞} containing $Z\left(G_{\infty}\right)$ so that $\bar{G} \stackrel{\text { def }}{=} G_{\infty} / G^{\prime}$ is noncyclic of order l^{2}. From it we obtain the character relation $l \cdot 1_{\bar{G}}=\sum_{\bar{M}} \operatorname{ind} \frac{\bar{G}}{M}\left(1_{\bar{M}}\right)-\operatorname{ind} \frac{\bar{G}}{\overline{1}}\left(1_{\overline{1}}\right)$ with \bar{M} running through the maximal subgroups of \bar{G}. Inflation yields $l \cdot 1_{G_{\infty}}=\sum_{j} n_{j} \operatorname{ind}_{M_{j}}^{G_{\infty}}\left(1_{M_{j}}\right)$ with proper open subgroups $M_{j} \leqslant G_{\infty}$ containing $Z\left(G_{\infty}\right)$ and with integers n_{j}. Because $a\left(M_{j}\right)<a$, induction implies that $L_{K_{\infty} / k_{j}}^{l^{a-1}} \in \operatorname{Det} K_{1}\left(\Lambda\left(G_{K_{\infty} / k_{j}}\right)_{\wedge}\right)$ for all j (with $k_{j}=K_{\infty}{ }^{M_{j}}$), and then the last character relation gives $L_{K_{\infty} / k}^{l^{a}} \in \operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right)_{\wedge}\right)$.

Proposition 9 is established.

References

[Ba] Barsky, D., Sur la nullité du μ invariant d'Iwasawa des corps totalement réels. Preprint $(05 / 2004)$
[CR] Curtis, C.W. and Reiner, I., Methods of Representation Theory, vol. I,II. John Wiley \& Sons $(1981,1987)$
[DR] Deligne, P. and Ribet, K., Values of abelian L-functions at negative integers over totally real fields. Invent. Math. 59 (1980), 227-286
[Fr] Fröhlich, A., Galois Module Structure of Algebraic Integers. SpringerVerlag (1983)
[Re] Reiner, I., Maximal Orders. Academic Press (1975)
[RW2] Ritter, J. and Weiss, A., Toward equivariant Iwasawa theory, II. Indagationes Mathematicae 15 (2004), 549-572
[RW3] -, Toward equivariant Iwasawa theory, III. Preprint (2004)
[Se1] Serre, J.-P., Corps Locaux. Hermann, Paris (1968)
[Se2] , Linear Representations of Finite Groups. Springer GTM 42 (1977)
[Ty] Taylor, M.J., Classgroups of Group Rings. LMS Lecture Notes Series 91, Cambridge (1984)
[Wi] Wiles, A., The Iwasawa conjecture for totally real fields. Annals of Math. 131 (1990), 493-540

This article is available at http://intlpress.com/HHA/v7/n3/a8/

Jürgen Ritter ritter@math.uni-augsburg.de
Mathematics Department
University of Augsburg
Germany
86135 Augsburg
Alfred Weiss weissa@ualberta.ca
Mathematics Department
University of Alberta
Canada T6G 2G1
Edmonton

[^0]: Received December 14, 2004, revised March 15, 2005; published on November 12, 2005. 2000 Mathematics Subject Classification: 11R23, 11R32, 11R37, 11R42, 11S23, 11S40
 Key words and phrases: Iwasawa theory, l-adic L-functions
 We acknowledge financial support provided by NSERC and the University of Augsburg.
 (C) 2005, Jürgen Ritter and Alfred Weiss. Permission to copy for private use granted.
 ${ }^{1}$ The reference to S is normally suppressed.

[^1]: ${ }^{2}$ The notation is an additive-multiplicative compromise.

