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Homotopy groups of the observer moduli space
of Ricci positive metrics
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The observer moduli space of Riemannian metrics is the quotient of the space R.M/

of all Riemannian metrics on a manifold M by the group of diffeomorphisms
Diffx0

.M/ which fix both a basepoint x0 and the tangent space at x0 . The group
Diffx0

.M/ acts freely on R.M/ provided that M is connected. This offers cer-
tain advantages over the classic moduli space, which is the quotient by the full
diffeomorphism group. Results due to Botvinnik, Hanke, Schick and Walsh, and
Hanke, Schick and Steimle have demonstrated that the higher homotopy groups of
the observer moduli space Ms>0

x0
.M/ of positive scalar curvature metrics are, in

many cases, nontrivial. The aim in the current paper is to establish similar results
for the moduli space MRic>0

x0
.M/ of metrics with positive Ricci curvature. In partic-

ular we show that for a given k , there are infinite-order elements in the homotopy
group �4kMRic>0

x0
.Sn/ provided the dimension n is odd and sufficiently large. In

establishing this we make use of a gluing result of Perelman. We provide full details
of the proof of this gluing theorem, which we believe have not appeared before in the
literature. We also extend this to a family gluing theorem for Ricci positive manifolds.
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1 Introduction

1.1 Motivation and main result

In recent years, there have been great efforts made to better understand the topology
of moduli spaces of Riemannian metrics of positive scalar curvature on a smooth
compact (usually spin) manifold; see Botvinnik and Gilkey [2], Botvinnik, Hanke,
Schick and Walsh [3], Carr [4] and Hanke, Schick and Steimle [13]. Apart from results
of Kreck and Stolz [16], Wraith [23], and Dessai, Klaus and Tuschmann [6] concerning
path-connectivity, we know very little about topology of the corresponding moduli
spaces of positive Ricci curvature metrics. (In this context we should also mention
work of Crowley, Schick and Steimle [5] on the space of Ricci positive metrics on
certain manifolds.) Whether or not there is any nontriviality in the higher homotopy
groups of such moduli spaces is still an open question. Here we study the topology of
its closest relative, the observer moduli space MRic>0

x0
.Sn/ of positive Ricci curvature

metrics on the sphere Sn .

We denote by ds2n the standard round metric on Sn , and by Œds2n� its orbit in the
moduli space MRic>0

x0
.Sn/. Here is our main result:

Main Theorem For any m 2 N , there is an integer N.m/ such that for all odd
n>N.m/, the group �i .MRic>0

x0
.Sn/; Œds2n�/˝Q is nontrivial when iD4k and k�m.

We would like to emphasize that the observer moduli space is indeed the most tractable
moduli space of metrics. Let R.M/ be the space of all metrics on a compact closed
manifold M, and Diff.M/ be the group of diffeomorphisms which acts naturally
on R.M/ by pull-back. Even though the space R.M/ is contractible, the moduli
space of all metrics, ie the orbit space R.M/=Diff.M/, could be very complicated
since some metrics have nontrivial isometry groups. Hence, in general, the action
of Diff.M/ on the space of metrics R.M/ is far from being tractable. Following ideas
from gauge theory, we fix an observer, ie a base point x0 2M together with a frame
at the tangent space Tx0

M. We then obtain the observer moduli space Mx0
.M/ WD

R.M/=Diffx0
.M/, where the gauge group Diffx0

.M/ fixes such an observer. It
is easy to see that the gauge group Diffx0

.M/ acts freely on the space of metrics
provided M is a connected manifold. Then the observer moduli space Mx0

.M/ is
homotopy equivalent to the classifying space BDiffx0

.M/, and the corresponding
observer moduli space MRic>0

x0
.M/ of positive Ricci curvature metrics maps naturally

to Mx0
.M/; see below for more details.
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The proof of the Main Theorem is based on an analogous theorem by Botvinnik, Hanke,
Schick and Walsh [3] for the observer moduli space of positive scalar curvature metrics.
Both proofs rely heavily on work of Farrell and Hsiang [8], Goette [9] and Hatcher.
Techniques for constructing families of metrics are also required. In the scalar curvature
case, this means a family version of surgery technique of Gromov and Lawson [12],
described in Walsh [22]. Due to the flexibility of the scalar curvature and the strength of
the Gromov–Lawson construction, this technique permits the detection of nontriviality
for manifolds besides the sphere. Unsurprisingly, the Ricci curvature case requires a
more delicate construction, which is based on a gluing theorem of Perelman. As yet,
we have not demonstrated nontriviality beyond the case of the sphere.

1.2 The observer moduli spaces of metrics

Let M be a smooth closed connected manifold of dimension n. We denote by R.M/,
the space of all Riemannian metrics on M equipped with the smooth Whitney topology.
For a metric g 2 R.M/, we denote by sg and Ricg its scalar and Ricci curvatures.
We then consider the subspaces

Rs>0.M/�R.M/ and RRic>0.M/�R.M/

of metrics with positive scalar and positive Ricci curvatures, respectively. Let Diff.M/

be the group of diffeomorphisms on M. This group acts on the space of metrics by
pull-back:

Diff.M/�R.M/!R.M/; .�; g/ 7! ��g:

Recalling that M is connected, we fix a base point x0 2M which plays the role of
an observer in a sense which will become clear shortly. Let Diffx0

.M/ � Diff.M/

be the subgroup of diffeomorphisms �W M !M with �.x0/D x0 and such that the
derivative d�x0

W Tx0
M ! Tx0

M is the identity. This is the observer diffeomorphism
group of M based at x0 .

As we have mentioned, the group Diffx0
.M/ acts freely on the space of metrics

R.M/ provided M is a connected manifold; see [3, Lemma 1.2]. The orbit space
Mx0

.M/ WDR.M/=Diffx0
.M/ is the observer moduli space of metrics on M . Since

the space R.M/ is contractible and the action of Diffx0
.M/ on R.M/ is proper

(see Ebin [7]), the observer moduli space Mx0
.M/ is homotopy equivalent to the

classifying space BDiffx0
.M/ of the group Diffx0

.M/. In particular, we have a
Diffx0

.M/–principal bundle:

Diffx0
.M/!R.M/!Mx0

.M/:
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By restricting the action of Diffx0
.M/ to the appropriate subspaces, we obtain the

observer moduli spaces

Ms>0
x0

.M/ WDRs>0.M/=Diffx0
.M/ and MRic>0

x0
.M/ WDRRic>0.M/=Diffx0

.M/

of positive scalar and of positive Ricci curvature metrics, respectively. The inclusions
of spaces of metrics RRic>0.M/�Rs>0.M/�R.M/ then induce maps of principal
Diffx0

.M/–bundles:

(1-1)

RRic>0.M/ //

��

Rs>0.M/ //

��

R.M/

��

MRic>0
x0

.M/
�1
//Ms>0

x0
.M/

�0
//Mx0

.M/

We write � WD �0 ı �1WMRic>0
x0

.M/!Mx0
.M/. The fibre bundles (1-1) give rise to

the following commutative diagram, where the horizontal lines are Serre fibrations:

(1-2)

RRic>0.M/ //

��

MRic>0
x0

.M/
�
//

�1

��

Mx0
.M/

Id
��

Rs>0.M/ //Ms>0
x0

.M/
�0
//Mx0

.M/

Let us take a Ricci positive metric g0 as basepoint for the space R.M/. Consider the
induced diagram of homotopy group homomorphisms below:

(1-3)

�i .MRic>0
x0

.M/; Œg0�/
��
//

�1�
��

�i .Mx0
.M/; Œg0�/

Id
��

�i .Ms>0
x0

.M/; Œg0�/
�0�

// �i .Mx0
.M/; Œg0�/

Because Mx0
.M/ is a model for BDiffx0

.M/, an element in the homotopy group
�i .Mx0

.M/; Œg0�/ can be represented by a smooth fibre bundle E! S i with fibre M.
Hence to show that such an element lies in the image of �0� , it is enough to show
that there exists a metric on the total space E which restricts to a psc metric on every
fibre; see [3]. Here our task is more difficult: we have to construct such a metric on E
which is fibrewise Ricci positive, and the methods used involve geometric constructions
which are quite different from the positive scalar curvature case. This is one of the
reasons why we restrict our attention to the case when M D Sn . Next, we focus on
the geometric properties of the moduli space Mx0

.M/.

Geometry & Topology, Volume 23 (2019)
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1.3 The universal fibre metric

As we have mentioned earlier, the observer moduli space Mx0
.M/ is homotopy

equivalent to the classifying space BDiffx0
.M/.

We say that a fibre bundle E ! X with fibre M is a smooth M–fibre bundle if its
structure group is a subgroup of Diffx0

.M/. Now we consider the universal principal
bundle R.M/!Mx0

.M/: Here the group Diffx0
.M/ acts freely on R.M/, and the

Borel construction gives the universal smooth M–fibre bundle E.M/!Mx0
.M/,

where E.M/ WD R.M/�Diffx0
.M/M. Recall that the space R.M/�Diffx0

.M/M is
defined as the quotient of R.M/�M by the action of Diffx0

.M/ given by �:.h; x/D
..��1/

�
h; �.x//, where � 2 Diffx0

.M/, h 2R.M/ and x 2M.

Given that X is a paracompact Hausdorff space, recall that the isomorphism classes
of principal Diffx0

.M/–bundles over X are in one-to-one correspondence with ho-
motopy classes ŒX;Mx0

.M/� of maps X !Mx0
.M/. In particular, given a map

f W X !Mx0
.M/, we obtain a commutative diagram

Ef //

��

E.M/

��

X
f
//Mx0

.M/

where the bundle Ef !X is the pull-back of the universal smooth M–fibre bundle
by the map f .

There is, however, a more refined structure which we can associate to such a bundle.
The total space E.M/DR.M/�Diffx0

.M/M admits a “universal fibre metric” which
we will now define. We begin with an arbitrary point Œh; x� 2 R.M/�Diffx0

.M/M.
The fibre at this point is of course diffeomorphic to M. Let us now consider the
tangent space to this fibre. Suppose .h; x/; .h0; x0/ 2 R.M/ �M both represent
the point Œh; x� 2R.M/�Diffx0

.M/M. Then the tangent spaces TxM and Tx0M are
isomorphically related by the derivative map �� of some diffeomorphism � 2Diffx0

M

which satisfies �.x/ D x0 and h0 D .��1/�h. Thus, the tangent space to the fi-
bre through Œh; x� can be thought of as the isomorphic identification of all tangent
spaces Tx0M where x02M lies in the orbit of x under the action of Diffx0

M. Suppose
now that Œu� and Œv� denote tangent vectors to the fibre at Œh; x� represented by tangent
vectors u; v 2 TxM. We specify an inner product to the tangent space to the fibre
at Œh; x� by the formula

hŒu�; Œv�iŒh;x� D hx.u; v/;
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where hx is the restriction of the Riemannian metric h to the tangent space TxM. It
is an easy exercise to show that this is well defined and varies smoothly over E.M/;
see Tuschmann and Wraith [21, page 61]. Notice that this does not give a Riemannian
metric on E.M/ as we only specify the inner product on fibres.

Given a map f W X ! Mx0
.M/, this universal fibre metric then pulls back to a

continuous fibrewise family of Riemannian metrics on Ef . More precisely, each
fibre of the bundle Ef ! X, already diffeomorphic to M, is now equipped with a
Riemannian metric which depends continuously on X. Clearly, varying the map f by
a homotopy alters the fibrewise metric structure of the bundle.

Suppose, on the other hand, we begin with a continuous fibrewise family of metrics
on an M–fibre bundle over X. Notice that the choice of basepoint x0 2M gives rise
(by construction) to a section of the universal bundle E.M/, which in turn produces
a section in any pull-back of E.M/. We can think of this as a natural family of
“basepoints” in the fibres. Equally, a choice of frame at the basepoint gives rise to a
corresponding family of frames spanning the tangent space to the fibre at each point
along the section. If we now identify each fibre with a standard copy of M in any
way provided that both the basepoints and their tangent frames are preserved, then by
pulling back metrics, we obtain a well-defined and continuous map f W X!Mx0

.M/.
To see that this is well defined, note that any two such identifications of a fibre with the
standard copy of M differ by an element of Diffx0

.M/, and hence the resulting pull-
back metrics represent the same point in the moduli space Mx0

.M/. The continuity
of f follows automatically from the continuity of the family of fibrewise metrics. Thus,
we obtain a one-to-one correspondence between maps X !Mx0

.M/ and fibrewise
metrics on the M–fibre bundle corresponding to this map.

Assuming X is the sphere S i , we return to the homomorphism of homotopy groups

��W �i .MRic>0
x0

.M/; Œg0�/! �i .Mx0
.M/; Œg0�/

induced by the inclusion �WMRic>0
x0

.M/ ,!Mx0
.M/. Let f W S i !Mx0

.M/ repre-
sent an element of �i .Mx0

.M/; Œg0�/. This element determines (and is determined
by) an M–bundle Ef ! S i as above, together with a fibrewise family of metrics
on Ef . Thus, it is possible to lift this element of �i .Mx0

.M/; Œg0�/ to an element
of �i .MRic>0

x0
.M/; Œg0�/, provided we can construct a fibrewise family of positive

Ricci curvature metrics on Ef .
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1.4 The work of Farrell and Hsiang

At this stage we have established that lifting an element of �i .Mx0
.M/; Œg0�/ to

�i .MRic>0
x0

.M/; Œg0�/ involves the construction of a family of fibrewise Ricci positive
Riemannian metrics on some bundle over S i . However, we have not yet discussed the
particular elements in the homotopy groups of Mx0

.M/ which we plan to lift. It is here
that we recall a result of Farrell and Hsiang [8] which identifies the rational homotopy
groups of BDiffx0

.Sn/ in a stable range, using algebraic K–theory and Waldhausen K–
theory computations. Recalling that Mx0

.Sn/ is homotopy equivalent to the classifying
space BDiffx0

.Sn/, the result of these computations can be stated as follows.

Theorem 1 (Farrell and Hsiang [8]) For any m 2N , there is an integer N.m/ such
that for all odd n > N.m/ and i � 4m,

�iMx0
.Sn/˝QD

�
Q if n is odd and i � 0 mod 4;
0 otherwise:

Thus, for appropriate i , we now have lots of nontrivial groups �i .Mx0
.Sn/; Œg0�/˝Q.

This also explains the hypotheses of the main theorem.

This leaves the question of which Sn–bundles over S i (i � 0 mod 4) can represent
the nontrivial elements of �i .Mx0

.Sn/; Œg0�/˝Q. It turns out that these elements
can be represented by so-called “Hatcher bundles”. In Section 3 we will provide a
description of these, based on the work of Goette, Igusa and Williams [9; 11; 10; 15].
Our approach to the topological construction of Hatcher bundles is guided by the
geometric constructions we must subsequently perform, namely the production of
fibrewise Ricci positive metrics. These metric issues will be addressed in Section 4,
and will involve a generalized version of a powerful gluing theorem due to Perelman.
Perelman’s theorem and our generalization of this is the subject of Theorem 2.

Acknowledgements This work was initiated while Wraith was visiting Botvinnik,
and he would like to thank the University of Oregon for their hospitality. He would
also like to thank Sebastian Goette for a useful discussion about Hatcher bundles, and
Janice Love for her help with Maple code used in Theorem 2. Botvinnik would like to
thank the National University of Ireland, Maynooth and the Isaac Newton Institute for
their support and hospitality. Finally, it is a pleasure to thank the referee for carefully
observed criticisms, which have resulted in a much improved exposition.

Geometry & Topology, Volume 23 (2019)



3010 Boris Botvinnik, Mark G Walsh and David J Wraith

2 Gluing manifolds and a theorem of Perelman

2.1 The gluing construction

The purpose of this section is to present a theorem of Perelman which allows for the
construction of Ricci positive metrics by a metric gluing procedure on Ricci positive
manifolds with compact isometric boundaries, subject to a boundary convexity condition.
This result is the principal geometric tool used in achieving our goal of obtaining a
fibrewise family of positive Ricci curvature metrics on the total space of a Hatcher
bundle. Perelman’s theorem is originally published in [19] and justified with a brief
outline, omitting the details. Following this outline, we provide a comprehensive proof
addressing all of these missing details. This thorough account is important for establish-
ing the family version of Perelman’s theorem, which appears at the end of this section.

Aside from establishing a family version, we were in part motivated by the prospect of
promoting Perelman’s theorem to a wider audience. On first encountering this very use-
ful result, it seemed to us that it was not widely known. We have since learned that some
of our work in this section overlaps with results of Menguy in [18]. Moreover, among
experts in the construction of spaces with Ricci curvature bounds, Perelman’s result (as
well as many significant improvements by Menguy) is frequently cited. That said, we
hope that those unfamiliar with it may find the details and intuition we provide helpful.

We begin with a brief review of the notion of gluing smooth manifolds, something we
make extensive use of throughout the paper. Consider a pair of smooth n–dimensional
manifolds, M1 and M2 , each with compact nonempty boundary. We further assume
that @M1 and @M2 are diffeomorphic via a diffeomorphism �W @M1! @M2 . From
this, we may form the adjunction space, W DM1 [�M2 , obtained as the quotient
of M1 tM2 by identifying each x 2 @M1 with �.x/ 2 @M2 . In particular, the
quotient map embeds both M1 and M2 into this space. For simplicity then, we identify
M1 and M2 with their images in W and write X D @M1 D @M2 . Consider collar
neighbourhoods @M1 � .�ı; 0� and @M2 � Œ0; ı/ about X for some small ı > 0, for
example determined by the normal coordinate from @M1 and @M2 with respect to
some choice of metrics on M1 and M2 . Denote by N the union of the images of these
collar neighbourhoods in W . We then have a homeomorphism between X � .�ı; ı/
and N given by

.x; r/ 7!

�
.m1; r/ if r � 0;
.�.m1/; r/ if r � 0;

where x 2X is the equivalence class x D fm1; �.m1/g for some m1 2 @M1 .
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M1 M2 X

Figure 1: The manifolds with boundary M1 and M2 (left) along with the
adjunction space W and tubular neighbourhood N of X �W (right).

We can now use this to give N a differentiable structure, by pulling back the standard
differentiable structure on X � .�ı; ı/ via the inverse homeomorphism. Finally, we
extend this differentiable structure over M1 and M2 to give a differentiable structure
on W . Although there are many choices involved in this construction, leading to
many possible differentiable structures, it is a well known fact that the diffeomor-
phism type of the resulting smooth manifold W is independent of these choices; see
[14, Chapter 8, Section 2]. We now consider such a gluing in the Riemannian setting,
equipping M1 and M2 with Riemannian metrics h1 and h2 . Let us assume that the
restrictions of these metrics to their respective boundaries are isometric via � . More
precisely, we assume

h1j@M1
D ��h2j@M2

:

This automatically leads to a well-defined C 0–metric hD h1[� h2 on M1[�M2 . No-
tice that this adjunction metric is smooth if and only if it is smooth in a collar neighbour-
hood of X �M1[�M2 . In view of the adjunction space discussion above, this will be
the case if the metric h1j@M1�.�ı;0� glues smoothly with .� � IdŒ0;ı//�.h2j@M2�Œ0;ı//.

2.2 The theorem of Perelman

We will be interested in smoothing the above metric h1[� h2 on M1[�M2 within
positive Ricci curvature in the case where h1 and h2 individually have positive Ricci
curvature. This is not always possible. However, the following theorem of Perelman
shows that under certain additional assumptions involving the second fundamental form
of h1 and h2 at the boundary, such a smoothing can be performed.

Theorem 2 Let .M1; h1/ and .M2; h2/ be a pair of Riemannian manifolds with posi-
tive Ricci curvature and compact nonempty boundaries, and let �W .@M1; h1j@M1

/!

.@M2; h2j@M2
/ be an isometry of the boundaries. Suppose that the second fundamen-

tal forms II1 and II2 of @M1 and @M2 with respect to the inward normals satisfy
the condition II1 C ��II2 > 0. Then the C 0–metric h D h1 [� h2 on the smooth
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manifold M1[�M2 can be replaced by a C1–metric with positive Ricci curvature,
agreeing with h1 and h2 outside a neighbourhood of the glued boundaries.

We will establish Perelman’s theorem via a sequence of lemmas. The general setup is as
follows. As above, we will denote by X the hypersurface of M1[�M2 along which M1

and M2 are joined, and assume that the normal parameter t through the hypersurface X
gives rise to collar neighbourhoods @M2 � Œ0; ı/ in M2 and @M1 � .�ı; 0� in M1 for
some ı > 0. Since we will be working exclusively in a collar neighbourhood of X,
for convenience we can simply relabel the metric .� � IdŒ0;ı//�.h2j@M2�Œ0;ı// by h2 ,
assume that @M1 D @M2 , and assume that � is the identity map. Thus from now
on we will write h1 [ h2 for the C 0–metric in the theorem, and M1 [M2 for the
manifold. The normal parameter t to X measures the distance from X with respect
to hD h1[h2 , with X corresponding to t D 0. Observe that M1[M2 has a smooth
topological structure (though not a smooth metric structure) and that with respect to
this structure t is smooth.

Choose a small parameter � > 0. (We will say more about an appropriate size for �
later.) Our next task is to write down a new metric on X � Œ��; �� which joins with h1
for t < �� and h2 for t > � to give a C 1–metric on M1 [M2 . This new metric
will take the form dt2 C g.t/. The metrics hi for i D 1; 2 induce metrics on the
hypersurfaces at constant distance t from X. We will denote these induced metrics
by hi .t/, and so in a neighbourhood of X we can write hi D dt2C hi .t/. We then
set g.t/ to be the following cubic expression in t :

(2-1) g.t/D
tC�

2�
h2.�/�

t��

2�
h1.��/

C
.t��/2.tC�/

4�2

h
h01.��/�

1

2�
Œh2.�/� h1.��/�

i
C
.tC�/2.t��/

4�2

h
h02.�/�

1

2�
Œh2.�/� h1.��/�

i
:

For convenience, we will assume from now on that the topological product structure in
a neighbourhood of X extends over X�Œ�2�; 2�� and that the metrics hi take the form
dt2Chi .t/ for t 2 Œ�2�; 0� when i D 1, and respectively for t 2 Œ0; 2�� when i D 2.

Lemma 3 Assume that the metrics h1 and h2 satisfy the hypotheses in Theorem 2,
and suppose g.t/ is as in (2-1). Then given any � > 0, the metric zh obtained from
gluing h1 to dt2C g.t/ at t D�� , and dt2C g.t/ to h2 at t D � , is C 1 at t D˙� ,
and smooth elsewhere.
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Proof First, we find the t–derivative of this metric. By a straightforward calculation,

(2-2) g0.t/D
1

2�
Œh2.�/� h1.��/�

C
2.t2��2/C.t��/2

4�2

h
h01.��/�

1

2�
Œh2.�/� h1.��/�

i
C
2.t2��2/C.tC�/2

4�2

h
h02.�/�

1

2�
Œh2.�/� h1.��/�

i
:

It is now an easy exercise to check that the metric g forms a C 1 join with the hi
at t D˙� . (The metric g is of course smooth.)

With a view to studying the curvature of dt2Cg.t/, our next task is to investigate g00.t/.
An easy calculation shows that

g00.t/D
1

4�2
.6t � 2�/

h
h01.��/�

1

2�
Œh2.�/� h1.��/�

i
C

1

4�2
.6t C 2�/

h
h02.�/�

1

2�
Œh2.�/� h1.��/�

i
:

We will investigate the limiting behaviour of g00.˙�/ as �! 0. At t D � we have

(2-3) g00.�/D
1

�

h
h01.��/C 2h

0
2.�/�

3

2

h2.�/�h1.��/

�

i
:

Consider the term .h2.�/� h1.��//=� in (2-3). As �! 0 we see by l’Hôpital’s rule
that the value of the limit is h01.0/Ch

0
2.0/, where h01.0/ and h02.0/ are to be interpreted

as one-sided derivatives. Clearly, the overall limit of the bracketed term in (2-3) is

h01.0/C 2h
0
2.0/�

3
2
.h01.0/C h

0
2.0//D

1
2
.h02.0/� h

0
1.0//:

A similar calculation shows that the corresponding term in lim�!0 g00.��/ yields
exactly the same expression. Thus we obtain

lim
�!0

�g00.˙�/D 1
2
.h02.0/� h

0
1.0//:

Finally, observe that g00.t/ has a linear dependence on t . Thus if g00.��/ and g00.�/
have the same sign, then this sign persists for all t 2 Œ��; ��.1

Lemma 4 Under the Perelman second fundamental form condition from Theorem 2,
given any A > 0, there exists �0 D �0.A; h1; h2/ > 0 such that for all positive � < �0 ,

1Notice what we have used so far. For the C 1 cubic expression we require no assumptions. In order to
obtain the limiting formula for the second derivative we only need that the original metric on the union be
continuous at t D 0 .
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the metric g.t/ defined in equation (2-1) satisfies

g00.t/.u; u/ < �Ajuj2;

where u is any vector tangent to a hypersurface t D constant for t 2 .��; �/.

Proof To begin with, let u be any fixed vector tangent to X at some point x0 2 X.
Extend u to a local vector field on X, and then further extend by parallel translation
in the t direction to obtain a vector field in a neighbourhood of the line .t; x0/ for
t 2 .��; �/. We will also denote this vector field by u.

Define the normal curvature function k.u/ by k.u/D hru@t ; ui. We could equally
write k.u/D II.u; u/, where II is the second fundamental form of the hypersurface
t D constant for t 2 .��; �/ with respect to the normal direction �@=@t .

Now observe that we can rearrange the definition of k.u/ to yield k.u/D 1
2
.@=@t/hu; ui,

which is just 1
2
g0.t/.u; u/. Differentiating with respect to t we obtain k0.u/ D

1
2
g00.t/.u; u/.

Considering the difference of the normal curvatures for u across the �–neighbourhood
of X, we obtain

(2-4) 1
2

lim
�!0

�
g0.�/.u; u/�g0.��/.u; u/

�
D

1
2

�
h02.0/.u; u/� h

0
1.0/.u; u/

�
:

Bearing in mind that the second fundamental form hypothesis in Theorem 2 involves the
inward normal directions for both M1 and M2 , we define ki .u/D IIi .u; u/ for i D 1; 2
for u tangent to X, and note that

k1.u/D lim
t!0�

k.u/ D 1
2

lim
t!0�

g0.t/.u; u/ D 1
2
h01.0/.u; u/;

k2.u/ D� lim
t!0C

k.u/ D�1
2

lim
t!0C

g0.t/.u; u/ D�1
2
h02.0/.u; u/:

Thus both sides of (2-4) are equal to �.k1.u/C k2.u//. Now the Perelman second
fundamental form condition is equivalent to demanding that k1.u/ C k2.u/ > 0,
which means that both sides of (2-4) are negative, and hence lim�!0 �g00.˙�/ D
1
2
.h02.0/� h

0
1.0// < 0. Therefore given any A > 0, since g00.t/ is linear in t , we can

bound g00.t/.u; u/ above by �Ajuj2 by choosing � sufficiently small. It is also clear
that the upper bound on � >0 for which the above upper bound on g00.t/ holds depends
only on A, h1 and h2 , as claimed.

It follows immediately from Lemma 4 that k0.u/ can similarly be bounded above. The
relevance of k0.u/ is that it can be rewritten in terms of the curvature tensor applied
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to u and @t WD @=@t , and we can use the arbitrarily large negative feature of k0.u/ to
produce an arbitrarily large positive lower bound for R.@t ; u; u; @t /.

Lemma 5 Given any B > 0, there exists �1 D �1.B; h1; h2/ > 0 such that for all
positive � < �1 , the curvature tensor of the metric dt2Cg.t/ satisfies

R.@t ; u; u; @t / > Bjuj
2;

where u is any vector tangent to a hypersurface t D constant for t 2 .��; �/.

Proof We have

k0.u/D @t hru@t ; ui D hr@t
ru@t ; uiC hru@t ;r@t

ui

D hr@t
ru@t ; uiC jS.u/j

2;

where S.u/ denotes the shape operator of the hypersurfaces given by constant values
of t , and where we have used the fact that r@t

u D ru@t since Œ@t ; u� � 0. On the
other hand, we have

R.@t ; u; u; @t /D�R.@t ; u; @t ; u/

D�Œhr@t
ru@t ; ui � hrur@t

@t ; ui�

D�hr@t
ru@t ; ui

as r@t
@t � 0. Thus we conclude that

(2-5) R.@t ; u; u; @t /D�k
0.u/CjS.u/j2:

In particular, since k0.u/ D 1
2
g00.u; u/, and g00.t/.u; u/ < �Ajuj2 by Lemma 4 for

any given A> 0 provided � is sufficiently small, we conclude that R.@t ; u; u; @t / can
be bounded below as claimed.

Lemma 6 For all � > 0 sufficiently small (depending on h1 and h2 ), we have
Ricdt2Cg.t/ > 0 for t 2 .��; �/.

Proof We begin by observing that any Ricci curvature expression must contain the
large positive term from Lemma 5, and we therefore get positive Ricci curvature for
the metric dt2Cg.t/ provided we can show that all other curvature tensor expressions
remain bounded as �! 0. It is easily checked that this boundedness reduces to showing
that kR.ui ; uj /uk/k is bounded above by some constant independent of � for all vectors
ui , uj and uk tangent to X which are unit with respect to say h1.0/D h2.0/.
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With the above curvature expression (2-5) in mind, consider the first and second deriva-
tives of the metric g.t/ in directions orthogonal to t . The quantities h1.��/, h01.��/,
h2.�/ and h02.�/ and their derivatives can clearly be bounded independent of � as a
consequence of the compactness of X. We also know that the other terms appearing
in (2-1) involving � ,

t˙�

2�
;

1

2�
.h2.�/� h1.��//;

.t˙�/2.t��/

4�2
;

all remain bounded for t 2 Œ��; �� as �! 0. Therefore the first and second derivatives
of g.t/ orthogonal to the t direction must stay bounded independent of � .

We also claim that the first derivative of g.t/ with respect to t is bounded independent
of � . We showed in Lemma 4 that for � sufficiently small the sign of g00.t/.u; u/
is negative, from which we see that the values of g0.t/.u; u/ must lie between those
at t D˙� , and hence are bounded independent of � . We also notice that boundedness
can then also be deduced for g0.t/.u; v/ via the polarization formula for inner products.

By the compactness of X, we see from (2-2) that the derivatives of g0.t/ in X directions
remain bounded as �! 0.

We conclude that the norm kR.ui ; uj /ukk is bounded for all t 2 Œ��; �� independent
of � provided the curvature R.ui ; uj /uk does not depend on the second derivative of
the metric with respect to t . Without loss of generality assume that ui , uj and uk are
coordinate vector fields for some coordinate system on X extended to a coordinate
system in a neighbourhood of X by the parameter t . The relevant expression for the
components of R.ui ; uj /uk in terms of Christoffel symbols is

(2-6) Rlijk D @i�
l
jk � @j�

l
ikC

nX
mD1

.�mjk�
l
im��

m
ik�

l
jm/;

where l runs over all possible subscripts, including t . The Christoffel symbols in (2-6)
have at most one derivative with respect to t . Consequently, we obtain the desired bound-
edness property of kR.ui ; uj /uk/k, since expressed in terms of metric components,
Rl
ijk

involves the inverse components gkl , the second derivatives of g in X directions,
and the first derivatives of g0.t/ in X directions. These derivatives are all bounded,
as discussed above, and the inverse components are bounded since for very small � ,
gkl � hkli , where the latter components are clearly bounded. Thus we can fix a small
� > 0 so that the metric dt2Cg.t/ has positive Ricci curvature.
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Let us fix once and for all an � > 0 in accordance with Lemma 6. Our next goal
is to show how to effect a C 2–smoothing of the metric zh from Lemma 3 in some
�–neighbourhoods of t D˙� with �� � in such a way that we will be able to maintain
positive Ricci curvature. We will create the desired C 2–metric by quintic interpolation,
in exactly the same way that we created a C 1–metric using a cubic interpolation. By
considering metric components, it will suffice to prove a C 2–smoothing result for a
function f W R!R over an interval Œ��; ��.

Lemma 7 Consider a function f W R! R which is C 1 at t D 0 and smooth other-
wise. Assume that the second derivatives of f .t/ remain bounded as t ! 0˙ . Then
given � > 0, for all sufficiently small � > 0 there exists a C 2–function zf .t/ such
that f .t/ D zf .t/ for all t 62 .��; �/, kf .t/� zf .t/kC1 < � , and for all t 2 Œ��; ��,
minff 00.��/; f 00.�/g � zf 00.t/�maxff 00.��/; f 00.�/g.

Proof The idea is to replace f .t/ for t 2 Œ��; �� by a quintic polynomial p.t/ which
will agree to second order with f .t/ at t D˙� .

Let p.t/ D
P5
nD0 cnt

n , and suppose that f .�/ D a0 , f .��/ D b0 , f 0.�/ D a1 ,
f 0.��/D b1 , f 00.�/D a2 and f 00.��/D b2 . Assuming that p.i/.˙�/D f .i/.˙�/
for i D 0; 1; 2 yields a .6�6/–linear system with the cn as the unknowns and the
ai and bi as coefficients. Solving this system shows that the polynomial p.t/ is
uniquely determined by the above requirements, and is equal to

(2-7) p.t/D
�2.a2�b2/�3�.a1Cb1/C3.a0�b0/

16�5
t5�
��.a2Cb2/C.a1�b1/

16�3
t4

�
�2.a2�b2/�5�.a1Cb1/C5.a0�b0/

8�3
t3C
��.a2Cb2/C3.a1�b1/

8�
t2

C
�2.a2�b2/�7�.a1Cb1/C15.a0�b0/

16�
tC
�2.a2Cb2/�5�.a1�b1/

16

C
1
2
.a0Cb0/:

Consider next the effect on p.t/ (for t 2 Œ��; ��) of letting � ! 0. As this limit
is approached, the term involving t5 in the above expression for p.t/ approaches
3
16
.a0� b0/.t

5=�5/, the t3 term approaches �5
8
.a0� b0/.t

3=�3/, and the first order
term in t contributes 15

16
.a0� b0/.t=�/.

Recalling that jt j � j� j, the limits of the t5–, t3–, and t–terms are bounded by

3
16
ja0� b0j;

5
8
ja0� b0j and 15

16
ja0� b0j;
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respectively. Since jt j � j� j, the terms of degrees four and two in t contribute nothing
in the limit, and the zeroth-order term yields 1

2
.a0 C b0/. In our case we can say

more, however. Clearly, the coefficients ai and bi are functions of � , ie ai D ai .�/
and bi D bi .�/ for i D 0; 1; 2, and since f .t/ is assumed C 1 at t D 0 we see that
lim�!0 aj .�/D lim�!0 bj .�/D f .j /.0/ for j D 0; 1. Thus we conclude that for �
sufficiently small, the polynomial p.t/ can C 0–approximate the constant function with
value 1

2
.a0C b0/D a0 D b0 D f .0/ over the interval Œ��; �� to within any desired

degree.

By applying the same analysis to p0.t/, we see that for � sufficiently small, p0.t/
C 0–approximates the constant function with value 1

2
.a1C b1/ D a1 D b1 D f

0.0/

over the interval Œ��; �� to within any desired degree; ie by choosing � sufficiently
small, p.t/ will C 1–approximate f .t/ over Œ��; �� to within any desired accuracy.
In order to see this, we note first that

(2-8) lim
�!0

a0.�/� b0.�/

�
D lim
�!0

f .�/�f .��/

�

D lim
�!0

f .�/�f .0/

�
C lim
�!0

f .��/�f .0/

��

D 2f 0.0/:

Substituting this into the expression for p0.t/ obtained by differentiating (2-7), the
only term which makes a contribution in the limit as � ! 0 is the fifth term on the
right-hand side, ie

�2.a2� b2/� 7�.a1C b1/C 15.a0� b0/

16�
:

In the limit we therefore need to consider

�
7
16
.a1C b1/C

15
16
.a0� b0/:

As t ! 0 this yields

�
14
16
f 0.0/C 30

16
f 0.0/D f 0.0/;

as claimed.

Finally, we must consider the behaviour of p00.t/. Arguments analogous to the above
show that for � sufficiently small, p00.t/ can be C 0–approximated over Œ��; �� to
within any desired degree of accuracy by the cubic

(2-9) 5

4
.a2� b2/

t3

�3
�
3

4
.a2� b2/

t

�
C
1

2
.a2C b2/:
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��

�
1p
5
�

1p
5
�

�

�2

�
2p
5

2p
5

2

Figure 2: The graph of the function q.t/ .

To understand the behaviour of this cubic, it clearly suffices to examine the func-
tion q.t/ D .5=�3/t3 � .3=�/t over t 2 Œ��; ��. An elementary calculation shows
that the maximum and minimum values taken by q.t/ over Œ��; �� are q.�/ D 2

and q.��/D�2. This function is depicted in Figure 2. Thus the values of q.t/ for all
other t in this interval lie between the endpoint values. It follows immediately that the
same is true for p00.t/ with respect to its endpoint values.

Proposition 8 Let zh be the metric defined in Lemma 3, and over the neighbourhood
X � Œ�2�; 2�� express this as zh D dt2 C zh.t/, where zh.t/ is the induced metric on
the hypersurface t D constant. Suppose that � > 0 is chosen as in Lemma 6, so that
Ricdt2Cg.t/ > 0 for t 2 .��; �/. Then there exists � > 0 with �� � , and a C 2–metric
dt2C zg.t/ for t 2 Œ�2�; 2�� such that

(i) Ricdt2Czg.t/ > 0 for t 2 .�2�; 2�/;

(ii) zg.t/D zh.t/ for t 62 .˙�� �;˙�C �/;

(iii) the metrics dt2C zg.t/ and zh are arbitrarily C 1–close on X � Œ�2�; 2��.

Proof We choose a smooth coordinate system on X and extend in the obvious way
to a coordinate system on X � Œ�2�; 2��. With respect to this system, we express
the metrics zh.t/ in terms of its components zhij .t/, which are smooth when t ¤˙�
and C 1–functions at t D ˙� . We then use the polynomial (2-7) to modify each
function zhij .t/ in �–neighbourhoods of t D˙� to obtain functions zgij .t/. In order
to do this, however, we need to argue that the quantities a2.�/ and b2.�/ for each
metric component (using the language of Lemma 7) remain bounded as � ! 0, as this
was a hypothesis in Lemma 7. These quantities are second derivatives of the metric
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either side of t D˙� , with � now fixed. Thus the desired boundedness now follows
automatically from the boundedness of the components of h001.��/, h

00
2.�/ and g00.˙�/

for the given choice of � > 0.

By choosing � sufficiently small we can therefore bound the variation in the metric
components zgij .t/ and their first derivatives across t 2 Œ˙���;˙�C�� by an arbitrarily
small constant, whereas the second derivatives vary between their values at the endpoints.
As curvature is a C 2 phenomenon which depends linearly on the second derivatives
of the metric, we can arrange for any open convex curvature condition satisfied by
both “halves” of the C 1–metric (ie either side of t D˙� ) to continue to hold for the
resulting C 2–metric, as � can be chosen arbitrarily small. Since the positivity of the
Ricci curvature is an open and convex condition we deduce that the our C 2–metric
dt2C zg.t/ will have positive Ricci curvature for all � sufficiently small.

Proof of Theorem 2 Given Proposition 8, it remains to smooth the metric from
C 2 to C1 . By general smoothing theory for functions, we know that the set of
C 2–functions on a smooth manifold is dense in the space of C1–functions (see for
example [14, Theorem 2.6]). Thus we can make a C 2–arbitrarily small adjustment to
our C 2–metric to render it smooth, and in so doing ensure the positivity of the Ricci
curvature is preserved. This proves Theorem 2.

Theorem 2 immediately gives us the following corollary, which will play a key role in
Section 4.

Corollary 9 The conclusion of Theorem 2 holds if the principal curvatures at both
boundaries (with respect to the inward normals) are all positive.

2.3 A family version of Perelman’s theorem

We will also need a family version of Theorem 2, which allows us to perform simulta-
neous Ricci positive smoothings on the fibres of a bundle.

Theorem 10 Let �i W Ei !B for i D 1; 2 be smooth fibre bundles with fibre Mi and
compact base B , where @Mi ¤ ∅. Suppose that each of these bundles is equipped
with a smoothly varying family of fibrewise Ricci positive metrics fhi .b/gb2B and
that with respect to these metrics, there is a smoothly varying family of fibrewise
isometries � WD f�bgb2B for the boundary bundles @�i W @Ei ! B (with fibre @Mi /,
that is, �bW @��11 .b/Š@��12 .b/ for each b2B . Then provided the second fundamental
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forms of the fibre boundaries (with respect to inward normals) satisfy IIb1C�
�
b

IIb2 for
each b 2 B , the fibrewise C 0–metric h WD fh1.b/[�.b/ h2.b/gb2B on E1[� E2 can
be smoothed within fibrewise positive Ricci curvature in such a way that the resulting
metric agrees with the original outside a neighbourhood of the glued boundaries.

Proof The key observation is that in the proof of Theorem 2, the C 2–smoothing
constructed only depends on the metrics together with two small positive parameters
� and � . Now suppose we have a smooth variation of the metrics on M1 and M2 ,
which nevertheless always satisfies the requirements of Theorem 2. It is clear that � ,
the first chosen parameter in the construction which together with the given metrics
determines the C 1–smoothing, can be chosen to vary continuously with the metric.
Similarly the second parameter, � , needed to construct the C 2–smoothing, can be
chosen to vary continuously with the metrics and � .

In the situation of the current theorem, it follows from the above observations and the
compactness of B that we can make uniform choices for � and � which will work
for all fibres in our bundles E1 and E2 . Having made these choices, the C 2–metric
smoothing performed after gluing each pair of fibres is then completely determined
by the metrics on these fibres. Moreover, since this is a smoothing by polynomials, it
follows trivially that the resulting metrics will vary smoothly from fibre to fibre.

Finally, the same argument as employed at the end of the proof of Theorem 2 shows that
our fibrewise Ricci positive metric on E1[� E2 can be smoothed to class C1 within
fibrewise positive Ricci curvature. (We could always extend our fibrewise C 2–metric to
a global C 2–metric for which the intrinsic fibre metrics have positive Ricci curvature.
This can then be globally smoothed by a C 2–arbitrarily small deformation, preserving
the intrinsic positive Ricci curvature on the fibres, then restricting to the fibres yields
the desired smooth fibrewise metric.)

3 Hatcher bundles

3.1 The work of Goette and Igusa

The aim of this section is to review the construction and properties of certain smooth
Sn–bundles over S i which are known as “Hatcher bundles”. In short, a Hatcher
bundle E�! S i is a smooth Sn–bundle determined by an element � 2 kerJ, where
J W �i�1O.p/ ! �i�1CpS

p is the J–homomorphism, and where 0 < p < n. A
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Hatcher bundle E� ! S i has structure group Diffx0
.Sn/ and thus is classified by

some map f�W S
i ! BDiffx0

.Sn/. We then say that a Hatcher bundle E� ! S i

represents the element Œf�� 2 �iBDiffx0
.Sn/; below we make the identification

BDiffx0
.Sn/DMx0

.Sn/.

In the introduction we stated a theorem of Farrell and Hsiang (Theorem 1) concerning
the rational homotopy groups �iMx0

.Sn/˝Q. In fact, each element of those groups
may be represented by a Hatcher bundle.

The following summarizes the results of [15, Theorem 6.5.5] and [9, Theorem 5.13]:

Theorem 11 Suppose that n and k satisfy the hypotheses of Theorem 1 so that
�4kMx0

.Sn/˝Q Š Q. Then, for each element Œf � 2 �4kMx0
.Sn/˝Q, there is

an integer p with 0 < p < n, and an element � 2 kerJ, where J W �4k�1O.p/!
�4k�1CpS

p is the J–homomorphism, such that the Hatcher bundle E� represents the
element Œf �.

Remark Theorem 6.5.5 from [15] shows that Hatcher bundles represent the above ele-
ments Œf �2�4kMx0

.Sn/˝Q. The nontriviality of these elements is detected by com-
puting the higher Franz–Reidemeister torsion for the corresponding Hatcher bundles.
Below we essentially use the construction from [9, Section 5], and [9, Theorem 5.13]
shows the nontriviality of the same Hatcher bundles by computing a relevant analytical
torsion class of those bundles.

We recall that the key feature of these bundles is that they are exotic smooth Sn–
bundles, in the sense that each one is homeomorphic to, but not diffeomorphic to, the
trivial bundle S i �Sn! S i . We will develop Goette’s construction so as to provide
the appropriate setting for our geometric arguments in the next section. An in-depth
description of these bundles and their properties is given in [9], and we refer the reader
to that paper for further details.

3.2 Preliminary constructions

Throughout this section, we will assume that n is odd and is sufficiently large for all of
our purposes. The groups �iMx0

.Sn/˝Q are trivial unless i D 4k for appropriate k ,
and so we will consider only bundles which have base manifold S4k and fibre Sn .

Let us begin with the trivial bundle S4k � Sn ! S4k . By decomposing the fibre
sphere Sn into a pair of northern and southern hemispherical discs, Dn

C
and Dn� ,
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Dn DDpC1 �Dq AD Sp �Dq � Œ�; 1�
P DDpC1.�/�Dq

Figure 3: The decomposition of the fibre disc Dn into A and P .

we can decompose the entire bundle into a pair of disc bundles, S4k �Dn
C
! S4k

and S4k � Dn� ! S4k , glued together in the obvious way. Therefore the trivial
bundle S4k � Sn ! S4k can be regarded as the double of the trivial disc bundle
S4k�Dn! S4k . We will always assume that discs are closed unless otherwise stated.

To construct a Hatcher bundle, we will make certain adjustments to the trivial Dn–
bundle over S4k to obtain a smooth bundle which is homeomorphic to, but not dif-
feomorphic to, the trivial disc bundle. We will then form the double of this exotic
Dn–bundle to obtain the desired exotic Sn–bundle over S4k , which will represent a
nontrivial element of �4kMx0

.Sn/˝Q.

We begin with the trivial disc bundle S4k �Dn! S4k . The fibre Dn decomposes as

Dn DDpC1 �DqD .DpC1.�/�Dq/[ ..Sp � Œ�; 1�/�Dq/;

where pCqC1Dn, �2 .0; 1/, and DpC1.�/�Dq is a smaller version of the original
disc product (with the DpC1 factor having radius �) surrounded by an annular region
.Sp � Œ�; 1�/�Dq . The integers p and q may be assumed to be positive; in fact at
various stages in the construction, it is necessary to allow both p and q to be large. It
will be convenient for later considerations to reorder the factors and write the annular
region as Sp �Dq � Œ�; 1�. Henceforth we will denote this by A and the remaining
piece, DpC1.�/�Dq , by P.2 Thus, as illustrated in Figure 3, we have

Dn D A[P:

The regions A and P share a common piece of boundary, Sp�Dq�f�g, and are glued
together via the identity map on Sp�Dq . The trivial bundle S4k �Dn! S4k , there-
fore, can be thought of as a union of subbundles S4k�A! S4k and S4k�P ! S4k ,
glued together in the obvious way.

2This smaller product of discs resembles an ice-hockey puck, hence the notation.
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From now on we will write Ay D fyg �A and Py D fyg � P to denote the fibres
at y 2 S4k of the respective subbundles S4k �A! S4k and S4k �P ! S4k . Below
we will specify a smooth diffeomorphism

(3-1) ƒy W S
p
�Dq! Sp �Dq

over each y 2 S4k , where the domain is .@DpC1/�Dq � @Py and the target space
is the product Sp �Dq � f�g � @Ay . The idea will be to replace the identity map
on Sp �Dq , which glues Py to Ay to form DpC1 �Dq , with the map ƒy .

Before we can begin the construction we will need a further decomposition: that of the
base manifold S4k into northern and southern hemispherical discs

S4k DD4kC [D
4k
� :

Over the disc D4k� we take the trivial bundle D4k� �D
n!D4k� , that is, we define the

map ƒy to be the identity map on Sp �Dq for all y 2D4k� . We therefore need to
specify the maps ƒy for y 2D4k

C
in order to describe the bundle over D4k

C
, and finally

we need to show how to glue the two bundles together over S4k�1 D @D4k� D @D
4k
C

.

Over the disc D4k
C

we will actually work with a slightly different, though topologically
equivalent, annulus A0y , which we will define below. We will also work with diffeomor-
phisms ƒy as above, however we must adjust the target space to lie in the boundary
of A0y . Gluing the Py to A0y creates a fibre bundle over D4k

C
with fibres Py [ƒy

A0y .

In order to make these constructions, let us first suppose we have a collection of
embeddings

x�y W S
p
�Dq! Sp �Dq

for y 2D4k
C

which vary smoothly with y . For any given y 2D4k
C

, the image of the
embedding x�y , which we denote by Im x�y , is schematically depicted in Figure 4. We
will define the annulus A0y by

A0y D fyg � Im x�y � Œ�; 1�� fyg �Sp �Dq � Œ�; 1�:

We will furthermore define the diffeomorphism ƒy to be simply the map x�y with
target space Im x�y . Thus we can glue Py to A0y using ƒy , by identifying the points

.y; x/ 2 fyg � .Sp �Dq/� @Py and .y; x�y.x/; �/ 2 fyg � Im x�y � f�g � @A0y ;

where x 2 Sp �Dq . The spaces Py and A0y (as a subset of fyg �Sp �Dq � Œ�; 1�)
are depicted in Figure 5. Applying this gluing fibrewise for all y 2D4k

C
gives rise to
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Im x�y

Figure 4: An embedding x�y from Sp �Dq (left) into Sp �Dq (right).

the desired bundle over D4k
C

. For convenience we will denote the bundles over D4k
˙

by E˙!D4k
˙

. We claim that for each y 2D4k
C

we have a canonical diffeomorphism

Dn DDpC1 �Dq D Py [IdAy Š Py [ƒy
A0y :

To this end, define a map �y W Ay ! A0y by setting �y Dƒy � IdŒ�;1� , where we are
viewing Ay D .Sp �Dq/� Œ�; 1� and A0y D Im x�y � Œ�; 1�. Using this map we can
define a further map ˆy W Py [IdAy! Py [ƒy

A0y by

(3-2) ˆy.z/D

�
z if z 2 Py ;

�y.z/ if z 2 Ay :

It is clear that ˆy is a homeomorphism for each y . Following the discussion on
adjunction spaces at the start of Theorem 2 (or see [14, Chapter 8, Section 2]), we see
that with respect to the canonical differentiable structure on Py [ƒy

A0y , the map ˆy
is actually a diffeomorphism. Thus the exotic structure which Hatcher bundles display
does not occur at the level of individual fibres: it is a global bundle phenomenon.

Figure 5: The spaces Py (left) and A0y as a subset of Sp �Dq � Œ�; 1� (right).

3.3 Recollection of the J–homomorphism

Here we will follow [9] to construct the family of embeddings x�y W Sp �DqC1 !
Sp�DqC1 , for y 2D4k

C
, as above. This requires us to consider the J–homomorphism,

which is a map
J W �4k�1O.p/! �4k�1CpS

p;
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where p is sufficiently large.3 We can think of the J–homomorphism as follows. Con-
sider a map �W S4k�1!O.p/ determined by a choice of element Œ�� 2 �4k�1O.p/;
by the Whitney approximation theorem, without loss of generality we can assume that �
is smooth. This then determines a map S4k�1�Rp!Rp , by sending a point .y; z/ to
the orthogonal transformation �.y/2O.p/ applied to z 2Rp . Since SpDRp[fx0g,
it is convenient to identify � with a map �W S4k�1! C.Sp; Sp/, where C.X; Y / is
the space of basepoint-preserving continuous maps X ! Y with the compact–open
topology. It will also be convenient to denote by �y W Sp! Sp the map � evaluated at
y 2S4k�1 . Passing to homotopy classes gives a map �4k�1O.p/!�4k�1C.Sp; Sp/,
and composing this with an isomorphism �4k�1C.Sp; Sp/Š �4k�1CpSp then gives
the J–homomorphism.

Recall that for p sufficiently large compared to k , the groups �4k�1O.p/ and
�4k�1CpS

p are independent of p and that �4k�1CpSp is a finite group, while
�4k�1O.p/ is infinite cyclic.

Choose a map �W S4k�1!O.p/ such that Œ��¤ 0 and Œ��2 kerJ. This means that �
extends to a map

z�W D4kC ! C.Sp; Sp/;

where D4k
C

is a disc of radius 1. We can assume that z� restricted to the collar
S4k�1 �

�
1
2
; 1
�
� D4k

C
is independent of the

�
1
2
; 1
�
–coordinate. For any q � 4k ,

we denote by �W Sp ! Sp �Dq the inclusion �W x 7! .x; 0/. The map � and its
extension z� give a commutative diagram

(3-3)

S4k�1 �Sp

i�Id
��

�
// Sp

Id
��

�
// Sp �Dq

Id
��

D4k
C
�Sp

z�
// Sp

�
// Sp �Dq

where i is the inclusion of the boundary S4k�1!D4k
C

.

Lemma 12 For sufficiently large q , we can approximate the map � ı z� by a smoothly
varying family of smooth embeddings

(3-4) y�y W S
p
! Sp �Dq; y 2D4kC ;

which retain the property that for y 2 S4k�1 �
�
1
2
; 1
�
� D4k

C
, the maps y�y agree

with � ı�y .

3Here we assume that the base point in Sp is the north pole.
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Proof We begin by recalling that the map �W S4k�1 ! O.p/ is assumed to be
smooth. By applying the Whitney approximation theorem to z� viewed as a map
z�W D4k

C
� Sp ! Sp (see for example [17, Theorem 6.26]), we see that by a C 0

arbitrarily small homotopy relative to a boundary neighbourhood in the domain, we
can adjust this map to be smooth. Thus, without loss of generality, we may as well
assume in the first place that z�W D4k

C
�Sp! Sp is smooth.

To construct the embeddings y�y W Sp ! Sp �Dq , we first let �W Sp ! Dq be an
arbitrary embedding of the sphere into a ball Dq �Rq centred at the origin, and denote
by �� the composition consisting of � followed by a scaling of Dq onto itself by a
factor of � � 0. (The embedding � clearly exists provided that q � pC 1.) Next, we
introduce a function �W D4k

C
!R, which is identically zero in a small neighbourhood

of the region in which z� is independent of the radial parameter, is strictly positive
otherwise, and is everywhere smooth.

Finally, set y�W D4k
C
�Sp! Sp �Dq to be the map

y�.y; x/ 7! .z�y.x/; �.y/�.x//:

It is now immediate that this restricts to give a smoothly varying family of smooth
embeddings y�y W Sp!Sp�Dq , by virtue of the fact that � is an embedding. Moreover,
these embeddings clearly agree with � ı z�y for y 2 S4k�1 �

�
1
2
; 1
�
, since � vanishes

in this region.

Denote by Ny ! Sp the normal bundle of the embedding y�y . Since both Sp and
Sp�Dq have stably trivial tangent bundles, it follows that the normal bundle Ny is also
stably trivial. In fact, by increasing q if necessary, we can assume that Ny is trivial for
all y . Considering now all y 2D4k

C
at once, we obtain a vector bundle N!D4k

C
�Sp .

Since Ny ! Sp is trivial for each y , it follows that the bundle N ! D4k
C
� Sp is

also trivial. Then by fixing a trivialization of N and using the normal exponential map,
we extend the family of embeddings (3-4) to the family of embeddings

(3-5) x�y W S
p
�Dq! Sp �Dq; y 2D4kC :

Lemma 13 [9, Proposition 5.4] The family of embeddings (3-5) is smoothly isotopic
to a family of embeddings Sp �Dq! Sp �Dq which restricts over S4k�1 D @D4k

C

to give transformations

(3-6) .x; z/ 7!
�
�y.x/; .�

�1
y ˚ IdRq�p /.z/

�
2 Sp �Dq; y 2 S4k�1:
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Remark The effect on the Sp factor in Lemma 13 is simply the original orthogonal
transformation �y , and on the Dq factor we also have an orthogonal transforma-
tion, made up of the inverse transformation ��1y on the first p coordinates, with the
complementary space being fixed. In particular, since the map �W S4k�1 ! O.p/

gives a continuous family of maps of this form, (3-6) is a product of rotations for
all y 2 @D4k

C
. Lemma 13 shows we can assume that the family of embeddings (3-5)

satisfies the condition (3-6). We notice also that (3-6) implies that Im x�y coincides
with fyg �Sp �Dq � @Ay . In particular, we can assume that

(3-7) A0y D Ay if y 2D4kC is near the boundary @D4kC :

Recall that the embeddings x�y give rise to the desired family of diffeomorphisms ƒy ,
which by definition coincide with the maps x�y when the target space is restricted
to Im x�y . This completes the construction of the bundle EC!D4k

C
.

We conclude this section with the result below, which follows from the proof of
Lemma 12:

Corollary 14 The diffeomorphisms ƒy W Sp�Dq!Sp�Dq are determined by their
restriction to an arbitrarily small neighbourhood of the sphere Sp�f0g�Sp�Dq�@Py
and its image in @A0y , for each y 2D4k

C
.

Proof We merely have to observe that in the proof of Lemma 12 we can choose the
embedding � so that its image is contained in an arbitrarily small ball about the origin
in Dq , and we can choose the function � to have an arbitrarily small upper bound.

3.4 The Hatcher bundle E�

It remains to describe how the bundle EC ! D4k
C

is to be glued to the trivial disc
bundle E� ! D4k� along the boundary of the base discs @D4k

C
D @D4k� D S

4k�1 .
Recall that each disc fibre is the union of an annulus and a “puck”, and according
to (3-7), we can assume the annulus parts A0y of the fibres are equal to Ay near the
boundary of D4k

C
.

We can therefore begin by gluing the annulus parts Ay and A0y of the fibres at the
boundary of EC and E� via the identity map. To glue the “puck” part of the fibres we
observe that, according to Lemma 13, the maps ƒy W Sp�Dq!Sp�Dq defined above
are products of rotations for each y near @D4k

C
. Thus the ƒy extend to diffeomorphisms

zƒy W Py! Py for such y , using the rotations (3-6). We use the zƒy to glue the puck

Geometry & Topology, Volume 23 (2019)



Homotopy groups of the observer moduli space of Ricci positive metrics 3029

subbundles of EC to E� for y 2 S4k�1 , noting that this is consistent with the gluing
of the annuli. The disc bundle over S4k which results from this gluing we will denote
by E� , since it ultimately depends on our choice of Œ�� 2 kerJ. As noted at the start of
this section, we can then double this disc bundle to produce the desired Hatcher bundle
E� WD E�[ E� over S4k .

It can be shown that E� is bundle homeomorphic but not bundle diffeomorphic to the
corresponding trivial bundle; see [9, Proposition 5.8, Theorem 5.13] and [10, Section 1].

4 The fibrewise Ricci positive metric construction

4.1 Foreword

In this section we will ultimately prove the Main Theorem. As discussed in Section 1,
this reduces to showing that a Hatcher bundle admits a fibrewise Ricci positive metric.
Our general strategy is to show the existence of fibrewise Ricci positive metrics on the
Hatcher disc bundles constructed in the last section, and then use the family version
of the Perelman gluing result, Theorem 10, to glue two copies of such a disc bundle
together within Ricci positivity to create the desired object.

As we will see, the actual construction of the fibrewise Ricci positive metric on the
Hatcher disc bundle (carried out in Section 4.5) is quite delicate, and one might
wonder why such an elaborate construction is necessary. The issue is essentially
due to the nonlinearity of the Hatcher bundle. Given a linear sphere bundle and a
suitable horizontal distribution (ie a connection on the associated principal bundle),
there is a standard procedure for constructing fibrewise metrics; see for example
[1, Theorem 9.59]. In the first instance, this requires the existence of a fibre metric
invariant under the action of the structural group. However, in the case of Hatcher
bundles, all we can say is that the structural group is Diffx0

.Sn/. As this is noncompact,
we cannot guarantee the existence of an invariant metric, and so another approach to
metric construction is required.

One might also ask why our technique does not extend to the case of Ricci positive
exotic spheres. The reason is that the families of Ricci positive metrics on Sn giving
the nontrivial elements in the Main Theorem are constructed by doubling metrics on the
disc Dn . To obtain an exotic sphere this way, we would have to glue two copies of Dn

via an exotic diffeomorphism. This would require a boundary metric invariant under
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Figure 6: The solid ellipsoid contained in Dm �Dn .

the diffeomorphism, and producing such metrics in this context is currently beyond the
scope of our methods.

In order to perform the disc bundle gluing, we need to consider the second fundamental
forms at the boundary of the disc fibres. There is an immediate problem, however: the
discs were constructed as products DpC1 �Dq . Thus, as written, each of these is a
manifold with corners. Moreover, in order for these discs to be equipped with Ricci
positive metrics, it is natural to consider product metrics which respect the topological
product structure. The resulting boundary is not smooth, however, and we need a
smooth boundary in order to apply the Perelman gluing technique.

In order to deal with this issue, our approach is to cut out a solid “ellipsoid” from
within the product of discs; see Figure 6. This will be constructed to have a smooth
boundary, with principal curvatures at the boundary (with respect to the inward normal)
all positive. Thus, provided the ambient metric on the product of discs has positive
Ricci curvature, we can glue two such ellipsoids together using the Perelman gluing
technique. Therefore the main tasks in the next three subsections are respectively to
construct the ambient metric, to construct the ellipsoid, and to prove the ellipsoid has
the desired convexity properties at the boundary.

To avoid any confusion with indices, it is convenient to work with the product Dm�Dn ,
where the roles of m and n are symmetric. We will specialize our formulas to the case
mD pC 1 and nD q in Section 4.5, where we prove the Main Theorem.

4.2 The metric on Dm � Dn

First, we will consider the following metric on Dm �Dn :

h WD ds2C˛2.s/ ds2m�1C dt
2
Cˇ2.t/ ds2n�1;

where s and t are the radial parameters in the discs Dm and Dn respectively. (In our
later metric constructions we will use a slight variant of this metric.) Let us assume
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that the radii of the two discs are s1 and t1 respectively. We will impose the following
conditions on the smooth warping functions ˛ and ˇ :

� ˛ and ˇ are odd in a small neighbourhood of sD 0 respectively t D 0 (or rather,
one can extend ˛ and ˇ to negative values of s and t such that this extended
function is smooth and odd), and in particular ˛.0/D ˇ.0/D 0.

� ˛0.0/D ˇ0.0/D 1.
� ˛0 > 0 and ˇ0 > 0 whenever s respectively t is positive.
� ˛00.s/ < 0 for all s 2 Œ0; s1� and ˇ00.t/ < 0 for all t 2 Œ0; t1�.

It follows easily from the warped product formulas for Ricci curvature that these
conditions ensure that the metric h has strictly positive Ricci curvature; see, for
example, [1, Section 9J].

t

s

Figure 7: Coordinates on the space X DDm �Dn .

4.3 Specifying the ellipsoid

In order to construct the ellipsoid, we introduce a unit speed curve �D �.r/ into the
st–plane. This curve will have the profile given in Figure 8.

0 s s0

t

t D t0

Figure 8: The curve � which gives rise to the ellipsoid E .

Notice that the illustrated curve separates the rectangle Œ0; s1�� Œ0; t1� into two regions,
and suppose that the parameter r is such that �.0/D .0; t0/ and �.r0/D .s0; 0/ for
some s0 2 .0; s1/, t0 2 .0; t1/ and r0 > 0. We will define the ellipsoid E to be the
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subset of DpC1 �Dq consisting of all elements whose s and t coordinates lie in the
region on or below this curve.

We need to specify � in more detail, and to this end we will write �.r/D .�s.r/; �t .r//.
Let us impose the following conditions on �s and �t :

(1) �s.0/D 0, �s.r0/D s0 , �0s.0/D 1, �0s.r0/D 0; �
00
s .r/ < 0 for all r 2 Œ0; r0�,

and �s is odd in a neighbourhood of r D 0 and is even locally about the point
r D r0 (in the sense that there is a smooth extension such that �s.r0 � �/ D
�s.r0C �/ for all sufficiently small � > 0).

(2) �t .0/D t0 , �t .r0/D 0, �0t .0/D 0, �0t .r0/D�1, �00t .r/< 0 for all r 2 Œ0; r0�,
and �t is even about the point r D 0 and odd in a neighbourhood of r D r0 .

Given a unit speed curve � satisfying (1) and (2) above, we need to check that the
resulting ellipsoid has a smooth boundary. First, it is clear from the smoothness of all
the functions involved that this boundary will indeed be smooth everywhere except
possibly when r D 0 or r D r0 . We must therefore check the corresponding “ends” of
the ellipsoid for smoothness. With this in mind, we begin by observing that the metric
induced by h on the boundary of the ellipsoid is

(4-1) hE WD dr
2
C˛2.�s.r// ds

2
m�1Cˇ

2.�t .r// ds
2
n�1:

Given that �s.0/D0 and �t .r0/D0 and that �s; �t >0 otherwise, we see immediately
from (4-1) that the metric hE is a (not necessarily smooth) metric on a sphere of
dimension mCn� 1. The boundary conditions which such a metric must satisfy in
order to give a smooth sphere metric are well known (see for example [20, Section 1.4]);
the scaling functions ˛.�s.r// and ˇ.�t .r// must obey the following rules:

(i) They must be everywhere nonnegative, with ˛.�s.r//D 0 if and only if r D 0,
and ˇ.�t .r//D 0 if and only if r D r0 .

(ii) ˛.�s.r// must be odd at r D 0 and even at r D r0 .

(iii) ˇ.�t .r// must be even at r D 0 and odd at r D r0 .

(iv) The derivative of ˛.�s.r// must take the value 1 at r D 0, and that of ˇ.�t .r//
must take the value �1 at r D r0 .

Property (i) follows immediately from the conditions imposed on ˛ , ˇ , �s and �t . For
property (iii) we note that by definition �t .r/ is odd at r D r0 and ˇ.t/ is odd at t D 0,
and it follows trivially from this that the composition ˇ.�t .r// is odd at r D r0 . For
the evenness requirement it suffices to note that the composition of an even function
followed by an arbitrary function is trivially even. Property (ii) follows by similar
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arguments. Finally, property (iv) follows by the chain rule since ˛0.0/�0s.0/D 1, and
ˇ0.0/�0t .r0/D�1.

In summary then, we have demonstrated how to choose a unit speed curve � such that
the resulting ellipsoid is smooth, and we will work with the same subset of DpC1�Dq

for each fibre of the Hatcher disc bundle when we construct the fibrewise metric later
in this section.

4.4 Principal curvatures of the ellipsoid

The other issue we need to address in relation to the Perelman gluing of discs (or
rather ellipsoids) is that of the second fundamental form at the boundary. As observed
previously (Corollary 9), assuming the ellipsoid (or more generally Dm �Dn ) has
positive Ricci curvature, then it is sufficient for our purposes that the principal curvatures
all be positive with respect to the inward-pointing normal. It turns out, however, that
the principal curvatures of the ellipsoid we have constructed are only nonnegative with
respect to the ambient metric h, and in particular vanish at the points of the ellipsoid
corresponding to r D 0 and r D r0 . To rectify this situation we work with the same
ellipsoid, but a slightly modified metric on Dm �Dn .

Let us define a metric g on Dm �Dn as follows:

(4-2) g WD ı2.t/ ds2C ı2.t/˛2.s/ ds2m�1C 
2.s/ dt2C 2.s/ˇ2.t/ ds2n�1:

The new functions introduced here, ı.t/ and .s/, are chosen so as to satisfy the
following properties:

(a) ı0.t/� 0 for all t 2 Œ0; t1�, ı0.t0/ > 0 and ı.t/� 1 in a neighbourhood of t D 0.

(b)  0.s/�0 for all s2 Œ0; s1�,  0.s0/>0 and .s/�1 in a neighbourhood of sD0.

We will see that the positivity of the derivatives of ı and  at t0 , respectively s0 , is
enough to give us strictly positive principal curvatures globally. Of course we must not
forget that the metric g must have positive Ricci curvature. By the openness of the
positivity condition we can choose ı and  satisfying (a) and (b) above sufficiently
close in a C 2–sense to the constant function with value 1 so that Ric.g/ > 0. We
therefore add a third condition:

(c) ı and  are such that Ric.g/ > 0, at least in some neighbourhood of E .

Lemma 15 The principal curvatures at the boundary of the ellipsoid E are all strictly
positive with respect to the ambient metric g .
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Proof We work locally, and begin by fixing a point x1 D .s1; a1; t1; b1/ 2E , where
a1 2 S

m�1 and b1 2 Sn�1 . About the points a1 and b1 , introduce normal coordinate
systems locally into Sm�1 and Sn�1 . Together with the s and t coordinates, these
combine to give a local coordinate system in Dm�Dn . With respect to these coordinates
we can represent g by the block-diagonal matrix

g D

2664
ı2.t/

2.s/

ı2.t/˛2.s/Am�1
2.s/ˇ2.t/Bn�1

3775 ;
where Am�1 and Bn�1 represent ds2n�1 and ds2m�1 with respect to the chosen normal
coordinate systems on the spheres. Note that at the points a1 and b1 , the matrices Am�1
and Bn�1 are both identity matrices and have vanishing first derivatives. Hence at the
point x1 we have gij ¤ 0 if and only if i D j , gi i D 1=gi i , and the derivatives gij;k
equal 0 whenever k is a direction tangent to Sm�1 or Sn�1 . We will assume that all
computations below are carried out at this point.

Using the formula

�kij D
1
2
gkl.gil;j Cgjl;i �gij;l/;

it is straightforward to compute the corresponding Christoffel symbols. The list below
consists of precisely those Christoffel symbols which are nonzero. Beginning with the
case when each of the indices i , j and k are s or t , we have

�sst D �
s
ts D

ı0.t/

ı.t/
; �st t D

� 0.s/.s/

ı2.t/
; � tss D

�ı.t/ı0.t/

2.s/
; � tst D �

t
ts D

 0.s/

.s/
:

Then, using the symbols a and b to represent any of the coordinate functions on
Sm�1 or Sn�1 respectively, we list the remaining nonzero Christoffel symbols:

�saa D�˛.s/˛
0.s/; �asa D �

a
as D

˛0.s/

˛.s/
;

� taa D
�ı.t/ı0.t/˛2.s/

2.s/
; �ata D �

a
at D

ı0.t/

ı.t/
;

�sbb D
�.s/ 0.s/ˇ2.t/

ı2.t/
; �bsb D �

b
bs D

 0.s/

.s/
;

� tbb D�ˇ.t/ˇ
0.t/; �btb D �

b
bt D

ˇ0.t/

ˇ.t/
:
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From this we compute certain covariant derivatives involving coordinate vector fields,
@s , @t , @a and @b , which will we will make use of shortly. In particular, we see that
at the point x1 we have

r@s
@s D

�ı.t/ı0.t/

2.s/
@t ; r@t

@t D
� 0.s/.s/

ı2.t/
@s;

r@s
@t Dr@t

@s D
ı0.t/

ı.t/
@sC

 0.s/

.s/
@t ;

r@t
@a Dr@a

@t D
ı0

ı
@a; r@s

@a Dr@a
@s D

˛0

˛
@a;

r@t
@b Dr@b

@t D
ˇ0

ˇ
@b; r@s

@b Dr@b
@s D

 0


@b;

r@a
@a D�

ı0ı˛2

2
@t �˛

0˛@s; r@b
@b D�

 0ˇ2

ı2
@s �ˇ

0ˇ@t ;

and r@a
@b Dr@b

@a D 0.

We now compute second fundamental forms, and will break up the computation into
directions tangent to Sm�1 and Sn�1 , and tangent to the curve �. Notice that �0.r/
is everywhere tangent to the boundary of the ellipsoid, and this direction is orthogonal
(with respect to g ) to both Sm�1 and Sn�1 . Explicitly we have T .r/ WD �0.r/ D
�0s.r/@sC�

0
t .r/@t . It is easy to see that the normal vector to the ellipsoid lies in the

st–plane. If we represent the outward normal as N D cs@sC ct@t then it is clear that
the coefficients cs and ct are functions of r . Moreover, it is evident from our choice
of � that cs.r0/D 0 and ct .0/D 0 and that cs; ct > 0 otherwise.

The second fundamental form II.u; v/ with respect to the inward normal �N is given
by II.u; v/D�g.ruv;N /. Thus in order to show this is positive definite, it suffices
to establish that the components of ruu in the @s and @t directions are nonpositive,
at least one of the coefficients is negative for all r 2 .0; r0/, at r D 0 (where ct D 0)
the coefficient of @s is negative, and at r D r0 (where cs D 0) the coefficient of @t is
negative. (Of course if u 2 TSm�1 then we must automatically have r > 0 else this
sphere is not defined, and similarly we need r < r0 if u 2 TSn�1 .)

Consider first @a 2 TSm�1 . From the covariant derivative expressions above we
observe that the coefficient of @s , namely �˛0˛ , is nonpositive and strictly negative
for all r 2 .0; r0/; however, it vanishes at r D r0 . (We have r > 0 in order for the
vector @a to make sense, as noted above.) The coefficient of @t is �ı0ı˛2�2 , which
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is clearly nonpositive, and negative at r D r0 since ı0.t0/ > 0 by definition. Thus we
have II.@a; @a/ > 0 as required. Analogous arguments apply for II.@b; @b/.

Finally, we investigate rT T . We have

rT T D �
0
s.@s�

0
s/@sC�

0
s
2
r@s

@sC�
0
s.@s�

0
t /@t C�

0
s�
0
tr@s

@t C�
0
t .@t�

0
s/@s

C�0t�
0
sr@t

@sC�
0
t .@t�

0
t /@t C�

0
t
2
r@t

@t :

In order to simplify this expression, we note that by definition of �, the coordinate
functions �s.r/ and �t .r/ are one-to-one, and therefore invertible. Viewing s as
a function of r along � we clearly have s.r/ D �s.r/, and hence r.s/ D ��1s .s/.
Differentiating with respect to s then yields

@s�
0
s.r/D @s�

0
s.�
�1
s .s//D �00s .�

�1
s .s//

1

�0s.�
�1.s//

D
�00s .r/

�0s.r/
:

Analogous computations give

(4-3) @s�
0
t D

�00t
�0s
; @t�

0
s D

�00s
�0t
; @t�

0
t D

�00t
�0t
:

It follows immediately that

(4-4) �0s.@s�
0
s/D �

00
s ; �0s.@s�

0
t /D �

00
t ; �0t .@t�

0
s/D �

00
s ; �0t .@t�

0
t /D �

00
t :

Notice that for the above calculations to be valid as stated, we must assume that
�0s; �

0
t ¤ 0. This is fine precisely when r 2 .0; r0/. However, observe that the right-

hand sides of the expressions (4-4) are defined for all r 2 Œ0; r0�, and we can infer from
this that the limits as r! 0C and r! r�0 in (4-3) must be well behaved.

We can now use the above calculations to simplify the expression for rT T :

rT T D

�
2�00s ��

0
s
2 ı
0ı

2
C 2�0s�

0
t

ı0

ı

�
@sC

�
2�00t ��

0
t
2 
0

ı2
C 2�0s�

0
t

 0



�
@t :

In each of the above brackets, notice that the terms are negative, nonpositive and
nonpositive respectively. It follows that II.T; T / > 0 , and hence we conclude that II is
positive definite as claimed.

Let us summarize the above constructions:

Proposition 16 There is a Ricci positive metric g on Dm �Dn and a codimension-
zero solid ellipsoid E �Dm�Dn such that @E is a smooth submanifold of Dm�Dn

and the principal curvatures of @E (with respect to the inward-pointing normal) are all
positive.
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4.5 Proof of the Main Theorem

Recall from Section 1 that to establish the theorem it suffices to construct a fibrewise
Ricci positive metric on each Hatcher sphere bundle. In order to do this, we will begin
by reconsidering the construction of the Hatcher disc bundle from Section 3.

Now we switch to the relevant notation, ie m D pC 1 and n D q . For each point
y 2D4k

C
we have

DpC1 �Dq D Py [IdAy
ˆy

Š Py [ƒy
A0y ;

where we refer the reader to Section 3 for the notation. The ellipsoid E is a subset
of DpC1 �Dq , and so for each y 2D4k

C
there is an ellipsoid

Ey WDˆy.E/� Py [ƒy
A0y :

Collectively, these ellipsoid fibres form a subbundle Eell
C

of EC . Pushing forward the
metric g via ˆy and restricting to Ey equips each Ey with a Ricci positive metric
with positive principal curvatures (with respect to the inward normal) at the boundary.
Moreover, as y varies across D4k

C
, we obtain in this way a smoothly varying family

of fibre metrics on Eell
C

.

We similarly form a product bundle Eell
� !D4k� with total space D4k� �E , and take

the obvious fibrewise metric where each fibre E is equipped with the metric induced
by g . For each fibre Ey � Eell

C
, notice that we have a decomposition

Ey D .Ey \Py/[ .Ey \A
0
y/;

and similarly for the fibres of Eell
� .

In order to form the Hatcher disc bundle, we need to glue the bundles Eell
C

and Eell
�

along the boundaries of their base discs. The procedure for gluing the “full” disc
bundles EC and E� is described at the end of Section 3. Recall that for each pair of
fibres in EC and E� being identified, the annulus parts are identified via the identity
map, but the inner “puck” regions are identified using diffeomorphisms zƒy W Py! Py ,
which by Lemma 13 split as a product of rotations on the two disc factors. Before
proceeding further, we note that these gluing maps restrict to give gluing maps between
Eell
C

and Eell
� , since the annulus and puck parts of the respective ellipsoid bundles agree

near the boundary of the base discs, and are invariant under rotation of the factors.
Note further that by Corollary 14 in Section 3, we do not lose any gluing information
by reducing the fibres from the original product of discs considered in Section 3 to
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the ellipsoids currently under consideration. Thus the bundle we will construct using
Eell
C

and Eell
� will be diffeomorphic to that formed from EC and E� .

From a metric perspective, let us focus first on the puck subbundles within Eell
C

and Eell
� .

As ˆy is the identity mapping on Py , the puck subbundle within Eell
C

is just a product,
with each fibre equipped with the restriction of g . Now the metric g displays rotational
symmetry with respect to both disc factors, and so pulling back gjPy

via the map zƒy
results in a metric identical to gjPy

. Since we have set things up so that the metrics near
the boundaries of both EC and E� are independent of the radial parameter in the base,
we see that gluing the puck subbundles of Eell

C
and Eell

� along S4k�1 in this way yields
a smooth fibrewise metric. (It is perhaps worth remarking that if we were trying to con-
struct a submersion metric on the whole Hatcher disc bundle — as opposed to creating
a mere fibrewise metric — then the twisting involved in gluing the bundles EC and E�
would have nontrivial metric implications in directions transverse to the fibres.)

Turning our attention to the gluing of the annular regions, we similarly observe that
the metric on the annuli close to the boundary of EC is a push-forward via ˆy of the
rotationally symmetric metric gjAy

. Although ˆy acts nontrivially on the annuli, it
nevertheless acts by rotation in both Sm�1 and Sn�1 directions for y close to @D4k

C
.

Thus the pull-back metric on the annuli is identical to the original over the boundary of
the base disk, and so gluing the annular part of Eell

C
to Eell

� via the identity creates a
smooth fibrewise metric in the annular region also.

In summary, we have a smooth fibrewise Ricci positive metric on the fibres of each
of the ellipsoid subbundles Eell

� and Eell
C

, which glue to create a fibrewise Ricci
positive metric on the ellipsoid subbundle of the Hatcher disc bundle Eell � E , with
the principal curvatures at the boundary of each fibre being positive with respect to the
inward normal.

Finally, we wish to glue two identical copies of the Hatcher disc bundle Eell equipped
with the above fibrewise metric so as to construct the desired Hatcher sphere bundle.
Metrically this is now possible using the family gluing result, Theorem 10, as a
consequence of the positive principal curvatures at the boundary. We thus create a
Hatcher sphere bundle with a smooth fibrewise Ricci positive metric, as required to
establish the theorem. �
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