TOWARD EQUIVARIANT IWASAWA THEORY, IV

JÜRGEN RITTER AND ALFRED WEISS

(communicated by J.F. Jardine)

Abstract

Let l be an odd prime number and K_{∞}/k a Galois extension of totally real number fields, with k/\mathbb{Q} and K_{∞}/k_{∞} finite, where k_{∞} is the cyclotomic \mathbb{Z}_l -extension of k. In [RW2] a "main conjecture" of equivariant Iwasawa theory is formulated which for pro-l groups G_{∞} is reduced in [RW3] to a property of the Iwasawa L-function of K_{∞}/k . In this paper we extend this reduction for arbitrary G_{∞} to l-elementary groups $G_{\infty} = \langle s \rangle \times U$, with $\langle s \rangle$ a finite cyclic group of order prime to l and U a pro-l group. We also give first nonabelian examples of groups G_{∞} for which the conjecture holds.

Dedicated to Victor Snaith on the occasion of his 60-th birthday.

Let l be a fixed odd prime number and K_{∞}/k a Galois extension of totally real number fields with $[k:\mathbb{Q}]$ finite and k_{∞} , the cyclotomic l-extension of k, contained in K_{∞} with $[K_{\infty}:k_{\infty}]$ also finite. The respective Galois groups are $G_{\infty}=G_{K_{\infty}/k}$, $H=G_{K_{\infty}/k_{\infty}}$, $\Gamma_k=G_{k_{\infty}/k}$. We also fix a finite set S of primes of k containing l,∞ and all primes which ramify in K_{∞}^{-1} .

In [RW2,§4] we formulated an equivariant refinement of the Main Conjecture of (classical) Iwasawa theory [Wi]. The main point of this paper is to reduce this "main conjecture" to a conjectural property of the Iwasawa L-function $L_{K_{\infty}/k,S}$ of K_{∞}/k .

Theorem (A). The "main conjecture" of equivariant Iwasawa theory for K_{∞}/k is, up to its uniqueness assertion, equivalent to $L_{K_{\infty}/k,S}$ belonging to $\operatorname{Det} K_1(\Lambda(G_{\infty})_{\star})$.

The Iwasawa L-function $L_{K_{\infty}/k}$ (= $L_{K_{\infty}/k,S}$) incorporates all the l-adic (S-truncated) Artin L-functions of K_{∞}/k by assigning to each l-adic character χ of G_{∞} the Iwasawa power series of the corresponding L-function. This $L_{K_{\infty}/k}$ is a homomorphism from the character ring $R_l(G_{\infty})$ to the units of the "Iwasawa algebra" $\Lambda^{c}(\Gamma_k)$ of k, which is Galois equivariant, compatible with W-twisting, and

Received December 14, 2004, revised March 15, 2005; published on November 12, 2005. 2000 Mathematics Subject Classification: 11R23, 11R37, 11R37, 11R42, 11S23, 11S40 Key words and phrases: Iwasawa theory, l-adic L-functions We acknowledge financial support provided by NSERC and the University of Augsburg. © 2005, Jürgen Ritter and Alfred Weiss. Permission to copy for private use granted.

 $^{^{1}}$ The reference to S is normally suppressed.

which satisfies the congruences $L_{K_{\infty}/k}(\chi)^l \equiv \Psi(L_{K_{\infty}/k}(\psi_l\chi)) \mod l\Lambda^{\rm c}_{\widehat{\Lambda}}(\Gamma_k)$. These properties of $L_{K_{\infty}/k}$ are the foundation of the proof of Theorem A. For the notation we refer to the introductory §1 which also contains the map ${\rm Det}: K_1(\Lambda(G_{\infty})_{\widehat{\Lambda}}) \to {\rm HOM}^*(R_l(G_{\infty}), \Lambda^{\rm c}(\Gamma_k)^{\times})$.

The technical core of the proof of Theorem A is

Theorem (B). Det
$$K_1(\Lambda(G_\infty)_*) \cap \mathrm{HOM}^*(R_l(G_\infty), \Lambda^{\mathrm{c}}(\Gamma_k)^\times) \subset \mathrm{Det}\,K_1(\Lambda(G_\infty))$$

When G_{∞} is an l-group, equivalent theorems are stated in [RW3] with \bullet in place of $\dot{}$; for the proofs in [RW3] the $\dot{}$ -form of Theorem B is however essential (see [RW3,§6]). We have emphasized here the $\dot{}$ -form because this technical advantage persists (e.g. in Proposition 2).

The proof in [RW3,§1] that Theorem B implies Theorem A works not only for general groups G_{∞} but also with \bullet replaced by $\dot{}$: In its fourth paragraph every \bullet needs to become $\dot{}$. Therefore it remains to use induction techniques to reduce Theorem B to the l-group case. These techniques are generalizations of those in [Ty, Fr] for finite groups to the setting of Iwasawa theory.

In the same way we obtain

Theorem (C). $L_{K_{\infty}/k} \in \text{Det } K_1(\Lambda(G_{\infty})_{\bullet})$ if, and only if, $L_{K'/k'} \in \text{Det } K_1(\Lambda(G_{K'/k'})_{\bullet})$ whenever $G_{K'/k'}$ is an l-elementary section of G_{∞} .

Here $G_{K'/k'}$ is a section of G_{∞} , if $k \subset k' \subset K' \subset K_{\infty}$ is such that k'/k is finite and K_{∞}/K' finite Galois; a section $G_{K'/k'}$ is l-elementary, if $G_{K'/k'} = \langle s \rangle \times U$ for some finite cyclic subgroup $\langle s \rangle$ of order prime to l and some open l-subgroup U. If G_{∞} is abelian, then the "main conjecture" holds by the Corollary to Theorem 9 in [RW3]. Theorem C provides first nonabelian examples of the "main conjecture". We expect more such examples to follow from the logarithmic methods of [RW3] for l-elementary groups. In more generality we know only that some l-power of $L_{K_{\infty}/k}$ is in Det $K_1(\Lambda(G_{\infty})_{\sim})$.

The paper is organized as follows. Its first section has some background material. In §2 we discuss $K_1(\Lambda(G_{\infty}))$ for \mathbb{Q}_l -l-elementary groups G_{∞} and deduce Theorems B and C for them. Then §3 is preliminary material on \mathbb{Q}_l -q-elementary groups G_{∞} , with q a prime number different from l, which is used for the proof, in §4, of the full Theorems B and C. In §5 the examples appear.

We remark that because Theorems A and C are based on [RW3] they depend on the vanishing of Iwasawa's μ -invariant for k'_{∞}/k' , for which we refer to [Ba].

1. Background

The Iwasawa L-function $L_{K_{\infty}/k,S}$ of K_{∞}/k is defined as follows (compare [RW2,§4]). Let χ be a \mathbb{Q}_l^c -character of G_{∞} with open kernel and write the l-adic S-truncated Artin L-function $L_{l,S}(1-s,\chi)$, for $s \in \mathbb{Z}_l$, as the fraction $L_{l,S}(1-s,\chi) = \frac{G_{\chi,S}(u^s-1)}{H_\chi(u^s-1)}$ of the Deligne-Ribet power series $G_{\chi,S}(T)$, $H_\chi(T) \in \mathbb{Q}_l^c \otimes_{\mathbb{Z}_l} \mathbb{Z}_l[[T]]$ associated to a generator γ_k of Γ_k [DR]. Above, $u \in 1 + l\mathbb{Z}_l$ describes the action of γ_k on the l-power roots of unity. Now set

$$L_{K_{\infty}/k,S}(\chi) = \frac{G_{\chi,S}(\gamma_k - 1)}{H_{\chi}(\gamma_k - 1)}$$

(which is independent of the choice of γ_k).

Recall that $\mathcal{Q}(G_{\infty})$ is the total ring of fractions of the completed group ring

$$\Lambda(G_{\infty}) = \mathbb{Z}_l[[G_{\infty}]]$$

of G_{∞} over \mathbb{Z}_l (it is enough to invert the nonzero elements of $\Lambda(\Gamma)$ for a central open subgroup $\Gamma \simeq \mathbb{Z}_l$). The algebra $\mathcal{Q}(G_{\infty})$ is a finite dimensional semisimple algebra over $\mathcal{Q}(\Gamma)$ with Γ , as before, central open in G_{∞} .

The map

Det :
$$K_1(\mathcal{Q}(G_\infty)) \to \operatorname{Hom}^*(R_l(G_\infty), \mathcal{Q}^c(\Gamma_k)^\times)$$

is now defined as follows (compare [RW2,§3]).

If $[P, \alpha]$ represents an element in $K_1(\mathcal{Q}(G_\infty))$, with P a finitely generated projective $\mathcal{Q}(G_\infty)$ -module and α an $\mathcal{Q}(G_\infty)$ -automorphism of P, then

Det $[P, \alpha]$ is the function in Hom* which takes the irreducible χ to

$$\det_{\mathcal{Q}^{c}(\Gamma_{k})}(\alpha \mid \operatorname{Hom}_{\mathbb{Q}_{l}^{c}[H]}(V_{\chi}, \mathbb{Q}_{l}^{c} \otimes_{\mathbb{Q}_{l}} P)) \ .$$

Here, $\mathcal{Q}^{c}(\Gamma_{k}) = \mathbb{Q}_{l}^{c} \otimes_{\mathbb{Q}_{l}} \mathcal{Q}(\Gamma_{k})$, and V_{χ} is a \mathbb{Q}_{l}^{c} -representation of G_{∞} with character χ (always with open kernel). The * on Hom requires $G_{\mathbb{Q}_{l}^{c}/\mathbb{Q}_{l}}$ -invariance and compatibility with W-twists; these properties are inherited from the representation theory of $\mathcal{Q}(G_{\infty})$.

Restricting Det to $K_1(\Lambda(G_{\infty}))$, it takes values in $\operatorname{Hom}^*(R_l(G_{\infty}), \Lambda^{\operatorname{c}}(\Gamma_k)^{\times})$, with $\Lambda^{\operatorname{c}}(\Gamma_k) = \mathbb{Z}_l{}^{\operatorname{c}} \otimes_{\mathbb{Z}_l} \Lambda(\Gamma_k)$, and indeed Det x = f has values satisfying the congruences

$$f(\chi)^l \equiv \Psi(f(\psi_l \chi)) \mod l\Lambda^{\rm c}(\Gamma_k)$$
,

which define the subgroup $\mathrm{HOM}^*(R_l(G_\infty), \Lambda^c(\Gamma_k)^\times)$ of Hom^* (see [RW3,§2]). Above, Ψ is the \mathbb{Z}_l^c -algebra endomorphism of $\Lambda^c(\Gamma_k)$ induced by $\gamma \mapsto \gamma^l$ on Γ_k , and ψ_l is the l-th Adams operation on $R_l(G_\infty)$.

However, the values $L_{K_{\infty}/k}(\chi)$ are not in $\Lambda^{c}(\Gamma_{k})^{\times}$ but in $\Lambda^{c}_{\bullet}(\Gamma_{k})^{\times}$, where $\Lambda^{c}_{\bullet}(\Gamma_{k}) = \mathbb{Z}_{l}^{c} \otimes_{\mathbb{Z}_{l}} \Lambda(\Gamma_{k})_{\bullet}$ with $\Lambda(\Gamma_{k})_{\bullet}$ the localization of $\Lambda(\Gamma_{k})$ at l. We work with the completion $\Lambda(\Gamma_{k})_{\wedge}$ of $\Lambda(\Gamma_{k})_{\bullet}$ at l because logarithmic methods apply to $K_{1}(\Lambda(G_{\infty})_{\sim})$ (see [RW3, beginning of §5]). We arrive at

Det :
$$K_1(\Lambda(G_{\infty})_{\bullet}) \to \mathrm{HOM}^*(R_l(G_{\infty}), \Lambda^{\mathrm{c}}(\Gamma_k)^{\times})$$
,

with
$$\Lambda_{\bullet}^{c}(\Gamma_{k}) = \mathbb{Z}_{l}^{c} \otimes_{\mathbb{Z}_{l}} \Lambda(\Gamma_{k})_{\bullet}$$
, and now $L_{K_{\infty}/k} \in HOM^{*}(R_{l}(G_{\infty}), \Lambda_{\bullet}^{c}(\Gamma_{k})^{\times})$.

The induction techniques that we are going to apply will also involve $\Lambda^{\mathfrak{D}}(G) = \mathfrak{D} \otimes_{\mathbb{Z}_l} \Lambda(G)$ and $\Lambda^{\mathfrak{D}}(G)$, where \mathfrak{D} is the ring of integers of a finite unramified

extension N/\mathbb{Q}_l . All that has been said so far remains true except that the $G_{\mathbb{Q}_l^c/\mathbb{Q}_l}$ -invariance on Hom^* gets replaced by $G_{\mathbb{Q}_l^c/N}$ -invariance to define Hom^N and that the Frobenius automorphism Fr of N/\mathbb{Q}_l appears (see [RW3, Proposition 4]).

2. \mathbb{Q}_l - l - elementary groups G_{∞}

In this section the Galois group $G_{\infty} = G_{K_{\infty}/k}$ is assumed to be \mathbb{Q}_l - l - elementary, i.e., a semidirect product $G_{\infty} = \langle s \rangle \rtimes U$ of a finite cyclic group $\langle s \rangle$ of order prime to l and an open l-subgroup U whose action on $\langle s \rangle$ induces a homomorphism $U \to G_{\mathbb{Q}_l(\zeta)/\mathbb{Q}_l}$, where ζ is a root of unity of order $|\langle s \rangle|$.

We fix a set $\{\beta_i\}$ of representatives of $G_{\mathbb{Q}_l^c/\mathbb{Q}_l}$ -orbits of the \mathbb{Q}_l^c -irreducible characters of $\langle s \rangle$ and denote the stabilizer group of β_i by $U_i = \{u \in U : \beta_i^u = \beta_i\}$. Note that $U_i \triangleleft U$ and set $A_i = U/U_i \leqslant G_{N_i/\mathbb{Q}_l}$, with N_i the field of character values of β_i

Theorem 1. 1. There are natural maps r, r' so that

$$\begin{array}{ccc} K_1(\Lambda(G_{\infty})) & \stackrel{r}{\to} & \prod_i K_1(\Lambda^{\mathfrak{O}_i}(U_i)) \\ \mathrm{Det} \downarrow & \mathrm{Det} \downarrow \\ \mathrm{Hom}^*(R_l(G_{\infty}), \Lambda^{\mathrm{c}}(\Gamma_k)^{\times}) & \stackrel{r'}{\rightarrowtail} & \prod_i \mathrm{Hom}^{N_i}(R_l(U_i), \Lambda^{\mathrm{c}}(\Gamma_{k_i})^{\times}) \end{array}$$

commutes and r' is injective. Here $k_i = K_{\infty}^{U_i}$ and \mathfrak{O}_i is the ring of integers of N_i . Moreover, r induces an isomorphism

$$\operatorname{Det} K_1(\Lambda(G_\infty)) \to \prod_i (\operatorname{Det} K_1(\Lambda^{\mathfrak{I}_i}(U_i)))^{A_i}.$$

2. The same holds in the completed situation, i.e., with Λ replaced by Λ_{\bullet} .

Proof. (Compare [Ty, p.67-71] or [Fr, p.89-96].) In order to use subscripts we abbreviate G_{∞} by G.

Set $G_i = \langle s \rangle \rtimes U_i$, $e_i = \frac{1}{|\langle s \rangle|} \sum_{j \mod |\langle s \rangle|} \operatorname{tr}_{N_i/\mathbb{Q}_l}(\beta_i(s^{-j})) s^j \in \mathbb{Z}_l \langle s \rangle$ and let $R_l^{(e_i)}(G) \subset R_l(G)$ be the span of the irreducible $\chi \in R_l(G)$ with $\chi(e_i) \neq 0$. Observe that e_i is a central idempotent of $\Lambda(G_{\infty})$.

We first glue the following squares together

$$\begin{array}{ccc} K_1(\Lambda(G)) & \stackrel{\operatorname{res}_G^{G_i}}{\longrightarrow} & K_1(\Lambda(G_i)) \\ \operatorname{Det} \downarrow & \operatorname{Det} \downarrow \\ \operatorname{Hom}^*(R_l(G), \Lambda^{\operatorname{c}}(\Gamma_k)^{\times}) & \stackrel{\operatorname{res}_G^{G_i}}{\longrightarrow} & \operatorname{Hom}^*(R_l(G_i), \Lambda^{\operatorname{c}}(\Gamma_{k_i})^{\times}) \end{array}$$

$$\begin{array}{ccc} K_1(\Lambda(G_i)) & \to & K_1(e_i\Lambda(G_i)) \\ \mathrm{Det} \downarrow & & \mathrm{Det} \downarrow \\ \mathrm{Hom}^*(R_l(G_i), \Lambda^{\mathrm{c}}(\Gamma_{k_i})^{\times}) & \to & \mathrm{Hom}^*(R_l^{(e_i)}(G_i), \Lambda^{\mathrm{c}}(\Gamma_{k_i})^{\times}) \end{array}$$

Actually, both diagrams should have the field $k'_i = K_{\infty}^{G_i}$ in place of k_i ; however, $\Gamma_{k'_i}$ and Γ_{k_i} get identified as subgroups of Γ_k since $[k_i : k'_i] = |\langle s \rangle|$ is not divisible by l.

The upper diagram commutes by [RW2, Lemma 9], and $\Lambda(G_i) = e_i \Lambda(G_i) \times (1 - e_i) \Lambda(G_i)$ implies the commutativity of the bottom one. Note that there is no ambiguity in writing $\operatorname{Hom}^*(R_l^{(e_i)}(G_i), \Lambda^c(\Gamma_{k_i})^{\times})$ because $\chi(e_i) = (\chi \rho)(e_i)$ for characters ρ of G_i of type W.

There are natural actions of $A_i = G/G_i$ on $K_1(\Lambda(G_i))$ and on

$$\operatorname{Hom}^*(R_l(G_i), \Lambda^{\operatorname{c}}(\Gamma_{k_i})^{\times});$$

moreover,

$$\operatorname{res}_{G}^{G_{i}}(K_{1}(\Lambda(G))) \subset K_{1}(\Lambda(G_{i}))^{A_{i}},$$
$$\operatorname{res}_{G}^{G_{i}}(\operatorname{Hom}^{*}(R_{l}(G), \Lambda^{c}(\Gamma_{k})^{\times})) \subset (\operatorname{Hom}^{*}(R_{l}(G_{i}), \Lambda^{c}(\Gamma_{k_{i}})^{\times}))^{A_{i}}.$$

The maps in the bottom diagram are all A_i -equivariant. For this we only need to check the A_i -equivariance of Det $: K_1(\mathcal{Q}(G_i)) \to \operatorname{Hom}^*(R_l(G_i), \mathcal{Q}^c(\Gamma_{k_i})^{\times}):$ Set $H_i = \ker(G_i \to \Gamma_{k_i})$. Further, let $[P, \alpha]$ represent an element of $K_1(\mathcal{Q}(G_i))$, with α an automorphism of the projective module P. If $a \in A_i$ has preimage $g \in G$, then $[P, \alpha]^a = [P^{[g]}, \alpha^{[g]}]$ where $P^{[g]} = \{[p]: p \in P\}$ with $y[p] = [y^{g^{-1}}p]$ for $y \in G_i$ and $\alpha^{[g]}([p]) = [\alpha(p)]$. Taking $V = V_{\chi^{g^{-1}}}$, so $V^{[g]} = V_{\chi}$, it suffices to show that

$$\operatorname{Hom}_{\mathbb{Q}_l{}^{c}[H_i]}(V, \mathbb{Q}_l{}^{c} \otimes_{\mathbb{Q}_l} P) \to \operatorname{Hom}_{\mathbb{Q}_l{}^{c}[H_i]}(V^{[g]}, \mathbb{Q}_l{}^{c} \otimes_{\mathbb{Q}_l} P^{[g]}),$$

$$\varphi \mapsto [\varphi] \text{ with } [\varphi]([v]) = [\varphi(v)]$$

is a $\mathcal{Q}^{c}(\Gamma_{k_i})$ -vector space isomorphism which is natural for the respective actions of α . Now,

$$(y[\varphi])([v]) = y([\varphi](y^{-1}[v])) = y([\varphi]([y^{-g^{-1}}v]))$$

$$= y[\varphi(y^{-g^{-1}}v)] = [y^{g^{-1}}(\varphi(y^{-g^{-1}}v))] = [(y^{g^{-1}}\varphi)(v)],$$

and taking $y \in H_i$ implies that $[\varphi] \in \operatorname{Hom}_{\mathbb{Q}_l^{\operatorname{c}}[H_i]}(V^{[g]}, \mathbb{Q}_l^{\operatorname{c}} \otimes_{\mathbb{Q}_l} P^{[g]})$. Reading the above for $y \in \Gamma_{k_i}$ we see the map is $\mathcal{Q}^{\operatorname{c}}(\Gamma_{k_i})$ -linear.

By composing the above two squares we arrive at

$$(D1) \qquad \begin{array}{ccc} K_1(\Lambda(G)) & \to & \prod_i K_1(e_i\Lambda(G_i))^{A_i} \\ \text{Det } \downarrow & \text{Det } \downarrow \\ \text{Hom}^*(R_l(G), \Lambda^{\text{c}}(\Gamma_k)^{\times}) & \to & \prod_i \text{Hom}^*(R_l^{(e_i)}(G_i), \Lambda^{\text{c}}(\Gamma_{k_i})^{\times})^{A_i} \,. \end{array}$$

We claim that the lower horizontal map in (D1) is injective. To see this we first observe that it is also the composite

$$\operatorname{Hom}^*(R_l(G), \Lambda^{\operatorname{c}}(\Gamma_k)^{\times}) \to \prod_i \operatorname{Hom}^*(R_l^{(e_i)}(G), \Lambda^{\operatorname{c}}(\Gamma_k)^{\times})$$
$$\to \prod_i \operatorname{Hom}^*(R_l^{(e_i)}(G_i), \Lambda^{\operatorname{c}}(\Gamma_{k_i})^{\times})$$

and that $R_l(G) = \bigoplus_i R_l^{(e_i)}(G)$. Hence, as induction on characters is restriction on Hom*, we are done once we know $\operatorname{ind}_{G_i}^{G_\infty}(R_l^{(e_i)}(G_i)) = R_l^{(e_i)}(G)$. However, if $\chi \in R_l(G)$ is irreducible, then Clifford theory [CR I, 11.8, p.265] implies $\chi = \operatorname{ind}_{G_i}^G(\tilde{\beta}_i^{\sigma}\xi)$

for some irreducible $\xi \in R_l(U_i)$ and the i and $\sigma \in G_{N_i/\mathbb{Q}_l}$ so that β_i^{σ} appears in res $S_i^{\langle s \rangle}(\chi)$; here $\tilde{\beta}_i \in R_l(G_i)$ is defined by $\tilde{\beta}_i(s^j u) = \beta_i(s^j)$.

Note that $e_i\Lambda(G_i) = e_i\mathbb{Z}_l\langle s\rangle \otimes_{\mathbb{Z}_l} \Lambda(U_i)$ is, via β_i , isomorphic to $\mathfrak{O}_i \otimes_{\mathbb{Z}_l} \Lambda(U_i) = \Lambda^{\mathfrak{O}_i}(U_i)$. We next show that the square

$$(D2) \qquad \begin{array}{ccc} K_1(e_i\Lambda(G_i)) & \xrightarrow{\beta_i} & K_1(\Lambda^{\mathfrak{O}_i}(U_i)) \\ \text{Det } \downarrow & \text{Det } \downarrow \\ \text{Hom}^*(R_l^{(e_i)}(G_i), \Lambda^{\mathbf{c}}(\Gamma_{k_i})^{\times}) & \xrightarrow{\beta_i^*} & \text{Hom}^{N_i}(R_l(U_i), \Lambda^{\mathbf{c}}(\Gamma_{k_i})^{\times}) \end{array}$$

commutes, with the top horizontal map induced by β_i and β_i^* defined by $f \mapsto f'$, $f'(\xi) = f(\tilde{\beta}_i \xi)$. The map β_i^* is injective because $R_l^{(e_i)}(G_i)$ is spanned by the $\tilde{\beta}_i^{\sigma} \xi$.

Turning to the commutativity of (D2), it suffices to show that $(\text{Det}(\alpha))' = \text{Det}(\beta_i(\alpha))$ for units $\alpha \in e_i\Lambda(G_i)$, by [CR II, p.76]. Now, with V_{ξ} denoting a \mathbb{Q}_l^c -realization of $\xi \in R_l(G_i)$,

$$\text{Det} (\beta_i(\alpha))(\xi) = \text{det}_{\mathcal{Q}^c(\Gamma_{k_i})}(\beta_i(\alpha) \mid \text{Hom}_{\mathbb{Q}_l{}^c[H_i']}(V_{\xi}, \mathbb{Q}_l{}^c \otimes_{N_i} \mathcal{Q}^{N_i}(U_i))) \text{ and }$$

$$\text{Det} (\alpha)(\tilde{\beta}_i \xi) = \text{det}_{\mathcal{Q}^c(\Gamma_{k_i})}(\alpha \mid \text{Hom}_{\mathbb{Q}_l{}^c[H_i]}(V_{\tilde{\beta}_i \xi}, \mathbb{Q}_l{}^c \otimes_{\mathbb{Q}_l} (e_i \mathbb{Q}_l \langle s \rangle \otimes_{\mathbb{Q}_l} \mathcal{Q}(G_i))))$$

where H_i , as before, equals $\ker(G_i \to \Gamma_{k_i})$ and $H'_i = H_i/\langle s \rangle$; see [RW2, §3]. Hence it suffices to exhibit a $\mathcal{Q}^{c}(\Gamma_{k_i})$ -isomorphism

$$\operatorname{Hom}_{\mathbb{Q}_l{}^{\mathrm{c}}[H_i']}(V_{\xi},\mathcal{Q}^{\mathrm{c}}(U_i)) \longrightarrow \operatorname{Hom}_{\mathbb{Q}_l{}^{\mathrm{c}}[H_i]}(V_{\tilde{\beta}_i\xi},(\mathbb{Q}_l{}^{\mathrm{c}}\otimes_{\mathbb{Q}_l}e_i\mathbb{Q}_l\langle s\rangle)\otimes_{\mathbb{Q}_l{}^{\mathrm{c}}}\mathcal{Q}^{\mathrm{c}}(U_i))$$

which is natural for the respective actions of α . Such a map is given by multiplying $\varphi' \in \operatorname{Hom}_{\mathbb{Q}_l^c[H_i']}$ by the idempotent $\varepsilon_i = \frac{1}{|\langle s \rangle|} \sum_{j \mod |\langle s \rangle|} \beta_i(s^{-j}) \otimes e_i s^j$ of $\mathbb{Q}_l^c \otimes_{\mathbb{Q}_l} e_i \mathbb{Q}_l \langle s \rangle$. This map is surjective since ε_i acts as the identity on $V_{\tilde{\beta}_i \xi}$, hence every $\varphi \in \operatorname{Hom}_{\mathbb{Q}_l^c[H_i]}$ has image in $\varepsilon_i(\mathbb{Q}_l^c \otimes_{\mathbb{Q}_l} e_i \mathbb{Q}_l \langle s \rangle) \otimes_{\mathbb{Q}_l^c} \mathcal{Q}^c(U_i) = \varepsilon_i \otimes_{\mathbb{Q}_l^c} \mathcal{Q}^c(U_i)$.

Combining (D1) and (D2) gives the commutative square in 1. of the theorem. To complete the proof we are left with showing

$$\operatorname{Det} K_1(\Lambda(G)) \simeq \prod_i (\operatorname{Det} K_1(\Lambda^{\mathfrak{I}_i}(U_i)))^{A_i}.$$

We first check that the maps in (D2) are all A_i -equivariant. The left Det has already been dealt with. The right Det will follow since β_i is an isomorphism.

- 1. The natural embedding $a \mapsto \sigma_a : A_i \to G_{N_i/\mathbb{Q}_l}$ is determined by $\beta_i(s^a) = \beta_i(s)^{\sigma_a}$ and we transport the conjugation action of G on $e_i\mathbb{Z}_l\langle s\rangle \otimes_{\mathbb{Z}_l} \Lambda(U_i)$ to $\Lambda^{\mathfrak{O}_i}(U_i)$ by β_i , hence $\beta_i : K_1(e_i\mathbb{Z}_l\langle s\rangle \otimes_{\mathbb{Z}_l} \Lambda(U_i)) \to K_1(\Lambda^{\mathfrak{O}_i}(U_i))$ is A_i -equivariant.
- 2. We show that β_i^* is A_i -equivariant, with the action of A_i on $\varphi \in \operatorname{Hom}^{N_i}(R_l(U_i), \Lambda^{\operatorname{c}}(\Gamma_{k_i})^{\times})$ defined by $\varphi^a(\xi) = \varphi(\xi^{a^{-1}})^{\sigma_a}$, where $\sigma_a \in G_{N_i/\mathbb{Q}_l}$ is extended to $\mathbb{Q}_l^{\operatorname{c}}$ so that it is the identity on l-power roots of unity; this is possible since N_i/\mathbb{Q}_l is unramified. Note that φ^a is well-defined since changing σ_a to $\sigma\sigma_a$, with $\sigma \in G_{\mathbb{Q}_l^c/\mathbb{Q}_l}$ the identity on $N_i(\zeta_{l^{\infty}})$, gives $\varphi(\xi^{a^{-1}})^{\sigma\sigma_a} = \varphi(\xi^{a^{-1}\sigma})^{\sigma_a} = \varphi(\xi^{a^{-1}\sigma})^{\sigma_a}$

 $\varphi(\xi^{a^{-1}})^{\sigma_a}$ as $\xi^{a^{-1}}$ is a character of the l-group U_i . Moreover, $\varphi^a \in \operatorname{Hom}^{N_i}$: If $\sigma \in G_{\mathbb{Q}_l{}^c/N_i}$, then $\varphi^a(\xi^{\sigma}) = \varphi(\xi^{\sigma a^{-1}})^{\sigma_a} = \varphi(\xi^{a^{-1}\sigma})^{\sigma_a} = \varphi(\xi^{a^{-1}})^{\sigma\sigma_a} = (\varphi(\xi^{a^{-1}})^{\sigma\sigma_a\sigma^{-1}})^{\sigma} = \varphi^a(\xi)^{\sigma}$, because $\sigma\sigma_a\sigma^{-1}$ is also an admissible extension of σ_a .

The A_i -equivariance of the map β_i^* now follows from $\beta_i^a = \beta_i^{\sigma_a^{-1}}$ (which is a reformulation of $\beta_i(s^{a^{-1}}) = \beta_i(s)^{\sigma_a^{-1}}$). Namely, let $f' \in \operatorname{Hom}^{N_i}$ be the image of $f \in \operatorname{Hom}^*$ and let $f'' \in \operatorname{Hom}^{N_i}$ be that of f^a . Then $f''(\xi) = f^a(\tilde{\beta}_i \xi) = f(\tilde{\beta}_i^{a^{-1}} \xi^{a^{-1}}) = f((\tilde{\beta}_i \xi^{a^{-1}})^{\sigma_a}) = f(\tilde{\beta}_i \xi^{a^{-1}})^{\sigma_a} = f'(\xi^{a^{-1}})^{\sigma_a} = (f')^a(\xi)$.

For 1. of Theorem 1 it now remains to show that r' induces an epimorphism $\operatorname{Det} K_1(\Lambda(G)) \twoheadrightarrow \prod_i (\operatorname{Det} K_1(\Lambda^{\mathfrak{O}_i}(U_i)))^{A_i}$. From

$$\begin{array}{cccc} K_1(\Lambda(G)) & \stackrel{\operatorname{res} G^{i}}{\longrightarrow} & K_1(\Lambda(G_i)) \\ \downarrow & & \downarrow & & \downarrow \\ K_1(e_i\Lambda(G)) & \stackrel{\operatorname{res} G^{i}}{\longrightarrow} & K_1(e_i\Lambda(G_i)) & \stackrel{\beta_i,\simeq}{\longrightarrow} & K_1(\Lambda^{\mathfrak{O}_i}(U_i)) \end{array}$$

and the surjectivity of the left vertical arrow we deduce

$$\operatorname{im}(r) \supset \prod_{i} \beta_{i} \operatorname{res}_{G}^{G_{i}}(K_{1}(e_{i}\Lambda(G))) \supset \prod_{i} \beta_{i} \operatorname{res}_{G}^{G_{i}} \operatorname{ind}_{G_{i}}^{G}(K_{1}(e_{i}\Lambda(G_{i}))).$$

Hence, by [RW2, Lemma 9] and [RW3, Lemma 1],

$$r'(\operatorname{Det} K_1(\Lambda(G))) \supset \prod_i \beta_i^* \operatorname{res}_G^{G_i} \operatorname{ind}_{G_i}^G(\operatorname{Det} K_1(e_i\Lambda(G_i)))$$

$$\stackrel{\circ}{=} \prod_i \beta_i^* \operatorname{N}_{A_i}(\operatorname{Det} K_1(e_i\Lambda(G_i))) = \prod_i \operatorname{N}_{A_i}(\operatorname{Det} K_1(\Lambda^{\mathfrak{O}_i}(U_i)))$$

where $\stackrel{\circ}{=}$ is due to Mackey's subgroup theorem and $G/G_i = A_i$:

$$\operatorname{res}_{G}^{G_{i}}\operatorname{ind}_{G_{i}}^{G}(f_{i})(\tilde{\beta}_{i}^{\sigma}\xi) = f_{i}(\operatorname{res}_{G}^{G_{i}}\operatorname{ind}_{G_{i}}^{G}(\tilde{\beta}_{i}^{\sigma}\xi)) = (\prod_{a \in A_{i}} f_{i}^{a})(\tilde{\beta}_{i}^{\sigma}\xi) = (\operatorname{N}_{A_{i}}f)(\tilde{\beta}_{i}^{\sigma}\xi).$$

All arguments above apply to 2. of Theorem 1 without changes.

The proposition below now finishes the proof of Theorem 1.

Proposition 2. $N_{A_i}(\text{Det }K_1(\Lambda^{\mathfrak{O}_i}(U_i))) = (\text{Det }K_1(\Lambda^{\mathfrak{O}_i}(U_i)))^{A_i}$ and the same with Λ replaced by Λ_{\bullet} .

Since the U in $G_{\infty} = \langle s \rangle \rtimes U$ will not occur in the proof of the proposition, we drop the index i throughout, so $U = U_i$ is now a pro-l group and we need to consider the A-module Det $K_1(\Lambda^{\mathfrak{D}}(U))$. Recall that A acts on U by group automorphisms and on \mathfrak{D} by $A \mapsto G_{N/\mathbb{Q}_l}$.

Let \mathfrak{a} denote the kernel of $\Lambda(U) \to \Lambda(U^{\mathrm{ab}})$ and set $\mathfrak{A} = \mathfrak{O} \otimes_{\mathbb{Z}_l} \mathfrak{a}$. By surjectivity of $(\Lambda^{\mathfrak{O}}(U))^{\times} \to K_1(\Lambda^{\mathfrak{O}}(U))$ (see [CR II, p.76]) we have $\mathrm{Det}(\Lambda^{\mathfrak{O}}(U)^{\times}) = \mathrm{Det}K_1(\Lambda^{\mathfrak{O}}(U))$.

We start out the proof of the proposition from the diagram

with the top row exact because \mathfrak{a} is contained in the radical of $\Lambda(U)$. The right square of the diagram commutes [RW2, Lemma 9] and the right Det is an isomorphism (see [CR II, 45.12, p.142]). Therefore the whole diagram commutes and its bottom sequence is exact.

We claim that $\operatorname{Det}(1+\mathfrak{A})\simeq \tau(\mathfrak{A})$ with $\tau(\mathfrak{A})$ the image of $\mathfrak{A}\subset \Lambda^{\mathfrak{D}}(G_{\infty})$ in $T(\Lambda^{\mathfrak{D}}(G_{\infty}))=\Lambda^{\mathfrak{D}}(G_{\infty})/[\Lambda^{\mathfrak{D}}(G_{\infty}),\Lambda^{\mathfrak{D}}(G_{\infty})]$ (see [RW3,§3]) . Since \mathbf{L} : $\operatorname{Det}(1+\mathfrak{A})\to\operatorname{Tr}(\tau(\mathfrak{A}))$ is an isomorphism by the Corollary to Theorem B, in [RW3], it remains to see that \mathbf{L} and Tr are A-equivariant. For \mathbf{L} this follows as Ψ is induced by $\gamma\mapsto \gamma^l$ for $\gamma\in\Gamma_k$. For Tr it follows from Lemma 6 and Proposition 3 of [RW3]: Let $a\in A$, $\omega\in\mathfrak{D}$, and $u\in U$. Then

$$\begin{aligned} &\operatorname{Tr}(\omega u)^a(\chi) = \operatorname{Tr}(\omega u)(\chi^{a^{-1}})^{\sigma_a} = \operatorname{trace}(\omega u \mid \mathfrak{V}_{\chi^{a^{-1}}})^{\sigma_a} = (\omega \chi^{a^{-1}}(u)\overline{u})^{\sigma_a} \\ &= \omega^{\sigma_a}\chi(u^a)\overline{u} = \operatorname{trace}(\omega^{\sigma_a}u^a \mid \mathfrak{V}_\chi) = \operatorname{Tr}(\omega^{\sigma_a}u^a)(\chi). \end{aligned}$$

Collecting everything so far, the starting diagram gives the exact A-module sequence

$$\tau(\mathfrak{A}) \rightarrowtail \operatorname{Det}(\Lambda^{\mathfrak{O}}(U)^{\times}) \twoheadrightarrow \Lambda^{\mathfrak{O}}(U^{\operatorname{ab}})^{\times}.$$

So the proof of the proposition will be finished once we have shown that

$$au(\mathfrak{A})$$
 and $\Lambda^{\mathfrak{O}}(U^{\mathrm{ab}})^{\times}$ are A-cohomologically trivial.

For $\tau(\mathfrak{A})$ this holds because $\tau(\mathfrak{A}) = \mathfrak{O} \otimes_{\mathbb{Z}_l} \tau(\mathfrak{a})$ has diagonal A-action and \mathfrak{O} is $\mathbb{Z}_l[A]$ -cohomologically trivial, as $\mathfrak{O}/\mathbb{Z}_l$ is unramified. By [Se1, Theorem 9, p.152] then the tensor product is cohomologically trivial as well.

The proof of the cohomological triviality of $\Lambda^{\mathfrak{O}}(U^{\mathrm{ab}})^{\times}$ uses the following fact: If $(X_n, f_n : X_n \to X_{n-1})$ is a projective system of A-modules with surjective maps f_n , then $X = \lim_{\leftarrow} X_n$ is cohomologically trivial if all the X_n are. This holds be-

cause of the exact sequence $X \mapsto \prod_n X_n \to \prod_n X_n$ in which $(\cdots, x_n, \cdots) \mapsto (\cdots, f_{n+1}(x_{n+1}) - x_n, \cdots)$ is the second map. Note that the X_n are cohomologically trivial, if X_1 and all $\ker(X_{n+1} \to X_n)$ are so.

Set $\mathfrak{g} = \ker(\Lambda(U^{\mathrm{ab}}) \to \Lambda(\Gamma_k))$ and $\mathfrak{G} = \mathfrak{O} \otimes_{\mathbb{Z}_l} \mathfrak{g}$. Since some power of \mathfrak{g} is contained in $l\Lambda(U^{\mathrm{ab}})$ (compare the beginning of the proof of [RW3, Theorem 8]), $\Lambda(U^{\mathrm{ab}})$ is complete with respect to its \mathfrak{g} -adic topology. Also, $1 + \mathfrak{g} \subset \Lambda(U^{\mathrm{ab}})^{\times}$, and thus the short exact sequence $1 + \mathfrak{G} \mapsto \Lambda^{\mathfrak{O}}(U^{\mathrm{ab}})^{\times} \to \Lambda^{\mathfrak{O}}(\Gamma_k)^{\times}$ implies the cohomological triviality of $\Lambda^{\mathfrak{O}}(U^{\mathrm{ab}})^{\times}$, if $1 + \mathfrak{G}$ and $\Lambda^{\mathfrak{O}}(\Gamma_k)^{\times}$ are A-cohomologically trivial.

Setting $X_n = \frac{1+\mathfrak{G}}{1+\mathfrak{G}^n}$, $\ker(X_{n+1} \to X_n) \simeq \mathfrak{O} \otimes_{\mathbb{Z}_l} \frac{\mathfrak{g}^n}{\mathfrak{g}^{n+1}}$, which is cohomologically trivial by [Se1, loc.cit.].

For the right term of the above short exact sequence we identify $\Lambda^{\mathfrak{D}}(\Gamma_k)$ and $\mathfrak{D}[[T]]$, as usual, and set $X_n = \frac{\mathfrak{D}[[T]]^{\times}}{1+T^n\mathfrak{D}[[T]]}$; so $X_1 = \mathfrak{O}^{\times}$ and $\ker(X_{n+1} \to X_n) = \mathfrak{D}$, which both are cohomologically trivial.

Adding Λ at the appropriate places, Proposition 2 is established.

Corollary (to Theorem 1). Let G_{∞} be \mathbb{Q}_l - l - elementary. Then

$$\operatorname{Det} K_1(\Lambda(G_{\infty})_{\widehat{\bullet}}) \cap \operatorname{Hom}^*(R_l(G_{\infty}), \Lambda^{\operatorname{c}}(\Gamma_k)^{\times}) \subset \operatorname{Det} K_1(\Lambda(G_{\infty})).$$

Namely, by Theorem 1,

Det
$$K_1(\Lambda(G_{\infty})_{\star}) \cap \operatorname{Hom}^*(R_l(G_{\infty}), \Lambda^{\operatorname{c}}(\Gamma_k)^{\times})$$

 $\subset \prod_i (\operatorname{Det} K_1(\Lambda^{\mathfrak{O}_i}(U_i)_{\star})^{A_i} \cap \prod_i \operatorname{Hom}^{N_i}(R_l(U_i), \Lambda^{\operatorname{c}}(\Gamma_{k_i})^{\times})^{A_i}$
 $\subset \prod_i \left(\operatorname{Det} K_1(\Lambda^{\mathfrak{O}_i}(U_i)_{\star}) \cap \operatorname{Hom}^{N_i}(R_l(U_i), \Lambda^{\operatorname{c}}(\Gamma_{k_i})^{\times}) \right)^{A_i}$
 $\dot{\subset} \prod_i (\operatorname{Det} K_1(\Lambda^{\mathfrak{O}_i}(U_i))^{A_i} \subset \operatorname{Det} K_1(\Lambda(G_{\infty}))$

with \subset by [RW3, Theorem B_{*}].

Proposition 3. Let G_{∞} be \mathbb{Q}_l - l - elementary. Then $L_{K_{\infty}/k} \in \operatorname{Det} K_1(\Lambda(G_{\infty})_{\star})$ if, and only if, $L_{K'/k'} \in \operatorname{Det} K_1(\Lambda(G_{K'/k'})_{\star})$ whenever $G_{K'/k'}$ is an l-elementary section of G_{∞} .

If $L_{K_{\infty}/k} \in \text{Det}\, K_1(\Lambda(G_{\infty})_{\star})$ and if $G_{K'/k'} = G_{K_{\infty}/k'} / G_{K_{\infty}/K'}$ is an l-elementary section of G_{∞} with $k \subset k' \subset K' \subset K_{\infty}$, then $\text{defl}_{G_{K_{\infty}/k'}}^{G_{K'/k'}} \text{res}_{G_{\infty}}^{G_{K_{\infty}/k'}} L_{K_{\infty}/k} = L_{K'/k'}$ (see [RW2,§4]). And by [RW2, Lemma 9], $L_{K'/k'} \in \text{Det}\, K_1(\Lambda(G_{K'/k'})_{\star})$.

For the converse it may help to review the notation of that part of the proof of Theorem 1 where (D2) appears. The point is that $\overline{G}_i \stackrel{\text{def}}{=} G_i/\ker \beta_i = \langle \overline{s}_i \rangle \times U_i$, with $\langle \overline{s}_i \rangle = \langle s \rangle / \ker \beta_i$, is an l-elementary section. And as $G_i = \langle s \rangle \rtimes U_i$,

$$\operatorname{Hom}^*(R_l(G_{\infty}), \Lambda_{\widehat{\Gamma}}^{\operatorname{c}}(\Gamma_k)^{\times}) \xrightarrow{\operatorname{res}} \prod_i \operatorname{Hom}^*(R_l(G_i), \Lambda_{\widehat{\Gamma}}^{\operatorname{c}}(\Gamma_{k_i})^{\times})^{A_i} \xrightarrow{\operatorname{defl}}$$
$$\prod_i \operatorname{Hom}^*(R_l(\overline{G}_i), \Lambda_{\widehat{\Gamma}}^{\operatorname{c}}(\Gamma_{k_i})^{\times})^{A_i}$$

takes $L_{K_{\infty}/k}$ to $\prod_{i} L_{K'_{i}/k'_{i}}$ where $k'_{i} = K_{\infty}^{G_{i}}$ and $K'_{i} = K_{\infty}^{\ker \beta_{i}}$. Note here that the ith deflation map is A_{i} -equivariant since $\langle s \rangle \to \langle \overline{s}_{i} \rangle$ is so.

By assumption, $L_{K'_i/k'_i} = \operatorname{Det} y_i$ where $y_i \in K_1(\Lambda(\overline{G}_i)_{\wedge})$ and so $\operatorname{Det} y_i \in (\operatorname{Det} K_1(\Lambda(\overline{G}_i)_{\wedge}))^{A_i}$. Projecting to $e_i(\Lambda(\overline{G}_i))_{\wedge}$, $L_{K'_i/k'_i}$ induces a function in $\operatorname{Hom}^*(R_l^{(e_i)}(\overline{G}_i), \Lambda_{\wedge}^c(\Gamma_{k_i})^{\times})^{A_i}$. But $e_i(\Lambda(\overline{G}_i))_{\wedge} = \overline{e}_i(\Lambda(\overline{G}_i))_{\wedge} = e_i\mathbb{Z}_l\langle s \rangle \otimes_{\mathbb{Z}_l} \Lambda(U_i)_{\wedge}$, so $\overline{e}_i y_i \in K_1(e_i\mathbb{Z}_l\langle s \rangle \otimes_{\mathbb{Z}_l} \Lambda(U_i)_{\wedge})$ and $\operatorname{Det}(\overline{e}_i y_i) \in (\operatorname{Det} K_1(e_i\mathbb{Z}_l\langle s \rangle \otimes_{\mathbb{Z}_l} \Lambda(U_i)_{\wedge}))^{A_i}$. Now $\prod_i (\operatorname{Det} K_1(e_i\mathbb{Z}_l\langle s \rangle \otimes_{\mathbb{Z}_l} \Lambda(U_i)_{\wedge}))^{A_i} = \operatorname{Det} K_1(\Lambda(G_{\infty})_{\wedge})$, by Theorem 1, and the proof is finished.

Remark. In Proposition 3, the Iwasawa L-function $L_{K_{\infty}/k}$ may be replaced by any function $f \in \operatorname{Hom}^*(R_l(G_{\infty}), \Lambda_{\infty}^c(\Gamma_k)^{\times})$ on setting $f_{K'/k'} = \operatorname{defl}_{G_{K_{\infty}/k'}}^{G_{K'/k'}} \operatorname{res}_{G_{\infty}}^{G_{K_{\infty}/k'}} f$ for all l-elementary sections $G_{K'/k'}$ of G_{∞} .

3. \mathbb{Q}_l - q - elementary groups G_{∞}

In this section q is a prime number $\neq l$.

We say that the Galois group $G_{\infty} = G_{K_{\infty}/k}$ is a \mathbb{Q}_l - q - elementary group, if $G_{\infty} = H \times \Gamma$ for some central open $\Gamma \leqslant G_{\infty}$ and a finite \mathbb{Q}_l - q - elementary group H. Recall that a finite group H is called \mathbb{Q}_l - q - elementary if it is a semidirect product $\langle s \rangle \rtimes H_q$ of a cyclic normal subgroup $\langle s \rangle$ of order prime to q and a q-group H_q whose action on $\langle s \rangle$ induces a homomorphism $H_q \to G_{\mathbb{Q}_l(\zeta)/\mathbb{Q}_l}$, where ζ is a root of unity of order $|\langle s \rangle|$.

Lemma 4.

- 1. If Γ is a central open subgroup of G_{∞} so that (the finite group) G_{∞}/Γ is a \mathbb{Q}_l q elementary group, then G_{∞} is \mathbb{Q}_l q elementary.
- 2. Let G_{∞} be \mathbb{Q}_l -q-elementary, $G_{\infty} = H \times \Gamma$, $H = \langle s \rangle \rtimes H_q$. Then each irreducible character $\chi \in R_l(G_{\infty})$ can be written as $\chi = \rho \cdot \operatorname{ind}_{G'}^{G_{\infty}}(\xi)$ with an abelian character ρ of G_{∞} of type W and an abelian character ξ of a subgroup $G' \supset \langle s \rangle \times \Gamma$ of G_{∞} so that $\xi = 1$ on Γ .

In order to see 1. we pick a Sylow-l subgroup U of G_{∞} containing the central open Γ . Then U/Γ is an l-subgroup of the finite \mathbb{Q}_l - q - elementary group G_{∞}/Γ , hence cyclic and normal in G_{∞}/Γ . We conclude that U is an abelian normal subgroup of G_{∞} , and, moreover, that $G_{\infty} = U \rtimes H'$ with a finite \mathbb{Q}_l - q - elementary group H' of order prime to l. Writing the abelian U as $U = H_l \times \Gamma_1$ with H_l finite (cyclic) and $\Gamma_1 \simeq \mathbb{Z}_l$, so $H_l \lhd G_{\infty}$, the usual Maschke argument provides a $\mathbb{Z}_l[H']$ -decomposition $U = H_l \times \Gamma_2$ with $\Gamma_2 \simeq \mathbb{Z}_l$, by $|H'| \in \mathbb{Z}_l^{\times}$. We infer from $\Gamma^{l^n} \subset \Gamma_2$ for some n that H' acts trivially on Γ_2 . Thus $G_{\infty} = H \times \Gamma_2$ with $H = H_l \rtimes H'$ a finite \mathbb{Q}_l - q - elementary group and Γ_2 central open in G_{∞} .

For 2. we first restrict χ to Γ and obtain $\operatorname{res}_{G_\infty}^\Gamma \chi = \chi(1) \cdot \rho_1$ for some abelian character ρ_1 of Γ . Via $G_\infty/H = \Gamma_k$, ρ_1 is the restriction of a type W character ρ of G_∞ . Since $\chi \rho^{-1}$ is trivial on Γ , we may henceforth assume that χ is trivial on Γ , whence is inflated from an irreducible \mathbb{Q}_l^c -character of H. By Clifford theory [CR I, p.265] the \mathbb{Q}_l^c -irreducible characters of H are of the form $\operatorname{ind}_{\tilde{H}}^H(\tilde{\xi} \cdot \omega)$ with an abelian character $\tilde{\xi}$ of some subgroup $\tilde{H} \geqslant \langle s \rangle$ and an irreducible character ω of $\tilde{H}/\langle s \rangle$ (inflated to \tilde{H}). The group $\tilde{H}/\langle s \rangle$ is a q-group, so monomial, from which we deduce an equality $\operatorname{ind}_{\tilde{H}}^H(\tilde{\xi} \cdot \omega) = \operatorname{ind}_{H'}^H(\xi)$ with $\langle s \rangle \leqslant H' \leqslant \tilde{H}$ and an abelian character ξ of H'. Setting $G' = H' \times \Gamma$ finishes the proof of 2. and of the lemma.

Lemma 5. Assume that $G_{\infty} = H \times \Gamma$ with H of order prime to l. Then $\mathcal{Q}(G_{\infty})$ is the group algebra of the finite group H over the field $\mathcal{Q}(\Gamma)$ and each $f \in \operatorname{Hom}^*(R_l(G_{\infty}), \Lambda^c(\Gamma_k)^{\times})$ is a Det z for some $z \in \Lambda(G_{\infty})^{\times}$.

This is straightforward: $\mathcal{Q}(G_{\infty}) = \mathcal{Q}(\Gamma)[H] = \mathcal{Q}(\Gamma) \otimes_{\mathbb{Q}_l} \mathbb{Q}_l[H]$ is isomorphic to a product of matrix rings over the character fields $\mathcal{Q}(\Gamma)(\chi)$ (see [CR II, 74.11, p.740]), where χ runs through the \mathbb{Q}_l^c -irreducible characters of H modulo $G_{\mathbb{Q}_l^c/\mathbb{Q}_l}$ -action. By $l \nmid |H|$, $\Lambda(\Gamma)[H] = \Lambda(\Gamma) \otimes_{\mathbb{Z}_l} \mathbb{Z}_l[H]$ is a maximal order in $\mathcal{Q}(\Gamma)[H]$, hence a product of matrix rings over the integral closures of $\Lambda(\Gamma)$ in the centre fields $\mathcal{Q}(\Gamma)(\chi)$.

Proposition 6. Assume that G_{∞} is \mathbb{Q}_l - q - elementary. Let $f \in \operatorname{Hom}^*(R_l(G_{\infty}), \Lambda^{\operatorname{c}}(\Gamma_k)^{\times})$ satisfy $(\operatorname{res}_{G_{\infty}}^{G'}f)(\chi')^l \equiv \Psi((\operatorname{res}_{G_{\infty}}^{G'}f)(\psi_l\chi')) \mod l\Lambda^{\operatorname{c}}(\Gamma_{k'})$ for all open subgroups G' of G_{∞} (with $k' = K_{\infty}^{G'}$) and all $\chi' \in R_l(G')$. Then there exists a $z \in \operatorname{Det} K_1(\Lambda(G_{\infty}))$ such that $((\operatorname{Det} z)^{-1}f)^{l^m} \in \operatorname{Hom}^*(R_l(G_{\infty}), 1 + l\Lambda^{\operatorname{c}}(\Gamma_k))$ for some power l^m . The same holds with Λ replaced by Λ_{∞} .

For the proof (compare also [Ty, p.94/95]) we set $\overline{G} = G_{\infty}/H_l = \overline{H} \times \Gamma$ with \overline{H} finite of order prime to l. In particular, $\Lambda(\overline{G}) = \Lambda(\Gamma)[\overline{H}]$. We proceed from the commutative square (see [RW2, Lemma 9])

$$\begin{array}{ccc} K_1(\Lambda(G_\infty)) & \stackrel{\mathrm{defl}}{\longrightarrow} & K_1(\Lambda(\overline{G})) \\ \mathrm{Det} \downarrow & \mathrm{Det} \downarrow \\ \mathrm{HOM}^*(R_l(G_\infty), \Lambda^{\mathrm{c}}(\Gamma_k)^\times) & \stackrel{\mathrm{defl}}{\longrightarrow} & \mathrm{HOM}^*(R_l(\overline{G}), \Lambda^{\mathrm{c}}(\Gamma_k)^\times) \end{array}$$

and consider defl f. By Lemma 5, defl $f=\operatorname{Det}\overline{z}$ is solvable for some $\overline{z}\in\Lambda(\overline{G})^{\times}$. Lift \overline{z} to a unit $z\in\Lambda(G_{\infty})^{\times}$, which is possible as $H_l=\ker(G_{\infty}\to\overline{G})$ is an l-group, and read this z in $K_1(\Lambda(G_{\infty}))$ (via $\Lambda(G_{\infty})^{\times} \twoheadrightarrow K_1(\Lambda(G_{\infty}))$). Then $f'\stackrel{\mathrm{def}}{=} (\operatorname{Det} z)^{-1}f\in \operatorname{Hom}^*(R_l(G_{\infty}),\Lambda^c(\Gamma_k)^{\times})$ and $\operatorname{defl}(f')=1$.

Next, pick an irreducible $\chi \in R_l(G_\infty)$ which is trivial on Γ . So $\chi = \operatorname{ind}_{G'}^{G_\infty}(\xi)$, with a \mathbb{Q}_l ^c-irreducible character ξ of G' which is trivial on Γ , by 2. of Lemma 4. We define $\overline{\chi} = \operatorname{ind}_{G'}^{G_\infty}(\overline{\xi})$ where $\xi = \xi_l \cdot \overline{\xi}$ has been decomposed into its l-singular and l-regular components $\xi_l, \overline{\xi}$, respectively. As $\overline{\xi}$ is trivial on $H_l, \overline{\chi}$ is inflated from \overline{G} .

Now,
$$f'(\chi - \overline{\chi}) = f'(\operatorname{ind}_{G'}^{G_{\infty}}(\xi - \overline{\xi})) = (\operatorname{res}_{G_{\infty}}^{G'}f')(\xi - \overline{\xi}).$$

The assumption on f and the above Remark imply that

$$f'(\chi - \overline{\chi})^{l^m} \equiv 1 \mod l\Lambda^{c}(\Gamma_{k'})$$

if m is big enough so that $\psi_l^m(\xi) = \psi_l^m(\overline{\xi})$:

$$f'(\chi - \overline{\chi})^{l^m} = (\operatorname{res}_{G_{\infty}}^{G'} f')(\xi - \overline{\xi})^{l^m} \equiv \Psi^m((\operatorname{res}_{G_{\infty}}^{G'} f')(\psi_l^m \xi - \psi_l^m \overline{\xi})) \mod l\Lambda^{\operatorname{c}}(\Gamma_{k'}) \ .$$

And since $\operatorname{defl}(f') = 1$ and $\overline{\chi}$ is inflated from \overline{G} , $f'(\overline{\chi}) = 1$, we arrive at $(f')^{l^m}(\chi) \equiv 1$ mod $l\Lambda^{\operatorname{c}}(\Gamma_{k'})$.

By 2. of Lemma 4 every irreducible character of G_{∞} is of the form $\chi \rho$ with a χ as above (i.e., χ is trivial on Γ) and ρ of type W. Hence $(f')^{l^m}(\chi \rho) = \rho^{\sharp}((f')^{l^m}(\chi)) \equiv 1$ mod $l\Lambda^{c}(\Gamma_{k'})$ (see [RW2, Definition in §2]).

Remark. Observe that the above hypothesis is satisfied by $f = L_{K_{\infty}/k}$ (see [RW3, 2. of Corollary to Theorem 9; RW2, 2. of Proposition 12]) and by every $f \in \text{Det } K_1(\Lambda(G_{\infty}))$ (see [RW2, Lemma 9; RW3, Proposition 4, 1. of Proposition 11]).

4. Proofs of Theorem B and C

In this section we prove Theorems B and C in full generality. This is done by using character actions on K_1 and Hom^* (as well as the Corollary to Theorem 1 and Proposition 3).

For an open subgroup U of G_{∞} , we denote by $R_{\mathbb{Q}_l}(U)$ the ring of all characters of finite dimensional \mathbb{Q}_l -representations of U with open kernel. We view $R_{\mathbb{Q}_l}$ as a Frobenius functor of the open subgroups of G_{∞} in the sense of [CR II, 38.1].

We make $\operatorname{Hom}^*(R_l(U), \Lambda^c(\Gamma_{k_U})^{\times})$, with $k_U = K_{\infty}^U$, into an $R_{\mathbb{Q}_l}(U)$ -module by

$$(\kappa f)(\chi) = f(\check{\kappa}\chi) \text{ for } f \in \text{Hom}^*, \ \kappa \in R_{\mathbb{Q}_l}(U), \ \chi \in R_l(U),$$

with $\check{\kappa}$ the contragredient of κ .

We make $K_1(\Lambda(U))$ into an $R_{\mathbb{Q}_l}(U)$ -module as follows. If κ is a character in $R_{\mathbb{Q}_l}(U)$, and if $[P, \alpha]$ represents an element in $K_1(\Lambda(U))$, then choosing $U' \subset \ker \kappa$, an open subgroup of U, and a $\mathbb{Z}_l[U/U']$ -lattice with character κ , we define

$$(*) \kappa \cdot [P, \alpha] = [M \otimes_{\mathbb{Z}_l} P, \mathrm{id}_M \otimes_{\mathbb{Z}_l} \alpha]$$

(compare [CR II, p.175]).

Lemma 7. Det : $K_1(\Lambda(-)) \to \operatorname{Hom}^*(R_l(-), \Lambda^c(\Gamma_{k_-})^{\times})$ is a morphism of Frobenius modules over the Frobenius functor $U \mapsto R_{\mathbb{Q}_l}(U)$.

The lemma is shown in the same way as its analogue in the case of group rings of finite groups. We only need to observe that the $\Lambda(U)$ -module structure of $M \otimes_{\mathbb{Z}_l} P$ is derived from the diagonal action of U on $M \otimes_{\mathbb{Z}_l} P$:

First, the $\Lambda(U')$ -module structure on P gives $M \otimes_{\mathbb{Z}_l} P$ a $\mathbb{Z}_l[U'] \rightarrowtail \mathbb{Z}_l[U]$ $\Lambda(U')$ -structure. The pushout diagram then determines a $\mathbb{Z}_l[U'] \hookrightarrow \Lambda(U') \hookrightarrow \Lambda(U')$ $\mathbb{Z}_l[U]$

In order to check $\Lambda(U)$ -projectivity of $M \otimes_{\mathbb{Z}_l} P$, it suffices to take $P = \Lambda(U)$ and then Frobenius reciprocity $M \otimes_{\mathbb{Z}_l} \operatorname{ind}_{U'}^U(\Lambda(U')) = \operatorname{ind}_{U'}^U(\operatorname{res}_U^{U'}(M) \otimes_{\mathbb{Z}_l} \Lambda(U'))$ takes care of this, since M is \mathbb{Z}_l -free.

We next recall Swan's theorem (see [CR II, 39.10, p.47]) which implies the independence of (*) from the choice of the lattice M. Indeed, given κ and $U' \subset \ker \kappa$ as above, then two $\mathbb{Z}_l[U/U']$ -lattices M_1, M_2 with character κ induce the same element in the Grothendieck group $G_0^{\mathbb{Z}_l}(\mathbb{Z}_l[U/U'])$ of finitely generated $\mathbb{Z}_l[U/U']$ -lattices (see [CR I,§16B]). Moreover, it is readily checked from [CR II, 38.20, 38.24, p.14,16] that $[M_1 \otimes_{\mathbb{Z}_l} P, \operatorname{id}_{M_1} \otimes_{\mathbb{Z}_l} \alpha] = [M_2 \otimes_{\mathbb{Z}_l} P, \operatorname{id}_{M_2} \otimes_{\mathbb{Z}_l} \alpha]$ in $K_1(\Lambda(U))$.

It remains to show that Det is a Frobenius module homomorphism. Let $\chi \in R_l(G_\infty)$ and let $[P, \alpha] \in K_1(\Lambda(G_\infty))$, $[M] \in G_0^{\mathbb{Z}_l}(\mathbb{Z}_l[U/U'])$ as in (*); set $\mathbb{Q}_l^c \otimes_{\mathbb{Z}_l} M = V_\kappa$. Then

```
 \begin{split} &(\operatorname{Det} [M \otimes_{\mathbb{Z}_{l}} P, 1 \otimes_{\mathbb{Z}_{l}} \alpha])(\chi) \\ &= \operatorname{det}_{\mathcal{Q}^{\operatorname{c}}(\Gamma_{k})} (1 \otimes_{\mathbb{Z}_{l}} \alpha \mid \operatorname{Hom}_{\mathbb{Q}_{l}^{\operatorname{c}}[H]}(V_{\chi}, \mathbb{Q}_{l}^{\operatorname{c}} \otimes_{\mathbb{Z}_{l}} (M \otimes_{\mathbb{Z}_{l}} P))) \\ &= \operatorname{det}_{\mathcal{Q}^{\operatorname{c}}(\Gamma_{k})} (1 \otimes_{\mathbb{Z}_{l}} \alpha \mid \operatorname{Hom}_{\mathbb{Q}_{l}^{\operatorname{c}}[H]}(V_{\chi}, (V_{\kappa} \otimes_{\mathbb{Q}_{l}^{\operatorname{c}}} (\mathbb{Q}_{l}^{\operatorname{c}} \otimes_{\mathbb{Z}_{l}} P)))) \\ &\stackrel{1}{=} \operatorname{det}_{\mathcal{Q}^{\operatorname{c}}(\Gamma_{k})} (\alpha \mid \operatorname{Hom}_{\mathbb{Q}_{l}^{\operatorname{c}}[H]}(V_{\chi}, \operatorname{Hom}_{\mathbb{Q}_{l}^{\operatorname{c}}}(V_{\kappa}, \mathbb{Q}_{l}^{\operatorname{c}} \otimes_{\mathbb{Z}_{l}} P))) \\ &\stackrel{2}{=} \operatorname{det}_{\mathcal{Q}^{\operatorname{c}}(\Gamma_{k})} (\alpha \mid \operatorname{Hom}_{\mathbb{Q}_{l}^{\operatorname{c}}[H]}(V_{\kappa} \otimes_{\mathbb{Q}_{l}^{\operatorname{c}}} V_{\chi}, \mathbb{Q}_{l}^{\operatorname{c}} \otimes_{\mathbb{Z}_{l}} P)) \\ &= (\operatorname{Det}[P, \alpha])(\check{\kappa}\chi) = (\kappa \operatorname{Det}[P, \alpha])(\chi) \,, \end{split}
```

with $\frac{1}{2}$ and $\frac{2}{3}$ due to the naturality on *H*-fixed points of the isomorphisms [CRI, 10.30, 2.19], respectively.

Corollary. $SK_1(\mathcal{Q}(G_\infty)) = 0$ if $SK_1(\mathcal{Q}(G')) = 0$ for all open \mathbb{Q}_l -elementary subgroups G' of G_∞ .

This follows because $SK_1(\mathcal{Q}(-))$ is a Frobenius module over $R_{\mathbb{Q}_l}(-)$, by Lemma 7 with Λ replaced by \mathcal{Q} . Now apply the Witt-Berman induction theorem (see [CR I, 21.6, p.459]) to the finite group G_{∞}/Γ where Γ is a central open subgroup: There exist \mathbb{Q}_l -elementary subgroups $\overline{G}_i \leqslant G_{\infty}/\Gamma$ and (virtual) \mathbb{Q}_l^{c} -characters $\overline{\xi}_i$ of \overline{G}_i such that $1_{G_{\infty}} = \sum_i \operatorname{ind}_{G_i}^{G_{\infty}}(\xi_i)$, with G_i the full preimage of \overline{G}_i in G_{∞} and $\xi_i = \inf \frac{G_i}{\overline{G}_i}(\overline{\xi}_i)$. By Lemma 4 the groups G_i are \mathbb{Q}_l -elementary (this is trivial for the prime number l). Now let $z \in SK_1(\mathcal{Q}(G_{\infty}))$ and apply the above character relation to get from res $G_{\infty}^{G_i} z = 0$

$$z = 1_{G_{\infty}} \cdot z = \sum_{i} \operatorname{ind}_{G_{i}}^{G_{\infty}}(\xi_{i}) \cdot z = \sum_{i} \operatorname{ind}_{G_{i}}^{G_{\infty}}(\xi_{i} \cdot \operatorname{res}_{G_{\infty}}^{G_{i}} z) = 0.$$

Lemma 8. Det $K_1(\Lambda(G_\infty)) \cap \operatorname{Hom}^*(R_l(G_\infty), 1 + l\Lambda^c(\Gamma_k))$ is a \mathbb{Z}_l -module, and the same with Λ replaced by Λ_{\bullet} .

It suffices to show $(\operatorname{Hom}^*(R_l(G_\infty), 1 + l\Lambda^c(\Gamma_k)))^m \subset \operatorname{Det} K_1(\Lambda(G_\infty))$ for some non-zero integer m, as this implies that $\operatorname{Det} K_1(\Lambda(G_\infty)) \cap \operatorname{Hom}^*(R_l(G_\infty), 1 + l\Lambda^c(\Gamma_k))$ is a \mathbb{Z}_l -submodule of the \mathbb{Z}_l -module $\operatorname{Hom}^*(R_l(G_\infty), 1 + l\Lambda^c(\Gamma_k))$: For if $f \in \operatorname{Det} K_1(\Lambda(G_\infty)) \cap \operatorname{Hom}^*(R_l(G_\infty), 1 + l\Lambda^c(\Gamma_k))$ and $c \in \mathbb{Z}_l$, then, writ-

For if $f \in \text{Det } K_1(\Lambda(G_\infty)) \cap \text{Hom}^*(R_l(G_\infty), 1 + l\Lambda^c(\Gamma_k))$ and $c \in \mathbb{Z}_l$, then, writing c = a + mb with $a \in \mathbb{Z}$, $b \in \mathbb{Z}_l$, $f^c = f^a(f^b)^m$, and $f^a \in \text{Det } K_1(\Lambda(G_\infty)) \cap \text{Hom}^*(R_l(G_\infty), 1 + l\Lambda^c(\Gamma_k))$, $f^b \in \text{Hom}^*(R_l(G_\infty), 1 + l\Lambda^c(\Gamma_k))$, so $(f^b)^m \in \text{Det } K_1(\Lambda(G_\infty)) \cap \text{Hom}^*(R_l(G_\infty), 1 + l\Lambda^c(\Gamma_k))$.

We next prove the containment claimed above when $G_{\infty} = H \times \Gamma$ is abelian. Let $f \in \operatorname{Hom}^*(R_l(G_{\infty}), 1 + l\Lambda^{\operatorname{c}}(\Gamma_k))$, whence $f^{|H|} \in \operatorname{Hom}^*(R_l(G_{\infty}), 1 + |H|\Lambda^{\operatorname{c}}(\Gamma_k))$. Moreover, by (*) in the proof of [RW2, Theorem 8] and [CR II, 45.12, p.142],

$$f^{|H|} = \operatorname{Det} q$$
 with $q = \sum_{h \in H} q_h h$ in $\mathcal{Q}(G_{\infty}) = \mathcal{Q}(\Gamma)[H]$.

Hence, by [RW3, Proposition 3], $f^{|H|}(\chi) = \sum_{h \in H} \overline{q}_h \chi(h)$ for every irreducible character $\chi \in R_l(G_\infty)$ which is trivial on Γ , where $\bar{}$ is the isomorphism $\Gamma \to \Gamma_k$. It follows that

$$|H|\overline{q}_h = \sum_{\chi} f^{|H|}(\chi) \chi(h^{-1}) \equiv \sum_{\chi} \chi(h^{-1}) \equiv 0 \mod |H| \Lambda^{\operatorname{c}}(\Gamma_k) \,,$$

i.e., $q_h \in \Lambda^{c}(\Gamma) \cap \mathcal{Q}(\Gamma) = \Lambda(\Gamma)$. By [RW3, Lemma 10], $q \in \Lambda(G_{\infty})^{\times}$.

For the general case we apply Artin induction: If Γ is central open of index n in G_{∞} , then there exist subgroups $\Gamma \subset A_i \subset G_{\infty}$ with A_i/Γ cyclic so that $n \cdot 1_{G_{\infty}} = \sum_i \operatorname{ind}_{A_i}^{G_{\infty}}(1_{A_i})$. It follows that the A_i are abelian, and whence, with $k_i = K_{\infty}^{A_i}$, $\operatorname{Hom}^*(R_l(A_i), 1 + l\Lambda(\Gamma_{k_i}))^{m_i} \subset \operatorname{Det} K_1(\Lambda(A_i))$ for suitable integers m_i . Setting $m = \prod_i m_i$, we get $\operatorname{Hom}^*(R_l(A_i), 1 + l\Lambda^c(\Gamma_k))^m \subset \operatorname{Det} K_1(\Lambda(A_i))$. Thus, if $f^m \in \operatorname{Hom}^*(R_l(G_{\infty}), 1 + l\Lambda^c(\Gamma_k))^m$, then the above character relation yields

$$f^{mn} = \prod_{i} \operatorname{ind}_{A_{i}}^{G_{\infty}}(1_{A_{i}}) f^{m} = \prod_{i} \operatorname{ind}_{A_{i}}^{G_{\infty}}((\operatorname{res}_{G_{\infty}}^{A_{i}} f)^{m}) \subset \operatorname{Det} K_{1}(\Lambda(G_{\infty})),$$

by Lemma 7 and [RW3, Lemma 1].

This proves the lemma.

Proof of Theorem B.

Choose a central open subgroup Γ and apply the Witt-Berman induction theorem to G_{∞}/Γ . By [Se2, Theorem 28, p.98] there are \mathbb{Q}_l -l-elementary open subgroups $U_i \leq G_{\infty}$ containing Γ together with characters $\xi_i \in R_{\mathbb{Q}_l}(U_i)$ so that we have

(1)
$$n \cdot 1_{G_{\infty}} = \sum_{i} \operatorname{ind}_{U_{i}}^{G_{\infty}}(\xi_{i})$$

for an integer $n \mid [G_{\infty} : \Gamma]$ prime to l. Now, let $d \in \operatorname{Det} K_1(\Lambda(G_{\infty})_{\star}) \cap \operatorname{Hom}^*(R_l(G_{\infty}), \Lambda(\Gamma_k)^{\times})$ and apply this character relation to it:

$$d^n = \prod_i \operatorname{ind}_{U_i}^{G_{\infty}}(\xi_i) d = \prod_i \operatorname{ind}_{U_i}^{G_{\infty}}(\xi_i \operatorname{res}_{G_{\infty}}^{U_i} d) . ^2$$

But $\operatorname{res}_{G_{\infty}}^{U_i} d \in \operatorname{Det} K_1(\Lambda(U_i)_{\star}) \cap \operatorname{Hom}^*(R_l(U_i), \Lambda^{\operatorname{c}}(\Gamma_{k_i})^{\times})$, with $k_i = K_{\infty}^{U_i}$, and so, by the Corollary to Theorem 1, $\operatorname{res}_{G_{\infty}}^{U_i} d \in \operatorname{Det} K_1(\Lambda(U_i))$. It follows first that $\xi_i \operatorname{res}_{G_{\infty}}^{U_i} d \in \operatorname{Det} K_1(\Lambda(U_i))$ and then, from [RW3, Lemma 1], that

(2)
$$d^n \in \operatorname{Det} K_1(\Lambda(G_{\infty})).$$

On the other hand, by 1. of Lemma 4 we find, for each prime number q dividing n, $\mathbb{Q}_l - q$ - elementary subgroups U_j' of G_{∞} containing Γ , characters $\xi_j' \in R_{\mathbb{Q}_l}(U_j')$ and an integer $n' \mid [G_{\infty} : \Gamma]$ prime to q such that

(3)
$$n' \cdot 1_{G_{\infty}} = \sum_{j \text{ ind } G_{U'_{j}}}^{G_{\infty}}(\xi'_{j}).$$

And, setting $f_j = \operatorname{res}_{G_{\infty}}^{U'_j} d \in \operatorname{Det} K_1(\Lambda(U'_j)_{\sim}) \cap \operatorname{Hom}^*(R_l(U'_j), \Lambda^{\operatorname{c}}(\Gamma_{k'_j})^{\times})$, with $k'_j = K_{\infty}^{U'_j}$, then f_j is a function f as in Proposition 6 (compare the Remark following the proposition) and so there exist $z_j \in K_1(\Lambda(U'_j))$ such that

$$((\text{Det }z_j)^{-1}f_j)^{l^{m'_j}} \in \text{Hom}^*(R_l(U'_j), 1 + l\Lambda^c(\Gamma_{k'_j})),$$

for some power $l^{m'_j}$. Combining this with (2), and setting $m' = \max_j \{m'_j\}$, we obtain

$$((\operatorname{Det} z_j)^{-1} f_j)^{nl^{m'}} \in \operatorname{Det} K_1(\Lambda(U_j')) \cap \operatorname{Hom}^*(R_l(U_j'), 1 + l\Lambda^{\operatorname{c}}(\Gamma_{k_j'})).$$

By Lemma 8 the group on the right is a \mathbb{Z}_l -module, hence, as $l \nmid n$,

$$((\operatorname{Det} z_j)^{-1} f_j)^{l^{m'}} \in \operatorname{Det} K_1(\Lambda(U'_j))$$

²The notation is an additive-multiplicative compromise.

and consequently $f_j^{l^{m'}} = (\operatorname{res}_{G_{\infty}}^{U'_j} d)^{l^{m'}} \in \operatorname{Det} K_1(\Lambda(U'_j))$. Now (3) yields $d^{n'l^{m'}} \in \operatorname{Det} K_1(\Lambda(G_{\infty}))$ and then, by (2), $d^{n'} \in \operatorname{Det} K_1(\Lambda(G_{\infty}))$. Letting q vary we obtain Theorem B.

Proof of Theorem C.

We only check the nontrivial implication and proceed as above. We start with $L_{K_{\infty}/k} \in \operatorname{HOM}^*(R_l(G_{\infty}), \Lambda_{\Gamma}^c(\Gamma_k)^{\times})$ and first use (1). Because $\operatorname{res}_{G_{\infty}}^{U_i} L_{K_{\infty}/k} = L_{K_{\infty}/k_i}$, it follows from the hypothesis and Proposition 3 that $L_{K_{\infty}/k}^n \in \operatorname{Det} K_1(\Lambda(G_{\infty})_{\sim})$. For each q|n we next turn to (3) and use that $L_{K_{\infty}/k'_j} \in \operatorname{Hom}^*(R_l(U'_j), \Lambda_{\Gamma}^c(\Gamma_{k'_j})^{\times})$ is a function f as in Proposition 6. Thus there is a $z_j \in K_1(\Lambda(U'_j)_{\sim})$ with $((\operatorname{Det} z_j)^{-1}L_{K_{\infty}/k'_j})^{l^{m'_j}} \in \operatorname{Hom}^*(R_l(U'_j), 1 + l\Lambda_{\Gamma}^c(\Gamma_{k'_j}))$. Combining as before, we see that $((\operatorname{Det} z_j)^{-1}L_{K_{\infty}/k'_j})^{nl^{m'}} \in \operatorname{Det} K_1(\Lambda(U'_j)_{\sim})$, whence already $L_{K_{\infty}/k'_j}^{l^{m'}} \in \operatorname{Det} K_1(\Lambda(U'_j)_{\sim})$, by $l \nmid n$. Now apply (3) and get first $L_{K_{\infty}/k}^{n'} \in \operatorname{Det} K_1(\Lambda(G_{\infty})_{\sim})$ and then, from (2), $L_{K_{\infty}/k}^{n'} \in \operatorname{Det} K_1(\Lambda(G_{\infty})_{\sim})$. Varying q, this finishes the proof of Theorem C.

Remark 1. The proof shows that the definition of a section of G_{∞} could be strengthened to require K_{∞}/K' to be finite cyclic of order prime to l.

Remark 2. As before we may generalize Theorem C by replacing the Iwasawa L-functions $L_{K'/k'}$ by the functions $f_{K'/k'}$ of the Remark after Proposition 3.

5. Complements

We begin this section by presenting some examples:

Example 1. If the Sylow-l subgroups of G_{∞} are abelian, then $L_{K_{\infty}/k} \in \operatorname{Det} K_1(\Lambda(G_{\infty})_{\star})$.

Indeed, Theorem C requires us to check whether $L_{K_{\infty}}{}^{C}/K_{\infty}{}^{U} \in \text{Det } K_{1}(\Lambda(E))$ whenever $E = G_{K_{\infty}}{}^{C}/K_{\infty}{}^{U}$ is an l-elementary section of G_{∞} . But the assumption on the Sylow-l subgroups of G_{∞} implies that the Sylow-l subgroup of E is abelian, whence E itself. Now apply 1. of the Corollary to Theorem 9 in [RW3].

Concerning the full "main conjecture" we have

Example 2. If $G_{\infty} = H \rtimes \Gamma$ satisfies $l \nmid |H|$, then $SK_1(\mathcal{Q}(G_{\infty})) = 1$. In particular, the "main conjecture" is true for these groups.

The second assertion holds as the Sylow-l subgroup Γ of G_{∞} is abelian; moreover, the first assertion now guaranties uniqueness of $\tilde{\Theta}_S$ (see [RW2,§3, especially Remark E]).

For the proof of this first assertion, $SK_1(\mathcal{Q}(G_\infty)) = 1$, we may assume that G_∞ is \mathbb{Q}_l -elementary, by the Corollary to Lemma 7.

If G_{∞} is \mathbb{Q}_l -q-elementary with $q \neq l$, then $G_{\infty} = H \times \Gamma$ with H a finite \mathbb{Q}_l -q-elementary group. Since $l \nmid |H|$, Lemma 5 implies that $\mathcal{Q}(G_{\infty})$ is totally split.

Next, let G_{∞} be \mathbb{Q}_l -l-elementary, so $G_{\infty} = \langle s \rangle \rtimes \Gamma$ by $l \nmid |H|$, whence $U = \Gamma$ in the notation of Theorem 1 which we continue to use (in particular, β_i is a \mathbb{Q}_l ^c-irreducible character of $\langle s \rangle$ with stabilizer subgroup $\Gamma_i = U_i \leqslant \Gamma$, $G_i = \langle s \rangle \rtimes \Gamma_i$, and e_i is the idempotent associated to the $G_{\mathbb{Q}_l}$ -orbit of β_i).

Because $SK_1(\mathcal{Q}(G_\infty)) = \prod_i SK_1(e_i\mathcal{Q}(G_\infty))$, it suffices to show that each $e_i\mathcal{Q}(G_\infty)$ is a (full) ring of matrices over a (commutative) field. Recall first that $e_i\Lambda(G_i) = \Lambda^{\mathfrak{O}_i}(\Gamma_i)$. Therefore

$$e_i\Lambda(G_\infty) = \Lambda^{\mathfrak{O}_i}(\Gamma_i) \circ [\Gamma/\Gamma_i]$$

is the crossed product order of the cyclic group Γ/Γ_i over the ring $\Lambda^{\mathfrak{O}_i}(\Gamma_i)$, with the Galois action on \mathfrak{O}_i resulting from $\Gamma/\Gamma_i \xrightarrow{\simeq} G_{N_i/N_i'} \leqslant G_{N_i/\mathbb{Q}_l}$. If γ_i is a generator of Γ_i , then by [Re, p.259/260] the algebra $\mathcal{Q}^{N_i}(\Gamma_i) \circ [\Gamma/\Gamma_i]$ splits if, and only if, γ_i is a norm in $\mathcal{Q}^{N_i}(\Gamma_i)/\mathcal{Q}^{N_i'}(\Gamma_i)$. But γ_i is already a norm in $\Lambda^{\mathfrak{O}_i}(\Gamma_i)/\Lambda^{\mathfrak{O}_i'}(\Gamma_i)$ by Proposition 2.

Finally we give a bound on the order of $L_{K_{\infty}/k} \mod \operatorname{Det} K_1(\Lambda(G_{\infty})_{*})$.

Proposition 9. Set $l^a = [G': Z(G')]$, where G' is a Sylow-l subgroup of G_{∞} and Z(G') is its centre. Then $L^{l^a}_{K_{\infty}/k} \in \operatorname{Det} K_1(\Lambda(G_{\infty})_*)$.

We first note that obviously $a=a(G_{\infty})$ is an invariant of G_{∞} and that $a(G_{\infty}) \geqslant a(G_{K'/k'})$ for all sections K'/k' of K_{∞}/k . Hence, if we can show that $L_{K'/k'}^{la'} \in \text{Det } K_1(\Lambda(G_{K'/k'})_{\circ})$ for all l-elementary sections K'/k' of K_{∞}/k , with $a'=a(G_{K'/k'})$, then, by Remark 2 following the proof of Theorem C, we have also verified Proposition 9. Hence, from now on, G_{∞} is l-elementary.

In this case $l^a=[G_\infty:Z(G_\infty)]$ and we proceed by induction on a. If a=0, then G_∞ is abelian and 1. of Corollary to Theorem 9 in [RW3] gives what we want. If a>0, then G_∞ is nonabelian and consequently $G_\infty/Z(G_\infty)$ noncyclic. We infer the existence of a normal subgroup G' of G_∞ containing $Z(G_\infty)$ so that $\overline{G}\stackrel{\mathrm{def}}{=} G_\infty/G'$ is noncyclic of order l^2 . From it we obtain the character relation $l\cdot 1_{\overline{G}}=\sum_{\overline{M}}\operatorname{ind}\frac{\overline{G}}{\overline{M}}(1_{\overline{M}})-\operatorname{ind}\frac{\overline{G}}{\overline{I}}(1_{\overline{1}})$ with \overline{M} running through the maximal subgroups of \overline{G} . Inflation yields $l\cdot 1_{G_\infty}=\sum_j n_j\operatorname{ind}\frac{G_\infty}{M_j}(1_{M_j})$ with proper open subgroups $M_j\leqslant G_\infty$ containing $Z(G_\infty)$ and with integers n_j . Because $a(M_j)< a$, induction implies that $L_{K_\infty/k_j}^{l^{a-1}}\in\operatorname{Det} K_1(\Lambda(G_{K_\infty/k_j})_{\sim})$ for all j (with $k_j=K_\infty^{M_j}$), and then the last character relation gives $L_{K_\infty/k}^{l^a}\in\operatorname{Det} K_1(\Lambda(G_\infty)_{\sim})$.

Proposition 9 is established.

References

- [Ba] Barsky, D., Sur la nullité du μ invariant d'Iwasawa des corps totalement réels. Preprint (05/2004)
- [CR] Curtis, C.W. and Reiner, I., Methods of Representation Theory, vol. I,II. John Wiley & Sons (1981,1987)
- [DR] Deligne, P. and Ribet, K., Values of abelian L-functions at negative integers over totally real fields. Invent. Math. **59** (1980), 227-286
- [Fr] Fröhlich, A., Galois Module Structure of Algebraic Integers. Springer-Verlag (1983)
- [Re] Reiner, I., Maximal Orders. Academic Press (1975)
- [RW2] Ritter, J. and Weiss, A., Toward equivariant Iwasawa theory, II. Indagationes Mathematicae 15 (2004), 549-572
- $[\mathbf{RW3}] \hspace{0.2in} \underline{\hspace{0.2in}}, \hspace{0.2in} \textit{Toward} \hspace{0.2in} \textit{equivariant} \hspace{0.2in} \textit{Iwasawa} \hspace{0.2in} \textit{theory,} \hspace{0.2in} \textit{III.} \hspace{0.2in} \textit{Preprint}$
- [Se1] Serre, J.-P., Corps Locaux. Hermann, Paris (1968)
- [Se2] ——, Linear Representations of Finite Groups. Springer GTM 42 (1977)
- [Ty] Taylor, M.J., Classgroups of Group Rings. LMS Lecture Notes Series 91, Cambridge (1984)
- [Wi] Wiles, A., The Iwasawa conjecture for totally real fields. Annals of Math. 131 (1990), 493-540

This article is available at http://intlpress.com/HHA/v7/n3/a8/

Jürgen Ritter ritter@math.uni-augsburg.de

Mathematics Department University of Augsburg Germany 86135 Augsburg

Alfred Weiss weissa@ualberta.ca Mathematics Department University of Alberta

Canada T6G 2G1

Edmonton